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Introduction

The concept of initial ideals for ideals of a polynomial ringin Gröbner basis the-
ory is generalized in a natural way for subalgebras of a polynomial ring, and they are
called initial algebras. A set of generators of a subalgebrais called a SAGBI (Subalge-
bra Analogue to Gr̈obner Bases for Ideals) basis [6] if their initial monomialsgenerate
the initial algebra. The main difference between the initial ideal and the initial algebra
is that the former always has finite generators by Hilbert’s basis theorem while the
latter does not. Hence it is an important problem to find a criterion for the finite gen-
eration of initial algebras.

Göbel [2] studied this problem for the subalgebras which are invariant rings of
permutation groups . He showed that, with respect to the lexicographic order, the
initial algebra of [x] is finitely generated if and only if is a direct product of
symmetric groups.

In this paper, we prove that a similar result holds for any multiplicative order,
i.e. a monomial order which does not require the minimality of the unit 1. We intro-
duce a topological structure to the set of multiplicative orders, and make use of it for
the proof of our results.

In case of initial ideals, there exist only finite cardinality of distinct initial ideals
for an ideal under a certain condition, although there existinfinite cardinality of orders
in general. However, this is not always true in case of initial algebras. Our second re-
sult is about the cardinality of distinct initial algebras of invariant rings of permutation
groups. We will show that there exist uncountable cardinality of distinct initial algebras
for each invariant ring, when is not a direct product of symmetric groups. If is
a product of symmetric groups, there exist finite cardinality of distinct initial algebras.
The exact number is given in Proposition 3.3.

We prove similar results on initial algebras for [x x−1] , i.e., for invariant sub-
rings of the Laurent polynomial ring [x x−1].

In Section 1, we introduce a topology on the set of multiplicative orders. This sec-
tion also contains our notation and the basic definitions. Section 2 presents our main
results.

The author would like to thank Professor Masanori Ishida for his advices during
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the preparation of this paper.

1. The topological structure of multiplicative orders and standard bases for
vector spaces

We fix a field of an arbitrary characteristic. Let be a positiveinteger,
[x] := [ 1 . . . ] the polynomial ring of variables, and

[x x−1] := [ 1 . . . −1
1 . . . −1]

the Laurent polynomial ring of variables. Throughout this paper, the monomials in
[x x−1] are denotedxa = 1

1 · · · and identified with lattice pointsa = ( 1 . . . )
in Z . An algebra always means a -algebra.

A total order≺ on Z is said to bemultiplicative if a ≺ b implies a + c ≺ b + c
for all a, b, c ∈ Z . A monomial orderis a total order which is a multiplicative order
and the zero vector 0 is the minimum element amongZ≥0. We denote byS′ the set
of vectorsω = (ω1 . . . ω ) on the ( − 1)-dimensional unit sphereS −1 ⊂ R whose
componentsω1 . . . ω ∈ R are linearly independent overQ. For eachω ∈ S′, the
multiplicative order≺= ι(ω) is defined by

a≺ b : ⇔ ω · a≤ ω · b

Note that the inner productsω ·a andω ·b are not equal for any distincta and b in Z
by the linear independence ofω1 . . . ω over Q.

For a convex polytope ⊂ R andω ∈ R , the face faceω( ) of is defined by

faceω( ) := {a ∈ R | ω · a′ ≤ ω · a for all a′ ∈ }

We denote by the set of multiplicative orders, by0 the set of monomial or-
ders, and byV the set of -vector spaces ⊂ [x x−1] spanned by monomials.

We introduce topologies on andV as follows. We take a mapρ from Z
to Z>0 such thatρ−1( ) is a finite set for every ∈ Z>0. Let ρ : × → R and
δρ : V × V → R be functions defined as follows. For all≺, ≺′∈ , we set

ρ(≺ ≺′) :=





0 if ≺=≺′

1/ if = max{ ∈ Z>0 | xa ≺ xb ⇔ xa ≺′ xb

for all xa xb ∈ [x x−1] such thatρ(a) ρ(b) < }

For all , ′ ∈ V, we set

δρ( ′) :=





0 if = ′

1/ if = max{ ∈ Z>0 | xa ∈ ⇔ xa ∈ ′

for all xa ∈ [x x−1] such thatρ(a) < }
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It is easy to see thatρ and δρ define metrics of andV, respectively. ForS′,
we consider the topology induced fromR .

Theorem 1.1. The topological structures of the metric spaces( ρ) and (V δρ)
are independent of the choice ofρ. The set of multiplicative orders is compact with
respect to this topology. Furthermore, the injectionι : S′ → is continuous. The im-
age ι(S′) is a dense subset of .

Proof. Let ρ1, ρ2 be distance functions on determined by mapsρ1, ρ2 from
Z to Z>0 as above. We take an arbitrary≺∈ and > 0. Then, there exists′ ≫ 0
such that{xa ∈ [x x−1] | ρ1(a) ≤ ′} and {xa ∈ [x x−1] | ρ2(a) ≤ ′} con-
tain {xa ∈ [x x−1] | ρ1(a) ≤ or ρ2(a) ≤ }. Now, it follows for every≺′∈
that ρ1(≺ ≺′) < 1/ ′ implies ρ2(≺ ≺′) < 1/ and ρ2(≺ ≺′) < 1/ ′ implies

ρ1(≺ ≺′) < 1/ . Hence ρ1 and ρ2 define the same topology.
By a similar argument, we can prove that any two distance functions δρ1 and δρ2

define the same topology onV.
We prove the totally boundedness of . We take a positive number . Then the

cardinality of monomialsxa with ρ(a) ≤ is finite. So, there exist only finite cardi-
nality of distinct orders on the set of monomialsxa with ρ(a) ≤ . Hence we can take
≺1 . . . ≺ ∈ such that, for every≺∈ , it follows that ρ(≺ ≺ ) < 1/ for some .
Then the 1/ -neighborhoods of≺ ’s is a finite 1/ -covering of .

Now we see the completeness of as follows. Let{≺ } ⊂ be a Cauchy
sequence. Then, for every integer> 0, there exists an integer > 0 such that

ρ(≺ ≺ ) < 1/ for all , ≥ . Now, {≺ } tends to the order≺∈ which is
defined by

xa ≺ xb : ⇔ xa ≺ xb

where is an integer greater thanρ(a) and ρ(b).
Finally, we prove the continuity of the injectionι : S′ → , and the density of

its image. Let≺0= ι(ω0) be the multiplicative order defined byω0 ∈ S′, and let be
a positive number. Then the following three conditions are equivalent forω ∈ S′ and
≺= ι(ω):

ρ(≺0 ≺) < 1/ ,
ω0 · a≤ ω0 · b⇔ ω · a≤ ω · b for all a, b ∈ Z with ρ(a), ρ(b) ≤ ,
faceω(conv{a b}) = faceω0(conv{a b}) for all a, b ∈ Z with ρ(a), ρ(b) ≤ ,

where conv{a b} is the convex hull of{a b}. In general, for a convex polytope
⊂ R and a vertex{ 0} = faceη0( ), the set{η ∈ R | faceη( ) = { 0}} of vectors

is an open cone ofR . In particular,

(a b) := {ω ∈ S′ | faceω
(
conv{a b}

)
= faceω0

(
conv{a b}

)
}

is an open set ofS′. Since {ω ∈ S′ | ρ(≺0 ι(ω)) < 1/ } is the intersection of
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(a b)’s for a, b ∈ Z with ρ(a), ρ(b) ≤ , it is an open set ofS′. Hence the mapι
is continuous.

The density ofι(S′) in follows from Robbiano’s classification of multiplicative
orders [5, Theorem 2.5]:

Let ≺ be a multiplicative order. Then there exist vectorsω1 . . . ω ∈ R such
that xa ≺ xb if and only if ω · a < ω · b for the first such thatω · a 6= ω · b,
for all a, b ∈ Z .

Indeed, we setω( ) :=
∑

=1ω
− and take{ } ⊂ R such that → +∞ as

→ +∞ and |ω( )|−1ω( ) ∈ S′. Then the sequence{ι(|ω( )|−1ω( ))} tends to≺.

The topology of defined as above is the same as the topology which is defined
as follows (cf. [4, Lecture 3], [7]): Let → {1 −1}Z be the inclusion map which is
defined, for each≺∈ , by ≺ (a) := 1 if 0 ≺ a, and−1 otherwise, for alla ∈ Z .
The set{1 −1}Z is considered to be the topological space which is the product of
the discrete topological space{1 −1}. The topological structure of is induced from
this topology.

In what follows, by a vector space ⊂ [x x−1], we mean a vector space over
the field .

DEFINITION 1.2. Let ≺ be a multiplicative order, =
∑

xa ∈ [x x−1] a
nonzero polynomial, and ⊂ [x x−1] a vector space.
(1) The initial monomial of with respect to≺ is defined by

(1.1) in≺( ) := max
≺
{xa | 6= 0}

Then it follows that in≺( · ) = in≺( ) · in≺( ) for , ∈ [x x−1] \ {0}.
(2) The initial vector spaceof with respect to≺ is by definition the vector space
spanned by{in≺( ) | ∈ \ {0}}. If is a subalgebra of [x x−1], then in≺( )
has an algebra structure, since in≺( ) · in≺( ) = in≺( · ) for any , ∈ \ {0}. We
call it the initial algebra of with respect to≺.

A set of generators of is called aSAGBI basiswith respect to≺∈ , if
{in≺( ) | 0 6= ∈ } generates in≺( ) as an algebra. Note that has a finite SAGBI
basis only if the initial algebra in≺( ) is finitely generated.

The correspondence≺7→ in≺( ) is a map from the set of multiplicative orders
to the setV of vector spaces spanned by monomials. This map is denoted by. It is
not continuous in general. However, if the vector space satisfies the following sep-
aration condition, then is continuous.

For each monomial , there exist subspaces ,⊂ such that = + .
Here, the number of monomials appearing in polynomials in isfinite, does
not appear in any polynomials in , and a polynomial in and a polynomial in
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have no common monomials.
Actually, if (≺) does not contain , then neither does (≺′) for ≺′ in a suf-
ficiently small neighborhood of≺, since (≺′′) = (≺′′) + (≺′′) holds for
any ≺′′∈ . We denote by (≺) the inverse image of the initial vector space
in≺( ) ∈ V. Namely,

(1.2) (≺) := {≺′∈ | in≺′( ) = in≺( )}

If satisfies the separation condition, then (≺) is a closed subset of , becauseV
is Hausdorff and the map is continuous.

DEFINITION 1.3. Let ⊂ [x x−1] be a vector space, and≺ a multiplicative or-
der.
(1) A basis { } of the vector space is said to bestandard with respect to≺,
if {in≺( )} is a basis of the vector space in≺( ).
(2) A polynomial 06= ∈ is said to bereduced, if all monomials of but in≺( )
are not contained in in≺( ).
(3) A standard basis{ } is said to bereducedif every is reduced.

We remark that the index set of a standard basis of a vector space with re-
spect to≺∈ can be taken as the set of monomials in in≺( ). Namely, we denote a
standard basis by{ } with = in≺( ) where runs through the monomials of
in≺( ).

The following lemma is well known.

Lemma 1.4. Let ⊂ [x x−1] be a vector space and≺, ≺′ multiplicative
orders. Assume that there exists a reduced standard basis ofwith respect to≺
and≺′. Then, in≺( ) ⊂ in≺′( ) implies in≺( ) = in≺′( ).

Proof. Let { } and { ′
′} ′ be reduced standard bases of with respect to

≺ and ≺′ respectively. For each monomial in in≺( ), it follows that ′ =
for some 6= 0. Actually, we choose so that the coefficient of in′ − is
zero. Since and ′ are reduced, none of the monomials of′ − ∈ lie in
in≺( ). Therefore ′ − is equal to zero. Hence, by replacing with , we
may assume = ′ for every monomial in in≺( ).

Suppose there existed a proper inclusion of in≺( ) to in≺′( ). Then, there exists
a proper inclusion{ } ⊂ { ′

′} ′ of the reduced standard bases. This is a contra-
diction, since both{ } and { ′

′} ′ are bases of .

Let { } and { ′ } be reduced standard bases of with respect to multiplica-
tive orders≺ and≺′, respectively. If in≺( ) = in≺′( ) then we have ′ = for
some ∈ \ {0} for each monomial ∈ in≺( ), by the proof of Lemma 1.4.
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Namely, the reduced standard basis of is uniquely determined by the vector space
in≺( ) up to multiplications of elements of \ {0}. We sometimes say{ } a re-
duced standard basis with respect to in≺( ).

Lemma 1.5. Let ⊂ ′ ⊂ [x x−1] be vector spaces, and ≺∈ . With re-
spect to≺, we suppose that a reduced standard basis of is a subset of a reduced
standard basis of ′. Then it follows that

′(≺) ⊂ (≺)

Proof. Let { } and { ′
′} ′ be reduced standard bases of and′ with re-

spect to≺, respectively. Then it follows that

(≺) = {≺′′∈ | in≺′′( ) = for every monomial ∈ in≺( )}

and

′ (≺) = {≺′′∈ | in≺′′( ′
′) = ′ for every monomial ′ ∈ in≺( ′)}

Now we assume that{ } ⊂ { ′
′} ′ . Then, for each monomial ∈ in≺( ),

= ′
′ implies = in≺( ) = in≺( ′

′) = ′. Hence we have ′(≺) ⊂ (≺).

For a vector space ⊂ [x x−1], we denote by ( ) the set of multiplicative
orders with respect to which reduced standard bases of exist. Note that (≺) is
contained in ( ) if≺∈ ( ).

Lemma 1.6. Let ⊂ [x x−1] be a subalgebra, and ≺∈ ( ). If the algebra
in≺( ) is finitely generated, then (≺) is an open subset of ( ).

Proof. Let { } be a reduced standard basis of with respect to in≺( ). For
0 6= =

∑
xa ∈ [x x−1], we setρ( ) := max{ρ(a ) | 6= 0}. Then there exists a

positive integer such that in≺( ) is generated by its monomials withρ( ) ≤ .
We will show that 1/ -neighborhood of every≺′∈ (≺) is contained in (≺). We
fix an arbitrary≺′∈ (≺) and take≺′′∈ ( ) such that ρ(≺′ ≺′′) < 1/ . Note that
{ } is a reduced standard basis with respect to≺′ as well. Then monomial ∈
in≺′( ) is contained in in≺′′( ) if ρ( ) ≤ , because = in≺′( ) = in≺′′( ) for
ρ( ) ≤ . Since in≺( ) = in≺′( ) is generated by monomials withρ( ) ≤ , we
have in≺′( ) ⊂ in≺′′( ). This implies in≺′( ) = in≺′′( ) by Lemma 1.4. Hence≺′′

is contained in (≺). Therefore the 1/ -neighborhood of≺′ is contained in (≺).

The converse of Lemma 1.6 is not true in general. Actually, there exists a subal-
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gebra of [x x−1] which is generated by monomials but is not finitely generated. In
this case, (≺) = ( ) = for any≺∈ .

Let be an ideal of [x]. By Hilbert’s basis theorem, the ideal in≺( ) is always
finitely generated. By the argument similar to Lemma 1.6, Schwartz [7, Theorems 13
and 30] showed that, for any subset of ,

:= {≺∈ 0 | is a Gr̈obner basis of with respect to≺}(1.3)

is an open subset of 0. Note that 0 is a compact subset of . In fact, we have the
following lemma.

Lemma 1.7. Let ⊂ [x x−1] be an algebra which is generated by a finite sub-
set of monomials in . Then the set of multiplicative orders which are well-orderings
on the set of monomials in is compact(may be empty).

Proof. We remark that≺∈ is a well-ordering on the set of monomials in , if
and only if the unit 1 is the minimum element among the monomials in . Indeed, if
there exists a monomial 16= xa ∈ with xa ≺ 1, then{x a | = 1 2 . . .} ⊂ does
not have the minimum element. For the converse, suppose thatevery monomial of
is greater than 1. Since is Noetherian, the ideal ( )⊂ is finitely generated (say,
by {xa1 . . . xa } ⊂ ) for any subset of monomials in . Then we have min≺ =
min≺{xa1 . . . xa }.

We set the set of multiplicative orders which are not well-orderings on the set
of monomials in . We will show that is an open subset of . For≺∈ , there
exists a monomial 16= xa ∈ with xa ≺ 1. We take a positive number which is
greater thanρ(0) and ρ(a). For any multiplicative order≺′ in the 1/ -neighborhood
of ≺, we havexa ≺′ 1. So≺′ is not a well-ordering on the set of monomials in
as well. Hence the 1/ -neighborhood of≺ is contained in . Therefore is open.

By using the compactness of0, Schwartz [7, Corollaries 16 and 31] showed the
finiteness of the cardinality of distinct initial ideals fora fixed ideal of [x] with re-
spect to monomial orders. By a similar argument, we get the following proposition.

Proposition 1.8. Let ⊂ [x x−1] be a subalgebra, and a compact subset
of ( ). Assume that the initial algebrasin≺( ) are finitely generated for all≺∈ .
Then there exist only finite distinctin≺( )’s when≺ runs over .

Proof. By Lemma 1.6, (≺) is an open subset of ( ) for any≺∈ . Hence

{ (≺) ∩ |≺∈ }

is a disjoint open covering of . Since is compact, it is a finitecovering. Therefore,
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the cardinality of distinct initial algebras for with respect to ≺∈ is finite.

2. Main result

Throughout Sections 2 and 3, we fix a subgroup of the symmetricgroup of
degree . The action of on [x x−1] is defined byσ( ) := ( σ(1) . . . σ( )) for

σ ∈ and = ( 1 . . . ) ∈ [x x−1]. Let [x x−1] and [x] be the invariant
subrings of [x x−1] and [x], respectively, by the action of .

Recall the following result by G̈obel.

Theorem 2.1 (Göbel [2]). Let ≺lex∈ be a lexicographic order. Then
in≺lex( [x] ) is finitely generated if and only if is a direct product of symmetric
groups.

Here, by symmetric groups, we mean those of subsets of{1 . . . }. Note that
is a direct product of symmetric groups if and only if is generated by the set

of transpositions in . We will show that similar results holdfor any multiplicative
orders.

Theorem 2.2. Assume that is not a direct product of symmetric groups. Then
the initial algebra in≺( [x] ) is not finitely generated for any multiplicative order
≺∈ . There are uncountable cardinality of distinct initial algebras for [x] .

We get a similar result for [x x−1] as follows.

Theorem 2.3. Assume that is not a direct product of symmetric groups. Then
the initial algebra in≺( [x x−1] ) is not finitely generated for any multiplicative order
≺∈ . There are uncountable cardinality of distinct initial algebras for [x x−1] .

For a subgroup of a symmetric group and a monomialxa ∈ [x x−1], we de-
fine

(2.1) (xa) :=
∑

σ∈ / (xa)

σ(xa)

where (xa) is the stabilizer{τ ∈ | τ (xa) = xa}. We set

(2.2) :={ (xa) | a ∈ Z }

and

(2.3) 0 := { (xa) | a ∈ Z≥0}
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Lemma 2.4. For any multiplicative order, the sets and 0 are reduced stan-
dard bases of [x x−1] and [x] , respectively.

Proof. We fix an arbitrary multiplicative order≺. We first remark that if (xa)
and (xb) have common terms then (xa) = (xb). This implies that is linearly
independent over , and every (xa) ∈ is reduced.

We show that spans [x x−1] over Let 0 6= =
∑

xa ∈ [x x−1] be
an invariant. Then acts on the set{ xa | 6= 0} of terms of . We decompose it
into orbits as

{ xa | 6= 0} =
∐
{ σ(xa ) | σ ∈ }

The sum of the elements of{ xa | 6= 0} is equal to , and the sum of the elements
of {σ(xa ) | σ ∈ } is equal to (xa ). Hence we have

=
∑

(xa )

Now, we show that is a standard basis of [x x−1] with respect to≺. Since
spans [x x−1] , a -invariant of [x x−1] \ {0} has an expression =

∑
(xa ).

By the remark, the monomial in≺( (xa )) appears in with nonzero coefficient if
6= 0. Hence we have

(2.4) in≺( ) = max
≺
{in≺

(
(xa )

)
| 6= 0} ∈ {in≺( ) | ∈ }

Thus, is a standard basis of [x x−1] with respect to≺.
We will prove that 0 is a standard basis of [x] with respect to≺. Let

=
∑

(xa ) ∈ [x] be a nonzero invariant. By the remark, any term which ap-
pears in (xa ) appears in as well. So, each (xa ) must be an element of
[x]. Hence 0 spans [x] . As (2.4), we have in≺( ) ∈ {in≺( ) | ∈ 0}. Thus 0

is a standard basis of [x] .

By this lemma, we have

(
[x]

)
=

(
[x x−1]

)
=

Furthermore, it is easy to see that [x] and [x x−1] satisfy the separation condi-
tion. Hence [x] (≺) and [x x−1] (≺) are closed for any≺∈ .

The following is the key lemma.
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Lemma 2.5. Assume that is not a direct product of symmetric groups. Then
everyω ∈ S′ is not an interior point of

ι−1
(

[x] (≺)
)

= {ω′ ∈ S′ | in≺
(

[x]
)

= in≺′

(
[x]

)
for ≺′= ι(ω′)}

for ≺= ι(ω), with respect to the Euclidean topology.

Before we prove this lemma, we will prove Theorems 2.2 and 2.3by assuming
this lemma.

Let ≺ be a multiplicative order. Suppose that in≺( [x] ) was finitely gener-
ated. Then by Lemma 1.6, [x] (≺) is a nonempty open subset of . The in-
verse imageι−1( [x] (≺)) is a nonempty open subset ofS′ by Theorem 1.1.
For ω′ ∈ ι−1( [x] (≺)), we set≺′= ι(ω′). Then it follows that ι−1( [x] (≺′)) =
ι−1( [x] (≺)), which implies thatω′ is an interior point ofι−1( [x] (≺′)). This con-
tradicts Lemma 2.5. Therefore in≺( [x] ) is not finitely generated.

The set [x] (≺) can not contain interior points by Lemma 2.5, and also it is
closed. Hence it is a nowhere dense subset of . Suppose that there were only count-
able cardinality of distinct initial algebras for [x] . Then is covered by count-
able cardinality of [x] (≺)’s. Since is a compact metric space, this contradicts the
Baire theorem which says that the complement of the union of countable cardinality
of nowhere dense subsets of a complete metric space is dense.

By Lemma 2.4, we see that a reduced standard basis of [x] is a subset of that
of [x x−1] . Hence we have

[x x−1] (≺) ⊂ [x] (≺)

by Lemma 1.5. Since [x] (≺) is nowhere dense, the subset [x x−1] (≺) is also

nowhere dense and is not open. Hence in≺( [x x−1] ) is not finitely generated by
Lemma 1.6.

The assertion of Theorem 2.3 for the cardinality of distinctinitial algebras fol-
lows, since the disjoint covering{ [x x−1] (≺) | ≺∈ } of is a refinement of
{ [x] (≺) | ≺∈ }.

The rest of this section is devoted to the proof of Lemma 2.5. Our strategy is to
translate polynomial informations into the geometry of convex polytopes. Let

(2.5) M :=

{
( 1 . . . ) ∈ R≥0

∣∣∣∣
∑

=1

= 1

}

andM :=M∩Q . We define the surjection

(2.6) π :
{

xa | a ∈ Z≥0 \ {0}
}
→M

by xa 7→ (
∑

=1 )−1a for a = ( 1 . . . ) ∈ Z≥0. The action of onM is by def-
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Fig. 1: Some 3(a)’s in M. Fig. 2: Some 3(a)’s in M.

inition σ(a) := ( σ(1) . . . σ( )) for a = ( 1 . . . ) ∈ M and σ ∈ . For each point
a ∈M, we denote by (a) the convex hull of the -orbit{σ(a) | σ ∈ }. Note that
the set of vertices of (a) is {σ(a) | σ ∈ }, for each point in{σ(a) | σ ∈ } lies
on the sphere{a′ ∈M | |a′| = |a|}.

Let ≺ be a multiplicative order defined byω ∈ S′. Then, for each element
a ∈ Z≥0, we have faceω( (π(a))) = {π(a)} if and only if in≺( (xa)) = xa. By
Lemma 2.4, we get the following lemma.

Lemma 2.6. Assume that≺∈ is defined byω ∈ S′. Then

⋃

a∈M
π−1

(
faceω( (a))

)
∪ {1}

is a basis of the vector spacein≺( [x] ). For ω, ω′ ∈ S′, set≺= ι(ω) and ≺′= ι(ω′).
If there existsa ∈ M with faceω( (a)) 6= faceω′( (a)), then we havein≺( [x] ) 6=
in≺′( [x] ).

Figs. 1 and 2 show the examples of (a)’s for = 3. Fig. 1 is for = 3 and
Fig. 2 is for = 3.

We will construct a “deformation” of a polytope (a), when is not a direct
product of symmetric groups.

We set σ := {a ∈ M | σ(a) = a} for eachσ ∈ , and let be the union ofσ ’s
for σ ∈ \ {1}. ThenM\ consists of finite number of connected components. For
1 6= σ ∈ the condition that σ has codimension one is equivalent to thatσ is a
transposition. SinceM is a convex set of dimension− 1, it is connected even if we
remove finite number of linear subspaces of codimension greater than one from it.

Lemma 2.7. Assume that is not a direct product of symmetric groups. Then
for all a ∈ M \ , every connected component ofM\ contains at least two points
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of {σ(a) | σ ∈ }.

Proof. Letτ ∈ be a transposition. Then, the action ofτ is the reflection ofM
with respect to the hyperplaneτ . For every 16= σ ∈ , the subset σ of M is the
reflection of τστ in the hyperplane τ . So, the union of them is symmetric with
respect to τ . The complementM\ is also symmetric with respect toτ .

Now, let 6= ′ be connected components ofM \ . We will show that
′ = τ ◦ · · · ◦ τ1( ) for some transpositionsτ1 . . . τ ∈ . Let φ : [0 1] → M be a

path from a point in to a point in ′. We assume thatφ does not intersectτ ∩ τ ′

for any transpositionsτ 6= τ ′ in , and

{ ∈ [0 1] | φ( ) ∈ τ for some transpositionτ ∈ }

is a finite set, say{ 1 . . . } with < +1. We setτ the transposition in with
φ( ) ∈ τ . Then we have ′ = τ ◦ · · · ◦ τ1( ).

We remark that every connected component contains the same cardinality of
points of {σ(a′) | σ ∈ } for each a′ ∈ M. Suppose that there existed a point
a ∈ M \ and a connected component ofM \ which contains only one point
of {σ(a) | σ ∈ }. Then every connected component contains only one point of
{σ(a) | σ ∈ }. Assume thata is contained in a connected component ofM \ .
For each 16= σ ∈ , we haveσ(a) 6= a becausea is not an element of . Hence there
exists a connected component′ 6= of M\ such thatσ(a) ∈ ′. If τ1 . . . τ ∈
are transpositions such that′ = τ ◦ · · · ◦ τ1( ), then σ(a) = τ ◦ · · · ◦ τ1(a) since ′

contains exactly one point of{σ(a) | σ ∈ }. Becausea is not fixed by any element
of \{1}, we see thatσ = τ ◦· · ·◦τ1. Therefore can be generated by transpositions
in . This contradicts the assumption.

Proof of Lemma 2.5. We fix an arbitraryω ∈ S′ and set≺= ι(ω). We will prove
that ω is not an interior point ofι−1( [x] (≺)).

Let a ∈ M \ such that{a} = faceω(a). Then, by Lemma 2.7, there exists an-
other pointσ(a) 6= a, for someσ ∈ , in the connected component ofM \ which
containsa. We define a pathγ with

γ : [0 1]→M\ γ(0) = a γ(1) = σ(a)

by combining rational points ofM\ with line segments. Thenγ([ ]) contains ra-
tional points densely for any 0≤ < ≤ 1. Now,

=
{
∈ [0 1] | ω · γ( ) = ω · σ′(γ( )

)
for someσ′ ∈

}

is not an empty set. Indeed, since

ω ·
(
γ(0)− σ−1(γ(0))

)
= ω ·

(
a− σ−1(a)

)
> 0
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and

ω ·
(
γ(1)− σ−1(γ(1))

)
= ω ·

(
σ(a)− a

)
< 0

there exists ∈ (0 1) such thatω · (γ( ) − σ−1(γ( ))) = 0 by the intermediate value
theorem. We set0 := inf( ), and b := γ( 0). Then we have

ω · b = ω · σ0(b)

for some 16= σ0 ∈ , and

(2.7) ω · γ( ) > ω · σ′(γ( )
)

for all ∈ [0 0) and 1 6= σ′ ∈ . Note thatb 6= σ0(b), since the pathγ does not
intersect . For eachδ ∈ R>0, we set

ωδ := ω − δ
(
b− σ0(b)

)

Let { } ⊂ [0 0) be a sequence such that lim→∞ = 0 and a := γ( ) ∈ M.
Then, for eachε′ > 0, there exists a positive integerε′ such that

|
(
b− σ0(b)

)
·
(
(b− σ0(b))− (a − σ0(a ))

)
| < ε′

and

0< ω ·
(
a − σ0(a )

)
< ε′

for every integer > ε′ .
Now, let ε be any positive number. Then there existsδ > 0 such that

∣∣∣∣ω −
ωδ

|ωδ|

∣∣∣∣ < ε

and |ωδ|−1ωδ ∈ S′. We setε′ = (1 + δ)−1δ|b − σ0(b)|2. Then, for any integer > ε′ ,
we have

ωδ ·
(
σ0(a )− a

)
=
(
ω − δ(b− σ0(b))

)
·
(
σ0(a )− a

)

= ω ·
(
σ0(a )− a

)

−δ
(
b− σ0(b)

)
·
{(

(b− σ0(b))− (a − σ0(a ))
)
−
(
b− σ0(b)

)}

> −ε′ − δε′ + δ|b− σ0(b)|2 = 0

Hence

faceωδ

(
(a )
)
6= {a }
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for > ε′ . On the other hand,{a } = faceω( (a )) for all by (2.7). So, we
have in≺δ

( [x] ) 6= in≺( [x] ) for ≺δ= ι(|ωδ|−1ωδ) by Lemma 2.6. Thus,|ωδ|−1ωδ 6∈
ι−1( [x] (≺)). Thereforeω is not an interior point ofι−1( [x] (≺)).

3. Finite SAGBI bases

Now we will observe the case where is a direct product of symmetric groups.

Lemma 3.1. Let be [x] or [x x−1] . We consider the initial algebras
in≺( ) for all multiplicative orders≺. Then the cardinality of distinct initial algebras
for is ! .

Proof. It suffices to show that, if≺ and ≺′ are multiplicative orders with
≺ · · · ≺ 1 and ≺′ · · · ≺′

1, then in≺( ) = in≺′( ). By Lemma 2.4, we see
that a reduced standard basis of is equal to

{
{ ( 1

1 · · · ) | 0≤ ≤ · · · ≤ 1} if = [ x]

{ ( 1
1 · · · ) | ≤ · · · ≤ 1} if = [ x x−1]

For everya = ( 1 . . . ) ∈ Z with ≤ · · · ≤ 1, it follows that in≺( (xa)) =
in≺′( (xa)) = xa. This implies that in≺( ) = in≺′( ).

By the proof of Lemma 3.1, the initial algebras in≺( [x] ) and in≺( [x x−1] )
are spanned by the sets of monomials

{ 1
1 · · · | 0≤ ≤ · · · ≤ 1} and { 1

1 · · · | ≤ · · · ≤ 1}

respectively, if the multiplicative order≺ satisfies ≺ · · · ≺ 1. In these case, they
are generated as algebras by

{ 1 1 2 . . . 1 2 · · · } and { 1 1 2 . . . 1 2 · · · −1
1

−1
2 · · · −1}

respectively. Therefore, the initial algebras in≺( [x] ) and in≺( [x x−1] ) are finitely
generated for any multiplicative order≺ (cf. Robbiano, Sweedler [6, Theorem 1.14]).

Lemma 3.2 (cf. [2, Lemma 3.8]). Let 1 and 2 be subgroups of which acts
on x1 := ( 1 . . . ) and x2 := ( +1 . . . ), respectively. We set = 1 × 2

the direct product of 1 and 2. If is [x] or [x x−1] , and is [x ] or
[x x−1] for = 1, 2, respectively, then we have

in≺( ) = in≺( 1)⊗ in≺( 2)
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Proof. By Lemma 2.4, the assertion follows from the equality

(xa1
1 · xa2

2 ) =
∑

(σ1 σ2)∈ 1/ 1(x
a1
1 )× 2/ 2(x

a2
2 )

σ1(xa1
1 ) · σ2(xa2

2 )

=


 ∑

σ1∈ 1/ 1(x
a1
1 )

σ1(xa1
1 )


 ·


 ∑

σ2∈ 2/ 2(x
a2
2 )

σ2(xa2
2 )




= 1(x
a1
1 ) · 2(x

a2
2 )

for every monomialxa1
1 ∈ [x1 x−1

1 ] and xa2
2 ∈ [x2 x−1

2 ].

Proposition 3.3. Let be [x] or [x x−1] . Assume that is a direct prod-
uct of symmetric groups. Then the initial algebrain≺( ) is finitely generated for any
multiplicative order≺. The cardinality of distinct initial algebras for is| |.

Proof. Assume that = 1 + · · · + and = 1 × · · · × , and that acts
on the set of variablesx = ( 1 . . . ) for each . Let be [x ] if = [ x] ,

and [x x−1] if = [ x x−1] . Then there exist ! distinct initial algebras for
each by Lemma 3.1. Since we can define the order inx independently for each ,
there exist 1! · · · ! distinct initial algebras for . Clearly, this number is equal to
the order of the group .

Since each is finitely generated for any≺∈ , the tensor product of them is
also finitely generated. Hence the initial algebra in≺( ) is finitely generated for any
≺∈ .
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