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1. Introduction

In Taiwan’s market, there are lower and upper bounds on everyday’s stock price.
The lower bound of today’s stock price is defined by 93 % of the final price of yes-
terday’s stock. And the upper bound of today’s stock price isdefined by 107 % of the
final price of yesterday’s stock. Under this background, we are interested in the effect
of the lower bound and upper bound that cause every day’s stock price in a long term.
In words, what is the influence of the bounds on every day’s stock price?

On the other hand, by the empirical studies [1] [2] [6], if thedistribution of finan-
cial time series such as stocks returns are compared with thenormal distribution, then
fatter tails are observed. Besides, the standardized fourth moment for a normal distri-
bution is 3 whereas for many financial time series a value wellabove 3 is observed by
Mandelbrot [6]. Many other researchers [3] [4] [5] [7] [8] alsoreport this feature and
adopt the model with fat tail property to research financial problems. However, those
researches above did not give the definite reasons of leadingfat tails. Thus verifying
the reason theoretically is a difficult problem but is a crucial research.

In order to research those problems in Taiwan’s market, we use some kinds of
difussion processes{ } ≥0 to drive the price of the stock. Furthermore we suppose
that the stock price must be stopped at the bounds until the end of that day when the
process hits the bounds. From this restriction to diffusions, we get a discrete Markov
chain { } ≥0 in (0 ∞). The rigorous definition of the Markov chain is given in the
following section.

Due to the motivation above, we attempt to probe the relationship between the
bounds (lower and upper) and the asymptotic behavior of{ } ≥0. And if the invari-
ant probability measureµ(·) of { } ≥0 exists, we are interested in the tail ofµ(·).

Therefore, the purpose of this paper is to research the (positive) recurrence and
transience of{ } ≥0. Also we compare the tail of the invariant probability mea-
sure of { } ≥0 with { } ≥0. Our results imply that if{ } ≥0 is recurrent and the
bounds satisfy some conditions, then the effect of lower andupper bounds gives a phe-
nomenon of fat tails. Indeed, in other countries, the governments also give a restriction
on stock processes when stock market falls down. But the restriction is not so clear as
Taiwan’s market. Also the restriction is sometimes ambiguous and is difficult to de-
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scribe faithfully. Hence financial researchers often ignored the effect of the restriction
in their visionary mathematical model. Is this the one of thereasons of leading the fat
tails in empirical studies? In our framework of modelling Taiwan’s market, we verify
theoretically that the effect of the lower and upper bounds is the one of the reasons
to give the fat tail property. The details of our results for fat tails will be presented
below.

Since the process{ } ≥0 is obtained by time change of{ } ≥0 and the speed
of { } ≥0 slows down, intuition says that the degree of recurrence of{ } ≥0 de-
creases compared with{ } ≥0. In conclusion, we can prove that if{ } ≥0 is tran-
sient, then{ } ≥0 is transient, too. This means that the barriers have no effect at
all to help the default stock process not to default in the long term. Also if { } ≥0 is
recurrent, then{ } ≥0 is recurrent, provided that{ρ±( )} satisfies some weak condi-
tions. Moreover, we show that there exists{ρ±( )} such that{ } ≥0 is null recurrent
even though{ } ≥0 is positive recurrent. As for the fat tail, we obtain the following
results. Here, for simplicity, we consider the diffusion process{ } ≥0 in nature scale
(see Sect. 3).
1. if

∫
R | | ( ) < ∞ and { } ≥0 is positive recurrent, then the tail ofµ(·) is

fatter than (·), that is,

∫ ∞

0
µ( ) =

∫ 0

−∞
| |µ( ) =∞

2. assume that

1| |−α ≤ ( ) ≤ 2| |−α for any | | ≥

and {ρ±( )} satisfiesρ+( ) ≥ + +| | , ρ−( ) ≤ − −| | whenever| | ≥ , where
α 1 2

± are all positive constants. If ∧ ∈ (0 1∧ α/2), then the tail of
µ(·) is fatter than (·), that is, for anyγ ∈ (2( ∧ )− 1 α− 1)

∫ ∞

0

γµ( ) =
∫ 0

−∞
| |γµ( ) =∞

∫

R
| |γ ( ) <∞

The content of this paper is organized as follows. In Sect. 2 we introduce some
definitions and the setting which we need later. In Sect. 3 we present the main Theo-
rems and some remarks. In Sect. 4 we give the proofs of the mainTheorems.

2. The setting and definitions

Throughout this paper, assume thatρ+( ) ρ−( ) are both not dependent on time,
continuous and 0< ρ−( ) < < ρ+( ) <∞ for any ∈ (0 ∞). We useρ+( ) (resp.
ρ−( )) to denote the upper (resp. lower) bound at the state . Suppose that{ } ≥0 is
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a time homogeneous diffusion on (0∞), and is generated by a generator

≡ 1
2
σ( )2 ∂

2

∂ 2
+ ( )

∂

∂

which σ( ) and ( ) are continuous andσ( ) > 0 for all ∈ (0 ∞). Here notice that
we don’t give any boundary conditions to{ } ≥0, since the boundary conditions are
irrelevant to the definition of our Markov chain below. Denote( ) by

( ) ≡
∫

0

− ( 0) where ( 0) ≡
∫

0

2 ( )
σ( )2

This ( ) is called ‘scale function’ of the diffusion{ } ≥0 and satisfies ( ) =
0 and is a strictly increasing function. Formally, the generator takes the following
simple form;

≡
( ) ( )

where

( ) ≡
∫

0

2
σ( )2

( 0)

Now we construct the time homogeneous Markov chain{ } ≥0 on (0 ∞) as
follows.
1. 0 ≡ 0 ≡ and 1 ≡ 1∧τ , where

τ± ≡ inf{ ≥ 0 : = ρ±( )} τ ≡ τ+ ∧ τ−

2. { }∞=0 has a stationary transition probability

( ) ≡ ( 1∧τ ∈ ) = ( ) + ( )

where

( ) ≡ ( 1 ∈ τ > 1)

( ) ≡ +( )δ{ρ+( )}( ) + −( )δ{ρ−( )}( )
±( ) ≡ (τ± ≤ τ∓ τ± ≤ 1)

We call the above{ } ≥0 “Markov chain induced from{ } ≥0 and the barrier
{ρ±( )}”. From the assumptions thatρ+( ) ρ−( ) σ( ) ( ) are all continuous, we
see that has a positive continuous kernel ( ) on (0∞) × (ρ−( ) ρ+( )) and
± are continuous.
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Since the state space of{ } ≥0 is (0 ∞), it is not trivial to define the irre-
ducibility for the Markov chain. We follow the idea of Revuz [9]. For ∈ (0 1), let

( ·) be the resolvent kernel of{ } ≥0, that is,

( ) ≡
∞∑

=0

(1− ) ( +1 ∈ ) ∈ B((0 ∞)) ∈ (0 ∞)

Supposeν(·) is a Radon measure on (0∞). Then { } ≥0 is called ν-irreducible if
ν(·) is absolutely continuous with respect to (·) for all ∈ R and ∈ (0 1).
In our case, we can takeν(·) as Lebesgue measure. Now the recurrence is defined as
follows.

DEFINITION 2.1. A ν-irreducible Markov chain{ } ≥0 is called recurrent in the
sense of Harrisif and only if, there exists aσ-finite invariant measureµ(·) such that
µ( ) > 0 ∈ B((0 ∞)) implies

(1)

( ∞∑

=1

χ ( ) =∞
)

= 1

for all ∈ (0 ∞).

REMARK. In this framework, an invariant measureµ(·) is unique under whichν(·)
is absolutely continuous with respect toµ(·), provided with the irreducibility.

Under this definition, it is trivial that ifµ( ) > 0, then

(2) (τ <∞) = 1 for any ∈ (0 ∞) ∈ B((0 ∞))

whereτ ≡ inf{ > 0 : ∈ }. In general, it is not true that (2) implies (1).
The definition of positive recurrence of{ } ≥0 is given by

DEFINITION 2.2. A recurrent Markov chain{ } ≥0 in the sense of Harris is
called positive recurrentif and only if the invariant measureµ(·) is a probability mea-
sure. Otherwise{ } ≥0 is said to benull recurrent.

Another definition of positive recurrence for can be given asτ < ∞ for
any ∈ (0 ∞) and any open subset of (0∞). In general, the necessary and suffi-
cient condition was given by Meyn and Tweedie [10]. From Theorem 4.1 of [10], A
Markov chain{ } ≥0 is positive recurrent if and only if a petite set exists with

(τ < ∞) = 1 for all ∈ (0 ∞) and sup∈ τ < ∞. Moreover, if is a petite
set, thenµ( ) <∞.
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REMARK. Meyn and Tweedie also showed; For aν-irreducible Markov chain
{ } ≥0 with Feller property which means ( )≡ ( 1) is continuous for every
bounded continuous function ( ), if the support ofν has non-empty interior, then ev-
ery compact set of (0∞) is petite. Since our Markov chain{ } ≥0 posseses Feller
property and the support ofν is (0 ∞), this gives that every closed bounded interval
is petite.

Finally, we set

γ+(µ) ≡ sup

{
γ :
∫ ∞

1

γµ( ) <∞
}

γ−(µ) ≡ inf

{
γ :
∫ 1

0

γµ( ) <∞
}

and introduce

DEFINITION 2.3. The recurrent Markov chain{ } ≥0 induced from a recurrent
time homogeneous diffusion{ } ≥0 and the barrier{ρ±( )} is called to havea fat
tail at =∞ if γ+(µ) < γ+( ). Analogously it is calleda fat tail at = 0 if γ−(µ) >
γ−( ).

REMARK. In the empirical studies [1] [2] [6], the fat tail property is argued by
the positive recurrent process. In this paper, we extend theargument to including the
null recurrent process.

For simplicity, we say{ } ≥0 is ‘recurrent’ instead of ‘recurrent in the sense of
Harris’ and is ‘positive recurrent’ instead of ‘positive recurrent in the sense of Harris’
in the sequel. Notice that the definition of the recurrence of{ } ≥0 is different from
the definition of the recurrence of{ } ≥0.

3. The main Theorems

Our main results are the followings.

Theorem 3.1. 1. If −∞ < (0) (∞) =∞, then

(
lim
→∞

= 0
)

= 1 for any ∈ (0 ∞)

2. If −∞ = (0) (∞) <∞, then

(
lim
→∞

=∞
)

= 1 for any ∈ (0 ∞)
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3. If −∞ < (0), (∞) <∞, then

0< (0) ≡
(

lim
→∞

= 0
)
< 1 0< (∞) ≡

(
lim
→∞

=∞
)
< 1

where

(0) =
(∞)− ( )
(∞)− (0)

(∞) =
( )− (0)
(∞)− (0)

for any ∈ (0 ∞)

REMARK. This result shows that if{ } ≥0 is transient, that is, (0)> −∞ or
(∞) < ∞, then { } ≥0 and { } ≥0 have the same asymptotic behavior as and
tending to infinity. It also shows that if 0∞ are the regular boundaries, that is,

(0) > −∞ and (∞) < ∞, (0) > −∞ and (∞) < ∞, then converges to
the boundaries.

On the other hand, if{ } ≥0 is recurrent, namely

lim
→0

( ) = −∞ and lim
→∞

( ) =∞

then we get the following theorem.

Theorem 3.2. Suppose that{ } ≥0 is recurrent. If{ρ±( )} satisfies

(1) lim sup
→0

ρ+( ) < lim inf
→∞

ρ−( )

then { } ≥0 is recurrent.

REMARK. 1. It is trivial that if ρ+( ) ≡ ∞, ρ−( ) ≡ 0 for all ∈ (0 ∞),
then ≡ . This means that{ } ≥0 is recurrent. But here note thatρ+( ) ≡ ∞,
ρ−( ) ≡ 0 for all ∈ (0 ∞) do not satisfy the conditions of Theorem 3.2, which
implies the conditions of Theorem 3.2 to be not always necessary.
2. As we mentioned in the introduction,{ } ≥0 is obtained intuitively by time
change of { } ≥0. Thus we conjecture that it is impossible to get the transient
{ } ≥0 when { } ≥0 is recurrent.

Intuitively, it may be conjectured that{ } ≥0 will be positive recurrent when
{ } ≥0 is positive recurrent for any{ρ±( )}. The answer is negative. To see this eas-
ily, we use the transformation of changing ( ) to and deform the generator of
{ } ≥0 into

=
∂2

( )∂ 2

Notice there is no loss of generality when we consider the diffusion { } ≥0 in natural
scale in the sequel, that is, ( )≡ .
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Before see the answer of the conjecture above, set the constants below

α 1 2
±

± ±

are all positive henceforth. Suppose that

(2) 1| |−α ≤ ( ) ≤ 2| |−α for | | ≥

and +( ) ≡ ρ+( ) − ; −( ) ≡ − ρ−( ). Now { } ≥0 is distinguished from the
null recurrence or positive recurrence by the magnitude of{ρ±( )} as follows.

Theorem 3.3. 1. Assume that{ρ±( )} satisfies the conditions ofTheorem 3.2.
If there exists ∈ (0 1/2) such that one of the following conditions holds;

lim sup
→∞

−
+( ) = 0 lim sup

→∞
−

−( ) = 0

lim sup
→−∞

| |− +( ) = 0 lim sup
→−∞

| |− −( ) = 0

then { } ≥0 is null recurrent.
2. Assume(2) holds forα > 1. If there exists ∈ (1/2 ∞) such that

lim inf
→∞

−
±( ) > 0 lim inf

→−∞
| |− ±( ) > 0

then { } ≥0 is positive recurrent.

REMARK. 1. Assume that{ } ≥0 is recurrent. If{ρ±( )} satisfies the condi-
tions of Theorem 3.2 and

lim sup
→∞

|σ( )
′

( )| <∞ or lim sup
→0
|σ( )

′

( )| <∞

then { } ≥0 is null recurrent. This implies that if{ } ≥0 is induced from Black-
Scholes model taking = , then{ } ≥0 is null recurrent. We omit the proof
because it is similar to Theorem 3.3.
2. We conjecture that{ } ≥0 is positive recurrent only if{ } ≥0 is positive recur-
rent.

About checking the fat tail, we have the following Theorems.

Theorem 3.4. If { } ≥0 is positive recurrent with the unique invariant proba-
bility measureµ(·), then for any fixed{ρ±( )}

∫ ∞

0
µ( ) =

∫ 0

−∞
| |µ( ) =∞
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hence

γ+(µ) ≤ 1 γ−(µ) ≤ 1

Theorem 3.5. For α ≥ 2, assume ( ) ≤ −α whenever ≥ . Suppose
that { } ≥0 is positive recurrent and{ρ±( )} satisfiesρ+( ) ≥ + , ρ−( ) ≤ −
whenever ≥ . If

0< − < 1< +

then γ+(µ) = 1.

Theorem 3.6. Assume that 1
−α ≤ ( ) ≤ 2

−α whenever ≥ and
{ρ±( )} satisfieslim sup →−∞ ρ+( ) < lim inf →∞ ρ−( ) such thatρ+( ) ≥ + + ;
ρ−( ) ≤ − − whenever ≥ . If ∧ ∈ (0 1), then

γ+(µ) = (2 ∧ 2 ∧ α)− 1

To sum up, we conclude the results as follows.
1. If { } ≥0 is transient, then{ } ≥0 is transient, too. This means that if{ } ≥0

is the default stock process, then the barriers have no effect at all to help the stock
process not to default in the long term.
2. If { } ≥0 is recurrent and{ρ±( )} satisfies the conditions of Theorem 3.2, then
{ } ≥0 is recurrent, too.
3. If { } ≥0 is positive recurrent, then{ } ≥0 is null recurrent or positive recur-
rent depending on the magnitude of{ρ±( )}.
4. For α > 2, assume that ( )≤ | |−α whenever| | ≥ and {ρ±( )} satisfies

ρ+( ) ≥ + ρ−( ) ≤ − whenever ≥
ρ+( ) ≥ + ρ−( ) ≤ − whenever ≤ −

If + − ∈ (1 ∞), − + ∈ (0 1), then we obtain the fat tail at±∞, Namely,

1 = γ±(µ) < γ±( ) = α− 1

5. Assume that (2) holds and{ρ±( )} satisfies

ρ+( ) ≥ + +| | ρ−( ) ≤ − −| | whenever| | ≥

If ∧ ∈ (0 1∧ α/2), then we obtain the fat tail at±∞. Namely,

γ±(µ) = (2 ∧ 2 )− 1< γ±( ) = α− 1
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Although the state space of{ } ≥0 in results 4. 5. above areR, it is easy to obtain
the original Markov chain{ } ≥0 with the state space (0∞) by transforming this

into −1( ).

4. The proofs of main Theorems

In order to prove the main theorems, we need the following lemmas.

Lemma 4.1. Suppose that{ } ≥0 is a time homogeneous Markov chain with
state space( ) and is a fixed compact subset of( ). If there exists a positive
number such that

sup
∈

( ) ≡ α < 1

then ( ∈ ) = 1 for any ∈ ( ).

Proof. It is easy to see that

( ∈ ∀ ≥ ) = { ( ∈ ∀ ≥ 0) : ∈ }

=
∫

( ∈ ∀ ≥ 0) ( ∈ )

≤
∫

( ∈ ∀ ≥ 0) ( ∈ )

The last part of the above calculation allows us to compute further. To do this calcu-
lation, we note that for any ∈ N,

∫
( ∈ ∀ ≥ 0) ( ∈ )

≤
∫

( ∈ ∀ ∈ [0 ]) ( ∈ )

=
∫ {∫

. . .

∫
( 1) ( 1 2) . . . ( −1 )

}
( ∈ )

≤ α ( ∈ )

This shows
∫

( ∈ ∀ ≥ 0) ( ∈ ) = 0

Therefore
( ∞⋃

=1

{ ∈ ∀ ≥ }
)

= 0
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Now ( ∈ ) = 1 follows by taking complement on the left hand side of the
above formula. This completes the proof.

Lemma 4.2. Let { } ≥0 be recurrent andµ(·) be its invariant measure. For
∈ B(R) with µ( ) > 0, set τ ≡ { > 0 : ∈ }. Then

∫

R
( )µ( ) =

∫ {
τ −1∑

=0

( )

}
µ( )(1)

where ( ) is any given non-negative Borel function. In particular, if
∫

R
( )µ( ) <∞; 0<

∫
( )µ( )(2)

then there exists ∈ such that
{
τ −1∑

=0

( )

}
<∞(3)

Proof. Since (1) was proved by [11], we see only for the latterof the statement.
Since

∫
R ( )µ( ) <∞, we have

∫ {
τ −1∑

=0

( )

}
µ( ) <∞

But since

∫ {
τ −1∑

=0

( )

}
µ( ) =

∫
( )µ( ) +

∫
µ( )

{∫ {
τ −1∑

=0

( )

}
( )

}

=
∫

( )µ( ) +
∫ {

τ −1∑

=0

( )

}
σ( )

whereσ( ) ≡
∫

( )µ( ). Therefore

∫
( )µ( ) =

∫ {
τ −1∑

=0

( )

}
σ( ) <∞(4)

Since (4) and (2), it impliesσ( ) > 0 which shows (3).

Lemma 4.3. Suppose that there exists a non-negative functionψ( ) which is
twice differentiable for > , ψ( ) ≡ 0 for all ≤ and

lim
→∞

ψ( ) =∞ ψ( ) ≤ − θψ( ) for all >
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where θ are constants, θ > 0. If {ρ±( )} satisfies

lim sup
→∞

{
ψ(ρ+( ))
ψ( )

+(1 ) +
ψ(ρ−( ))
ψ( )

−(1 )

}
< 1− −θ

then there exist positive constantsγ ∈ (0 1) such that

ψ( 1) < + γψ( ) for all ∈ R

where

±(1 )≡ {1− −(1−τ±)θ : τ± ≤ τ∓ τ± ≤ 1}

Proof. Using It̂o’s formula, we get

ψ( ) = ψ( ) + +
∫

0
( ψ)( )

where is a martingale. Replacing by∧ τ in the equality above, we obtain

ψ( ∧τ ) = ψ( ) + ∧τ +
∫

0
( ψ)( ∧τ ) − ( − τ )χ{τ≤ }( ψ)( τ )

Since ψ( ) ≤ − θψ( ), we get

∂

∂
ψ( ∧τ ) = ( ψ)( ∧τ )− χ{τ< }( ψ)( τ )

= ψ( )χ{τ≥ }

≤ (τ ≥ )− θ ψ( ∧τ )χ{τ≥ }

= (τ ≥ )− θ ψ( ∧τ ) + θ ψ( ∧τ )χ{τ≤ }

= − θ ψ( ∧τ ) + {θψ( τ )− }χ{τ≤ } ν −

Integrating both sides with respect to , this implies

ψ( ∧τ ) ≤ (1− −θ )
θ

+ −θ ψ( ) +
1− θ(τ− )

θ
{θψ( τ )− }χ{τ≤ }

= + −θ ψ( ) + ψ(ρ+( )) +( ) + ψ(ρ−( )) −( )

where

≡
θ
{(1− −θ )− +( )− −( )}

On the other hand, since

lim sup
→∞

{
ψ(ρ+( ))
ψ( )

+(1 ) +
ψ(ρ−( ))
ψ( )

−(1 )

}
< 1− −θ
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we see

ψ( 1) ≤ + γψ( ) for ∈ R

whereγ ∈ (0 1) and

≡ sup
∈(−∞ ]

{ ψ( 1)− γψ( )}

is a constant greater than .

Lemma 4.4.

+(1 )≤ (1− −θ)φ+( ) −(1 )≤ (1− −θ)φ−( )

where

φ+( ) ≡ − ρ−( )
ρ+( )− ρ−( )

φ−( ) ≡ ρ+( )−
ρ+( )− ρ−( )

Proof. From the definition, it is obvious that

±(1 ) ≤ (1− −θ) (τ± ≤ τ∓ τ± ≤ 1)

≤ (1− −θ) (τ± ≤ τ∓)

= (1− −θ)φ±( )

Lemma 4.5. For a givenβ ∈ (0 1), define

ψ( ) ≡
{

β for >

0 for ≤(5)

1. If there exist two barriers{ρ±1 ( )}, {ρ±2 ( )} such that

ρ+
1( ) ≤ ρ+

2( ) ρ−1 ( ) ≥ ρ−2 ( ) whenever ≥

then for satisfyingρ−2 ( ) ≥ ,

{1∧ τ1} ≤ {1∧ τ2} ψ( (2)
1 ) ≤ ψ( (1)

1 )

where { (1)} ≥0(resp. { (2)} ≥0) is induced from{ } ≥0, {ρ±1 ( )}(resp. {ρ±2 ( )})
and

τ1 ≡ inf{ ≥ 0 : = ρ−1 ( ) or ρ+
1( )}
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τ2 ≡ inf{ ≥ 0 : = ρ−2 ( ) or ρ+
2( )}

2. For any ∈ R, we have {1∧τ} ≥ τ− τ2. Moreover, assume that 1
−α ≤

( ) ≤ 2
−α whenever ≥ and {ρ±( )} satisfies

ρ+( ) ≡ + + ρ−( ) ≡ − − whenever ≥(6)

If ∈ (0 1), then

1
2( ∧ )−α ≤ τ ≤ 2

2( ∧ )−α
1

4( ∧ )−2α ≤ τ2 ≤ 2
4( ∧ )−2α

whenever ≥ , where > is a proper positive constant.
3. If ( ) ≤ 2

−α whenever ≥ , then for satisfyingρ−( ) ≥ ,

ψ( 1) ≤ ψ( )− β(1− β)

2
ρ−( )β+α−2 {1∧ τ}

Proof. For satisfyingρ−( ) ≥ , since (τ1 ≤ τ2) = 1 and{ψ( ∧τ2)} ≥0 is
a supermartingale with0 ≡ 0 ≡ , the statement 1 is trivial. To prove the statement
2, without loss of generality, we assume = . Since forτ ≥ 0, 1∧ τ ≥ τ − τ2, it is
obvious {1∧ τ} ≥ τ − τ2. Further, since ∈ (0 1), 1

−α ≤ ( ) ≤ 2
−α

whenever ≥ and

( ) ≡ τ(7)

=
ρ+( )−

ρ+( )− ρ−( )

∫

ρ−( )
( − ρ−( )) ( )

+
− ρ−( )

ρ+( )− ρ−( )

∫ ρ+( )

(ρ+( )− ) ( )

τ2 =
2(ρ+( )− )
ρ+( )− ρ−( )

∫

ρ−( )
( − ρ−( )) ( ) ( )(8)

+
2( − ρ−( ))
ρ+( )− ρ−( )

∫ ρ+( )

(ρ+( )− ) ( ) ( )

the statement 2 follows easily by substituting (6) into (7),(8). Finally, since ( )≤
2| |−α whenever ≥ , we get

ψ( 1) = ψ( 1∧τ ) = ψ( )− β(1− β)

2

∫ 1∧τ

0

β+α−2

for satisfyingρ−( ) ≥ , which shows the statement 3.

Proof of Theorem 3.1. Since{ ( )} ≥0 is a martingale and ( ) is an increas-
ing function, by the Martingale Convergent Theorem and Lemma4.1, the statements
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1, 2 and 3 are trivial. Finally, by

( ∞) = ( ) (0) + (∞) = 1

the last part of the statement 3 is clear.

Proof of Theorem 3.2. We divide the proof into two parts. The first part is to
claim that there exists a bounded closed interval such that (τ < ∞) = 1 for
∈ (0 ∞). To see this, we need to construct the non-negative function η( ) from ( ).

Let α ≡ lim sup →0 ρ
+( ), β ≡ lim inf →∞ ρ−( ). Because of lim inf→∞ ρ−( ) >

lim sup →0 ρ
+( ), we obtain that there exists anǫ > 0 such thatβ − ǫ > α + ǫ. Set

≡ [α + ǫ β − ǫ]. Further for thisǫ, there exist 0 and 0 such that

0< ρ+( ) < α + ǫ for ≤ 0; β − ǫ < ρ−( ) <∞ for ∀ ≥ 0

Take ≡ [ 0 0] and define

η( ) ≡





( ) if ∈ (β − ǫ ∞)
− ( ) if ∈ (0 α + ǫ)

0 if ∈

Since

η( 1∧τ ) = η( ) +
∫ 1∧τ

0
η( ) + 1∧τ whenever ∈

where{ ∧τ} ≥0 is a martingale with 0 ≡ 0, η( 1) = η( ) for any ∈ . Set
τ ≡ inf{ ≥ 0 : ∈ } and ˜ ≡ ∧τ . It is evident that η( ˜ 1) = η( ) for
all ∈ (0 ∞). This gives that{η( ˜ )} ≥0 is a non-negative martingale. It turns out
that there exists a random variable<∞ such that lim→∞ η( ˜ ) = . Now suppose

(τ =∞) > 0, so we have for each

(ω) = ˜ (ω) on {τ =∞}

Since it is easy to see that our{ } ≥0 satisfies the condition of Lemma 4.1 for any
compact subset of (0∞), we get

({ } ≥0 is unbounded) = 1

Since lim →∞ η( ) =∞ and lim →0 η( ) =∞, we obtain

({η( )} ≥0 is unbounded) = 1

However

lim
→∞

η( ) = <∞ on {τ =∞}
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which is a contradiction. In consequence, (τ <∞) = 1 for ∈ (0 ∞).
The second part of the proof is to claim that there exists a unique σ-finite invari-

ant measureµ(·). To show this, set ≡ + 0, we apply the Revuz’s result; for aν-
irreducible Markov chain{ } ≥0, if there do not exist increasing sets{ }∞=0 with
lim →∞ = (0 ∞) such that the functions (· ) ≥ 0 are bounded, then there
exists a uniqueσ-finite invariant measureµ(·) such thatν(·) is absolutely continuous
with respect toµ(·) andµ( ) > 0 ∈ B((0 ∞)) implies

( ∞∑

=1

χ ( ) =∞
)

= 1

for all ∈ (0 ∞). Thus we will claim that there do not exist increasing sets{ }∞=0

with lim →∞ = (0 ∞) such that the functions (· ) ≥ 0 are bounded. To see
this, it suffices to claim that there does not exist a Borel function ( ), 0< ( ) ≤ 1
such that ( )<∞ for all ∈ (0 ∞). We will show this by contradiction. Suppose
that there exists a Borel function ( ), 0< ( ) ≤ 1 such that ( )< ∞ for all
∈ (0 ∞). Since

( 1 ∈ ) = ( ) + ( )

we see

( ) ≥ ( )( ) ≥ ( )( )

Let ˆ ( ) ≡ ( )( ) =
∫∞

0 ( ) ( ) . This implies that ˆ ( ) is a continuous
function and 0< ˆ ( ) ≤ 1, ˆ ( ) < ∞ for all ∈ (0 ∞). Furthermore, we have
ˆ ( ) ≥ χ ( ), where ≡ inf ∈ ˆ ( ). On the other hand, let

τ ( ) ≡ inf{ > τ ( −1) : ∈ } τ (1) ≡ τ

By the strong Markov property, we have

(τ ( ) <∞) = 1 for any ≥ 1

Further it is not hard to see

∞∑

=1

χ{τ ( )<∞} =
∞∑

=0

χ{ ∈ }

This shows
∑∞

=0 ( ∈ ) = ∞. Consequently, χ ( ) = ∞, for all ∈ (0 ∞).
But this gives ( ) =∞, for all ∈ (0 ∞). This contradicts the assumption. There-
fore the second part of the proof follows.
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Proof of Theorem 3.3. Because the argument of this proof is similar to Theorem
3.6, we give the concise proof of this theorem in the remark ofTheorem 3.6. The
outline of this proof is the following. For the first part, we claim that

∫ ∞

0

γµ( ) =∞ for any γ > 2 − 1

where < 1/2. For the second part, we claim
1. there exist positive constants and withρ−( ) > , ρ+(− ) < − such that

ψ̂( 1) ≤ ψ̂( )− for | | ≥(9)

where ψ̂( ) ≡ ψ(| |), ψ( ) is the same as (5) for any∈ R.
2.

sup
∈

τ <∞(10)

where ≡ [− ] and τ ≡ inf{ > 0 : ∈ }. Notice that is a petite set.

Proof of Theorem 3.4. Suppose

∫ ∞

0
µ( ) <∞

Since sup µ( ∨ 0) =
∫∞

0 µ( ) <∞ and {( ∨ 0)} ≥0 is a submartingale under

µ, we obtain

µ

(
lim
→∞

( ∨ 0)<∞
)

= 1

However, since the support of the invariant measureµ(·) is R, we have

µ

(
lim sup

→∞
=∞

)
= 1

which is a contradiction.

REMARK. It is clear that{ } ≥0 is a local martingale but not a martingale under
when

∫ 0

−∞
| | ( ) <∞ or

∫ ∞

0
( ) <∞

However, { } ≥0 is a martingale since for fixed ≥ 0, is a bounded random
variable.
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Proof of Theorem 3.5. Assume thatψ( ) below is the same as (5). It is clear
that for each ≥ ,

φ+( ) =
1− −

+ − −
φ−( ) = + − 1

+ − −
;

ψ(ρ+( ))
ψ( )

= β
+

ψ(ρ−( ))
ψ( )

= β
−

Thus by Lemma 4.4, we obtain for≥ ,

ψ(ρ+( ))
ψ( )

+(1 ) +
ψ(ρ−( ))
ψ( )

−(1 ) ≤
(
φ+ β

+ + φ− β
−

) (
1− −θ)

=

(
1− −

+ − −
β
+ + + − 1

+ − −
β
−

)(
1− −θ)

< 1− −θ

Then by Lemma 4.3, we obtain

≡ sup ψ( ) <∞

Let

π ( ) ≡ 1
−1∑

=0

( ∈ ) for any ∈ B(R)

Then the ergode theorem tells us that for almost everywhere∈ R with respect to
µ(·), {π (·)} ≥1 converges weakly to the invariant probability measureµ(·). However,
the above estimate shows

∫

R
ψ( )π ( ) ≤

which implies

∫ ∞

0

βµ( ) <∞

Proof of Theorem 3.6. By Lemma 4.5, without loss of generality, we assume
that ∈ (0 1) such that

ρ+( ) = + ; ρ−( ) = − whenever ≥

Since {ρ±( )} satisfies the conditions of Theorem 3.2, it implies that the invariant
measureµ(·) of { } ≥0 exists. And we have

ψ( 1) = ψ( ) +
∫ 1∧τ

0
( ψ)( )
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for satisfying ρ−( ) > , whereψ( ) is the same as (5). To claimγ+(µ) ≥ (2 ∧
α)− 1, we divide the proof of this claim into two steps.

STEP 1. for ∈ (0 α/2), by Lemma 4.5, there exist positive constants and
> ( ∨ 1) such that

ψ( 1) ≤ ψ( )− β+2 −2(11)

whenever satisfyingρ−( ) ≥ , whereβ ∈ (0 1). Set

≡ (−∞ ] τ ≡ inf{ > 0 : ∈ } ≡ sup
∈
|ψ( )− ψ( 1)|

It is clear that for anyγ < 2 −1, there existsβ ∈ (0 1) such thatγ ≤ β + 2 −2 and
by Lemma 4.2,

∫

R
( +)γµ( ) =

∫ {
τ −1∑

=0

( +)γ
}
µ( )

=
∫

( +)γµ( ) +
∫
µ( )

{∫ {
τ −1∑

=0

( +)γ
}

( )

}

≤
∫

( +)γµ( ) +
∫
µ( )

{∫ {
τ −1∑

=0

( +)β+2 −2

}
( )

}

≤
∫

( +)γµ( ) +
∫
µ( )

{∫
{ψ( )− ψ( τ )} ( )

}

≤
∫

( +)γµ( ) +
∫
µ( )

{∫
ψ( ) ( )

}

≤
∫

( +)γµ( ) +
∫

ψ( 1)µ( )

≤
∫

0

γµ( ) +
∫

ψ( )µ( ) + <∞

Here notice thatµ([0 ]) < ∞ µ([ ]) < ∞ because [0 ] [ ] are petite
sets. This gives immediately

∫ ∞

0

γµ( ) <∞ for γ < 2 − 1

STEP 2. for ≥ α/2, by Lemma 4.5 and (11), we have

ψ( 1) = ψ( (2)
1 ) ≤ ψ( (1)

1 ) ≤ ψ( )− β+2 1−2

for satisfyingρ−( ) ≥ , where 1 ∈ (0 α/2) and

ρ+
1( ) ≡ + 1 ρ−1 ( ) ≡ − 1 whenever ≥
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ρ+( ) ≡ ρ+
2( ) ≡ + ρ−( ) ≡ ρ−2 ( ) ≡ − whenever ≥

As in the proof of Step 1, we get for≥ α/2,

∫ ∞

0

γµ( ) <∞ wheneverγ < 2 1− 1

Let 1 approach toα/2, we obtainγ+(µ) ≥ α−1 for ∈ [α/2 1). This completes that

γ+(µ) ≥ (2 ∧ α)− 1

On the other hand, to claimγ+(µ) ≤ (2 ∧ α)− 1, suppose that

∫ ∞

0

γµ( ) <∞ for someγ > 2 − 1(12)

The following is to claim that the assumption is wrong. Let

ǫ ≡ γ − (2 − 1)

Take β such thatβ + ǫ ∈ (1 1 +ǫ). Define

ξ( ) ≡
{

β+ǫ for >

0 for ≤

By Lemma 4.5, there exist positive constants> ( ∨ 1) and such that

ξ( 1) = ξ( ) +
∫ 1∧τ

0
ξ( )

≤ ξ( ) + β+ǫ+2 −2(13)

for any satisfyingρ−( ) ≥ . Let

≡ (−∞ ] τ ≡ inf{ > 0 : ∈ }

By Lemma 4.2, we have

∫ {
τ −1∑

=0

( +)β+ǫ+2 −2

}
µ( ) =

∫

R
( +)β+ǫ+2 −2µ( )

≤
∫

R
( +)γµ( )

=
∫ ∞

0

γµ( ) <∞
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Moreover, it is easy to see

∫ {
τ −1∑

=0

( +)β+ǫ+2 −2

}
µ( )

=
∫

( +)β+ǫ+2 −2 ( )µ( ) +
∫ {

τ −1∑

=0

( +)β+ǫ+2 −2 : 1 ∈
}
µ( )

=
∫

( +)β+ǫ+2 −2µ( ) +
∫
µ( )

{∫ {
τ −1∑

=0

( +)β+ǫ+2 −2

}
( )

}

=
∫

0

β+ǫ+2 −2µ( ) +
∫ {

τ −1∑

=0

( +)β+ǫ+2 −2

}
σ̂( )

where σ̂( ) ≡
∫

( )µ( ). Since (2) holds for ( )≡ ( +)β+ǫ+2 −2 in Lemma
4.2, we get that there exists0 ∈ = ( ∞) such that

0

{
τ −1∑

=0

( +)β+ǫ+2 −2

}
<∞

But since{ +
∧τ } ≥0 is a submartingale with 0 ≡ 0 and

0ξ( ∧τ ) = 0ξ(
+
∧τ )

≤ ξ( 0) + 0

{ ∧(τ −1)∑

=0

( +)β+ǫ+2 −2

}
for each ≥ 0

this shows

0

{
sup

0≤ ≤τ −1
ξ( )

}
= 0

{
sup

0≤ ≤τ −1
ξ( ∧τ )

}

≤ 0

{
sup

0≤ ≤∞
ξ( ∧τ )

}

≤ sup
0≤ ≤∞

0ξ( ∧τ )

≤ sup
0≤ ≤∞

{
ξ( 0) + 0

{ ∧(τ −1)∑

=0

( +)β+ǫ+2 −2

}}

≤
{
ξ( 0) + 0

{
τ −1∑

=0

( +)β+ǫ+2 −2

}}
<∞(14)
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where

≡
(

β + ǫ
β + ǫ− 1

)β+ǫ

Combine

0{ξ( ) : τ > } ≤ 0

{
sup

0≤ ≤τ −1
ξ( ) : τ >

}

with (14), we get

lim
→∞ 0{ξ( ) : τ > } = 0

However,

ξ( 0) ≤ 0ξ( ∧τ )

= 0{ξ( τ ) : τ ≤ } + 0{ξ( ) : τ > }

Let approach to infinity, we obtain

ξ( 0) ≤ 0ξ( τ ) ≤ ξ( ) < ξ( 0)

which is a contradiction. This completes thatγ+(µ) ≤ 2 − 1 for ∈ (0 1). Similarly
to (13) we can evaluate ξ( 1) as follows also when ≥ α;

ξ( 1) = ξ( ) +
∫ 1∧τ

0
ξ( )

≤ ξ( ) + β+ǫ+α−2

for satisfying ρ−( ) ≥ . Therefore, by the same proceeding above, we obtain
γ+(µ) ≥ α− 1 for ∈ [α/2 1). In consequence, it completes that

γ+(µ) ≤ (2 ∧ α)− 1

This completes the proof.

REMARK. For the first part of the proof in Theorem 3.3, without loss ofgeneral-
ity, we can assume

+( ) ≡ whenever ≥ for some <
1
2

By Theorem 3.2, there exists an invariant measureµ(·) of { } ≥0. Moreover, from
(12), it is clear thatµ(·) is not a probability measure.
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For the second part of the proof, assume that{ ±( )} satisfies

+( ) = −( ) ≡ | | whenever| | ≥ for some >
1
2

By Lemma 4.2, Lemma 4.5 and (11), we get (9) easily. Further, it is not hard to see
that

ψ̂( ) ≡ ψ̂( ) + +
−1∑

=0

( − )(ψ̂( ))

where{ } ≥0 is a martingale with 0 ≡ 0 and

( − )ψ̂( ) ≡ ψ̂( 1)− ψ̂( )

Thus we obtain (10) which shows

µ(R) =
∫

−
{τ }µ( ) ≤ µ( )

{
sup
∈

τ

}
<∞
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