Dreher, M.
Osaka J. Math.
39 (2002), 409-445

WEAKLY HYPERBOLIC EQUATIONS,
SOBOLEV SPACES OF VARIABLE ORDER,
AND PROPAGATION OF SINGULARITIES

MicHaer DREHER
(Received June 29, 2000)

1. Introduction

Let us recall some results about linear and semilinear wgvat®ns. We examine
the Cauchy problems

(1.1) Ou = f(u), u(0, x) =uo(x), u,(0, x) =us(x),
(1.2) Ov =0, v(0,x) =uo(x), (0, x)=ui(x),

whereO =92 — A, (t,x) € R, x R* and f € C*> with f£(0) = 0. We suppose that the
initial dataug, uy satisfyug € H*, uy € H*~! for somes > n/2+1. Then it is known
that solutionsu, v exist inC  ([0T ,]JH* N C* ([0, T], H**) for some smallT > 0.
Further, we assume that, u; belong toC* outside some closed set &". If sin-
gularities starting from two different points of this set sihgularities meet, nothing
happens in the linear case. They ignore each other and aentin their track. How-
ever, in the semilinear case, the nonlinear interactionirgfwdarities may generate new
singularities. These are weaker than thosevof by at leastSmi®lev order, which
can be seen immediately as follows: we have: — v) = f(u) € C ([0, T'], H*); hence
u—vecC(0,1], H*).

The aim of this publication is to prove a similar result for akey hyperbolic
equations whose lower order terms satisfy sharp Levi cmmdit To demonstrate the
phenomena which may occur in this setting, we recall a refuli5]. Let v =v(, x)
be the solution of

(1.3) Vg — 1?05 —bv, =0, v(0,x)=uo(x), v,(0,x)=0 x€R.
If b=4m+1 andm € Ny, then the solution is given by

m . ) [2
(1.4) v(t,x):;ijt 7 (91 uo) (x+5>

with some constant€’;,, ; an@,,  does not vanish. We observe twooptera. The
first is theloss of regularity if ug € H*, thenv ¢,.)€ H* ™. There isno classical
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solutionfor m > s —5/2! The second is that singularities of the datum only propmga
along one characteristic.
The loss of regularity makes the investigation of the seredr problem

(15) U — tzuxx - bux = f(u)’ M(O, )C) =u0(x), u,(O, x) =0

difficult, because the standard iteration procedure andlfpeint principles do not
work. The existence of a solutiom  with¢,( & H*~™ for some number can
be proved by a modified iteration technique, see for instdhdg [16]. See also [5]
for similar considerations in th€>° class. However, that method gives no informa-
tion about the propagation of singularities, because ooligh estimates oM can be
found, which are generally not sharp.

If one is interested in the propagations of singularitieSabolev spaces, then it is
of great importance to know the spaces in which the deseriptif singularities makes
sense. To clarify this point, let us consider (1.1) and (WRh ug € H®, u, € H* L.

It is a true statement that, for instance, anmd belongCt0, T], H*~°), while
u—v € C([0,T], H~*). However, it makes no sense to investigate singularities in
that space, because the singular support is the empty setrigtit statement i&, v €
C([0,T], H) andu — v € C ([0, T], H**'), but, in generalp ¢ C ([0, T], H**).

Results of the following general type tell us that the stestgsingularities ol
andv coincide: we construct two function spadgsC B;, where the functions oB,
have higher smoothness than thatBf Then we prove thai, v € By andu—v € Bo.
These statements are sharp in the sense that examples siowdlB,.

The usual iteration procedure, even in its modified versi@mtioned above, is not
able to give us aharp description of the smoothness of and solving (1.3), (1.5).
Another way to attack (1.5) consists in the construction ddpacial function space.
This space contains all functions ¢, & ) with(r, )(t, £) € C([0, T], L?), where
0, &) = O((£)*) and ¥(r, &) = O({E)*™) (r # 0) for (¢) — oo. Utilizing this idea,
in [7] it was shown that the solution  of (1.5) belongs @([0, 7], H*~™") and that
u—v € C ([0, T], HS~™*1/2). By (1.4),v ¢ C ([0, T], H*~™*%/2)_ In other words, also
the strongest singularities af propagate only along oneadhteristic. The idea to as-
sign a weightd(z, &) to the hyperbolic operator and to estimate a certain norrthef
product 9(z, £)w(t, £) goes back to [17]. The coefficients in the Cauchy problems of
[7] and [17] did not depend ow . Therefore it was possible tphapartial Fourier
transform and study the arising ODEs, in contrast to theasdn in this publication,
where the coefficients may depend on , too.

Consider the model problems

wy — Pt — (Am() + L =f @) w(@x)=uolx), w(0,x)=0,
Vi — P — (Amx) + 1, =0 v(Qx ) =uo(x), v(0,x)=0,

wherem € Cp°(R) andm > 0. One expects a loss @i x () derivatives at the point
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x. In Section 7, we will show that this variable loss of regityahappens indeed. As
explained above, a reasonable description of singularitiespaces of Sobolev type re-
quires to find the right spaces. Therefore we have to em§$lalyolev spaces with vari-
able order of differentiationHs*®):

H™™) = {w € L(R) : (D,)""Ww(x) € L*R)}, s >0.

The main results of this publication (Theorems 4.1, 6.1 ar®) @pplied to these
model problems yield:

Proposition 1.1. Assume thatf = f(u) is entire analytic withf(0) = 0 and ug €
H*™®) with s > 5/2. Then somel’ > 0 exists with

u, veC(0,TLHY), u—vecC ([0, 7], H”1/2> .
Examples show that the statement about the regularity of hesbest possible.

The Cauchy problems to be studied in this paper have the form

(1.6) Lu = f(t, x, u), u(0, x) =uog(x), u(0, x)=us(x),
a.7) Lv=0, v(0, x) =uo(x), v,(0,x)=us(x),
where

n n
L=D?+2% t"ci(t,x)D;Dy, — > 1% a;(t, x)Dy, Dy,
j=1 i,j=1

n
=Y il hi(t, x)Dy, +ico(t, x)Dy, L. € N
j=1

In [1] and [18], special linear model equations of this kinalvé been investigated
and it was shown that the propagation of singularities dépen a sensitive way on
lower order terms. Similarly to (1.3), sometimes the siagties propagate only in
one direction. The special choice of -exponents reflectsstirealled Levi conditions
which are necessary and sufficient conditions for @€ well-posedness, compare [9]
and [14]. For related results on propagation@® singularities, for example see [10].

Our assumptions are the following:

(18) aij, Cj, bj € C[;X)([Oa TO] XR’[’R)7
2
(1.9) D ai(t. x)&GE+ [ D cit.x)g | = aol¢l
i,j=1 j=1

Oé()>0, (tvxvé.)e[oa TO] XRZ”,
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(1.10) fx,u)=>" fie.x)ul, f; € C2([0, To] x R"),
j=1
(1.11) supd [Ifi(t, M u! <oo VkeEN, VuceR.
>T0 j:1 b

The paper is organised as follows. A theory of Sobolev spatesriable order is
presented in Section 2. We also list some properties of apbsgmbol classes which
are a main ingredient in the construction of parametrix ioti®a 3. This fundamental
solution is utilized to prove the well-posedness of thedin€auchy problem in Sec-
tion 4. The investigation of the semilinear Cauchy problenSection 6 relies on the
algebra property of our function spaces proved in SectioRi&ally, we show that our
results are sharp and discuss an application to propagetisimgularities in Section 7.

2. Function spaces and symbol classes

For convenience, we introduce the notatidfr) = =, A(f) = f(; Nr)dr. If X'is
some set fromRX, then C;" (X ) denotes the space of all functions, whose dersstiv
up to the ordern are continuous and bounded functions aver t .Sfe and W7';
denote the usual spaces of symbols and pseudodifferemigabtors, respectively,

ns = P € CTRX R why(p) <00 Va,BEN,
7t 5(p) = sup{ [0200 plx, O] (€)1l (x, ) € B2

where we employ the usual multi-index notation afdl = (1 +[£[2)Y2. To simplify
notation, we adjust the measure in the cotangent spd¢es (2r) "d&y---dé&,. If
p(x, &) is some symbol, the corresponding pseudodifferentiakaipe will be denoted
by the upper case letteR P x,(D, ). P x(D, ) amd x,(D, ) are pseudodifferen
tial operators, therP - Q = (P - D)(x, D,) is defined as the operator with the symbol

(sym(® - Q))(x,¢&) = p(x,q(x, ). If p(x,§&) and g , &) are symbols, the symbol
(p o q)(x, &) is defined by the asymptotic expansion

(poa)r. O~ > S (DEple, N@q(r. &), De = it = "'a%'
laj=0 "

This symbol is unique modul§—=°. Let us derive some auxiliary results, citing ideas
from [8], Chapter 22.

DeriniTion 2.1, LetK, ;5 be the set of symbols

]CQ,(S ={a € U Sglﬁ .

meR

020 a(x. &)| < Capale, ()70 e, a, 6} :
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Proposition 2.2. Leta,ag, a1 € K, 5. Thenag-ay, a” € K, 5 for all r € R.

Proof. The statement aboug - a; follows from the Leibniz formula. Concerning
a”, we employ Fa di Bruno’s formula

|| +] 8] v
0207G(a(x, &)= > Gax, &) Y [ (0270 ax. &)Capuy).
v=1 (.B,v) p=1
(@BV) (@l -t 57)=(, B),
ok [+] %[>0
with G(s) =s" and the proof is complete. ]

2.1. Sobolev spaces of variable order The spaceC ([0T ,|JH® ) consists of
all functionsw ¢, x ) with (£)*w(z, &) € C([O0, T],LZ(R’&Z)). We generalize this space,
replacing (D)* by some pseudodifferential operat®,, ¢, X, D, ), whose symbol
In(t, x, £) may have different growth rates with respect (9, depending ory and
x. In the following, adapted symbol classes, embeddings éenusual Sobolev spaces
(and vice versa), and mapping properties of operators figfy are described.

Let ¥ € C([0, T], S&_ ), 0< e < 1/2, be a symbol such that

l—e,e
(2.1) I, x, ) > Cr (&), €1>0, (t,x,6 €[0,T] x R*,
(2.2) I, .,.) € Ki_ce, uniformly in z.

We choose som@f € R and definedy(t, x, £) = 9(t, x, £)(£)M. Let us describe the
symbol ¢ more closely.
Proposition 2.3. If ¥ € C([0, T], Sf_*&s) satisfies(2.1), (2.2),then

B
DEDLXE) _ o,

1
n 0 -
I, x, &) l-ce a,feN, <e<

(2.3) 5

Proof. The assertion follows from the Leibniz rule and Psipon 2.2. ]

Proposition 2.4 ([8], Theorem 22.1.3). For eachv as above there are symbols
¥t e 1[0, T], S; %) and ro € L2°([0, T], S—°°) with ©© = I + R...

l—c,e

The usual symbol calculus antlz, .,.) € K1_. . lead to the following result.
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Lemma 2.5. For eacha,b € L>([0, T], 8" . .) there are symbolsi,b €
L>([0, T, S7*__ ) with the property that

l—c,e
ad —aod, by —bot e L=(0,T], S™).
Similar statements holdvhend is the factor on the left.

The class of these symbolg,, is a special case of the fairly general symbol
classessg’d) of Beals and Fefferman ([2], [3], [4]) which consist of synidba sat-

isfying

0207 a(x, )| < Cap eXPlulx, )(r. )~ 0(x, )17
with

p<C, P¢=>c,
¢ < O(x, )P(y, )t < C ande < o(x, oy, )t < C
if [x — y] < cplx, §) and € — 7| < c(x, §),
R(x,0) < C(x)¢, whereR =®¢ 1,
c <R OR(y,m)t<C
if € —n| < CR(x, ™2, |x—y| < CR(x,O°R(y. ) 2, 6>0,

(D)™ < et d KTk < C(dg)™ for someK, k, m.

In our case, exp = ¥y, ® = ()15, ¢ = (£)7°. The results of [3] enable us to
characterize Sobolev spaces of variable order, which waea&fow.

DeriniTioN 2.6 (Sobolev spaces of variable order). M K- > 0, then let
By u.7 be the space

Bywr ={uecC(0,T], L% : O, x, DJu € C([0, T], L?)}.
This space is calle@obolev space of variable ordand has the norm

ullpg 7 = SUTF]J(H(@M(L X, Du(t, )| 2+ [lue, x)|| 2)-

The next two propositions follow from Theorem 6.1 of [3].
Proposition 2.7. The Banach spaceBy y r satisfy the embeddings

C ([0, T], HM***) € By y.r C C ([0, T], HM* ).
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Proposition 2.8. If p € C([0, T], S 5) with min(e, 1 — £) > max(, ), then

P : By y+m.1 — By.m.r continuously.

2.2. Symbol classes irZn,p(N) We split the £, &) space into two zones, the
so-calledpseudodifferential zon&,,(N) and thehyperbolic zonez,,,(N), where N
is some large number:

Zpa(N) = {(t. ) 1 €] =1, A@)E) < N},
Znyp(N) = {6l =1, A@)E) = N}
Let 7z € R, be defined byA #)(£) = N.
In order to describe the -dependence of the pseudodiffatemperators referred
to in this paper more precisely, we introduce the followirlgsses of symbols in
Zpyp(N). A detailed theory of these symbols can be found in [19].

DeriniTion 2.9. We say that #(x, ) € C*([0, T] x R*") belongs to the symbol
classSy{my, mo, m3} if 8/a € C([0, T], Si”(f)) for all j and someM; and

(2.4) OFO20lalt, x, €)| < Crap(€)™1PIN@ym2rma
forall k >0, o, € N*, and all ¢, x, §) € Zj,,(N).

Proposition 2.10. The symbols of these classes satisfy

(2.5) Sn{my, my,mz} C Sy{my+k,mo+k,mg+k} Vk>0,
(2.6) a € Sy{my, mo, mz} = DfD?a € Sy{m1 — |B], ma, m3z — k},
a € Sy{ma,ma,ms3}, b€ Sy{ka, ko, k3}
2.7 = ab, aob € Sy{my+ki,mp+ky, mz+ks},
a € Sy{my,my,ms}, a(t,x,&)=0 if A(@)(E) €[N, N']
(2.8) = a € Sy{my—k,my—k,mz3—k} Vk>0.

Proposition 2.11. (a) Assume thaty € Sy{mu, ma, m3} (k € No) with my N\
—oo ask — oco. Suppose that eacty, ~ vanishesZp,(N). Then there is gunique up
to C>([0, T'], §~°°)) symbola € Sy{mi(0), m2, m3} with support inZ,,,(N) and

k—1

(2.9) a— Zaj € Sn{mu, ma, m3} Vk.
j=0

(b) Suppose thab, € Sy{mi—k,mo—k,m3—k} (k € Np). Assume that each,
vanishes inZ,,;(N). Then there is gunique up toNg>oSy{m1 —k, my — k, ms — k})
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symbolb € Sy{m1, mp, m3} with support inZ,,,(N) and

k—1
(2.10) b—> bj€Sy{mi—k.my—k.mg—k} Vk.
j=0

Sketch of proof. We choose some smooth functiomith x(s) = 1 for |s| < 1,
x(s) =0 for |s| > 2 and set

(l(t, X, 5) = Z(l - X(€k<£>))ak(tv X, 5)7
k=0

b(t,x,€) =Y (L= X(GAOEN(, x, €).

k=0

Here {¢;}, {0} are sequences of positive numbers, monotonically conwgrgi zero.
If we choose these numbers appropriately, then (2.9), Y240 be shown. For details,
we refer the reader to [19, Proposition 3.3.2]. ]

Proposition 2.12 (Parametrix of elliptic operators).Assume that the matrix sym-
bol a € Sy{0, 0, O} is constant inZ,,(N) and satisfies

|deta ¢, x, &)| > const >0
for all (z, x, &) € [0, T] x R?". Then a parametrixB(z, x, D,) exists
BA—1, AB—1 € C>([0,T], ¥ ),
with the property that € Sy{0, 0, 0} and
b(t,x, &) =alt,x, )"t in Zya(N).

Proof. We setho(t, x, &) = a(t, x, £)~* and observe thaby € Sy{0, 0, 0}. Now
we recursively define symbols, k & 1) by

k

Z é(D?Cl(l, X, g))(a)?bkfm\(t’ X, 5)) = —Cl(l, X, g)bk(t’ X, 5)

lee|=1

and see thaby 1(x, &) = 0 in Z,4(N) andb, € Sy{—k, O, O}. Proposition 2.11 gives
us a symbob € Sy{0, 0, 0} with

k—1
b— b€ Sy{—k. 0,0} Vk. b(t.x.&=alt,x,&) " in Z(N).
j=0
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By construction, we hava o b — I € C*([0, T], S—°°). The statement about the left
parametrix can be proved in a similar way. ]

Finally, we connect the symbol clasg {0, 0, —1} with the weight symbols from
the classiC, 5.

Proposition 2.13. If the symbola vanishes iZ,,(N) and satisfies(2.4) with
{ml, mo, mg} = {0, 0, —1} and k = 0, then

1
exp(/ a(7‘,x,£)d7‘> €EKiee Vex>0, 0<:<T,
0
1
exp (/ a(r, x, €) d7'> e L*(0,T], 8K ..) Ve>0
0

with K, :=sup{|a(t, x, )AE) /M) : (¢, x, &) €0, T] x R?"}.

Proof. We only note thatd; [; a(r. x,£)dr| < C5(&)~1?lIn(¢), due to

Y18t = o8 AN —1
[ @1 =t g8 < e ). O

In Section 4, we will fix some symbcﬂ? which has, basically, the form

A1)

Bt x, &) = A0 @ € sv{o.0 -1

in the hyperbolic zone. Then we will set (compare (4.2), 4.3

9(0, x, £) == exp ( / ' B(r, x, 5)d7) = C(T, N, x)(€)°%),
3

This is a symbol whose growth rate will depend on . That is te@son why we
studied such weight symbols.

3. Fundamental solutions

The solutionw to the Cauchy probledow  £¢, & @ ,0 Jus(x), w,(0,x) =
u1(x), behaves differently in the two zones,, N( ) ad,, N ( ). In orderstady
fundamental solutions in each zone separately, we intedhe following cut func-
tions. Fix someyx € C*(R) with x(s) = 1 fors < 1, x(s) = 0 for s > 2, and
0 < x(s) <1 else. Then we set

xn(t, €)= x (%) s X, = 1= xy(r,9),
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define the weight symbol
(3.1) 8, €) = MOIExy (8, §) + 1 Xy (2, €),

and consideW «(x ) =G t( D, w t(x ,)D,w t(x J) . This vector solves the following
pseudodifferential system of first order:

0 G
D,W = w
! <Z Aza,‘ij,.ijil —22 )\Cijj>

(D,G)G™* 0 0 O 0
¥ <_ S0 N6;0,61 0) Y o —ie) W Ty
= (AL + AL + A2)W + F = AyW + F.
For the further description of the symbozb$',, we define the set?(Z,4(2N)):
H(Zpa@N)) = { plt, x, €) € C¥(Z,u(@N))

070{ ple, %, 9| < Capglt, ), (1,x,€) € Zpu(2N) .

We observe that

aly, ay, ay € #(Z,a(2N)),
a% € Sy{1,1, 0}, a}esy{0,0 -1}, a%esy{0,0 0.

In the sequel, we consider the fundamental soluign s), which satisfies
D,E(t,s) = An()E(t,s), E(s,s)=1, 0<s,t<T.

3.1. Diagonalization Let 77(t,x,£) be the characteristic roots o&S (in
Zyyp(2N)),

(2,8 = (—elt,x. O F Vel x, 7 +alx, ) MIEly (1.€)

(3.2) F N (. ).
(3.3) c(t, x, &) = ch(t,x)%, a(t, x, &) = Zaij(t,x)‘ggé.
j=1 i,j=1
Then we set
T
1 (o= VeZrangy) (5,8 = Xy, ©)
m(t, x, &) = .

1 ((me+ Ve rap ) (6x O+ xi(e. ©
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From (1.9) it follows that denh > min(2, 2,/ag) > 0. We havem € Sy{0, 0, O} and
the matrixm is constant inZ,; & ). Then Proposition 2.12 gives us a pararmdifi
for the operatoM. Sinceay € Sy{1, 1, O}, we have

mfoay om=mfaym+ry+ro,

with remaindersr; € Sy{0,1 0}, r1 = 0 in Z,;(N) andr,, € C>=([0,T],S~). It
remains to consider the product of symbatéaym. By the choice ofm,

et = {dR9E T AW > 2N,
€ H(Zpa@N)) I A@)(E) < 2N.

We introduce the notatiod := diag¢—, 7*). It can be shown that

h© D A(1)(E) > 2N,
€ H(Zpa(2N))  A()(€) < 2N,

1— b(t,x,&)+c(t,x . 1— b(t,x,&)+c(t,x,§
D) Veltx ©2+a(t.x.€) Vel £ +a(x ©)
20M1) | 14 BrOrerd g4 bexOre(ag)

Velt,x,€)2+a(t,x,€) Vet x,€)2+a(t,x,€)
+ rl(t’ X, f)’ f1 € SN{O’ 0, 0},

mfakm :{

hO@, x, &) =

(3.4) b(t, x, €) ::ij(t,x)%.
j=1

Finally, m*a3m € Sy{0, 0, 0}. In the sequelR., denotes a generic regularizing oper-
ator from C*°([0, T], ¥~ °°). Then we obtain

D,(M*(t)E) = (D,M¥)(MM* + Ro0)E + MfAy (MM? + R )E
= (D +HO Opyy +HY + Ro)MPE + R E,
h® e Sy{—1,-1,-2}, 1o € . #(Z,a(2N)),
supph® C Z,,(N),  suppro C Z,a(2N).
Here we have modified the term in the definition ofh© in order to include all
terms fromSy{0, O, O}.

This was the first step of diagonalization. We shall applthfer steps in order to
diagonalizeh©® and h® modulon,Sy{-p, —p, —p — 1}. For this purpose, we define

hi?
k@ = Xn € Sn{0,0, —1},
o hQ/ "

hi?
1) ._ 0 T -1~ — 1 -1 —
n®= (g Xy € Sw{-1,-1, -1}
21 0

T —1*
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and observe thaN®WD — DN® = HOOpy, — KO + RO with remainderr® ¢
Sv{—1,0 -1} Cc Sy{—1, -1, -2}. Then it can be concluded that

H® := (D, — D — H® Opyxy — HO)(1 + N®) — (1 + NI)(D, — D — K©)
= (D,ND) + RO _ AHD _ H© Opx;,N(l) — AON® + NOKO:

henceh® € Sy{-1, -1, -2}. We see thak® = n® = 0 in Z,,(N). Modulo
c([0, 1], S~), we haveh® =0 in Z,,(N). Inductively we set (for > 2)

it o
k=D .= 0 H-D eSy{-v+1 —v+1 —v},
22

h(l’—l)
0 +12
— TH—1—
n® = oD € Sy{-v, —v, —v},
21
.

T —T

H®) = (D, — D — HO Opyy — HW) [ 1+> N®
pn=1

v v—1
— I+ZN(#) D,,D,ZK(M

p=1 ©n=0

From the induction assumption and Proposition 2.10, itofedi that h®) ¢
Sx{-v,—v,—v—1} andh®) =0 in Z,4(N), moduloC ([QT ] $~).
Employing Proposition 2.11, we find symbatsand k that satisfy

ne SN{O’ 0’ O}v R S SN{_l, _15 _2}’
n(t,x, &) =1, kit,x,€)=0in Z,(N),

n~1+» n% mod (") Sy{-p,—p.—p}
n=1 p>0

k ~ Zk(“) mod m Sv{-p,—-p,—p—1}.
pu=1

p=>0

Then the operator identity
(D, — D —H®0Opyy — HO)N = N(D, — D — K@ — K) + K(>)
holds, whereK(>) is an operator with full matrix symbol

p>0
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To complete the diagonalization, we need a parametrix ferdperatoN. The matrix
norm of its symbol satisfies

C 1
< =

||n(t,x,f)—[|| < m =3

if A(7)(¢) > N1, whereN; > N is an appropriate number. We define

ﬁ(t’xv g) = n(t’ X, E) - X;l(t’ f)(n([, X, E) - I)

and observe that — n € N,>oSy{—p, —p, —p} and

(=Y

(3.5) In@, x, &) — 1| < = V(@ x8).

Sincen is uniquely determined only modulo,>oSy{—p. —p, —p}, we may drop the
tilde and assume that satisfies (3.5), too. Proposition 2.12 shows that a parametr
N to the operatoN exists, whose symbol belongs 8 {0, 0, 0} and coincides with
the identity matrix inZ,; (V).

If we allow some modifications in the ter#(>), we can show

(3.6) (D, — D — KO — K — KC)(N!MPE) = R E.
Thus we have proved:

Proposition 3.1. The fundamental solutiok(z, s) to the operatorD, —Ay(t) sat-
isfies(3.6), Where N? and M* are elliptic operators with symbols from ([0, 71, S1 o)
and D, K@, K are diagonal operators with symbols frofy{1, 1, 0}, Sy{0, 0, —1},
Sy{—1, -1, -2}, respectively. The(full matrix) symbol of K(>) belongs to
Np>oSn{—p, —p,—p —1} and H(Z,u(2N)). In Z,4(N), the symbol ofD is
independent ofz, x) and the symbols ok, K vanish. Moreoverthe symbols oD
and KO are given by

d =diagt—, "), k© =diagk®, k),

D, )\ b+c _ _
(3.7) kO = Z’A (1; ﬁ) Xy *r=Xy, T+ € Sx{0,0, 0},

see(3.2), (3.3)and (3.4).

3.2. Construction of the fundamental solution Now we are going to construct
E(¢, s). Let P,, P, Py denote the operators

P,:=D+KO+K+K®, P :=D+KO+K, PRy:=D
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andE;(t,s), (j =0, 1 2), the fundamental solutions 1o, — P;:
(D, — P(1)E;(t,5) =0, Ej(s,s)=1.

Since E(t, s) = M(t)N(£)Ex(t, s)Nf(s)M(s) + Ry (¢, s), it suffices to construcE,. This
task is done in three steps. First, we constigt which is a diagonal Fourier integral
operator of order zero. Then we compulie = EqQo by means of Egorov’s Theorem.
It turns out thatQq is a diagonal pseudodifferential operator which descrifbesloss
of regularity. Finally,E, = E;Q1, whereQ; is some matrix pseudodifferential operator
of order zero.

Since these constructions are quite standard, we onlytskb@n. For an exhaus-
tive representation and related problems, see [19].

3.2.1. Fundamental solutions to scalar first order operatas

DeriniTioN 3.2. Let 7 = 7(t,x,£) be eitherr— or 7. The Hamilton flow
H (v, m) = (x, ) = (x,8(t, s, y,n) is defined as the solution to the system of ODEs

dx

o7 = Vet )9, x(ss,y,m) =y,
d

ch =Nt x, ), E(s, s, y,m) =1,

It is known that for smallT , O0< T < Ty, the solution £, £) exists (uniformly
with respect to ¥, n)) for 0<s,t < T and that

{ MLV g e s), dux(e, s)} is bounded inSY o(R! x R,

f—s 0<s5,1<T

{020 0600, o)} s bounded insto®) x 7).

t—s 0<s,t<T

If T is sufficiently small, then an inverse function »y=t,§, x, n) to the mapping
x =x(t,s,y,n) can be found. Then the set

{y(t, s)—x
s

P 9 aly(tvs)v afy(t’s)}

0<s5,¢<T

is bounded ins? ,(R? x R?).
Now we can construct the phase functiprwhich solves the eikonal equation

Orp(t, x;8,8) — 7(t, x, Vo(t, x;5,£) =0
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with the initial conditiong(s, x;s, &) = x - £. We set

1
U(t, Yy, S, 77) =y-n—- / (5 : VET - T)(O',X(O',S, Y, 77), E(O',S, Y, W))da
N
and can express the phase function in the form

¢(t’ X0, S, 50) = U(l, y(tv s, X0, 50)7 s, 50)

The representation of and the propertiesyaf, s (x, &) imply
(3.8) D202 (D(t, x;5,€) — x - )| < Capl€)* NG V), sVt

wheres V¢ := max, t ). The functionr(z, x, ) does not depend on,(x ) it (x,&) €
Z,4(N). Consequently,

(3.9 ot x,8,8)=x-E— @ —95)1(), st <t

In order to formulate the transport equations for the amg@ét functions ofEy,
we recall a theorem about compositions of pseudodiffeakofperators and Fourier in-
tegral operators, see e.g., [12].

Theorem 3.3. Let P, be a pseudodifferential operator with symbpl(x, &) €
S1'6 and let P, be a Fourier integral operator with phase functiaf(x, ) and am-
plitude pa(x, §) € S7'5. We assume thartiﬁ((;ﬁ(x, —x-f<d<lfor|al+|f] <2
Then the compositio; P, is a Fourier integral operator with phase functiap and
amplituder(x, &) S’l’fgf’”z which can be written as

r(x, €) =pa(x, o (x, )palx, ) + > (e, pr)(x, Ved(x, £)) Dy, palx, £)
j=1

~ 53 (B p) (e Wl ) (02,005, ) pale, )+ ol ©),

k=1

mi+mo—2

with somer; € S1'j . We have the asymptotic expansion

P, )~ Y0 D (02 P, Tt v, Doty 6)

|ex|=0

where Ve o(x, v, €) = [ (%) (y +s(x — y), &) ds.

This theorem is now employed to find the fundamental solutom®, — D.
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Proposition 3.4. The fundamental solutioi(z, s) to the operatorD, — D is a
diagonal Fourier integral operatqr

Eo(r, s) = diagE€, (¢, 5), E5(z, 5)),
(E5 (1. s)w)(x) = / 0T T (1, x5, () dE,
T (s, x;5,8)=x-& eT(s,x;s5,6=1

The phase functionsp®, ¢~ satisfy (3.8), (3.9), and the amplitude functions
e¥ (1, x;s, &) belong toC([0, T1?, S7 ).

Proof. We shall express™ as an asymptotic series,

et(t,x;s,8) ~ Zef(t, x;s,€), ef €C([o, T1?, Sié),
j=0

with the initial conditionSejF(s,x;s, &) =0 for j > 1. Obviously,

(DEG (1, s)w)(x) = / TR O(5F eTY + i eT)(t, x5, E)W(E) dE.

Let E], (¢, s) denote the Fourier integral operator with phase functiéifz, x;s, ) and
amplitudee] (¢, x; s, £). Theorem 3.3 yields

(77 (t, x, D)EG,, (1, s)w)(x) =
[0 (72 N s, e x5,
+i T (Ver ), x, NhoT (8, x5 5, ))Vae (1, x5 5, €)
LS (@) (. % x5 ©) (2,,67) ) (x5, 6)
k,l
+rm2(t, x5, )} w(€) d€, ord(ri,2) = —1—m.
This leads us to the eikonal equation
OF (1, x35,8) =77 (t, x, Ve T(t, x;5,€)) = 0
and the transport equations ( 70 1.2)

(3.10) (9 — (Ve ™)1, x, NidT (2, x5, ) Va)eyi (8, x3 8, €)

S () o R 5, ) (8, 07 1 315, ) €, s, )
k.l
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m—1 .
= 3 Dy ((0277) 6w, ST x vis, ef (6 vis ),

k=0 |a|=m+1—k

To solve the transport equations, we recall a well-knowmlltefsom the theory of
first order PDEs. Consider the Cauchy problem with parameter

j=1

(& =D ajlt.x p)axj) w(t, x, 53 p) — aolt, x; p)w(t, x, 53 p) = f(t, x; p),
w(s, x, 53 p) = wo(x; p).
Let v =~(t, s, x0; p) : [0, T]* x R* x R% — R" be the solution to

Oj(t, s, xo; p) = —aj(t,y(t, s, x0; p);p), Jj=1,....n,

(s, s, X0; p) = Xo.

Then the solutionw satisfies
1) wltxsi) = woalsuto i pip)ep [ aoleatetoxip) e
+ [Cexp( [ antrsoxi o1 P ) £t 3
In our situation,p =£, &), a;(t, x; p) =a; (¢, x; p), (0<i <n), with
ai (t,x;p) = (0,7F) (6, x, VT (t, x;5,€), 1<i<n,
G500 = 5 3 (™) (10 B 70005.0) 67000150,

and f =f,F(t, x; p) is given by the right side of (3.10). Consequently,

eq (t,x;s,8) = exp(/t ag (r,y(r,t,x;s,€);s, f)dr) ,
e (t, x5, €)

t t
= /exp (/ aO:F(r, y(r, t,x;8,§);s, f)dr) f (o, y(o, 1, x;5,€);5, &) do.
The coefficientss; , (6< i < n), belong toC ([0T {, Sf,o)? more precisely,

CapAO)(©)~1P g <1,

1<i<n
Ca,@zgl<§>*|5|*1 <t

’

8?8?a?(t,x;s,£)’ < {
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CopND)(E)TPIA( Vs) 11 <t,
0207 ag (1, x;5,€)| < Copte HE)TPITIAG) 11 <1 <,
0 its <t

see (3.8), (3.9). Then we obtaine C([0, T]3, 59 ) with |y(r, 1, x;5,§)—x| < C|r—1].
The representation of] implies ed (t, x;s5,&) =1 if s V¢ < and

O3 00ed (1 x:5,6)| < Capl) ™V
if sVt >t. Inductively we conclude that

CopmAO)(€)™ 101 g <14,
020¢ £t x5, E)’ < { Capnte HE ™y < <,
0 s <t

and

CapmA@)(€) ™m0 1 <1,
R0 ef (1 x75, )| < Capn A 11 <re <,
0 s <t

We see thak,} € C([0, T]%, S; (). If we set
&t x5, ) =ef (6, x5, )+ > (L= X (E))e] (¢, x35,€)
j=1
and choose the sequenée; } with ¢; \, O suitably, then

et x;5, ) ~ Y ef(tx;5,6) modC ([0, TF, $)

j=0

andeT(r, x;s,£) =1 for s Vr < 1. The functione is the amplitude to an approximate
fundamental solutiorE] which satisfies

(D = 77(t, x, D)EF (t. x;5. Dy) = RE(t, x5, Dy)

with rE € C([0, T1?, S—°). In order to find the exact solutioE], we set

t
Wa(t,s) = —iRE(t,5),  Wiaalt, s) = / Wa(t, )W, (o, 5) do.
s
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Then the desired fundamental solutionfip — D is given by
~ t ~ 0
EJ(t,5) = Eg(t,s)+/ Eg(t.0)>  W,(0,s)do. O
S v=1

Now we constructe,(z, s).

Proposition 3.5. The fundamental solutioik,(z, s) to the operatorD, — D —
KO — K can be written asEi(r, s) = Eo(t, s)Qo(t, s), where Qq is a diagonal pseu-
dodifferential operator Qo € L>°([0, T]%, SX°_ ) for some Ko. With somedy €

l—e,e

([0, T]?, S?__ ), its symbol can be written in the form

Qo(t, s, x, £) = exp </t ikO(r, s, x, €) dT) Qo(t, s, x, &),

s

KO 5.x, ) = diag (K (1, 7, (x. ) KO (1, #53(x.9)) )

where the Hamilton flowsZ7 (x, {) have been defined ibefinition 3.2; and k(f) is
given by(3.7).

Proof. We look forE; having the formE; = EqQqg and obtain
D,Qo(t. ) = Eofs. 1)(KO(e) + K(1))Eo(t. )Qo(t. 5)-

According to Egorov's Theorem (see [19Bo(s, )(KO(r) +K(#))Eo(t, 5) is a pseudod-
ifferential operatorK(z, s), whose diagonal principal symb&l®(z, s)+k3(z, s) is given
by

KO(t, x75, ) +kD(t, x;5,€) = KO(e, T (v, €)) + ks (¢, T (x, €)),
see also Definition 3.2. Therefore, we write
symK(t, s)) = k(t, s) = kKO(t, s) + kO, 5) + K@z, 5)

with lower order termk®(z, s) and look forQu having the form
(Qoz, S)w)(X):/eixqu(t,s,x,S)ﬁ)(E)dﬁ, qo(s, s, x,&) = 1.

We expandqo into an asymptotic seriegjﬁo Oo; with ord(qo;) = —j and

m

1
D;Qon(t, s) = Z J(D?k(t, $))(05 dogn—|a) (5 5))-
laj=0 "
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Recalling that all matrices are diagonal, we see that

Qoolt, s) = exp </ ik(r,s) dT) ,

Qom(t, 8) = i/ exp </ ik(t, s) dT) Z % (DEK) (99 dogn—|ay) (0, s)do.

lal=1
We know that thek”) vanish inZ,, (v ) and that
K9 e 20((0.7].8%9). k2 e 25(0. 7], 579,
A A ’
K@ ¢ %c([o, T1, 5:4) € C(0, T1, S 0).

uniformly with respect tas € [0, T]. Consequently,

sVt
/ 020K (7, 5, x, g)] dr < Cople) 1P, j=1,2

Nt

The proof of Proposition 2.13 gives the rough estimate

sVi
/ 8;"8?k(0)(7, 5, X, 5)‘ dr < Cop (&)1 Y (1,5, x, €)

SN\t

for every positives. By induction we obtain

t
3?3§qom(t,s,x,£)] exp(/ ik‘o)(T,s,x,S)dT>

< Copom (€) A SImrelal=a=2)18],

l

There is a positive real numbéf, with

K+
C (M) t <s.t,

A(tAs)

t
K.
exp(/ [KO(r, s, x, &) dT) <3cC (A(’VS)) CSAt<t <s Vi,
s

Alte)

. I
.t,sgtg.

Here z/ is given by A ¢;)(§) = N/2. We shall see that the numbé,, which gives
a bound for the loss of regularity, is the same number as inide2.1. Sinceqg, €
L>([0, T]?, Sfj;(el’e)’"), the seriesd_ qo, defines in a canonical way the symbupy

of an approximative solutionfg. The solutionQ; can be constructed frorfND in the
same way as in the proof of Proposition 3.4. ]
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3.2.2. Fundamental solutions to matrix first order operatos Finally, we
considerE,. If Ex(z, s) = E1(t, )Qq(z, 5), then

(3.12) D,Qa(t, s) = Ex(s, 1)K (#)Ea(r, s)Qu(t, s), Qils,s) = 1.
The following proposition describes the factor on the righhd side.

Proposition 3.6. The operatorK(®)(z, s) := E(s, 1)K ()E4(t,s), s < t, is a
pseudodifferential operator whogenatrix) symbol satisfiesfor every p > 0,

(3.13) ]

020K e, 5.x. )|
Casen ( 223) 2@ )P ()l <5 <,

2K+
< Cosep (28T A0 P (M0 s <y <,

Caﬁgtgl<§>fla|*(lfs)\ﬁ\ s <t < lé-
Proof. We start with the compositiol(>)(r)E(z, s), which can be written as
(K DE(, 5)W)(x) = /eid’*(”s’*’@klf (1,5, x, YW (&) dé
+ / SISO s x, )W (€)de.

The amplitudesk!—, k* are given by expansions of the form

oo

1 -
7 D5 (GEKNEx, Va6t 5, v, D)l 5, v, 9)

|ex|=0

and satisfy, for everyp > 0,

(3.14)

DL OIKIE (1, 5, x, g)H
Coper (24) M (AME) 7(Q=-CM 1y <s <y,
<1 Capep (28) M0 (AME) 7 (@0 <y <,
Capetg H(E)elol=0=al] s<r <l

On the other hand,

81185 ipT (t.5.x,8)—ixE

aﬂA(t)\a\+|B|<§>lal : é <t s<t,
Cp(&)~1A! s <t <.
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Since (3.14) holds for every > 0, the operatoiK(>)(¢)Ey(z, s) is a pseudodifferen-
tial operator. The symbol of that operator (and its denest) can be bounded by the
right-hand side of (3.14), for every > 0. In a similar way we can consider the oper-
ator Eq(s, 1)(K(™)(£)E4(¢, s)) and obtain (3.13). O

Remark 3.7. We can write (3.13) in the form
0202k, 5, %, )| < Capepgple x, QA ¥ 1,5,x,9)
with
(20)" 2@ 7 <
gplt,x, &) = Al(’f) A £
— . I
1 it <t
By direct computation,fOT gpt,x,8)dt <C if 2K+ — p <O.

Now we are in a position to descrili@;.

Proposition 3.8. There is a pseudodifferential operato®,(r, s) that solves
(3.12) and whose matrix symbol belongs £&°([0, T12, S?__ ).

Proof. We look forqg; in the form q; ~ ijoqu mod L>([0, T]?, §—°)
where
"1
DiQun(t, s, x,8) = Z ol (D?k(oo)(t, 5, %,8)) (05 Aagn—1a)(t, 5, X, 6))
|a|=0

with the initial conditionsqio(s, s) = I and qu,(s,s) = 0 for m > 1. We write this
matrix ODE in the form

O (t, 5) = ikt $)qun(t, 5) + (2, 5)

and introduce the notations
t
bo(t, s):=1, byl(t,s) :=/ ik(r, s)b, (7, s)dT,
t ) t
don(t:5) 5= [ Talre5) T, dein(t:5) = [ ik S)dn(r.5)d

Then the representations

Quolt: 8) = > bu(ts),  Qualt,$) =Y dum(t,s) (m >1)

v=0 v=0
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hold. By means of induction, we show that

V!

_—og 1 ! g
000,055 6)] < Conel 0% ([ tr.x, a7 )
for all (¢, s, x, &) with t > s and allv. This is true forv = 0. Then we have

020, byn(t, s, x, £)H

1 t T v
< Ca66<§>sla|_(l_s)wﬁ/s gp(7, x,€) </s gp(g,x,f)do—> dr

gla|—(L—¢€ 1 ! g
:Caﬂs<§>| I-a )‘ﬁ‘m </s gp(T,x,ﬁ)dT) .

Now we prove that

(315) 0020w, 5., )| < Capem (11002 1y 15, x ).

Due to fOT gy(t,x,&)dt < C for large p, this holds forn = 0. Assuming that (3.15)
is true form — 1, we show (3.15) form . Clearly,

a)?éagrm(t5 s7 -x7 €)H S CO(BEIH <§>E‘a‘_(1_5)|6|gp(t’ x’ 6)’

Then it follows immediately that

t
020 don(t,5. .| < Capnl -0 [ g, x, ).

Similarly to the estimate ob,, we can show that

CoBem ela|—(1—¢)|B|—(1—2¢)m t v+l
N (foser.007) "

(v +21)!
which implies (3.15).
So far, we have constructegh,, € L>([0, T]?, Sl’_(i;za)’"). Therefore, we find a
symbol Gy ~ >, qu, mod L>([0, T1?, $—*°) which satisfies
DiGa(t, s) = K2, 5) 0 Ga(t, 8) = Too(t, 5) € L([0, T, S).

The solutionQ; can be constructed from the approximative solut@pin a standard
way, compare the proof of Proposition 3.4. ]
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4. The linear Cauchy problem

Let us consider the solutiowm to
(4.1) Lw=f¢x) w@Qx)=uo(x), w0, x)=ui(x).

We define the weight symbal(z, x, &) by

@2) ﬁ(t,x,£)=e><p< /729, 5 w(x)dr)
(4.3) Bx) = 2(/”) max <1q: \/b_c)

compare (3.7). The numbe?#(x) tells us the amount of Sobolev regularity that was
lost at the pointx when we passed from , (0 )Wors, d{ ¢)+0), whereW {,x )=
(G(t, Dy)w(t, x), D,w(t, x)), see (3.1). By computation,

Bx) = (1+ (" e~ H@) 7).

2(l +1)

wherel ) (M & )) is the uniquely determined vector (symmetriatn, respectively)
such that

1(x)7€ = B0, x, &) +c(0, x, )], €M MX)E = (c(0, x, ) +a(0, x, E))¢[%

Observe thatM X ) is positively definite, uniformly in , due tb9).

AssumpTioNA.  The vector ¢; (0x )— bj(O,x));%:1 either vanishes identically on
R%, or it never vanishes.

Under this assumptiong(x) € C*°(R"). Now we choose the Sobolev space of
variable orderBy » r and spaceCy  of traces of functions oBy .7 attr =0,

(Wl r = [guTF]X”@M(tv x, DYW(t, x)|[ 12 +[[W(, x)| 2),

IW(0)

w = 1Ou (0, x, DAW (O, x )| o + [W(O, x)]| .- -

Cy,

The main result of this section is the followirgy priori estimate:

Theorem 4.1. SupposeAssumption A,ug € Cy py+1/¢.+1) @and ug € Cy y With
M > 0. Then there are a time intervdD, 7] and a constantC,,, with the property
that a solutionw € By p+1/¢.+1)7 t0 (4.1) exists and satisfies

Wil < Capr([W(0)

Cow TT NS lsar):
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where W(t, x) = (G(t, D,)w(t, x), D;w(t, x))7, see(3.1).
The proof is split into several lemmas.

Lemma 4.2. If 57 (x, &) denotes the Hamilton flow definition 3.2and 0 < s,
o<t <T, then

0, A5 (%, €))
I(t, x, €)

Proof. Due to Hadamard’s formula, we can write

e I(0, TP%, 7. ).

A(T)
AG )(XNﬁ)(T AT (x, €))
_ ) A7) -
G )(xNﬁ)( &)+ G )r(T s,0,x,8)(s — 0),
with some remainder € L>([0, T3, Sf,o)- Our assumptions and < 7 show that
A(7)|s — o|/A(r) < C, which yields the assertion. Ul

The same argument gives the following improvement of Pritipos3.5.
Lemma 4.3. The symboldiag@, , ) of the operatorQq(t, s) has the form

an(laS,X,f)

= [ 500 (15 72 ) 00,947 ) 085 .55,

whereqg € L=([0, T]%, S__ ).
The next lemma is a variant of Egorov’s theorem.

Lemma 4.4. There are operatorR(z,s) € L>=([0, T]?, ¥
L>>([0, T]?, w—°) with the property that

) and R (¢, s) €

lss

Eo(s, 1)Ou(t)Eo(t, s) = R(t, s)Ou () + Roo(t,s), 0<s <t <T.

Proof. In the sequel, we consider as fixed andslet be runninf,in. We
write ©(z, s) = Eo(s, 1)@ (t)Eo(z, s) and obtain

D,6(t, s) = [D(s), O, s)] = D(s)O(z, s) — O(r, s)D(s).
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We look for ® having the form

oo

G = [ 5.5 O e T~ D,

m=0

whered,, = dlag(ﬁ ) are diagonal symbols satisfying

0Tt 5, %, €)
=" (9¢D(s. x. &) (02T (t, 5. x, ) — (09D(s. x, €)) (9 Tm(t. 5. x.))

|ae|=1
m—1

+ Z Z Dg D(s, x, f)) (afﬁl(l,ssxs 5))
1=0 |a|=m+1— ¢ '

— (9¢D(s, x, €)) (DE(t, 5, %, €)))

with the initial conditionsﬁg(t,t,x,g) =9yt x, ), 5,f(t,t,x,§) =0 (m > 1). This
first order PDE can be written as

asﬁ,f(t, §,x,8) = jfﬂ?,f(t, s, X, )+ f,r(t,s,x,8), fof =0,

where 7T = z‘a‘zl(agﬁ)ag — (8)?TJF)3§‘ is the Hamilton vector field. Then the
solutionsF are given by

53:07 S5 X, 5) = ﬁM(t’ %,:z":(x’ 6))’

5,:'":(1, 5, x,8) =/ fi @t o, 5 (x,6)do, 0<s<t<T, m>1

t

From Lemma 4.2, we deduce thaf (t, s, x, £) = rf (1, s, x, E)Iu(r, x, ) with rf €
([0, T]?, SY_ .o)- By dul(t,.,.) € K1, it can be concluded thaf," (¢, s, x, &) =
f1 (t,s,x, )9, x, &), with f1 € L>=([0, T1?, S, ' (- 2‘5)) Applying Lemma 4.2 again

shows 37 (z, 5, x, €) = rf (¢, 5, x, E)Iu(t, x, &), Wherer1 ([0, 712, $; % ). Fol-
lowing this procedure we get

Uit s,x, ) =it s, %, Q0m(t, x,€), iy € L0, 717, s 2").
We defined*F ~ (3", r;F)Yu, which gives us an approximative solution,

D,O*(z, s) — [D(s), ©*(z, 5)] = Ro.oo(t, 5) € I°([0, T]?, W ~°°).

It remains to show tha® — ©* is a smoothing operator. This is equivalent to prove
that W ¢, s ) :=Eo(s, 1)Oy () — ©*(z, s)Eo(s, r) smooths. We have

(Ds — D(s))W (2, 5) = —Ro,00(t, 5)Eo(s, 1)
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and W ¢,t) = 0. Then Duhamel’s principle yields
Wi(t,s)=— /S Eo(s, T)Ro.co(t, T)Eo(T, 1) dT € W™,
t
This completes the proof. Ul
Proof of Theorem 4.1. The vectd¥  can be written as

W(t, x) =E(, O)W (O, x) +/t E(t, s)F(s, x)ds
0
=M(r)N(1)Eo(r, 0)Qu(r, 0)Qu(r, ON*(O)M*(0)W (0, x)

t

+ / MEONEo(t, 5)Qot, 5)Qurs $)NEs)MEGs)F s, x) s
0
+ R (¢, O)W(O, x) +/f Roo(t, s)F (s, x) ds.
0

Lemma 2.5 shows that there afd(r),N(r) € L=([0,T],¥? _ ), and Qi(t,s) €

l—e,e

L=([0, T]?, w?__ ), such that modulo regularizing operators we have

l-c.e
Ou(OMONE) = MONNOM (). Ou(s)Qur. 5) = Qult. ) s).
Then we have, modulo smoothing operators,
O (NMON()Eo(, )Quolt, 5) = M(ON()Eo(t, $)R(t, $)Ou (1)Qu(t, 5),
see Lemma 4.4. From Lemma 4.3 and the choicé,oit follows that
Oum(t)Qo(t, s) = Ro(t, )®u(s) + R (t, 5),
with someRg € L>=([0, T1?, \Ilffs’a). As a summary, we have

Ou(OM(E)N(1)Eo(t, s)Qolt, s)Qu(t, s)N*(s)M¥(s)
=R(t, 5)Ou(s) + Roo(t,s), 0<s<t<T,

with someR(z, s) € L>=([0, T1?, £(L?)). Then it follows that
1OMOW(, x)|* < CIR(z, 0)0u Q)W (0,x )|* + C [Ruo(t, OW (0, x )|

t t
+Ct/ IR, s)@M(s)F(s,x)||2ds+Ct/ IRuo (2, )F (s, x)||* ds.
0 0

Integration overR” gives the desired inequality.
The weight symbok #( ¢) of (3.1) satisfiesg #( &) > C(¢)¥¢*D, € > 0. Then we
haveHw||M+1/(,*+1),T <C HGwHM,T; hencew € By p+1/¢,+1),7- O
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5. The algebra property

One variant of the extension of the result of Theorem 4.1 toilggear Cauchy
problems relies on the algebra property of the spBgg, r. This idea was used in [7],
where Cauchy problems similar to (1.6) and (1.7) were studie this section, the
algebra property of the spacé 1 is proved.

Theorem 5.1. AssumeM > n/2+ 1 Then there is a constanfy such that

||w1w2||M,T < Co leHM,T ||w2||M,T

for all w1, wz € By, u.r.

Corollary 5.2. Let f(z, x, u) satisfy (1.10), (1.11)and supposeM > n/2 + L
Then there isfor each K > 0, a constantC;(K) with the property that

lf@, x,u)— f(z,x, U)HM,T < Cu(K) [Ju — U”M,T

provided thatu, v € By y.r and [lul[,, 7, [Vl < K.

The proof is split into several parts. In Lemma 5.3 and Cargll5.4, we replace
the operator®,, by a new operator whose Schwartz Kernel hasodupjpse to the
diagonal{x = y} of R} x R}. Then this new localized operator is locally decomposed
into a product of two operators; the first is an operator of Iswr@er, the second has
a symbol independent aof . Exploiting an estimate given inpBsition 5.5, the de-
sired inequality is proved locally in Lemma 5.6. Finally] #iese local estimates are
glued together in Lemma 5.7.

Let {B,(x9)}:, be a locally finite covering oR" with balls of radiuse and cen-
ter x? and let {¢x(x)}7S, be its associated partition of unity. Fix somee C5°(R")
with ¢(x) =1 for |x| < 2, ¢(x) = 0 for |x| > 3 and definey,(x) = ¥(x/0).

Lemma 5.3. For p € ST, define P, = P,(x, D) by

(P =3 /R / AP A ) = D) dyde

Then P, is a smoothing operatorP, € W~—>°.

Proof. The Schwartz Kernel of,,

S [ e ap - v - af)de,
k=0 3
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vanishes forlx — y| < p. O

Corollary 5.4. The following norm is an equivalent norm f@ , r:

lwlf3 7 ~ sup (Z 01Ot x, D)Wyl — xdwz, x)|[5, + w||iz).

[0.71 \''=0

Proposition 5.5. Suppose thap(z, ) € L>([0, T], STy satisfies

(5.1) p(t, &) = p(t,|€]) is monotonically increasing inf¢|,
(5.2) p(t, 28) < Cop(t, €),

(5.3) Cop(t,€) > ()2, 4 >0,

(5.4) Vep(t, €)| < Coplt, §)(€)

for all (z,&) € [0, T] x R* and someCy > 0. If § > 0, then the estimate
1P(f8) = fPg—8Pfllys < ColPfllys-v2 P8l o2
holds for all £, g with Pf, Pg € H'~/2; and C1 = C1(Co, n, 7, 0).

Proof. If w is an arbitrary function oLZ(Rg), then

[ @)~ g - gPaYOUE e

3

= /R /R (€= m°H2pE — ) F(E —m)((m)° 2 p(ma(m)x
3 n
x m(&, mMw() dnd§

holds, where we have neglected the variable and

e,y = PO = PE—1) - P> ()€ — )M/
T pE& —mpm)(n)°E —n)? ‘

Assume that we had shown

(5.5) sup[ m(&, n)%dn = Cf < 0.

&t JRy

Then the Cauchy-Schwarz inequality implies

‘ /R (&)°(P(f8) = £ Pg — g P TEw(&) de
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1/2
< (/R /R (& =) M 2p(& = mF(E& —m)m)° M2 pm)a ()| s dn)

1/2
x ( /R % /R e n)2|w(s)|2dnd£>

< Callwll oy |1 Pl s-vs2 (|1 P8l prs-1/2 5
which completes the proof. Therefore, it remains to shovs)(5.
For eachg, we split R} into four parts:
a=0bl =26 B={o:p<2g, - <3,
C={n:Inl <2, |§—nl = 2nl},

p={u:m<2el. L <ie—n<zm},
If n€ A, then|¢ —n| > |n|/2; hence

p)(m)¥/2(& — n)/? () C
pE—mpt) - CpE—m = (myn/2

This implies [, m(¢, n)%dn < C.

If |€—n| < |€]/2, thenl¢|/2 < [n] < 3[¢|/2 and|¢ — 7| < |5]. Consequently,&( 7)
is the shortest side in the triangle with the corners,@. Then we can find a positive
numberC with

m(§,n) < C

C min(nl, € < lan+ (1 — a)é| < max(nl, [¢), VO<a <l

From this and (5.4), we deduce that

[p(€) — p(n)| < o [Vp(a&+ 1 —a)n)| - |€ =1
plag+(1—a)n)

< Corgnaagxl (af +(1—a)n) <€ - 77>,
(5.6) p(€) = p()| <C%<§—n> Ve < %

Now let n € B. From (5.6), we get

1p() — p(n) — p(§ —n)| SC%@ —n) +pE—n),
p)(E = m¥x Y2 | p€ = mm)M2E —n)t?

p(€—mnpm)n) p(€—npn)

m(&,n) <C
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€=m , -

= Cp(f —n)  pl)’

This implies [, m(¢, n)*dn < C.
The casey € C is treated similarly; we just change the rolespfind ¢ — 7.
Finally, if n € D, then

pa)mYHE—mY? _ (E-m) _ C
p(E—mp)  — " pE—n) ~ (mv/E

The proof is complete. Ll

m(&,n) <C

We define two additional cut-off functions,

¢O(x) = {; S ey - {1 Hxl <5,

x| >4, 0 :|x|>6,
and set({)(x) := (W(x/g), j = 1, 2. Then we introduce the notations (x) =

(él)(x—x,?)wl(x), wor(x) = w(x — xDwy(x), and it follows that v,(x —
x,?)wl(x)wz(x) = wy(x)wor(x). We define the symbol

T
(e, x. €) = exp ( / %x; (r. )(30) — AD) dr)

and conclude tha®y t{x, D, ) ®u(t, x, Dy)Ou(t, x2, D,).

Lemma 5.6. Letd be a positive number with

=

57) sup sup [3r) — A <0 < 7
ko x—xP|<80o

Then there is some consta@} ,, independent of, k, and w;, such that
| 0e(x)®u(t, x, Do) (W,(x — xQwa(x)wa(x))]],,

< Coo[|¢Px = xDOu (1, x, DYwak(x)|[ 2 + [wri(x)]| 12) %

x ([P0 = xD)Oum(t, x, DYw2i(x)||,, + lw2x ()]l 2).
Proof. We have the decomposition

CkOum(t, x, Dy)(wrrwar) = L+ Lo+ Ik s
= O (Ou(t, x2, D) (wirwar) — wikOu(t, x7, Di)wok
— wo O (t, x0, Dy)wiy)
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+ 0O (wikOu(t, X7, Dx)wa) + kO (w2 Ou(t, x0, Dy)wi).

By the choice ofs, we deduce thaty(t, x, &) < C(£)°, as long asjx — x| < 8p.
Then it follows thate gy € L([0, T], S7 ). Proposition 5.5 gives

1 iall 2 < C|©u(t. x0. Dwak] s 12 || Ou(t, X2, D)wak| s ) -
Now we show that

H®M(t’ -x]?5 Dx)wj,k ||Ha’—1/2

(5.8) < C|[¢Px — x))Oum (e, x, Dwj|,, + C 1wl -

According to Proposition 2.4, the operat®ry, has a parametri>®§k). Then we can
write

O (t, x7, D)wjs = (OfyOu)(t, x, D)wjg + Roo i
= 001 = CPx — x0) + (P — x0)Ouw;a) + Rocw i

Since the symbol of the operat@?k)(l — (@(x — x))®y vanishes on the support of
w;x (modulo smoothing operators), we see that

(5.9) H@(ﬂk)(a — (O — 22Oy w ,-,k)HHéfm < Cllwislz -

The order of the operato@?k) is at mostd in a neighbourhood of the support of
¢A(- —xD). Therefore,

|050cP6 = Doywn)| < €@~ xDOwwll,..

Hé—-1/2

This proves (5.8) and yields the estimate Ipf;.
For each operatoP € \I/f’E (6 < 1), there is a constanf  such that for all Lip-
schitz continuous functiong and ajle H°~! the estimate

(5.10) ILP. flglle < CUIVFll o llgllgo-s

holds. This is a special case of Theorem 5.1 in [13]. UsingQpand
L2 = wirpr®u(t, x, Dy)wak + [0x®y, w1l Oum(t, x, Di)woy,

we deduce that

T2l 2 < Cllwakller (@ mwakll 2 + || ©a (e, x0, Dwakl| p5-1)-
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From (&)™ < (¢, x, &) and M > n/2 + 1, we obtain

lwiklles < CJJ(2=¢P — xQ) +CPx — xDNOm (e, x, D)wal],

+C [lwakllzz -
The application of the reasoning that led to (5.9) implies
lwikller < C|KP e — xD)Ou(t, x, Do)wil],, + C will- -
The termI; 3 can be treated similarly. O

Lemma 5.7. Under the conditions oEemma 5.6,we have

3 ()t x, D)Wl — xQwalx)wa(x) [,

k=0

< Cspllwallyy p llwally ;¥ wi w2 € Bowr.

Proof. It suffices to show

(oo}
2
(5.11) > ¢ = x)Ou . x, DIwji[;, < C llwjlls, ;-
k=0
Applying Lemma 2.5 twice, we find an operat®y ; € L>°([0, 71, \11875’5) with
Ou(t, x, Dy) o CPx — x0) = Rus(t, x, Dy)Ou(t, x, Di) + R
= Ry(1— Qf’)(x —x)+ Qé?’)(x —x))Ou(t, x, D) + Reo,
where (®(x) = (®(x/) and (¥(x) = 1 for [x| < 7, (®)(x) = 0 for |x| > 8. Exploiting
the idea behind Lemma 5.3 and Corollary 5.4, we get
> 2
S ¢P0x = x)RL((@ — (O — x Oy}, < C, wall7.
k=0

On the other handggz)(x — x)R1; is an operator of order zero, uniformly bounded
with respect tok ; hence

3 1¢P — )RR — xD@ w2,
k=0

< CZ HCE)S)(X - x;?)®Mw1Hi2 =C ||wl||12v1,T-
k=0
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This gives (5.11) forj =1. The casg =2 runs similarly. ]
Proof of Theorem 5.1. We apply Corollary 5.4 and Lemma 5.7. ]

6. The semilinear Cauchy problem

Theorem 4.1 gives us the existence of a solution to the Capcblylem (1.7)
in some spaceBy y+1¢,+1)r Providedug € Cy p+1/¢, +1), U1 € Cy u. The main goal of
this section is to show that, for small tinf®e , a solution  tdG)lexists and belongs
to the same space as . Moreover, we prove that the differeree@ has higher reg-
ularity thanu andv , see Theorem 6.2. This implies that thengeet singularities of
u andv are the same.

Theorem 6.1. SupposeAssumption Aand ug € Cy y+1/.+1) U1 € Co o, and
M >n/2+1 Then there is &, 0 < T < Ty, such that a solutiont € By y+1/(,+1),7
to (1.6) exists withU € By y.7, Where U(t, x) = (G(t, D, )u(t, x), D,u(t, x))”.

Proof. We consider the mappind : w — u defined by
Lu=f(r,x,w), u(0,x)=uo(x), ui(0, x)=uilx),

and show that it has a fixed point By y+1/¢,+1),r for small 7, 0< T < T,. Fix a
constantC, such that

(6.1) [wt, )y r < C2 |G, D)w(t, x)||y 7
for all w with Gw € By .7 and allT . Then we fix some positive numbgr
K 1= 2C2C (|| G(O, Dx)MO(x)Hcf,yM + ||u1(x)||c19.M +1),

where C,,,, is the constant of Theorem 4.1, and choose < T, such that

1
6.2 Tca rC K S_v
(62 wCi(K) < 5

where C1(K) is from Corollary 5.2. We fix some s&{ C By u.7,
) K
X = qw € By yr1yq.+)1 - NGwllyyr + lwilly 7 < G C Bym,.

Let X denote the closure ofX inByyr. If w,v € X, then we have
[wlyr < K, see (6.1); and, consequentlff (s, x, w)lly, r < Ci(K)[wlly 7
[ £t x, w) = f@t,x, D)y < Cu(K)[w— b, By (6.2) and Theorem 4.14

mapsX into X and is a contraction. Then Banach’s fixed point theorévesgus a
fixed pointu of A. L]
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Finally, we show that the difference — v has higher regularity than and

Theorem 6.2. Letu andv be the solutions t@l.6), (1.7)and let the assump-
tions of Theorem 6.1be valid. Then

U—V € By m+1/0,+1),7s U —V E By pa2/(,+1),T-

Proof. Fromu € By p+1/¢.+1,r and Corollary 5.2, we deduce th#tz, £, u <)
By m+1/0.+1),7- The functionu —v solvesL —v) = f(¢, x,u) and has vanishing initial
data. Then Theorem 4.1 gives the assertion. Ll

7. An example

Let us illustrate the results of this paper by an example6lnthe example of Qi
Min-You [15] has been extended to Cauchy problems of the type

Lv = v, + 2ct™ vy — at? vy — blt* vy =0, a,b,ceR,
U(O,x) :Mo(x), vt(ovx) = 0

Looking for a solutionv £, x ) = = Cimt " (0% ue)(x + put'**) we obtain

faz= z*il (-exVera). miz= ﬁ <_li¢%)‘
Assuming thatn; € N (m, € N), we see a loss ofi; (my) derivatives and propagation
of singularities along one characteristic only. We find ttteg loss of regularity given
by (4.2), (4.3) and Theorem 4.1 is sharp for this example.

Now suppose that, b,c are functions of . We choose two distinattpail, x?
on the initial line and neighbourhoodg;, V, of x? and x2. Moreover, assume that
a, b, c are constant invVy, V,, and that their values are arranged in such a way that
mq = ml(x) e N forx € V; andmy = mz(x) e N for x € Vo with m, 75 my. Then,
locally, v has a loss ofz; derivatives in a neighbourhoodc®f This can be seen as
follows. The solution to a weakly hyperbolic Cauchy problé&nunique if the initial
data have high Sobolev smoothness, see [11], [14], [16kceSimique solutions have
finite speed of propagation, the solution coincides with rcfion v; in a neighbour-
hood of ¢?, 0), wherev; solves

Vjin t 2()()6?)1‘[* Vjxr — a(x?)tzz* Vjxx — b(x?)l*tl**lvj,x =0,
v;(0, x) = pj(x)uo(x), v;,(0,x)=0,
with suppy; C V;, ¢; =1 nearxj.’. On the other handy; is given by

mnj

v;j (t, x) = Z Ckmjt(l*+l)k(a)/:((pjuo))(x + thl*+l)-
k=0



444 M. DREHER

This proves that the solution  suffers from a lossmof derivatives neax? and of
my derivatives neaw, which is exactly the loss predicted in (4.3). Furthermave,
observe that singularities of the datum in Vi or V, propagate along one character-
istic only. Now letu be the solution tdu ¥ t,(x,u W (0)#, u,(0) =0, wheref
satisfies (1.11). Then Theorem 6.2 states thatv has higher regularity than . This
means that the strongest singularitiesuof and  coincide. fllhetion « may have
additional singularities produced by nonlinear intei@cti but these additional singu-
larities are weaker, at least by the Sobolev ordgi. 1+ 1).
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