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1. Introduction

Let be a bounded smooth domain inR2. In this paper, we consider the follow-
ing mean field equation in statistical mechanics of point vortices; see [6, 7, 15]:

− = ρ∫ in ρ > 0

= 0 on ∂

(P)

We note that the problem (P) forρ < 0 is treated in [14]; see also [6, 7]. Analogous
problems under Neumann boundary conditions are consideredin relation to stationary
problems of the Keller-Segel system of chemotaxis in [28]. Analogous problems on
two-dimensional manifolds are also considered in relationto the prescribed Gauss cur-
vature problem or Chern-Simons-Higgs gauge theory; see [12, 17, 26, 29] and refer-
ences therein.

It should be also remarked that the following non-linear eigenvalue problem called
the Gel’fand problem (see, for example, [3, 32]) also relates to our problem (P):

− = λ in λ > 0

= 0 on ∂
(G)

Indeed, every solution of (G) corresponds to the solution of(P) for ρ =
∫
λ exp .

(P) is the Euler-Lagrange equation of the following functional:

ρ( ) =
1
2

∫
|∇ |2 − ρ log

∫
for ∈ 1

0 ( )

Caglioti et al. show the following facts on (P):
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Facts 1.1([6]; see also [7]).
(1) From the Moser-Trudinger inequality [23],

inf
∈ 1

0 ( )
ρ( ) > −∞ for 0< ρ ≤ 8π

Moreover, the problem (P) for 0< ρ < 8π has a solution that minimizesρ.
(2) The disks admit no solution of (P) for everyρ ≥ 8π. More generally, let be
a strictly star-shaped domain, that is, there exists a constant α0 > 0 such that ( ·
ν)(
∫
∂

σ)−1 ≥ α0 on ∂ , whereν is the exterior unit outer normal vector field to
∂ and σ is the arclength measure on∂ . Then (P) admits no solutions ifρ ≥ 4/α0

from the Pohǒzaev identity [27]. We note thatα0 = 1/(2π) when is a disk.
(3) Each annulus admits the unique radial solution for everyρ ∈ R.

It should be remarked that parts of Fact 1.1 are already knownas results on (G).
Indeed, Bandle [3, Theorem 4.16] and Suzuki and Nagasaki [35, Lemma 3] obtained
similar conclusions to Fact 1.1 (2) for (G) from the Pohožaev identity (see also [3,
p. 201]). The existence of radial solutions of (G) on annuli was proved by Nagasaki
and Suzuki [24] (see also [30, 32, 34]) and independently by Lin [19]. Their studies
on the solutions are sufficient to obtain Fact 1.1 (3) forρ > 0. We note that they
also studied, in different ways, the existence of non-radial solutions of (G) on annuli.
It should be also remarked that, in the course of the study of (G), Suzuki proved the
unique existence of solutions of (P) when is simply connected and 0< ρ < 8π [33]
(see also [32, p. 263]).

We note that, on general domains other than disks and annuli,it is not clear
whether a solution of (P) forρ ≥ 8π exists. Caglioti et al. proved the existence of
a minimizer of 8π(·), that is, a solution of (P) forρ = 8π when is sufficientlythin
by analyzing the dual functional to8π(·) [6, p. 523]. In this case, supposing addition-
ally that is strictly star-shaped and admits the unique solution of (P) for ρ = 8π,
they also proved the existence of a sequenceρ −→ 8π + 0 such that (P) forρ has
at least two solutions [7, Theorem 7.1]. On the other hand, when is simply con-
nected and satisfies some additional conditions, we know theexistence of the Weston
branch of large solutions (λ λ) of (G) for sufficiently smallλ [36], which blows up
at one point in asλ −→ 0. We note that Moseley [22] and subsequently Suzuki
[31] (see also [32, Section 3.4]) reduced some sufficient conditions on to construct
the branch. Suzuki and Nagasaki proved that the Weston branch satisfies

∫
λ λ = 8π + λ + (λ) as λ −→ 0

where is a constant determined by a conformal mapping1(0) onto [35, Ap-
pendix I] (see also [32, Proposition 4.36]). This formula indicates that, on the do-
mains satisfying > 0, the solutions of (P) forρ > 8π and sufficiently close to 8π
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exist. Moreover, Mizoguchi and Suzuki proved that the Weston branch and the triv-
ial solution (λ ) = (0 0) of (G) are connected under the additional conditionson

[21, Theorem 13]. This result indicates additionally the existence of solutions of
(P) for ρ = 8π as well as forρ > 8π and sufficiently close to 8π on the appropri-
ate domains, an example of which is given in [21, pp. 207–208]. We note that this
example is alsothin in some sense. It should be remarked that Nagasaki and Suzuki
[25] (see also [32, Section 3.3]) proved that, when a family of solutions{(λ )} of
(G) on a general domain (not necessarily a simply connected one) satisfiesλ −→ 0
and

∫
λ exp −→ 0 as −→ ∞, the limit 0 must be 8π for some

∈ {0 ∞} ∪ N. They also proved that, when ∈ N, the solution of (G) blows
up at distinct points in as −→ ∞ and obtained several necessary conditions
of the limiting function of . We note that this result resembles the later results of
Brezis and Merle [5] and Li and Shafrir [18], which we refer as Fact 2.5 in this pa-
per. Recently, Baraket and Pacard [4] considered the converse problem to this result
of Nagasaki and Suzuki [25]. Baraket and Pacard gave, for each ∈ N, a sufficient
condition of limiting functions that enables us to construct a one-parameter family of
solutions{(λ λ)} of (G) satisfying that

∫
λ exp λ −→ 8π and λ converges to

such a limiting function asλ −→ 0. This result also suggests the existence of solutions
of (P) at least nearρ = 8π on the appropriate domains for each∈ N.

Recently, a new proof of the existence of a solution of (P) forρ > 8π appeared.
Ding et al. proved the following fact by the minimax variational method:

Fact 1.2 ([12]). On every smooth bounded domain whose complement contains
a bounded region, that is, on every smooth bounded domain with a hole, the mean
field equation (P) has a solution for allρ ∈ (8π 16π).

The purpose of this paper is to investigate the behavior of this solution as the hole
of the domain shrinks to a point. To simplify the presentation, assuming that 0∈ ,
we study the behavior of solutions of (P) onε = \ ε(0) asε −→ 0, where ε(0) =
{ ∈ R2 : | | < ε}. We refer (P) for ε as (Pε) and the functional ρ(·) on 1

0 ( ε)
for (Pε) as ε

ρ (·).
Here we recall the minimax method used in [12] for the case (Pε). Let ε

ρ be a
family of continuous functions : 1(0) = {( θ) : 0≤ < 1 θ ∈ [0 2π)} −→ 1

0 ( ε)
satisfying

(1.1) lim
→1

ε
ρ ( ( θ)) −→ −∞

and

(1.2) lim
→1

ε
( ( ·)) is a continuous curve enclosing ε(0)
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where

ε
( ) =

∫

ε

( )
∫

ε

( )

Ding et al. proved that for everyρ ∈ (8π 16π) the minimax value

αερ = inf
∈ ε

ρ

sup
∈ ( 1(0))

ε
ρ ( )

is achieved by a critical point of ερ in 1
0 ( ε), which is a solution of (Pε).

In the following, we assume each element of10 ( ε) to be an element of 1
0 ( )

by extending it by 0 on ε(0). Our result is stated as follows:

Main Theorem. Fix ρ ∈ (8π 16π), a sequenceε ↓ 0 as −→ ∞, and a solu-
tion of (Pε ) that attains the minimax valueαερ . Then,

∫ −→ δ0 weakly∗ in ( ¯) as −→∞

where ( ¯) = ( ¯)∗ denotes the space of signed Radon measures over the compact
space ¯ and δ0 denotes the Dirac measure supported at the origin0 ∈ .

We note that Lewandowski [16] obtained a concentration phenomenon similar
to our Main Theorem in the following higher dimensional problem with the critical
Sobolev exponent:

− = ( +2)/( −2) > 0 in ⊂ R for ≥ 5

= 0 on ∂
(P′)

Assuming that is a smooth bounded star-shaped domain and 0∈ , Lewandowski
considered (P′) also on the domain ε = \ ε(0). We note that Coron [9] proved that

ε admits a solution of (P′) for sufficiently smallε; see also [2] for the more general
existence result for (P′). Let ε be a solution of (P′) on ε satisfying the appropriate
conditions. Then Lewandowski proved that|∇ ε|2 −→ ( ) /2δ0 as ε −→ 0, where

is the best constant in the Sobolev inequality, that is, = inf{
∫

R |∇ |2 : ∈
1(R ) ‖ ‖ 2 /( −2)(R ) = 1}.

In contrast to our results, Lewandowski proved more on the behavior of ε as
ε −→ 0. Indeed, let ε( ) be a blow-up around an appropriate pointε ∈ R , that is,

ε( ) = ( −2)/2
ε ε( ε( + ε)) for appropriately chosenε ∈ (0 1) satisfying ε −→ 0.

Then ε( ) converges to a solution of (P′) for = R in an appropriate topology.
Thus, also for our problem, it is natural to ask more precise behavior of it-

self. It seems interesting to study the behavior of by the blow-up analysis for (P)
developed by Li and Shafrir [18], though the author now thinks that it seems difficult.
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2. Proof of Main Theorem

The key of the proof of Main Theorem is the following estimate on the minimax
valueαερ:

Proposition 2.1. For everyρ ∈ (8π 16π),

αερ −→ −∞ as ε −→ 0

Assuming this proposition, which we prove in Section 3, we prove Main Theorem
in this section.

Set

µ ( ) =
( )

∫
( )

We regard{µ } as a bounded set in (̄). Thus, choosing a subsequence if necessary,
we may assume that

µ −→ µ∞ weakly ∗ in ( ¯) as −→∞

for someµ∞ ∈ ( ¯). In the rest of this section, we proveµ∞ is alwaysδ0, which
implies thatµ −→ δ0 without choosing a subsequence, that is, we obtain Main The-
orem.

We proveµ∞ = δ0 by the following three steps:
STEP 1. µ∞ = δ ∞ for some ∞ ∈ ¯.
STEP 2. ∞ 6∈ ∂ .
STEP 3. ∞ 6∈ \{0}, that is, ∞ = 0.

We start from recalling the improved Moser-Trudinger inequality:

Fact 2.2 ([12, Lemma 2.2]; see also [1, Théor̀eme 4] and [8, Theorem 2.1]). Let

1 and 2 be two subsets of̄ satisfying dist( 1 2) ≥ δ0 > 0 and letγ0 be a number
satisfyingγ0 ∈ (0 1/2). Then for anyε > 0, there exists a constant = (ε δ0 γ0) > 0
such that

(2.1)
∫

≤ exp

{
1

32π − ε

∫
|∇ |2 +

}

holds for all ∈ 1
0 ( ) satisfying

∫
1∫ ≥ γ0 and

∫
2∫ ≥ γ0

From Fact 2.2, we obtain the following lemma:
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Lemma 2.3. Suppose that a sequence{ } ⊂ 1
0 ( ) satisfies

ρ( ) −→ −∞ and ( )

(
=
∫

µ =
∫

∫
)
−→ ∞ as −→∞

for someρ ∈ (8π 16π) and some ∞ ∈ R2. Then ∞ ∈ ¯ and

µ −→ δ ∞ weakly∗ in ( ¯)

Although we are able to prove this lemma easily by similar argument to the proof
of [12, Lemma 2.3], we give a proof of Lemma 2.3 in Appendix forconvenience.

Proof of Step 1. It is obvious thatρ( ) ≤ ε
ρ ( ) because ≡ 0 in ε (0).

Thus ρ( )(≤ ε
ρ ( ) = αερ ) −→ −∞ as −→∞ from Proposition 2.1. On the other

hand, there exists a subsequence of ( ) that converges because is bounded. Us-
ing Lemma 2.3, we obtain the conclusion becauseµ −→ µ∞.

To make the next step, we recall the following fact from [10]:

Fact 2.4 ([10, p. 51 (8’)]; see also [20, p. 628].). Let ⊂ R2 be a neighbor-
hood of ∂ (not ∂ ε) and setω0 = ¯ ∩ . Then, there exist positive constantsε,
γ, and depending on∂ and ω0 satisfying the following properties:ω = { ∈
¯; dist( ∂ ) < ε} is a subset ofω0 and, for all ∈ ω, there exists a measurable
set such that
(1) meas( )≥ γ,
(2) ⊂ { ∈ ω0 : dist( ∂ ) ≥ ε/2},
(3) ( )≤ (ξ) for all ξ ∈ ,
where is any 2(ω0) function satisfying

− = ( ) and > 0 in ω0 ∩ (⊂ )

= 0 on ω0 ∩ ∂ (= ∂ )

for some locally Lipschitz function :R −→ R.

We note that Fact 2.4 is proved by the moving plane method established in [13].
Proof of Step 2. Fix a neighborhood ⊂ R2 of ∂ such that ε ∩ is in-

dependent of . Applying Fact 2.4 to this , we obtainω ⊂ ¯ satisfying the several
properties stated in Fact 2.4. We prove below that sup‖ ‖ ∞(ω) < ∞, which pre-
vents ∞ ∈ ∂ since

∫
−→ ∞ as −→ ∞ from Proposition 2.1 and Fact 1.1

(1).
Let ω1 =

⋃
∈ω ⊂ . Then we obtain that

0≤ ( ) ≤
γ

∫
( ) ≤

γ
‖ ‖ 1(ω1) ≤ γ

‖ ‖ 1( ) for every ∈ ω
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that is,

sup‖ ‖ ∞(ω) ≤
γ

sup‖ ‖ 1( )

It is rather standard to estimate sup‖ ‖ 1( ). Indeed, let

ψ ( ) =
∫

ε

(
1

2π
log | − |−1− 1

2π
log[diam( )]−1

)
ρµ ( )

It is obvious that

− ψ = ρµ = ρ∫
ε

in ε

ψ ≥ 0 on ∂ ε

We note thatψ − is harmonic in ε and non-negative on∂ ε . Applying the
maximum principle of harmonic functions toψ − , we obtainψ − ≥ 0, that is,
ψ ≥ (≥ 0) in ε . Using the Young inequality for convolutions, we obtain

‖ ‖ 1( ) = ‖ ‖ 1( ε ) ≤ ‖ψ ‖ 1( ε )

≤ ρ

2π
‖ log | · |−1‖ 1( diam( )(0)) · ‖µ ‖ 1( ε ) + ′

≤ ′′ <∞

for some constants ′ and ′′ independent of because‖µ ‖ 1( ε ) ≡ 1.

To make the final step, we recall the results of [5] and [18] concerning the solu-
tions of− = ( ) exp . Combining their results, we obtain the following fact:

Fact 2.5 ([5, Theorem 3] and [18, Theorem]). Let be a bounded domain in
R2 and let{ } ⊂ ( ) be a sequence of solutions of

− = ρ in D′( )

for someρ > 0 such that sup
∫

< ∞. Then, there exists a subsequence{ }
satisfying one of the following alternatives:
(1) { } is bounded in ∞

loc( ),
(2) −→ −∞ uniformly on compact subsets of ,
(3) there exists a finite non-empty blow-up set ={ 1 . . . } ⊂ such that, for
any = 1 . . . , there exists{ } ⊂ satisfying −→ , ( ) −→ ∞,
and ( )−→ −∞ uniformly on compact subsets of\ . Moreover,ρexp( )−→∑

=1 8π δ weakly in the sense of measures on , where is a positive integer
for all = 1 . . . .
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It should be remarked that, prior to [5] and [18], an analogous result to Facts 2.5
for the asymptotic behavior of the solutions of (G) asλ −→ 0 exists [25], which we
mentioned in Section 1.

Proof of Step 3. Suppose∞ ∈ \{0}. Then, we are able to take > 0 such
that ε ⊃ ( ∞) for sufficient large . Let ( ) = ( )− log

∫
ε

( ) . Then

this { ( )} satisfies the assumptions of Fact 2.5 on the bounded domain (∞).
Since ρexp( ) = ρµ −→ ρδ ∞ , only the alternative (3) is able to occur with =
{ ∞} and ρ must be 8π for some positive integer . Nevertheless,ρ ∈ (8π 16π)
from the hypothesis. This is a contradiction and we obtain∞ = 0.

3. Estimate of the minimax value

To prove Proposition 2.1, it is enough to constructε ∈ ε
ρ such that

(3.1) sup
∈ ε( 1(0))

ε
ρ ( ) −→ −∞ as ε −→ 0

Fix 0 > 0 and set

( ) =





4 log 0 0≤ ≤

4 log 0 ≤ ≤ 0

0 0 ≤

We use ( ) to construct ε. It is obvious that ( ) = (| − |) ∈ 1
0 ( ε) ⊂

1
0 ( ) if 0( ) ⊂ ε. Moreover, we are able to obtain the following estimates:

Proposition 3.1. Suppose 0( ) ⊂ ε. Then we obtain

∫

ε

|∇ |2 =
∫

0 (0)\ (0)
|∇( (| |)|2 = 32π log 0(3.2)

∫

ε

≥
∫

0 (0)\ (0)

(| |) =
1
2
π 4

0

[
1−

(

0

)2
]

(3.3)

for every0< < 0. Especially, we have

∫ −→ δ weakly ∗ in ( ¯) as −→ 0(3.4)

ε
ρ ( ) ≤ −2(ρ− 8π) log

1
+ (1)−→ −∞ as −→ 0(3.5)

where (1) is independent ofε and .

Since we obtain Proposition 3.1 by elementary calculations, we omit the proof.
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We are able to take positive numbers and0 ≤ such that 4 (0)\ 2 (0) ⊂
ε for sufficiently smallε and 4 + 0(0) ⊂ . Take = (ε) −→ 0 as ε −→ 0 such

that ε ≤ ≤ 0, which we specify later. We define

0
ε( θ)( ) :=





(4 θ)( ) 0≤ ≤ 1
2

2(1− ) (4 θ)( )
1
2
≤ < 1

where ( θ) = ( cosθ sinθ) ∈ R2. From (3.4) and (3.5), it is easy to see that
0
ε( θ)(·) satisfies (1.1) and (1.2), though0ε( θ)(·) 6∈ 1

0 ( ε) if is small, that is,
0
ε(·) 6∈ ε

ρ yet.
We introduce the following logarithmic cut-off function, which is also used in

[11]:

ηε( ) :=





0 0≤ ≤ ε

−2 log( /ε)
logε

ε ≤ ≤ √ε

1
√
ε ≤

Let

ε( θ)( ) := ηε(| |) 0
ε( θ)( )

This ε obviously belongs to ε
ρ and we are able to prove the following fact:

Proposition 3.2. For every δ > 0, if we take sufficiently small positive number
σ < 1/2 and set = εσ(≥ √ε ≥ ε), we obtain

sup
( θ)∈ 1(0)

ε
ρ ( ε( θ)( )) ≤ −2σ{ρ− (1 + δ)8π} log

1
ε

+ (1) as ε −→ 0

Proof. We note that ε( θ)( ) ≡ 0
ε( θ)( ) if 1/2 ≤ < 1. From (3.5), we

obtain that

ε
ρ ( ε( θ)) = ε

ρ ( 2(1− ) (4 θ)) ≤ −2(ρ− 8π) log
1

2(1− )
+ (1)

≤ −2(ρ− 8π) log
1

+ (1) as −→ 0 if
1
2
≤ < 1(3.6)

For every ≤ 1/2 and everyδ > 0, we obtain
∫

ε

|∇ ε( θ)|2

≤
(

1 +
δ

2

)∫

ε

|∇ 0
ε( θ)|2 + (δ)

(
sup
∈ ε

| 0
ε( θ)( )|

)2 ∫

ε

|∇(ηε(| |))|2
(3.7)



404 H. OHTSUKA

where (δ) is a constant depending only onδ. We note that 0
ε( θ)( ) is a translation

of (| |) if 0 ≤ ≤ 1/2 and supp 0
ε(1/2 θ) = 0( (2 θ)) ⊂ ε. Thus we obtain

from (3.2) that

∫

ε

|∇ 0
ε( θ)|2 ≤

∫

ε

∣∣∣∣(∇ 0
ε)

(
1
2
θ

)∣∣∣∣
2

=
∫

ε

|∇ (2 θ)|2 = 32π log
1

+ (1) as −→ 0

(3.8)

It is easy to see that

(3.9) sup
∈ ε

| 0
ε( θ)( )| = sup| ( )| = 4 log 0

and

(3.10)
∫

ε

|∇(ηε(| |))|2 =
4π

log(1/ε)

Combining (3.7–10) and choosing =εσ for sufficiently smallσ ∈ (0 1/2), we obtain

∫

ε

|∇ ε( θ)|2 ≤ 32π

(
1 +

δ

2

)
log

1
+ (δ)′

log
logε

log
1

+ (1)

≤ 32πσ(1 + δ) log
1
ε

+ (1) as ε −→ 0(3.11)

where (δ)′ is a constant independent ofε.
On the other hand, we obtain from (3.3) that

∫

ε

ε( θ) ≥
∫

ε

ε(0 θ) ≥
∫

0 (0)\ (0)

(| |)

≥ 1
2
π 4

0

[
1−

(

0

)2
]

=
1
ε2σ

π 4
0

[
1−

(
εσ

0

)2
](3.12)

Combining (3.11–12), we obtain

(3.13) ε
ρ ( ε( θ)) ≤ −2σ{ρ− (1 +δ)8π} log

1
ε

+ (1) as ε −→ 0 if 0 ≤ ≤ 1
2

Thus we obtain the conclusion from (3.6) and (3.13).

Proof of Proposition 2.1. As we assumed thatρ > 8π, we are able to take a
sufficiently smallδ > 0 such thatρ− (1+δ)8π > 0. Then ε satisfies required property
(3.1).
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Appendix. Proof of Lemma 2.3

It is enough to see that, for every sufficiently small> 0, there exists ∈ ¯

such that
∫

∩ ( )
µ ≥1−(A.1)

if is sufficiently large.
(2.1) is equivalent to the inequality

ρ− 16π + (ε/2)
32π − ε

∫
|∇ |2 + ρ( ) ≥− ρ log − ρ(A.2)

Since we assumed thatρ < 16π, we are able to take a sufficiently smallε such that
ρ−16π+(ε/2)< 0. Then (A.2) with thisε does not hold for with sufficiently large

because ρ( ) −→ −∞. Accordingly, for everyδ0 > 0, every two subsets1 and

2 of ¯ satisfying dist( 1 2) ≥ δ0 > 0, and everyγ0 ∈ (0 1/2), we obtain

min

(∫
1∫

∫
2∫

)
= min

(∫

1

µ

∫

2

µ

)
< γ0(A.3)

if is sufficiently large.
Let ( ) be the concentration function ofµ , that is,

( ) = sup
∈

∫

∩ ( )
µ

For every > 0, take ∈ ¯ such that
∫

∩ /2( ) µ = ( /2). Applying (A.3)

for δ0 = /2, 1 = ∩ /2( ), and 2 = \ ( ), we obtain that, for every
γ0 ∈ (0 1/2),

min

(∫

1

µ

∫

2

µ

)
= min

( (
2

)
1−

∫

∩ ( )
µ

)
< γ0(A.4)

if is sufficiently large.
Since

∫
µ ≡ 1, it is easy to see that there exists a constant independent of

such that

( ) ≥ 2 for every 0< ≤ diam( )

Taking sufficiently smallγ0 such that (/2) ≥ γ0 > 0, we obtain (A.1) from (A.4).

ACKNOWLEDGEMENT. I would like to thank Professor Atsushi Inoue and Professor
Takashi Suzuki for their useful suggestions.



406 H. OHTSUKA

References

[1] T. Aubin: Meilleures constantes dans le théor̀eme d’inclusion de Sobolev et un théor̀eme de
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[15] M.K.-H. Kiessling: Statistical mechanics of classical particles with logarithmic interactions,
Comm. Pure Appl. Math.46 (1993), 27–56.

[16] R. Lewandowski:Little holes and convergence of solutions of− = ( +2)/( −2), Nonlinear
Anal. 14 (1990), 873–888.

[17] Y.Y. Li: Harnack type inequality: the method of moving planes, Comm. Math. Phys.200
(1999), 421–444.

[18] Y.Y. Li and I. Shafrir: Blow-up analysis for solutions of− = in dimension two, Indiana
Univ. Math. J.43 (1994), 1255–1270.

[19] S.-S. Lin: On non-radially symmetric bifurcation in the annulus, J. Differential Equations80
(1989), 251–279.

[20] S.-S. Lin:Semilinear elliptic equations on singulary perturbed domains, Comm. Partial Differ-
ential Equations16 (1991), 617–645.

[21] N. Mizoguchi and T. Suzuki:Equations of gas combustion: S-shaped bifurcation and mush-
rooms, J. Differential Equations134 (1997), 183–215.

[22] J.L. Moseley: Asymptotic solutions for a Dirichlet problem with exponential nonlinearity,
SIAM J. Math. Anal.14 (1983), 719–735.

[23] J. Moser:A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.20 (1971),
1077–1092.

[24] K. Nagasaki and T. Suzuki:Radial and nonradial solutions for the nonlinear eigenvalue prob-
lem + λ = 0 on annuli in R2, J. Differential Equations87 (1990), 144–168.

[25] K. Nagasaki and T. Suzuki:Asymptotic analysis for two-dimensional elliptic eigenvalue prob-



CONCENTRATION AND MEAN FIELD EQUATIONS 407

lems with exponentially dominated nonlinearities, Asymptot. Anal.3 (1990), 173–188.
[26] M. Nolasco and G. Tarantello:On a sharp Sobolev-type inequality on two-dimensional compact

manifolds, Arch. Ration. Mech. Anal.145 (1998), 161–195.
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