A CONCENTRATION PHENOMENON AROUND A SHRINKING HOLE FOR SOLUTIONS OF MEAN FIELD EQUATIONS

Hiroshi OHTSUKA

(Received June 26, 2000)

1. Introduction

Let Ω be a bounded smooth domain in \mathbf{R}^{2}. In this paper, we consider the following mean field equation in statistical mechanics of point vortices; see [6, 7, 15]:

$$
\begin{align*}
-\Delta u & =\rho \frac{e^{u}}{\int_{\Omega} e^{u}} \text { in } \quad \Omega, \quad \rho>0 \tag{P}\\
u & =0 \quad \text { on } \quad \partial \Omega .
\end{align*}
$$

We note that the problem (P) for $\rho<0$ is treated in [14]; see also [6, 7]. Analogous problems under Neumann boundary conditions are considered in relation to stationary problems of the Keller-Segel system of chemotaxis in [28]. Analogous problems on two-dimensional manifolds are also considered in relation to the prescribed Gauss curvature problem or Chern-Simons-Higgs gauge theory; see [12, 17, 26, 29] and references therein.

It should be also remarked that the following non-linear eigenvalue problem called the Gel'fand problem (see, for example, $[3,32]$) also relates to our problem (P):

$$
\begin{array}{rlrl}
-\Delta u & =\lambda e^{u} \quad \text { in } \quad \Omega, & \lambda>0 \tag{G}\\
u & =0 \quad \text { on } \quad \partial \Omega . & &
\end{array}
$$

Indeed, every solution of (G) corresponds to the solution of (P) for $\rho=\int_{\Omega} \lambda \exp u d x$.
(P) is the Euler-Lagrange equation of the following functional:

$$
J_{\rho}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\rho \log \int_{\Omega} e^{u} \quad \text { for } \quad u \in H_{0}^{1}(\Omega)
$$

Caglioti et al. show the following facts on (P):

Facts 1.1 ([6]; see also [7]).
(1) From the Moser-Trudinger inequality [23],

$$
\inf _{u \in H_{0}^{1}(\Omega)} J_{\rho}(u)>-\infty \quad \text { for } \quad 0<\rho \leq 8 \pi .
$$

Moreover, the problem (P) for $0<\rho<8 \pi$ has a solution that minimizes J_{ρ}.
(2) The disks admit no solution of (P) for every $\rho \geq 8 \pi$. More generally, let Ω be a strictly star-shaped domain, that is, there exists a constant $\alpha_{0}>0$ such that $(x$. $\nu)\left(\int_{\partial \Omega} d \sigma\right)^{-1} \geq \alpha_{0} \quad$ on $\quad \partial \Omega$, where ν is the exterior unit outer normal vector field to $\partial \Omega$ and $d \sigma$ is the arclength measure on $\partial \Omega$. Then (P) admits no solutions if $\rho \geq 4 / \alpha_{0}$ from the Pohožaev identity [27]. We note that $\alpha_{0}=1 /(2 \pi)$ when Ω is a disk.
(3) Each annulus admits the unique radial solution for every $\rho \in \mathbf{R}$.

It should be remarked that parts of Fact 1.1 are already known as results on (G). Indeed, Bandle [3, Theorem 4.16] and Suzuki and Nagasaki [35, Lemma 3] obtained similar conclusions to Fact 1.1 (2) for (G) from the Pohožaev identity (see also [3, p. 201]). The existence of radial solutions of (G) on annuli was proved by Nagasaki and Suzuki [24] (see also [30, 32, 34]) and independently by Lin [19]. Their studies on the solutions are sufficient to obtain Fact 1.1 (3) for $\rho>0$. We note that they also studied, in different ways, the existence of non-radial solutions of (G) on annuli. It should be also remarked that, in the course of the study of (G), Suzuki proved the unique existence of solutions of (P) when Ω is simply connected and $0<\rho<8 \pi$ [33] (see also [32, p. 263]).

We note that, on general domains other than disks and annuli, it is not clear whether a solution of (P) for $\rho \geq 8 \pi$ exists. Caglioti et al. proved the existence of a minimizer of $J_{8 \pi}(\cdot)$, that is, a solution of (P) for $\rho=8 \pi$ when Ω is sufficiently thin by analyzing the dual functional to $J_{8 \pi}(\cdot)$ [6, p. 523]. In this case, supposing additionally that Ω is strictly star-shaped and admits the unique solution of (P) for $\rho=8 \pi$, they also proved the existence of a sequence $\rho_{n} \longrightarrow 8 \pi+0$ such that (P) for ρ_{n} has at least two solutions [7, Theorem 7.1]. On the other hand, when Ω is simply connected and satisfies some additional conditions, we know the existence of the Weston branch of large solutions $\left(\lambda, u_{\lambda}\right)$ of (G) for sufficiently small λ [36], which blows up at one point in Ω as $\lambda \longrightarrow 0$. We note that Moseley [22] and subsequently Suzuki [31] (see also [32, Section 3.4]) reduced some sufficient conditions on Ω to construct the branch. Suzuki and Nagasaki proved that the Weston branch satisfies

$$
\int_{\Omega} \lambda e^{u_{\lambda}} d x=8 \pi+C \lambda+o(\lambda) \quad \text { as } \quad \lambda \longrightarrow 0
$$

where C is a constant determined by a conformal mapping $B_{1}(0)$ onto Ω [35, Appendix I] (see also [32, Proposition 4.36]). This formula indicates that, on the domains satisfying $C>0$, the solutions of (P) for $\rho>8 \pi$ and sufficiently close to 8π
exist. Moreover, Mizoguchi and Suzuki proved that the Weston branch and the trivial solution $(\lambda, u)=(0,0)$ of (G) are connected under the additional conditions on Ω [21, Theorem 13]. This result indicates additionally the existence of solutions of (P) for $\rho=8 \pi$ as well as for $\rho>8 \pi$ and sufficiently close to 8π on the appropriate domains, an example of which is given in [21, pp. 207-208]. We note that this example is also thin in some sense. It should be remarked that Nagasaki and Suzuki [25] (see also [32, Section 3.3]) proved that, when a family of solutions $\left\{\left(\lambda_{n}, u_{n}\right)\right\}$ of (G) on a general domain (not necessarily a simply connected one) satisfies $\lambda_{n} \longrightarrow 0$ and $\int_{\Omega} \lambda_{n} \exp u_{n} d x \longrightarrow \Sigma_{0}$ as $n \longrightarrow \infty$, the limit Σ_{0} must be $8 \pi m$ for some $m \in\{0, \infty\} \cup \mathbf{N}$. They also proved that, when $m \in \mathbf{N}$, the solution u_{n} of (G) blows up at distinct m points in Ω as $n \longrightarrow \infty$ and obtained several necessary conditions of the limiting function of u_{n}. We note that this result resembles the later results of Brezis and Merle [5] and Li and Shafrir [18], which we refer as Fact 2.5 in this paper. Recently, Baraket and Pacard [4] considered the converse problem to this result of Nagasaki and Suzuki [25]. Baraket and Pacard gave, for each $m \in \mathbf{N}$, a sufficient condition of limiting functions that enables us to construct a one-parameter family of solutions $\left\{\left(\lambda, u_{\lambda}\right)\right\}$ of (G) satisfying that $\int_{\Omega} \lambda \exp u_{\lambda} d x \longrightarrow 8 \pi m$ and u_{λ} converges to such a limiting function as $\lambda \longrightarrow 0$. This result also suggests the existence of solutions of (P) at least near $\rho=8 \pi m$ on the appropriate domains for each $m \in \mathbf{N}$.

Recently, a new proof of the existence of a solution of (P) for $\rho>8 \pi$ appeared. Ding et al. proved the following fact by the minimax variational method:

Fact 1.2 ([12]). On every smooth bounded domain whose complement contains a bounded region, that is, on every smooth bounded domain with a hole, the mean field equation (P) has a solution for all $\rho \in(8 \pi, 16 \pi)$.

The purpose of this paper is to investigate the behavior of this solution as the hole of the domain shrinks to a point. To simplify the presentation, assuming that $0 \in \Omega$, we study the behavior of solutions of (P) on $\Omega_{\varepsilon}=\Omega \backslash \overline{B_{\varepsilon}(0)}$ as $\varepsilon \longrightarrow 0$, where $B_{\varepsilon}(0)=$ $\left\{x \in \mathbf{R}^{2}:|x|<\varepsilon\right\}$. We refer (P) for Ω_{ε} as $\left(\mathrm{P}_{\varepsilon}\right)$ and the functional $J_{\rho}(\cdot)$ on $H_{0}^{1}\left(\Omega_{\varepsilon}\right)$ for $\left(\mathrm{P}_{\varepsilon}\right)$ as $J_{\rho}^{\varepsilon}(\cdot)$.

Here we recall the minimax method used in [12] for the case $\left(\mathrm{P}_{\varepsilon}\right)$. Let D_{ρ}^{ε} be a family of continuous functions $h: B_{1}(0)=\{(r, \theta): 0 \leq r<1, \theta \in[0,2 \pi)\} \longrightarrow H_{0}^{1}\left(\Omega_{\varepsilon}\right)$ satisfying

$$
\begin{equation*}
\lim _{r \rightarrow 1} J_{\rho}^{\varepsilon}(h(r, \theta)) \longrightarrow-\infty \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow 1} m_{\Omega_{\varepsilon}}(h(r, \cdot)) \quad \text { is a continuous curve enclosing } \quad B_{\varepsilon}(0), \tag{1.2}
\end{equation*}
$$

where

$$
m_{\Omega_{\varepsilon}}(u)=\int_{\Omega_{\varepsilon}} x \frac{e^{u(x)}}{\int_{\Omega_{\varepsilon}} e^{u(x)}} .
$$

Ding et al. proved that for every $\rho \in(8 \pi, 16 \pi)$ the minimax value

$$
\alpha_{\rho}^{\varepsilon}=\inf _{h \in D_{\rho}^{\varepsilon}} \sup _{u \in h\left(B_{1}(0)\right)} J_{\rho}^{\varepsilon}(u)
$$

is achieved by a critical point of J_{ρ}^{ε} in $H_{0}^{1}\left(\Omega_{\varepsilon}\right)$, which is a solution of $\left(\mathrm{P}_{\varepsilon}\right)$.
In the following, we assume each element of $H_{0}^{1}\left(\Omega_{\varepsilon}\right)$ to be an element of $H_{0}^{1}(\Omega)$ by extending it by 0 on $B_{\varepsilon}(0)$. Our result is stated as follows:

Main Theorem. Fix $\rho \in(8 \pi, 16 \pi)$, a sequence $\varepsilon_{n} \downarrow 0$ as $n \longrightarrow \infty$, and a solution u_{n} of $\left(\mathrm{P}_{\varepsilon_{n}}\right)$ that attains the minimax value $\alpha_{\rho}^{\varepsilon_{n}}$. Then,

$$
\frac{e^{u_{n}}}{\int_{\Omega} e^{u_{n}}} \longrightarrow \delta_{0} \quad \text { weakly } * \text { in } \quad M(\bar{\Omega}) \quad \text { as } \quad n \longrightarrow \infty,
$$

where $M(\bar{\Omega})=C(\bar{\Omega})^{*}$ denotes the space of signed Radon measures over the compact space $\bar{\Omega}$ and δ_{0} denotes the Dirac measure supported at the origin $0 \in \Omega$.

We note that Lewandowski [16] obtained a concentration phenomenon similar to our Main Theorem in the following higher dimensional problem with the critical Sobolev exponent:

$$
\begin{align*}
-\Delta u & =u^{(N+2) /(N-2)}, \quad u>0 \quad \text { in } \quad \Omega \subset \mathbf{R}^{N} \quad \text { for } \quad N \geq 5, \\
u & =0 \quad \text { on } \quad \partial \Omega .
\end{align*}
$$

Assuming that Ω is a smooth bounded star-shaped domain and $0 \in \Omega$, Lewandowski considered (P^{\prime}) also on the domain $\Omega_{\varepsilon}=\Omega \backslash \overline{\boldsymbol{B}_{\varepsilon}(0)}$. We note that Coron [9] proved that Ω_{ε} admits a solution of (P^{\prime}) for sufficiently small ε; see also [2] for the more general existence result for $\left(\mathrm{P}^{\prime}\right)$. Let u_{ε} be a solution of $\left(\mathrm{P}^{\prime}\right)$ on Ω_{ε} satisfying the appropriate conditions. Then Lewandowski proved that $\left|\nabla u_{\varepsilon}\right|^{2} \longrightarrow\left(S_{N}\right)^{N / 2} \delta_{0}$ as $\varepsilon \longrightarrow 0$, where S_{N} is the best constant in the Sobolev inequality, that is, $S_{N}=\inf \left\{\int_{\mathbf{R}^{N}}|\nabla u|^{2}: u \in\right.$ $\left.H^{1}\left(\mathbf{R}^{N}\right),\|u\|_{L^{2 N /(N-2)}\left(\mathbf{R}^{N}\right)}=1\right\}$.

In contrast to our results, Lewandowski proved more on the behavior of u_{ε} as $\varepsilon \longrightarrow 0$. Indeed, let $w_{\varepsilon}(x)$ be a blow-up around an appropriate point $a_{\varepsilon} \in \mathbf{R}^{N}$, that is, $w_{\varepsilon}(x)=t_{\varepsilon}^{(N-2) / 2} u_{\varepsilon}\left(t_{\varepsilon}\left(x+a_{\varepsilon}\right)\right)$ for appropriately chosen $t_{\varepsilon} \in(0,1)$ satisfying $t_{\varepsilon} \longrightarrow 0$. Then $w_{\varepsilon}(x)$ converges to a solution of $\left(\mathrm{P}^{\prime}\right)$ for $\Omega=\mathbf{R}^{N}$ in an appropriate topology.

Thus, also for our problem, it is natural to ask more precise behavior of u_{n} itself. It seems interesting to study the behavior of u_{n} by the blow-up analysis for (P) developed by Li and Shafrir [18], though the author now thinks that it seems difficult.

2. Proof of Main Theorem

The key of the proof of Main Theorem is the following estimate on the minimax value $\alpha_{\rho}^{\varepsilon}$:

Proposition 2.1. For every $\rho \in(8 \pi, 16 \pi)$,

$$
\alpha_{\rho}^{\varepsilon} \longrightarrow-\infty \quad \text { as } \quad \varepsilon \longrightarrow 0 .
$$

Assuming this proposition, which we prove in Section 3, we prove Main Theorem in this section.

Set

$$
\mu_{n}(x)=\frac{e^{u_{n}(x)}}{\int_{\Omega} e^{u_{n}(x)} d x}
$$

We regard $\left\{\mu_{n}\right\}$ as a bounded set in $M(\bar{\Omega})$. Thus, choosing a subsequence if necessary, we may assume that

$$
\mu_{n} \longrightarrow \mu_{\infty} \quad \text { weakly } * \text { in } \quad M(\bar{\Omega}) \quad \text { as } \quad n \longrightarrow \infty
$$

for some $\mu_{\infty} \in M(\bar{\Omega})$. In the rest of this section, we prove μ_{∞} is always δ_{0}, which implies that $\mu_{n} \longrightarrow \delta_{0}$ without choosing a subsequence, that is, we obtain Main Theorem.

We prove $\mu_{\infty}=\delta_{0}$ by the following three steps:
STEP 1. $\mu_{\infty}=\delta_{x_{\infty}}$ for some $x_{\infty} \in \bar{\Omega}$.
STEP 2. $x_{\infty} \notin \partial \Omega$.
STEP 3. $x_{\infty} \notin \Omega \backslash\{0\}$, that is, $x_{\infty}=0$.
We start from recalling the improved Moser-Trudinger inequality:

Fact 2.2 ([12, Lemma 2.2]; see also [1, Théorème 4] and [8, Theorem 2.1]). Let S_{1} and S_{2} be two subsets of $\bar{\Omega}$ satisfying $\operatorname{dist}\left(S_{1}, S_{2}\right) \geq \delta_{0}>0$ and let γ_{0} be a number satisfying $\gamma_{0} \in(0,1 / 2)$. Then for any $\varepsilon>0$, there exists a constant $c=c\left(\varepsilon, \delta_{0}, \gamma_{0}\right)>0$ such that

$$
\begin{equation*}
\int_{\Omega} e^{u} \leq c \exp \left\{\frac{1}{32 \pi-\varepsilon} \int_{\Omega}|\nabla u|^{2}+c\right\} \tag{2.1}
\end{equation*}
$$

holds for all $u \in H_{0}^{1}(\Omega)$ satisfying

$$
\frac{\int_{S_{1}} e^{u}}{\int_{\Omega} e^{u}} \geq \gamma_{0} \quad \text { and } \quad \frac{\int_{S_{2}} e^{u}}{\int_{\Omega} e^{u}} \geq \gamma_{0}
$$

From Fact 2.2, we obtain the following lemma:

Lemma 2.3. Suppose that a sequence $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ satisfies

$$
J_{\rho}\left(u_{n}\right) \longrightarrow-\infty \quad \text { and } \quad m_{\Omega}\left(u_{n}\right)\left(=\int_{\Omega} x \mu_{n}=\int_{\Omega} x \frac{e^{u_{n}}}{\int_{\Omega} e^{u_{n}}}\right) \longrightarrow x_{\infty} \quad \text { as } \quad n \longrightarrow \infty
$$

for some $\rho \in(8 \pi, 16 \pi)$ and some $x_{\infty} \in \mathbf{R}^{2}$. Then $x_{\infty} \in \bar{\Omega}$ and

$$
\mu_{n} \longrightarrow \delta_{x_{\infty}} \quad \text { weakly } * \text { in } \quad M(\bar{\Omega})
$$

Although we are able to prove this lemma easily by similar argument to the proof of [12, Lemma 2.3], we give a proof of Lemma 2.3 in Appendix for convenience.

Proof of Step 1. It is obvious that $J_{\rho}\left(u_{n}\right) \leq J_{\rho}^{\varepsilon_{n}}\left(u_{n}\right)$ because $u_{n} \equiv 0$ in $B_{\varepsilon_{n}}(0)$. Thus $J_{\rho}\left(u_{n}\right)\left(\leq J_{\rho}^{\varepsilon_{n}}\left(u_{n}\right)=\alpha_{\rho}^{\varepsilon_{n}}\right) \longrightarrow-\infty$ as $n \longrightarrow \infty$ from Proposition 2.1. On the other hand, there exists a subsequence of $m_{\Omega}\left(u_{n}\right)$ that converges because Ω is bounded. Using Lemma 2.3, we obtain the conclusion because $\mu_{n} \longrightarrow \mu_{\infty}$.

To make the next step, we recall the following fact from [10]:

Fact 2.4 ([10, p. $\left.51\left(8^{\prime}\right)\right]$; see also [20, p. 628].). Let $N \subset \mathbf{R}^{2}$ be a neighborhood of $\partial \Omega$ (not $\partial \Omega_{\varepsilon}$) and set $\omega_{0}=\bar{\Omega} \cap N$. Then, there exist positive constants ε, γ, and C depending on $\partial \Omega$ and ω_{0} satisfying the following properties: $\omega=\{x \in$ $\bar{\Omega} ; \operatorname{dist}(x, \partial \Omega)<\varepsilon\}$ is a subset of ω_{0} and, for all $x \in \omega$, there exists a measurable set I_{x} such that
(1) $\operatorname{meas}\left(I_{x}\right) \geq \gamma$,
(2) $I_{x} \subset\left\{y \in \omega_{0}: \operatorname{dist}(y, \partial \Omega) \geq \varepsilon / 2\right\}$,
(3) $u(x) \leq C u(\xi)$ for all $\xi \in I_{x}$,
where u is any $C^{2}\left(\omega_{0}\right)$ function satisfying

$$
\begin{aligned}
-\Delta u & =f(u) \quad \text { and } \quad u>0 \quad \text { in } \quad \omega_{0} \cap \Omega(\subset \Omega), \\
u & =0 \quad \text { on } \quad \omega_{0} \cap \partial \Omega(=\partial \Omega)
\end{aligned}
$$

for some locally Lipschitz function $f: \mathbf{R} \longrightarrow \mathbf{R}$.

We note that Fact 2.4 is proved by the moving plane method established in [13].
Proof of Step 2. Fix a neighborhood $N \subset \mathbf{R}^{2}$ of $\partial \Omega$ such that $\Omega_{\varepsilon_{n}} \cap N$ is independent of n. Applying Fact 2.4 to this N, we obtain $\omega \subset \bar{\Omega}$ satisfying the several properties stated in Fact 2.4. We prove below that $\sup _{n}\left\|u_{n}\right\|_{L^{\infty}(\omega)}<\infty$, which prevents $x_{\infty} \in \partial \Omega$ since $\int_{\Omega} e^{u_{n}} \longrightarrow \infty$ as $n \longrightarrow \infty$ from Proposition 2.1 and Fact 1.1 (1).

Let $\omega_{1}=\bigcup_{x \in \omega} I_{x} \subset \Omega$. Then we obtain that

$$
0 \leq u_{n}(x) \leq \frac{C}{\gamma} \int_{I_{x}} u_{n}(y) d y \leq \frac{C}{\gamma}\left\|u_{n}\right\|_{L^{1}\left(\omega_{1}\right)} \leq \frac{C}{\gamma}\left\|u_{n}\right\|_{L^{1}(\Omega)} \quad \text { for every } x \in \omega
$$

that is,

$$
\sup _{n}\left\|u_{n}\right\|_{L^{\infty}(\omega)} \leq \frac{C}{\gamma} \sup _{n}\left\|u_{n}\right\|_{L^{1}(\Omega)} .
$$

It is rather standard to estimate $\sup _{n}\left\|u_{n}\right\|_{L^{1}(\Omega)}$. Indeed, let

$$
\psi_{n}(x)=\int_{\Omega_{\varepsilon_{n}}}\left(\frac{1}{2 \pi} \log |x-y|^{-1}-\frac{1}{2 \pi} \log [\operatorname{diam}(\Omega)]^{-1}\right) \rho \mu_{n}(y) d y .
$$

It is obvious that

$$
\begin{aligned}
-\Delta \psi_{n} & =\rho \mu_{n}=\rho \frac{e^{u_{n}}}{\int_{\Omega_{\varepsilon_{n}}} e^{u_{n}}} \text { in } \Omega_{\varepsilon_{n}}, \\
\psi_{n} & \geq 0 \quad \text { on } \quad \partial \Omega_{\varepsilon_{n}} .
\end{aligned}
$$

We note that $\psi_{n}-u_{n}$ is harmonic in Ω_{ε} and non-negative on $\partial \Omega_{\varepsilon_{n}}$. Applying the maximum principle of harmonic functions to $\psi_{n}-u_{n}$, we obtain $\psi_{n}-u_{n} \geq 0$, that is, $\psi_{n} \geq u_{n}(\geq 0)$ in $\Omega_{\varepsilon_{n}}$. Using the Young inequality for convolutions, we obtain

$$
\begin{aligned}
\left\|u_{n}\right\|_{L^{\prime}(\Omega)}=\left\|u_{n}\right\|_{L^{\prime}\left(\Omega_{\varepsilon_{n}}\right)} & \leq\left\|\psi_{n}\right\|_{L^{\prime}\left(\Omega_{\varepsilon_{n}}\right)} \\
& \leq \frac{\rho}{2 \pi}\left\|\log |\cdot|^{-1}\right\|_{L^{\prime}\left(B_{\operatorname{diam}(\Omega)(0))}\right)} \cdot\left\|\mu_{n}\right\|_{L^{\prime}\left(\Omega_{\varepsilon_{n}}\right)}+C^{\prime} \\
& \leq C^{\prime \prime}<\infty
\end{aligned}
$$

for some constants C^{\prime} and $C^{\prime \prime}$ independent of n because $\left\|\mu_{n}\right\|_{L^{\prime}\left(\Omega_{\varepsilon_{n}}\right)} \equiv 1$.
To make the final step, we recall the results of [5] and [18] concerning the solutions of $-\Delta u=V(x) \exp u$. Combining their results, we obtain the following fact:

Fact 2.5 ([5, Theorem 3] and [18, Theorem]). Let Ω be a bounded domain in \mathbf{R}^{2} and let $\left\{w_{n}\right\} \subset C(\Omega)$ be a sequence of solutions of

$$
-\Delta w=\rho e^{w} \quad \text { in } \quad \mathcal{D}^{\prime}(\Omega)
$$

for some $\rho>0$ such that $\sup _{n} \int_{\Omega} e^{w_{n}}<\infty$. Then, there exists a subsequence $\left\{u_{n_{k}}\right\}$ satisfying one of the following alternatives:
(1) $\left\{u_{n_{k}}\right\}$ is bounded in $L_{\mathrm{loc}}^{\infty}(\Omega)$,
(2) $u_{n_{k}} \longrightarrow-\infty$ uniformly on compact subsets of Ω,
(3) there exists a finite non-empty blow-up set $S=\left\{a_{1}, \ldots, a_{m}\right\} \subset \Omega$ such that, for any $i=1, \ldots, m$, there exists $\left\{x_{n_{k}}\right\} \subset \Omega$ satisfying $x_{n_{k}} \longrightarrow a_{i}, u_{n_{k}}\left(x_{n_{k}}\right) \longrightarrow \infty$, and $u_{n_{k}}(x) \longrightarrow-\infty$ uniformly on compact subsets of $\Omega \backslash S$. Moreover, $\rho \exp \left(u_{n_{k}}\right) \longrightarrow$ $\sum_{i=1}^{m} 8 \pi m_{i} \delta_{a_{i}}$ weakly in the sense of measures on Ω, where m_{i} is a positive integer for all $i=1, \ldots, m$.

It should be remarked that, prior to [5] and [18], an analogous result to Facts 2.5 for the asymptotic behavior of the solutions of (G) as $\lambda \longrightarrow 0$ exists [25], which we mentioned in Section 1.

Proof of Step 3. Suppose $x_{\infty} \in \Omega \backslash\{0\}$. Then, we are able to take $R>0$ such that $\Omega_{\varepsilon_{n}} \supset B_{R}\left(x_{\infty}\right)$ for sufficient large n. Let $w_{n}(x)=u_{n}(x)-\log \int_{\Omega_{\varepsilon_{n}}} u_{n}(x) d x$. Then this $\left\{w_{n}(x)\right\}$ satisfies the assumptions of Fact 2.5 on the bounded domain $B_{R}\left(x_{\infty}\right)$. Since $\rho \exp \left(w_{n}\right)=\rho \mu_{n} \longrightarrow \rho \delta_{x_{\infty}}$, only the alternative (3) is able to occur with $S=$ $\left\{x_{\infty}\right\}$ and ρ must be $8 \pi m$ for some positive integer m. Nevertheless, $\rho \in(8 \pi, 16 \pi)$ from the hypothesis. This is a contradiction and we obtain $x_{\infty}=0$.

3. Estimate of the minimax value

To prove Proposition 2.1, it is enough to construct $h_{\varepsilon} \in D_{\rho}^{\varepsilon}$ such that

$$
\begin{equation*}
\sup _{u \in h_{\varepsilon}\left(B_{1}(0)\right)} J_{\rho}^{\varepsilon}(u) \longrightarrow-\infty \quad \text { as } \quad \varepsilon \longrightarrow 0 . \tag{3.1}
\end{equation*}
$$

Fix $s_{0}>0$ and set

$$
u_{s}(t)= \begin{cases}4 \log \frac{s_{0}}{s} & 0 \leq t \leq s \\ 4 \log \frac{s_{0}}{t} & s \leq t \leq s_{0} \\ 0 & s_{0} \leq t\end{cases}
$$

We use $u_{s}(t)$ to construct h_{ε}. It is obvious that $u_{s, p}(x)=u_{s}(|x-p|) \in H_{0}^{1}\left(\Omega_{\varepsilon}\right) \subset$ $H_{0}^{1}(\Omega)$ if $B_{s_{0}}(p) \subset \Omega_{\varepsilon}$. Moreover, we are able to obtain the following estimates:

Proposition 3.1. Suppose $B_{s_{0}}(p) \subset \Omega_{\varepsilon}$. Then we obtain

$$
\begin{align*}
& \int_{\Omega_{\varepsilon}}\left|\nabla u_{s, p}\right|^{2}=\int_{B_{s_{0}}(0) \backslash B_{s}(0)} \left\lvert\, \nabla\left(\left.u_{s}(|x|)\right|^{2}=32 \pi \log \frac{s_{0}}{s},\right.\right. \tag{3.2}\\
& \int_{\Omega_{\varepsilon}} e^{u_{s, p}} \geq \int_{B_{s_{0}}(0) \backslash B_{s}(0)} e^{u_{s}(|x|)}=\frac{1}{s^{2}} \pi s_{0}^{4}\left[1-\left(\frac{s}{s_{0}}\right)^{2}\right] \tag{3.3}
\end{align*}
$$

for every $0<s<s_{0}$. Especially, we have

$$
\begin{align*}
& \frac{e^{u_{s, p}}}{\int_{\Omega} u_{s, p}} \longrightarrow \delta_{p} \quad \text { weakly } * \quad \text { in } \quad M(\bar{\Omega}) \quad \text { as } \quad s \longrightarrow 0 \tag{3.4}\\
& J_{\rho}^{\varepsilon}\left(u_{s, p}\right) \leq-2(\rho-8 \pi) \log \frac{1}{s}+O(1) \longrightarrow-\infty \quad \text { as } \quad s \longrightarrow 0 \tag{3.5}
\end{align*}
$$

where $O(1)$ is independent of ε and p.
Since we obtain Proposition 3.1 by elementary calculations, we omit the proof.

We are able to take positive numbers R and $s_{0} \leq R$ such that $B_{4 R}(0) \backslash B_{2 R}(0) \subset$ Ω_{ε} for sufficiently small ε and $B_{4 R+s_{0}}(0) \subset \Omega$. Take $s=s(\varepsilon) \longrightarrow 0$ as $\varepsilon \longrightarrow 0$ such that $\varepsilon \leq s \leq s_{0}$, which we specify later. We define

$$
h_{\varepsilon}^{0}(r, \theta)(x):= \begin{cases}u_{s, p(4 R r, \theta)}(x) & 0 \leq r \leq \frac{1}{2}, \\ u_{2(1-r) s, p(4 R r, \theta)}(x) & \frac{1}{2} \leq r<1,\end{cases}
$$

where $p(r, \theta)=(r \cos \theta, r \sin \theta) \in \mathbf{R}^{2}$. From (3.4) and (3.5), it is easy to see that $h_{\varepsilon}^{0}(r, \theta)(\cdot)$ satisfies (1.1) and (1.2), though $h_{\varepsilon}^{0}(r, \theta)(\cdot) \notin H_{0}^{1}\left(\Omega_{\varepsilon}\right)$ if r is small, that is, $h_{\varepsilon}^{0}(\cdot) \notin D_{\rho}^{\varepsilon}$ yet.

We introduce the following logarithmic cut-off function, which is also used in [11]:

$$
\eta_{\varepsilon}(t):= \begin{cases}0, & 0 \leq t \leq \varepsilon \\ -\frac{2 \log (t / \varepsilon)}{\log \varepsilon}, & \varepsilon \leq t \leq \sqrt{\varepsilon} \\ 1, & \sqrt{\varepsilon} \leq t\end{cases}
$$

Let

$$
h_{\varepsilon}(r, \theta)(x):=\eta_{\varepsilon}(|x|) h_{\varepsilon}^{0}(r, \theta)(x) .
$$

This h_{ε} obviously belongs to D_{ρ}^{ε} and we are able to prove the following fact:
Proposition 3.2. For every $\delta>0$, if we take sufficiently small positive number $\sigma<1 / 2$ and set $s=\varepsilon^{\sigma}(\geq \sqrt{\varepsilon} \geq \varepsilon)$, we obtain

$$
\sup _{(r, \theta) \in B_{1}(0)} J_{\rho}^{\varepsilon}\left(h_{\varepsilon}(r, \theta)(x)\right) \leq-2 \sigma\{\rho-(1+\delta) 8 \pi\} \log \frac{1}{\varepsilon}+O(1) \quad \text { as } \quad \varepsilon \longrightarrow 0 .
$$

Proof. We note that $h_{\varepsilon}(r, \theta)(x) \equiv h_{\varepsilon}^{0}(r, \theta)(x)$ if $1 / 2 \leq r<1$. From (3.5), we obtain that

$$
\begin{align*}
J_{\rho}^{\varepsilon}\left(h_{\varepsilon}(r, \theta)\right) & =J_{\rho}^{\varepsilon}\left(u_{2(1-r) s, p(4 R r, \theta)}\right) \leq-2(\rho-8 \pi) \log \frac{1}{2(1-r) s}+O(1) \\
& \leq-2(\rho-8 \pi) \log \frac{1}{s}+O(1) \quad \text { as } \quad s \longrightarrow 0 \quad \text { if } \quad \frac{1}{2} \leq r<1 . \tag{3.6}
\end{align*}
$$

For every $r \leq 1 / 2$ and every $\delta>0$, we obtain

$$
\begin{align*}
\int_{\Omega_{\varepsilon}} & \left|\nabla h_{\varepsilon}(r, \theta)\right|^{2} \\
& \leq\left(1+\frac{\delta}{2}\right) \int_{\Omega_{\varepsilon}}\left|\nabla h_{\varepsilon}^{0}(r, \theta)\right|^{2}+C(\delta)\left(\sup _{x \in \Omega_{\varepsilon}}\left|h_{\varepsilon}^{0}(r, \theta)(x)\right|\right)^{2} \int_{\Omega_{\varepsilon}}\left|\nabla\left(\eta_{\varepsilon}(|x|)\right)\right|^{2}, \tag{3.7}
\end{align*}
$$

where $C(\delta)$ is a constant depending only on δ. We note that $h_{\varepsilon}^{0}(r, \theta)(x)$ is a translation of $u_{s}(|x|)$ if $0 \leq r \leq 1 / 2$ and $\operatorname{supp} h_{\varepsilon}^{0}(1 / 2, \theta)=B_{S_{0}}(p(2 R, \theta)) \subset \Omega_{\varepsilon}$. Thus we obtain from (3.2) that

$$
\begin{align*}
\int_{\Omega_{\varepsilon}}\left|\nabla h_{\varepsilon}^{0}(r, \theta)\right|^{2} & \leq \int_{\Omega_{\varepsilon}}\left|\left(\nabla h_{\varepsilon}^{0}\right)\left(\frac{1}{2}, \theta\right)\right|^{2} \tag{3.8}\\
& =\int_{\Omega_{\varepsilon}}\left|\nabla u_{s, p(2 R, \theta)}\right|^{2}=32 \pi \log \frac{1}{s}+O(1) \quad \text { as } \quad s \longrightarrow 0
\end{align*}
$$

It is easy to see that

$$
\begin{equation*}
\sup _{x \in \Omega_{\varepsilon}}\left|h_{\varepsilon}^{0}(r, \theta)(x)\right|=\sup _{t}\left|u_{S}(t)\right|=4 \log \frac{s_{0}}{s} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}}\left|\nabla\left(\eta_{\varepsilon}(|x|)\right)\right|^{2}=\frac{4 \pi}{\log (1 / \varepsilon)} \tag{3.10}
\end{equation*}
$$

Combining (3.7-10) and choosing $s=\varepsilon^{\sigma}$ for sufficiently small $\sigma \in(0,1 / 2)$, we obtain

$$
\begin{align*}
\int_{\Omega_{\varepsilon}}\left|\nabla h_{\varepsilon}(r, \theta)\right|^{2} & \leq 32 \pi\left(1+\frac{\delta}{2}\right) \log \frac{1}{s}+C(\delta)^{\prime} \frac{\log s}{\log \varepsilon} \log \frac{1}{s}+O(1) \\
& \leq 32 \pi \sigma(1+\delta) \log \frac{1}{\varepsilon}+O(1) \quad \text { as } \quad \varepsilon \longrightarrow 0 \tag{3.11}
\end{align*}
$$

where $C(\delta)^{\prime}$ is a constant independent of ε.
On the other hand, we obtain from (3.3) that

$$
\begin{align*}
\int_{\Omega_{\varepsilon}} e^{h_{\varepsilon}(r, \theta)} \geq \int_{\Omega_{\varepsilon}} e^{h_{\varepsilon}(0, \theta)} & \geq \int_{B_{s_{0}}(0) \backslash B_{s}(0)} e^{u_{s}(|x|)} \\
& \geq \frac{1}{s^{2}} \pi s_{0}^{4}\left[1-\left(\frac{s}{s_{0}}\right)^{2}\right]=\frac{1}{\varepsilon^{2 \sigma}} \pi s_{0}^{4}\left[1-\left(\frac{\varepsilon^{\sigma}}{s_{0}}\right)^{2}\right] \tag{3.12}
\end{align*}
$$

Combining (3.11-12), we obtain
(3.13) $J_{\rho}^{\varepsilon}\left(h_{\varepsilon}(r, \theta)\right) \leq-2 \sigma\{\rho-(1+\delta) 8 \pi\} \log \frac{1}{\varepsilon}+O(1) \quad$ as $\quad \varepsilon \longrightarrow 0 \quad$ if $\quad 0 \leq r \leq \frac{1}{2}$.

Thus we obtain the conclusion from (3.6) and (3.13).

Proof of Proposition 2.1. As we assumed that $\rho>8 \pi$, we are able to take a sufficiently small $\delta>0$ such that $\rho-(1+\delta) 8 \pi>0$. Then h_{ε} satisfies required property (3.1).

Appendix. Proof of Lemma 2.3

It is enough to see that, for every sufficiently small $r>0$, there exists $x_{r, n} \in \bar{\Omega}$ such that

$$
\begin{equation*}
\int_{\Omega \cap B_{r}\left(x_{r, n}\right)} \mu_{n} \geq 1-r \tag{A.1}
\end{equation*}
$$

if n is sufficiently large.
(2.1) is equivalent to the inequality

$$
\begin{equation*}
\frac{\rho-16 \pi+(\varepsilon / 2)}{32 \pi-\varepsilon} \int_{\Omega}|\nabla u|^{2}+J_{\rho}(u) \geq-\rho \log c-\rho c . \tag{A.2}
\end{equation*}
$$

Since we assumed that $\rho<16 \pi$, we are able to take a sufficiently small ε such that $\rho-16 \pi+(\varepsilon / 2)<0$. Then (A.2) with this ε does not hold for u_{n} with sufficiently large n because $J_{\rho}\left(u_{n}\right) \longrightarrow-\infty$. Accordingly, for every $\delta_{0}>0$, every two subsets S_{1} and S_{2} of $\bar{\Omega}$ satisfying $\operatorname{dist}\left(S_{1}, S_{2}\right) \geq \delta_{0}>0$, and every $\gamma_{0} \in(0,1 / 2)$, we obtain

$$
\begin{equation*}
\min \left(\frac{\int_{S_{1}} e^{u_{n}}}{\int_{\Omega_{2}} e^{u_{n}}}, \frac{\int_{S_{2}} e^{u_{n}}}{\int_{\Omega} e^{u_{n}}}\right)=\min \left(\int_{S_{1}} \mu_{n}, \int_{S_{2}} \mu_{n}\right)<\gamma_{0} \tag{A.3}
\end{equation*}
$$

if n is sufficiently large.
Let $Q_{n}(r)$ be the concentration function of μ_{n}, that is,

$$
Q_{n}(r)=\sup _{x \in \Omega} \int_{\Omega \cap B_{r}(x)} \mu_{n} .
$$

For every $r>0$, take $x_{r, n} \in \bar{\Omega}$ such that $\int_{\Omega \cap B_{r / 2}\left(x_{r, n}\right)} \mu_{n}=Q_{n}(r / 2)$. Applying (A.3) for $\delta_{0}=r / 2, S_{1}=\Omega \cap B_{r / 2}\left(x_{r, n}\right)$, and $S_{2}=\Omega \backslash B_{r}\left(x_{r, n}\right)$, we obtain that, for every $\gamma_{0} \in(0,1 / 2)$,

$$
\begin{equation*}
\min \left(\int_{S_{1}} \mu_{n}, \int_{S_{2}} \mu_{n}\right)=\min \left(Q_{n}\left(\frac{r}{2}\right), 1-\int_{\Omega_{\cap B_{r}\left(x_{r, n}\right)}} \mu_{n}\right)<\gamma_{0} \tag{A.4}
\end{equation*}
$$

if n is sufficiently large.
Since $\int_{\Omega} \mu_{n} \equiv 1$, it is easy to see that there exists a constant C independent of n such that

$$
Q_{n}(r) \geq C r^{2} \quad \text { for every } \quad 0<r \leq \operatorname{diam}(\Omega) .
$$

Taking sufficiently small γ_{0} such that $Q_{n}(r / 2) \geq \gamma_{0}>0$, we obtain (A.1) from (A.4).

Acknowledgement. I would like to thank Professor Atsushi Inoue and Professor Takashi Suzuki for their useful suggestions.

References

[1] T. Aubin: Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 (1979), 148-174.
[2] A. Bahri and J.M. Coron: On a nonlinear elliptic equation involving the critical Soblev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294.
[3] C. Bandle: Isoperimetric inequalities and applications, Pitman, Boston, 1980.
[4] S. Baraket and F. Pacard: Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1998), 1-38.
[5] H. Brezis and F. Merle: Uniform estimates and blow-up behavior for solutions of $-\Delta=V(x) e^{u}$ in two dimensions, Comm. in Partial Differential Equations 16 (1991), 1223-1253.
[6] E. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti: A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys. 143 (1992), 501-525.
[7] E. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti: A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Part II, Comm. Math. Phys. 174 (1995), 229-260.
[8] W. Chen and C. Li: Prescribing Gaussian Curvatures on Surfaces with Conical Singularities, J. Geom. Anal. 1 (1991), 359-372.
[9] J.M. Coron: Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Math. 299 (1984), 209-212.
[10] D.G. de Figueiredo, P.-L. Lions and R.D. Nussbaum: A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. 61 (1982), 41-63.
[11] W. Ding: Positive solutions of $\Delta u+u^{(n+2) /(n-2)}=0$ on contractible domains, J. Partial Differential Equations 2 (1989), 83-88.
[12] W. Ding, J. Jost, J. Li and G. Wang: Existence results for mean field equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 653-666.
[13] B. Gidas, W.-M. Ni and L. Nirenberg: Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68 (1979), 209-243.
[14] B. Gogny and P.L. Lions: Sur les états d'équilibre pour les densités électroniques dans les plasmas, RAIRO Modél. Math. Anal. Numér. 23 (1989), 137-153.
[15] M.K.-H. Kiessling: Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math. 46 (1993), 27-56.
[16] R. Lewandowski: Little holes and convergence of solutions of $-\Delta u=u^{(N+2) /(N-2)}$, Nonlinear Anal. 14 (1990), 873-888.
[17] Y.Y. Li: Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), 421-444.
[18] Y.Y. Li and I. Shafrir: Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two, Indiana Univ. Math. J. 43 (1994), 1255-1270.
[19] S.-S. Lin: On non-radially symmetric bifurcation in the annulus, J. Differential Equations $\mathbf{8 0}$ (1989), 251-279.
[20] S.-S. Lin: Semilinear elliptic equations on singulary perturbed domains, Comm. Partial Differential Equations 16 (1991), 617-645.
[21] N. Mizoguchi and T. Suzuki: Equations of gas combustion: S-shaped bifurcation and mushrooms, J. Differential Equations 134 (1997), 183-215.
[22] J.L. Moseley: Asymptotic solutions for a Dirichlet problem with exponential nonlinearity, SIAM J. Math. Anal. 14 (1983), 719-735.
[23] J. Moser: A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
[24] K. Nagasaki and T. Suzuki: Radial and nonradial solutions for the nonlinear eigenvalue problem $\Delta u+\lambda e^{u}=0$ on annuli in \mathbf{R}^{2}, J. Differential Equations 87 (1990), 144-168.
[25] K. Nagasaki and T. Suzuki: Asymptotic analysis for two-dimensional elliptic eigenvalue prob-
lems with exponentially dominated nonlinearities, Asymptot. Anal. 3 (1990), 173-188.
[26] M. Nolasco and G. Tarantello: On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal. 145 (1998), 161-195.
[27] S.I. Pohožaev: Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Soviet Math. Dokl. 6 (1965), 1408-1411.
[28] T. Senba and T. Suzuki: Some structures of the solution set for a stationary system of chemotaxis, Adv. Math. Sci. Appl. 10 (2000), 191-224.
[29] M. Struwe and G. Tarantello: On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1 (1998), 109-121.
[30] T. Suzuki: Radial and non-radial solutions for semilinear elliptic equations on circular domains, Geometry of solutions to partial differential equations, Academic Press, London, G. Talenti ed. Sympos. Math. 30 (1989), 153-174.
[31] T. Suzuki: Some remarks about singular perturbed solutions for Emden-Fowler equation with exponential nonlinearity, Functional analysis and related topics, Springer, New York, H. Komatsu ed. Lecture Notes in Math. 1540 (1993), 341-360.
[32] T. Suzuki: Semilinear elliptic equations, Gakkōtosho, Tokyo, 1994.
[33] T. Suzuki: Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 367-398.
[34] T. Suzuki and K. Nagasaki: Lifting of local subdifferentiations and elliptic boundary value problems on symmetric domains. II, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), 29-32.
[35] T. Suzuki and K. Nagasaki: On the nonlinear eigenvalue problem $\Delta u+\lambda e^{u}=0$, Trans. Amer. Math. Soc. 309 (1988), 591-608.
[36] V.H. Weston: On the asymptotic solution of a partial differential equation with an exponential nonlinearity, SIAM J. Math. Anal. 9 (1978), 1030-1053.

Department of Mathematics
Faculty of Science
Tokyo Institute of Technology
2-12-1 Oh-okayama Meguro-ku Tokyo
152-8551, Japan
e-mail: ohtsuka@math.titech.ac.jp
Current address:
Department of Natural Science Education
Kisarazu National College of Technology
2-11-1 Kiyomidai-higashi Kisarazu-shi Chiba 292-0041, Japan
e-mail: ohtsuka@nebula.n.kisarazu.ac.jp

