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1. Introduction

The extension problem is one of the fundamental problem®pology. We con-
sider the problem for vector bundles over real projectivacsg.

Let F be the real fieldR, the complex fieldC or the quaternion fieldH. Let X
be a space and be a subspacet A -dimensighal -vector bygnaller A is called
extendible(respectivelystably extendibleto X, if there is ar -dimensionaF -vector
bundle overX whose restriction ta is equivalent (respelstigtably equivalent) to
¢ as F -vector bundles, that is, if is equivalent (respectively stably equivalent) to
i*a for a r-dimensionalF -vector bundle over X, wherei :A — X is the inclusion
(cf. [13] and [5]).

As is seen in [7, Theorem 6.4] and [11, Theorem 2.2], the ehbdity (or the
stable extendibility) is closely related to the span, itkg maximum number of lin-
early independent cross-sections of BEn  -vector bundle,camedcan see in the proof
of Theorem C of this paper how the stable extendibility isatedl to the immersion
problem.

Let R" be the n -dimensional Euclidean space aRA®" be the n -dimensional
F-projective space. Concerning stably extendible -vectordies for F =R and C,
R.L.E. Schwarzenberger obtained the following results [@f [3], [7], [12] and [13]).

Theorem (Schwarzenberger).Let F =R or C. If a k-dimensionalF -vector bun-
dle ¢ over FP" is stably extendible t&#P" for everym > n, then( is stably equiva-
lent to a sum ok F -line bundles.

In the original results of Schwarzenberger, the -vectordies)are assumed to
be extendible, but his results are also valid for the stalterelible F -vector bundles.
Recently, M. Imaoka and K. Kuwana have proved in [5] that ik aimehsional
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H-vector bundle over HP" is stably extendible tadP™ for everym > n and its top
non-zero Pontrjagin class is not zero mod 2, tljeis stably equivalent to a sum d@f
H-line bundles provided < n.

We study the question: Determine the necessary and sufficemdition that a
R-vector bundle oveRP” is stably extendible t&RP™ for everym > n. We have ob-
tained the results for the tangent bundie= 7(RP") of RP" (cf. [7] and [9]), for the
normal bundler associated to an immersion &P" in R%**! (cf. [10]) and for the
complexificationcv of v (cf. [10]) as follows:

1) 7 is stably extendible t&RP™ for everym > n if and only if n =1, 3 or 7.
2) v is stably extendible t&RP™ for everym > n if and only if 1<n <8.
3) cv is stably extendible t&RP™ for everym > n if and only if 1<n < 9.

The purpose of this paper is to improve 2) and 3) for the norimaidle v
associated to an immersion &P" in R*** wherek is any positive integer and for
the complexificationcv of v.

Let ¢(n) be the number of integers such thakOs < n ands =0, 1, 2 or 4
mod 8. Then we have

Theorem A. Let v be the normal bundle associated to an immersiorRBf in
R"* wherek > 0. Thenv is stably extendible t&RP™ for everym > n if and only if
k>200) _p 1.

Theorem B. Let v be the normal bundle associated to an immersiorRBf in
R and letn + 1< k < n+12 Then the following three conditions are equivalent
(1) v is extendible taRP™ for everym > n.

(2) v is stably extendible t&®P™ for everym > n.
(3) 1<n<8.

These are improvements of Theorem A in [10].
Let [x] denote the integral part of a real number . Then for tbenplexification
of the normal bundle, we have

Theorem C. Let cv be the complexification of the normal bundleassociated
to an immersion oRP" in R"*, wherek > 0. Then the following hold.
(i) For n > 6, cv is stably extendible tdRP™ for everym > n if and only if
k>2m2 —p 1,
(i) For 1< n <5, cv is stably extendible t&RP" for everym > n.

The following is an improvement of Theorem 4.4 in [10].

Theorem D. Let cv be the complexification of the normal bundleassociated
to an immersion oRP" in R"*, and letn < k < n + 8. Then the following three
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conditions are equivalent:

(1) cv is extendible toRP™ for everym > n.

(2) cv is stably extendible t&RP™ for everym > n.
3) 1<n<o.

This note is arranged as follows. In Section 2 we study @hati between
extendibility and stable extendibility. In Section 3 we y#oTheorem A. We prove
Theorem B and give some examples in Section 4. In Section 5rexeprheorem C.
We prove Theorem D and give some examples in Section 6.

2. Extendibility and stable extendibility

In the following, we use the same letter for a vector bundld @s equivalence
class, and use an integkr forka -dimensional trivial bundle.

Let 4 denote dim F, where F =R, C or H. The following fact is known (cf. [4,
Theorem 1.5, p.100]).

(2.1). If « and § are twor -dimensionaF -vector bundles overan -dimensional
CW-complexX such thaf(n+2)/d —1) <t anda®k = 3k for somek -dimensional
trivial F-bundle k overX , themv = 3, where ® denotes the Whitney sum and)
denotes the smallest integer  with< m.

Theorem 2.2. Let X be a subcomplex of a finite dimensional CW-comjglex and
let ¢ be anR-vector bundle overX such thaim¢ > dimX. Then( is extendible to
Y if and only if ¢ is stably extendible t&

In casedim( = dim X, this does not hold in general.

Proof. The “only if” part is clear. Suppose thatis stably equivalent té*(«) for
someR-vector bundlex over Y, wherei :X — Y is the inclusion. In case digh >
dimX, ¢ is equivalent toi*(«) by (2.1).

A counter example is given by the -sphesé in the ( + 1)-spis&té and the
tangent bundler = 7(S") of §" forn #1, 3, 7. In fact,7 1 is the ¢ +1)-dimensional
trivial bundle overS” and so @ 1 =i*(n) ® 1, wherei :S" — "1 is the inclusion
andn denotes tha -dimensional triviRkvector bundle oves”*!. Hencer is stably
extendible toS"*1. On the other hand, if there is an -dimensiofavector bundle
a over $"*! such thatr = i*(a), 7 is trivial, sincei :§” — $"*! is homotopic to a
constant map. Hence = 1, 3 or 7. Sois not extendible tas”*! for n # 1, 3, 7.

]

The following is proved in the way similar to the former pait the proof of
Theorem 2.2.
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Theorem 2.3. Let X be a subcomplex of a finite dimensional CW-complex and
let ¢ be aC-vector bundle oveX such thaim¢ > ((dim X)/2). Then( is extendible
to Y if and only if{ is stably extendible t&

Corollary 2.4. Let M be a submanifold of a finite dimensional differentiable
manifold N andc7(M) be the complexification of the tangent bundigV) of M.
Thencr (M) is extendible toN if and only ié7(M) is stably extendible tav

3. Proof of Theorem A

Let &, be the canonical line bundle ov&P".

Lemma 3.1. Let v be the normal bundle associated to an immersiorRBf in
R wherek > 0. Then the equality

v=(a2?™ —p — 1), +n+k+1—a20®
holds in KQRP"), wherea is any integer.

Proof. Letr = 7(RP") be the tangent bundle &@P”. Then we haver&v =n+k
andT @& 1= (n +1),. Hence

vn+k+1—(n+1), = (@2’ —n— 1), +n+k +1— q2°"

in KO(RP") for any integera , since&, — 1 is of order 2® (cf. [1, Theorem 7.4]).
O

Theorem 3.2. Let v be the normal bundle associated to an immersionRef
in R™ wherek > 0. Thenv is stably extendible taRP" for everym > n if
k>2°0 —p —1 and if k > n, in addition, v is extendible toRP™ for everym > n.

Proof. By Lemma 3.1, we have = A¢, + B, whereA = 20 —»n — 1 and
B=n+k+1—2" Clearly A > 0, and B > 0 by the assumption. For > n,
i*(A&, @ B) = A&, @ B, wherei :RP" — RP™ is the standard inclusion. Henceis
stably extendible tdRP" for everym > n, sincev is stably equivalent toA¢, @ B. If
k > n, in addition, dimRP" =n < k =dimv = A + B, and so we obtaiv = A, © B
by (2.1). Thusv is extendible toRP" for everym > n. O

The following result ([9, Theorem 4.1]) is the “stably ext#vle version” of
Theorem 6.2 in [7].

(3.3). Let( be ar -dimensionaR-vector bundle oveRP". Assume that there is
a positive integed  such that is stably equivalent tor( #¢) andt + < 290, Then
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n <t+[ and( is not stably extendible t&P*.

Using (3.3), we have obtained the following in [10, Theorem] Zcf. [11, Propo-
sition 6.4¢iii)(b)]).

(3.4). The normal bundle associated to an immersioRPt in R™* is not sta-
bly extendible toRP"**1 if 0 < k < 290 —p — 1,

Theorem 3.5. Let v be the normal bundle associated to an immersiofRBf in
Rk, Thenv is not stably extendible t&P™ for m = min{2?™) —n — 1, n +k + 1}, if
0<k<20) _p 1,

Proof. Put¢ =v, t=k andl =20 —n—k—1in (3.3). Then clearly #< 2¢(,
and/ > 0 by the assumption. Sp is not stably extendible t&RP™ for m = 2% —
n — 1. By (3.4),v is not stably extendible t&®kP™ for m =n +k + 1. Ul

Puttingrn =9 in Theorem 3.5, we have

Corollary 3.6. If 1 <k < 21, the normal bundle associated to an immersion of
RP? in R%* is not stably extendible t&P™ for m = min{22, k + 10}.

Proof of Theorem A. The “if” part follows from Theorem 3.2 atige “only if”
part follows from Theorem 3.5. Ul

4. Proof of Theorem B

Let &, be the canonical line bundle ov&P”.

Theorem 4.1. Let v = v(f,) be the normal bundle associated to an immersion
f.: RP" — R™ wherek > 0. Then, forl < n < 10, we have the equalities

v(f1) =k, v(fo) =& +k -1, v(f3) =k,
v(fa) =3 +k -3, v(fs) =28s5+k -2, v(fe) =& +k—1,
v(f7) =k, v(fs) =T +k — 17, v(fo) =229 +k — 22

and v(fio) = 5310+k — 53
in KO(RP").

If 1<n<8andk>norif n>9andk > 2°® —, — 1, the equalities hold in
the set of equivalence classesRvector bundles oveRP".

Proof. By Lemma 3.1, we have

van+k+1— (n+1), = (@2 —n — 1), +n+k +1— q2%®
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in KO(RP") for any integera . So we have the former part by putting = 1.

The latter part is a consequence of the former part by (2ibes = A, + B
for non-negative integerda and  such that &R = n < k = dimv = A+ B, if
1<n<8andk>norif n>9andk >2°" —p — 1. O

Corollary 4.2. If1<n<8andk>norifn>9andk >2°® —pn—1 v(f,)
is extendible toRP™ for everym > n.

Proof. Since¢, and the trivial R-bundles overRP" are extendible taRP™ for
everym > n, the result follows from the latter part of Theorem 4.1. U

Theorem B is a consequence of the following

Theorem 4.3. Let v be the normal bundle associated to an immersiofiRBf in
R, Then we have
(i) v is stably extendible t&RP™ for everym >n if 1 <n <8 andk >n, andv is
extendible toRP™ for everym >n if 1 <n <8 andk > n.
(i) v is not stably extendible t&P"**1if n > 9 and1<k <n+12

Proof. The former part of Theorem 4.1 implies the former pdr{i). In fact, if
k > n, the R-vector bundles & @& (k—1), k, X4 @ (k—3), 25 (k—2), &P (k — 1),
k and &g @ (k — 7) over RP", where 1< n < 8 respectively, are extendible ®P"
for everym > n, and they are stably equivalent tq f,) respectively.

The latter part of (i) follows from the former part of (i) by €arem 2.2.

(i) is a consequence of (3.4), because<k < 2™ —p —1if n > 9 and 1<
k<n+12. [

In [6, Theorem 1], the following (4.4) is proved (cf. [11, @dary 2.3 (2)]).

(4.4). Let( be ar-dimensionaR-vector bundle ovelRP". If n < ¢, ( is ex-
tendible toRP™ for everym withn < m <t.

The next example is due to (4.4) and Corollary 3.6.

ExampLE 4.5. The normal bundle associated to an immersioRBf in R is
extendible toRP?%, but is not stably extendible t&P?.

5. Proof of Theorem C

Lemma 5.1. Let cv be the complexification of the normal bundleassociated
to an immersion oRP" in R""*, wherek > 0. Then the equality

cv = (bZ[”/z] —n—1Dc& +n+k+1— p2ln/2
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holds in K(RP"), whereb is any integer.

Proof. Complexifying the equality in Lemma 3.1 and consiugrthatcé, — 1 is
of order 2*/21, we have the equality above, sinoe/R] < ¢(n). O

Theorem 5.2. Let cv be the complexification of the normal bundieassociated
to an immersion oRP" in R* wherek > 0. Thencv is stably extendible td&RP™
for everym > n if k > 20 —p —1 orif k > 2" —p —1>0. And if 2k > n, in
addition, cv is extendible toRP™ for everym > n.

Proof. To prove the first part, by Lemma 5.1, we have= Ac¢, + B, where
A=2%" _p—1andB =n + +1-2¢™, since we may také =1ik=6,7 or 0
mod 8 andb =2 otherwise. Clearly > 0, and B > 0 by the assumption. Fon > n,
i*(Ac&, @ B) = Ac&, @ B, wherei :RP" — RP™ is the standard inclusion. Hence is
stably extendible taRP™ for everym > n, sincecv is stably equivalent tAc¢, @ B.

To prove the second part, taking = 1 in Lemma 5.1, we have Ac¢, + B,
whereA = #/4 —p -1 andB =n +k +1— 21"/2. By the assumptiom > 0 and
B > 0. Socv is stably extendible tdRP™ for everym > n, in the way similar to the
proof above.

If 2k > n, in addition, ((dimRP")/2) = (n/2) < k = dimcr = A + B, and so we
obtaincr = Ac§, @ B by (2.1). Thuscr is extendible toRP™ for everym > n. ]

We recall the following result ([9, Theorem 2.1]) which isethistably extendible
version” of Theorem 4.2 fod =1 in [8].

(5.3). Let( be ar -dimensionaC-vector bundle oveRP". Assume that there is
a positive integed such thatis stably equivalent tor( #c¥, andr + < 21*/2. Then
[n/2] < ¢+ and( is not stably extendible t&®P” for everym witht + < [m/2].

Theorem 5.4. Let cv be the complexification of the normal bundieassociated
to an immersion oRP" in R***, wherek > 0. Thencv is not stably extendible to
RP™ for everym with2l"/2*1 — 2y — 2 <m, if k < 20"/2 —p — 1.

Proof. Put(=cv,t =k andl =2/4 —p —k—1in (5.3). Then clearly + <
2"/21and > 0 by the assumption. Sev is not stably extendible t&P™ for every
m with 207/2 —p — 1 < [m/2]. ]

Proof of Theorem C. (i) Fon > 6, the “only if” part follows from Theorem 5.4,
and the “if” part follows from Theorem 5.2, sincd"®! —n —1> 0 if n > 6.

(i) As is well-known, RP* C R?, RP? C R®, RP®* C R*, RP* C R’ andRP® C R/,
where we denote byRP" C RV the existence of an immersion &P” in R", and
these immersions are best possible, that is, there do nst Eximersions ofRP” in
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RY-1 Hence we havé > 2°® —n —1 for 1< n < 5. So the result follows also from
Theorem 5.2. O

6. Proof of Theorem D

Theorem 6.1. Let cv = cv(f,) be the complexification of the normal bundle
v = v(f,) associated to an immersiofi,: RP" — R"**, wherek > n. Then we have
the Whitney sum decompositions as follows:

cv(f) =k, cv(f2) = c&2 @ (k — 1), cv(fa) =k,
cv(fa) = 3c&4 @ (k — 3), cv(fs) = 2c65 @ (k — 2), cv(fe) = c&6 @ (k — 1),
cv(f7) =k, cv(fg) = TcEg @ (k —7) and cv(fo) = 6¢§o @ (k — 6).

Proof. Complexifying the equalities in the former part ofebnem 4.1, we have
the equalities above for £ n < 8 using (2.1). So it suffices to prove the equality for
n = 9. By the former part of Theorem 4.1( fo) = 229+k—22, and sacv(fg) = 22c&g+
k —22. According to [1, Theorem 7.3k¢9 — 1 is of order 16. Hence 16y — 16 =0
in K(RP%), and socv(fs) = 6¢&g + k — 6. Therefore,cv(fo) = 6¢g & (k — 6) by (2.1).

[

Corollary 6.2. If 1 <k < 20, the complexificatiorrv(f1p) of the normal bundle
v(f10) associated to an immersiofig: RP° — R* s not stably extendible t&P*2.

Proof. By the former part of Theorem 4.1(f19) = 53¢0 + k — 53, and so
cv(f1g) = 53€10+k — 53 = 2ké0 + k — 21, sincecép — 1 is of order 32. Hence
we have the result from (5.3) by putting = 10,= cv(f10), t = k andl = 21—k,
sincel > 0 for 1< k < 20 and since + =2% 2119/2 =32, O

Definel @) =2"/2 —n — k — 1. Then we have

Lemma 6.3. I(n) > O for any k¥ andn such thal0 < n < k < n+ 8, and
k+1(n) < 21*/2 for anyk andn .

Proof. For 10< n < 17, the inequalities hold clearly. Far > 18, we prove the
inequalities by induction. ]

Theorem D is a consequence of the following
Theorem 6.4. Let cv be the complexification of the normal bundieassociated

to an immersion oRP” in R"*. Then we have
(i) cv is extendible toRP™ for everym >n if 1<n <9 andk > n.



EXTENDIBILITY AND STABLE EXTENDIBILITY OF NORMAL BUNDLES 323

(i) cv is not stably extendible tRP™ for everym with2l"/2*1_2, -2 < m if n > 10
andn <k <n+8.

Proof. Sincec¢, and the trivial C-vector bundles oveRP" are extendible to
RP™ for everym > n, Theorem 6.1 implies (i).
By Lemma 5.1, we have

cv = {22 — (n+ 1)eg, +n+k +1— p2n/2

for any integerb . (ii) follows from (5.3), Lemma 6.3 and theuatity above by putting
C=cv,t=k andl =2/ —p —k—1. J

In [6, Theorem 2], the following (6.5) is proved (cf. [11, @Hary 2.3 (2)]).

(6.5). Let( be ar -dimensionaC-vector bundle oveRP". If n < 2t +1, ( is
extendible toRP™ for everym withn <m <2t + 1.

The next example is due to (6.5) and Corollary 6.2 kor = 20.

ExavmpLE 6.6. The complexification of the normal bundle associatedrtommer-
sion of RP® in R is extendible toRP*}, but is not stably extendible tRP*.
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