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0. Introduction

Consider the standar8p(p) x Sp(g) action on the (4 +4 — 1)-spheres#’+4—1,
This action has codimension-one principal orbits wsp(p —1)x Sp(¢ —1) as the prin-
cipal isotropy subgroup. Furthermore, the fixed point sethef restrictedSp(p — 1) x
Sp(g — 1) action is diffeomorphic to the seven-sphese

In the previous papers [4, 5], we have studied smoBtBy(p, ¢)-actions on
sr*a—1 each of which is an extension of the stand&@®(p) x SO(g) action on
SP*ta—1 In this paper, we shall study smoo®p(p, g)-actions onS**%—1 each of
which is an extension of the standa®(p) x Sp(g) action onS*?*%~1 and we shall
show such an action is characterized by a paiy f{) satisfying certain conditions,
where ¢ is a smoothSp(1, 1)-action onS’, and f :S7 — Py(H) is a smooth mapping.

The pair ¢, f) was introduced by Asoh [1] to consider smo@&h(2, C)-actions
on the 3-sphere, and was improved by our previous papers].[4,hg pair was used
also by Muloyama [2] to consider smoot8p(2, R)-actions on the 4-sphere. He stud-
ies also smoott8U(p, g)-actions ons?”*%-1 [3]. Here, we notice that the Lie groups
SL(2, C) and Sp(2, R) are locally isomorphic t&80y(3, 1) andSOy(3, 2), respectively.

The author wishes to express gratitude to the referees andditors for their in-
valuable advice.

1. Standard representation of Spg, q)

Let Sp(p, ¢) denote the group of complex matrices of degrge 24+ 2 defiyed b
the equations

"ATpigA = Jpeg, "AK, A=K,y
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Here,
1,0 0 O
0 I 01, 0 O
= n K = q

Jn [1,, 0}’ P 0 0-7,0

0 0 0 I
Consider the linear mapping = ¢k J: C?*% — C2*%_ Here,K =K,,,J =
Jy+q @and ¢ is the complex conjugation. Sindé?> = 1,J2 = —] and KJ = JK,
we obtainJ? = —I. Furthermore, we sed(zX) = zJ(X) for eachX € C?*% and

z € C. Hence, the linear mapping defines a quaternion structure @%*%. We see
J(AX) = AJ(X) for eachA € Sp(p, ¢) and X € C?*%4 by the definition ofSp(p, q).
Therefore, the quaternion structudeis Sp(p, g)-equivariant.

Now we decompose an elemeit 6fP*% into X = '[Uy, Vi, U, V3], where
Ui, Uy € CP and Vy, V, € C?. Then we see

JU1, V1, Uz, VY = '[~Us, Vo, Uz, —Vi].

Hence we obtain the following equation for eaechg € C:

U1 OzUl—ﬁlzz
Vi aVy+ [V,
I+3] = —
@reon | = | o
V2 Osz—ﬁVl

Therefore, we can identify naturall@?’*% having the quaternion structudewith the
quaternion vector spack”* having the right scalar multiplication by the following
correspondence:

(U1, V1, Uz, V3 — '[U1 + jUa, Vi — jVal.
Denote byl(a, b, ¢, d) the isotropy group at
ae + bep+1 + Cep+q+l + de2p+q+l

with respect to the standard representationSpfp, g) on C?**% whereey, e, ...,
&,+2, are the standard basis @?*% and a,b,c,d are complex numbers with
(a,b,c,d) # (0,0, Q 0). Then, we see the followings:

Sp(p. q)
BduVAk VAN Py |
I(a,b,c,d) P+ ’

1(1,0,0 0)=I(0, 0, 1 0) =Sp(p — 1, q).
1(0, 1,0 0)=I(0,0,0 1) =Sp(p, g — 1),

dim
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( Nab,e,d)=Sp(p—1q—1).
(a,b,c,d)#(0,0,Q0 0)

For (@, b,c,d) # (0,0,0 0) and 4, b’,c’,d") # (0, 0, Q 0), we define an equiva-
lence relation:

a'+ je' = (a+ je)a+ jA),

+.b7.d’\//+./b/7.d/
(Cl .Icv .1 ) (Cl .]C’ .1 )<:>{b/_jdlz(b_‘]d)(a+‘]ﬁ)

for some quaterniomx + jG # 0. The set of equivalence classes is naturally identified
with the 1-dimensional quaternion projective sp&a€H). Then, we see the following:

(@+jc,b— jd)~ (@' +jc',b — jd') <= l(a,b,c,d)=1(a’, b, c,d).

2. Certain closed subgroups of Sg, q)

Put

Sp(p) x Splq) = Sp(p, q) "UR2p +2q),
Sp(p — 1) x Splg — 1) =1(1,0, 0, 0)N 1(0, 1, 0, 0)N U(2p +29).

Then, Sp(p) x Sp(g) is the maximal compact subgroup 8p(p, ¢), and Sp(p — 1) x
Sp(g — 1) is the principal isotropy subgroup of the stand&p(p) x Sp(g) action on
C?P*2 which is the restriction of the standard representatioSp(p, q).

Now we shall search all subalgebrgsof Lie Sp(p, ¢q) satisfying the following
conditions:

G O Lie(Sp(p — 1) x Sp(g — 1)). G 7 LieSp(p. q).
dimLieSp(p,q) —dimG <4p +4q — 1.

Here, LieSp(p, g) denotes the Lie algebra @&p(p, ¢g) which is a Lie subalgebra of
M>p+2,(C) with the bracket operationd, B ] AB — BA, and so on.

Let Ad: Sp(p,q) — Aut(Lie Sp(p, ¢q)) be the adjoint representation defined by
AMA~Y; A € Sp(p, q), M < Lie Sp(p, q). Then we can decompose 1S§(p, ¢) into

LieSp(p,q)=KaeSoUad Ve T
as a direct sum of Algsy,—1)xspg—1)-invariant vector spaces. Here,

K = Lie(Sp(p — 1) x Splg — 1)),
S = Vp—1 @ V;_]_’
Z/{ = fol @ fols

Yy = Vg—1 S Vg—1,
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T =R,
Then the desired algebi@ can be decomposed into
G=Ka@nS)a@n)eGnV)a(GnNT).

Under the bracket operation, we obtain the following data.

[, S]=S. [K.ul=U, [KV]=V, [K,T]=0,
[7,8]=0, [T.Ul=U, [7.Vv1=V, [T.7]=T,
[S,ul=V, [S,V]=U, [U, V] =S,

UuUlcKke7, [V, V]ICKaT.
Moreover we obtain the following.

dimS =4(p — 1)(g — 1), dimid =8p — 8,
dimV =8¢ — 8, dim7 = 10

By a routine work, we obtain the following result.

Lemma 2.1. Supposep > 2 andg > 2. Let G be a proper Lie subalgebra of
Lie Sp(p, q) satisfying the following conditions

G O Lie(Sp(p — 1) x Splg — 1)), ¢ # LieSp(p. q).
dimLieSp(p,q) —dimG <4p +49 — 1.

Then G is one of the following

(1) G o Liel(a, b, c,d) for some(a, b,c,d) # (0,0, Q 0)such thatg N (U & V) =
(Liel(a, b, c,d))n(U @ V).

(2) G =Lie(Sp(p,1) x Sp(g — 1)) for ¢ = 2.

(3) G =Lie(Sp(p — 1) x Sp(1, q)) for p=2.

(4) p=q =2 dimg = 21 and G satisfies the following conditiorg N Lie(Sp(2) x
Sp(2)) = A~ Lie(A Sp(1) x (Sp(1) x Sp(1)))A, for someA € Sp(2) x Sp(2).

3. Smooth Spp, q) actions on S*+4—-1
Consider the standard action 8f(p) x Sp(g) on $4*%—1 defined by

¥ (Sp(p) x Splg)) x §4P+a—1 ., gar+ia—1
(A, X) = AX; A € Sp(p) x Splg), X € s,
The actiony hasSp(p — 1) x Sp(g — 1) as the principal isotropy type arp(p) x

Splg — 1) andSp(p — 1) x Sp(g) as singular isotropy types. Moreover the codimension
of principal orbits is one.
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PutG =Sp(p, q), K =Sp(p) x Sp(g) and H =Sp(p — 1) x Sp(g — 1).
Here, we consides**%~1 as the unit sphere af?”*%. Then the fixed point set
F(H) of restrictedH -action is the 7-sphere as follows:

F(H) = {ael + bep+1 + Cep+q+1 + de2p+q+1}s

wherea, b, c,d are complex numbers satisfyifg? + |b|? + |c|? + |d|? = 1.

Let us consider a smootlG -actio®  off”*%~! such that the restricted
K-action of ® coincides with the standard actign

Then we obtain a mapping F H( -» P;(H) defined by the condition

f(Y)=(a+jc:b— jd) < Gy D l(a,b,c,d).

Since the isotropy subgroufy  &t< F(H) containsH ,Gy contains a unigue sub-
group of the forml(a, b, ¢, d) by Lemma 2.1.

Lemma 3.1. For any smoothG -actiond or§*”*4—1 such that the restricted
K-action of ® coincides with the standard actiah the relationsGe, = Sp(p — 1, ¢)
and Ge,,, = Sp(p, ¢ — 1) are hold. In particulay the orbits throughe; and e,.; are
open in §4P+4—1,

Proof. First we obtainGe, D Sp(p — 1,q) and Ge,,, D Sp(p,q — 1) by the
following facts:

Sp(p —1) x Sp(g) C I(a, b,c,d) <= b=d =0,
Sp(p) x Splg — 1) C I(a, b, c,d) <= a=c=0,
1(1,0,0 0)=Sp(p —1,¢9), 1(0,1, 0 0) =Sp(p,q — 1).

On the other hand, by Lemma 2.1 we obtaih, C Sp(1) x Sp(p — 1,¢) and
Ge,., C Sp(p,q — 1) x Sp(1). By considering the restricted -action, we obtain
Ge, =Sp(p — 1, q) andGe,,, = Sp(p, ¢ — 1). In particular, since din/Sp(p — 1, q) =
dimG/ Sp(p, ¢ —1) = 4p +47 — 1, the orbits througte; and e,+; are open ing#*4-1,

]

Lemma 3.2. For any smoothG -actiond or§*”*4—1 such that the restricted
K-action of & coincides with the standard actiah the mappingf: F(H) — P1(H)
defined by the condition

fX)=(@+jc:b—jd)< Gy Dl(a,b,c,d)

is smooth.
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Proof. First we define 10 elements of IGe as follows:

Ay = E1 ), — Ep1+ Epige12pg — Eopeg prg+1s

Ar = —i(Evpt+Ep1— Eprger,2p49 — Eoprg.pig+1),

A3 = Eoprg1— E12psg + Epigerp — Ep prg+1,

Ag = i(Ezprg1t Evopsg * Epsgerp + Ep prge1),

C=Epprit Epirp — Ezprgopsg+1— E2pigr12 495

By = Epit pig — Eprgpr1 ¥ E2prg+1,2p 42 — E2p+2.2p 49 42

By = —i(Ep+1,ptg t Eprgp+1 — Eoprg12p+2 — E2p+2y,2p 19 +1),
B3 = Eppiy pr1— Epr1,2p+2y T E2prg+ipg — Eprg2p+q+1s

By = i(Egp+ag.prit Eps1,2p+2y + Eopageipag + Eprg2pag+1),

D = Eprga1+ Evprg — Ezpsog pag+1— Eprgr1.2p+3-
Then we see the following relations:

b1A1+byAr+d1As+dyAg+ C € Liel (1, b, Q, d),
a1By+axBy+c1Bs+coBs+ D € Liel (a, 1, ¢, 0),

where each coefficients are real numbers defined byu,+#ay, b = by+iby, ¢ = c1+ics
andd =di +id>. Moreover, we see that each df;, As, Az, A4, B1, B>, Bz and B,
is an element of Li& .

Now we define a Lie algebra homomorphishi: Lie G — I'(S%*%~1) by

h(®@(exp(=1M), Y)) — h(Y)
; ,

" (M)y (h) = lim

where I' () denotes the Lie algebra consisting of smooth vector fieldsaogiven
manifold, M € LieG and h is a smooth function defined on an open neighborhood
of Y. For M € Lie G, we seeM ¢ Lie Gy < ®*(M)y =0.

Now we see that the tangent vector fields(A;), ®*(Az), ®*(A3), ©*(A4),
®*(B1), ®*(By), ®*(B3) and ®*(B,) are linearly independent at each poikit  of
F(H). Because, if they are linearly dependentYat F(H), a non-trivial linear com-
bination of A, A,, Az, A4, By, B,, B3 and B, is contained in Li&Gy and it is a
contradiction to the isotropy types of the stand&d -action

Let us denote byM, M)y the inner product of two tangent vector fields (M),
®*(M') at Y with respect to the standard Riemannian metricS6#“—1. Denote by
A[Y], B[Y] the Gram matrices as follows:

(A5, Ay : (s, t)-component ofA Y ]
(Bs, B))y : (s, t)-component ofB ¥ ]
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Then A[Y], B[Y] are non-singular at each poit € F(H). Moreover, we see the
following:

[b1] [(A1, C)y ]
— (1 p bo| _ | (A2, CO)y
fY)=@Q:b— jd) = A[Y] " (A3, C)y |
L do | L (A4, C)y |
[a1] [(B1, D)y ]
_ . az | _ (B2, D)y
f¥Y)=(a+jc:1)= B[Y] el =7 | (s D)y
L c2 | L (Bs, D)y |

Hence we see that each of, ay, b1, b, c1, c2 d1and d, is a smooth function of
Y on an open set of H ). In fach; d; are smooth on the open sét &f (fineatk
by (a,c) 7 (0, 0) andg; ,¢; are smooth on the open setrofd ( ) definedihyl (7 )
(0, 0).

Therefore, the mapping E H - P1(H) is smooth. Ul

Denote byN p, g ) the centralizer @p(p — 1,9 —1) in Sp(p, ¢). Then the group
N(p, q) acts naturally on

4 _
c"= {ael + bep+l + Cep+q+1 + deZp+q+l}

as the restriction of the standard actionQ(p, ¢) on C?**%_ By the correspondence

v
C* 2 aey +bepe1 + CCprget + dEopage1 —— {Z j;} € H?,
the groupN p, g ) acts naturally oRy(H). In fact, forn € N(p, q)
na+jc:b—jd)y=(@ +jc : b — jd)

if and only if

n(ael + bep+1 + Cep+q+l + d82p+q+l)

= a/el + b/ep+l + C/ep+q+l + d/eZp+q+l-

Notice that N p, g ) is naturally isomorphic t&p(1, 1). On the other hand, the
group N (p, g ) acts naturally oiF H ) as the restriction of the givetiom .

Lemma 3.3. For any smoothG -actiond or§*’*%—1 such that the restricted
K-action of ® coincides with the standard actien the mappingf: F(H) — P1(H)
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defined inLemma 3.2is N(p, g)-equivariant. In particular
f(¥)=(a+jc:b—jd)= N(p.q)y > N(p.q)"l(a,b,c,ad).

Proof. Supposef X ) =a( Hc b — jd) for Y € F(H). Then Gy contains
I(a, b, c,d). Let n € N(p,q). Then Ge(,y) = nGyn~?* containsnl(a, b, c,d)n=1. On
the other hand, we see thata ( j# b:— jd) = (@' + jc’ : b’ — jd') if and only if
nl(a,b,c,d)n=r=1(a’,b', ', d"). By these fact, we obtaif {n(Y ))&f ¥Y( ). Hence
the mappingf F H )— Pi(H) is N(p, g)-equivariant. MoreoverGy D I(a, b, c,d)
implies

N(p,q)y D N(p,q)Nl(a,b,c,d). O

4. Construction of Sp, q)-actions

Under the natural isomorphism &f p(q ) ®p(1, 1), we defineM ) € N(p, q)
as the matrix corresponding to the following

coshd sinh#
sinhé coshd

coshd — sinhé
—sinhf coshd

Now we prepare the following result.
Lemma 4.1. The equation
Sp(p, q) = (Sp(p) x SPa))N(p. g)l(a, b, c, d)
holds for each(a, b, ¢, d) # (0, 0, O, 0)
Proof. Consider the standard action $(p, g) on C?*%, Put
Y =ae; +b€pi1 + CCpigr1 + d€pry+1.

For anyg € Sp(p, q), we decomposgY =Uy, Vi, Uy, V3, where Uy, U, € C? and
V1, Vo € C4. Then we see

—[UL]? + [Val|® = [U2]| + [ V2]l = ~a]* + BJ* — [e|* + | ]°.

Hence, we can choosec K = Sp(p) x Sp(q) as follows:

k7l =ser+repn s =\ UL +(|U2]2 1= /[ Va2 + (V2]
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Next, we can choosa1 0) € N(p, q) as follows:

M(—0)k gy = \/|a|2 +|c|?e + \/\b\Z +|d|%ep1.

Finally, we can choose € N(p, g)NK such thatn=*M(—0)k—1gY =Y. In particular,
we obtainn—*M(—-0)k~1g € I(a, b, c, d). O

As in the previous section, we use the notati@ghs Spép, ¢), K =Sp(p) x Splg)
and H =Sp(p — 1) x Sp(g — 1).

Moreover, we use the notationéa, b, c,d), F(H) and N (, g ).

In this section, we suppose the following situation:
1. a smooth actior: N(p,q) x F(H) — F(H) is given.
an N (p, g )-equivariant smooth mapping F: H( —~ P1(H) is given.
3. the following conditions are satisfied:

(@ neN(p,q)NK,Y € F(H) = ¢(n,Y)=¢{n,Y).

(b) f(¥)=(a+jc:b—jd)= N(p.q)y > N(p,q)Nl(a,b,c,d).
Notice that such a situation is realized if there is a smo@ttactien on §#*4—1
which is an extension of the standakd -actipron $**%~1 These facts are proved
in lemmas 3.2, 3.3.

We shall show how to construct a smoath Sg(p, ¢)-action on §**4%—1 from
the pair ¢, f). First, we prepare several lemmas.

N

Lemma 4.2. The following relations hold.

f(¥)=(@1:0)<= Ky =Sp(p — 1) x Sp(q),
f(¥)=(0:1) Ky =Sp(p) x Spg — 1).

Proof. Notice that the isotropy subgroupy  fbre F(H) is one of the follow-
ing:

Sp(p — 1) x Spg — 1), Sp(p — 1) x Splg), Sp(p) x Sp(g — 1).

Under the natural isomorphism & p(g ) ®p(1, 1), the groupk N N(p, g) can be
identified with Sp(1) x Sp(1). Here we denote

K N N(p,q)=5Sp(l) x Sp(1).
Under this identification, we se&)(1) x Sp(1)):3 = 1 x 1 for each & : 3) € P1(H)
satisfyinga # 0. Hence we see thaty Sp(p — 1) x Splg — 1), if f(Y) = («a: B)
satisfyingag # 0. On the other hand, if X )=( fc & — jd), then we see

Ky D KN N(p,q)y D (Sp(1) x Sp(1))NI(a, b, c, d).
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In particular, we see

(Sp(1) x Sp(1))N 1(L, 0, @ 0) = 1x Sp(L),
(Sp(1) x Sp(1))N 1(0, 1, O 0) =Sp(1) x 1.

By these facts, we obtain the desired result. L]
Lemma 4.3. Y € F(H), f(Y)=(a+jc:b— jd) be given. Then
g = kanih1 = konoho = Y (k1, ¢(n1, Y)) = (ka, d(nz, Y))
for any ky, k2 € K; n1, no € N(p,q); hi, hz€l(a,b,c,d).
Proof. Put
X =X(a,b,c,d)=ae; +beyi1 + c€pigs1 + d€prg+1.

First, we consider the standard representatiorGof Sp&p, ¢) on C2**% . We can de-
scribe by the above notation

nX(a,b,c,d) =X, =Xy, b;,c;,dy), (=1 2)
By the assumptiory #in1h1 = konoh,, we obtain
gX(a,b,c,d)=kiX(a1, b1, c1,d1) = ko X(az, ba, c2, d>).

Hence we obtairgX #;X; = k2X,. Putk :kflkg. Then we obtainKy, = Kyx, =
kKy,k=1. By the form of isotropy subgroups, we obtain

(a) KX;[:KXZ’ kEN(KXt) (tzl, 2)
By Lemma 4.2, we obtain the following:

(ar, ;) #(0,0) 7 (b, di) <= Kx, =Sp(p — 1) x Splg — 1)
(b) (ar, ;) 7 (0,0) = by, d) <= Kx, =Sp(p — 1) x Sp(q)

(ar, ¢;) = (0, 0) # (br, d) <= Kx, = Sp(p) x Sp(g — 1)
Moreover, we obtain

(© kl_lkgnznl_l € l(ag, b1, c1,dy)

because the elemeh{ 'konon;* leaves the poini; fixed.
Now we consider case by case.



ON SMOOTH Sp(p, ¢)-ACTIONS ON S4P+4—1 303
[1] The case %, d1) = (0, 0). By (a), (b), we seebg, d2) = (0, 0). By n1X = Xy,
f(@n1, Y)) =nif(Y) = (a1 + jer:0)=(1:0)
Then, by (b), we se&y(,,.v) = Sp(p — 1) x Sp(g). On the other hand,
ki *kononit € 1(a1,0,¢1,0) =1(1,0,0 0) =Sp(p — 1, q)

by (c). By the second half of (a), we obta)a’llez € (Sp(1) x Sp(p — 1)) x Sp(¢g) and
hence we can decompose

kYo =K'K": K € Sp(p — 1) x Sp(g), k" € Sp(1) x 1.
Then k”nznl_l € N(p,q)NSp(p —1,¢9) =1x Sp(1) and hence we obtain
ky tkononit € K NSp(p — 1,9) =Sp(p — 1) x Sp(g).
Under these preparation, we obtain

Pk, p(n2, Y)) = (ka, p(nony *na, Y))
= 1p(kz, p(nzny*, (n1, Y)))
= Y(ka, P(nany *, ¢(n1, Y)))
= tp(kanony , p(na, Y))
= Wk, Y(k; kononyt, ¢(n1, Y)))
= Y(ka, d(na, Y)).

[2] The case 43, c1) = (0, 0) is similarly proved.
[3] The case d3, c1) # (0, 0) # (b1, d1). In this case, we seeid, co) # (0, 0) # (b2, d2)
by (a), (b). Now we can decompose

kitky =K'k . k' € Sp(p — 1) x Splg — 1), k" € Sp(1) x Sp(1)

by the second half of (a). Thenk”nznl‘1 € I(a1, b1,c1,d1) by (c). Since
|(a1, b1, c1,d1) = nil(a, b, ¢, d)n;*, we obtaink”ny = nih; h € I(a, b, c,d), where
h e N(p,q)Nl(a,b,c,d) C N(p,q)y. Under these preparation, we obtain

U(ka, d(n2, Y)) = p(kik’k”, ¢(na, Y))
= P(kik”, ¢(na, Y))
= k1, p(k", ¢(n2, Y)))
= k1, ¢(k""n2, Y))
= Y(ky, p(n1h, Y))
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= Y(ky, ¢(n1, ¢(h, Y)))
= ks, p(n1, Y)).

This completes the proof. ]
Now we define® §,Y ) S%*%~1 for eachg € G,Y € F(H) by
(g, Y) = ¢k, o(n, Y)).

Here we decompose kh k€ K, n € N(p,q) andh € I(a, b, c,d), for f(Y) =
(a+jc:b— jd). Lemma 4.3 assures the well-definednessbog, Y( ).

Lemma 4.4. Suppose
Pk, Y1) = Y(ka, Yo) ; Y1, Yo € F(H), ki, ko € K.
Then the relation®(gki, Y1) = ®(gk», Y2) holds for anyg € G = Sp(p, q).
Proof. By the assumptiornky, = Ky, and there is a decomposition
ki ko =k"k': k' € Ky,, k" €Sp(1)x Sp(1).
Now we give a decomposition
gki=knh: ke K, ne N(p,q), h €l(ay, by, c1,dy).
Here we assum¢g Y( )= s b, — jd;), (t =1, 2). Then
gko = gkikk' = knhk"'k'.
On the other hand, we obtain
I(a1, b1, c1,d1) = k"I (az, ba, c2, d)(k") ™"
from Yy = (k”, Y2) = ¢(k”, Y,). Hence we see
h € (a1, by, c1,d1) = h' = (k") hk” € |(az, bz, ¢2, d>).
Putn’ = nk”. Then,n’ € N(p,q) and gk, = kn’h’k’. In this decomposition, we can

show k' € I(ay, by, c2, d3) by considering the isotropy subgroup B case by case.
Hence we see

D(gka, Y2) = Y(k, p(n', Y2))
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=k, p(n, P(k", Y2)))
Y(k, ¢(n, Y1))
d(gky, Y1). ]

By this lemma, we may define a mappin G:x S§%*4-1 . g4+4-1 py
D(g, P(k,Y)) = O(gk,Y) : g € G,k € K,Y € F(H). The right-hand side is already
defined.

It is easy to see that the mapping is an abstract actioiGof S®ri%—1
which is an extension of the standakl -actignand an extension of the given
N(p, g)-action ¢. It remains to showd is smooth.

First we state the following result which is an accurate fahrLemma 4.1. The
proof is quite similar, so we omit it.

Lemma 4.5. There is a decomposition
g=kM@®h : k€K, 0eR, hel(l,4,0,0)
for any 5 > 0 and anyg € G.

Put
Pi(R) = {(a : b) € P1(H) | a,b € R}.

Then, P1(R) is a 1-dimensional submanifold &f;(H). Define
S = fH(P1(R)).

Because the isotropy subgroups at two points (1 : 0), (0 : &) keoth Sp(l) x
Sp(1) with respect to the standar p,(g )-action &(H), we see that the orbits
through these points are open and hence the gNep,q (  )-e@uvamooth map-
ping f : F(H)— P1(H) is transversal orP;(R). HenceS is a 4-dimensional subman-
ifold of F(H). Put

S.={res|f(¥)=@1:p), 8>0}.

Then S; is an open submanifold o
Hereafter, we denotg = 5(Y) for Y € S. such thatf ¥ ) =(1 5).
Now we see the following:

f(o(M(0), Y)) = (coshg + 3 sinhf : sinhf + 5 coshd)

for Y € S, and 0, where = 3(Y). Hencep(M(0),Y) € S in general. Therefore,
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op(M(0),Y) € S, if and only if

(coshd + 3 sinhf)(sinhd + 3 coshd) > 0.
In this case, we obtain the following:

(1 - 3 tanhd

Ble(M(0).Y)) =5+ 1+ Ftanhg

Here we define a matriP ¥( ) of degre@2 42 as follows:

1
P(Y) = 1+—ﬁ2(El,l +BE1,17+1+5E17+1,1+62Ep+1,p+l)-

We see trac® X )= 1. Notice that

" = 26 .
tracegP ¢ x*) = cosh@ + 1+ sinh

for the decompositiory %M Ojh : k € K, h € 1(L, 3,0, 0), whereY € S., 5= 3(Y).
Now we define

Di={(0,Y) e Rx S| p(M(0),Y) € S:},
_ Q2
W, = {(g, Y)e G x S, | £tracegP ¥ x*) # % 8= ﬁ(Y)}.

Clearly D, is an open set oR x S, and W, is an open set oG x S..
Now we have the following results, whose proof is quite simito that of [4,
Lemma 4.7]. So we omit the proof.

Lemma 4.6. For (g,Y) € G x S, (g,Y) € W, if and only if there is a decom-
position

g=kM@)h: ke K, hel(@,p3,0,0), ¢M(©),Y)eS.:
where 3 = 5(Y).
Lemma 4.7. There is a smooth mapping: W. — K/H x D. defined by

Ag,Y) = (kH,(0,Y)), whereg = kM(O)h; k € K,0 € R, andh € I(1,3,0,0)
for 5= B(Y).

PutW @) = (1x ¢)(u x 1)"1(W.), where) is the K -action ang. is the multipli-
cation onG . ThenW ¢ ) is an open set 6fx $**%~1 and we obtain the following
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commutative diagram:

GxK xS —V, Gxgir+aa—1

luxl Tu

GXSidDWe ——  W(®D)

| e
K/HxD, —% . s+,

where ¢/(kH, (0, Y)) = ¢(k, p(M(0), Y)). Since 1x ¢ is a smooth submersion, we see
that the restriction®|y ) is a smooth mapping.

Define S1(®) = {®(g,e1) | g € G} and So(®) = {P(g, e,4+1) | g € G}.

We shall show that these two sets are openS#i*“—! and theG -action® is
smooth on these sets.

Here we define the standar@ -actig on S*”*%~1 py

Wo(g, X) = |gX|| 'gX; g€ G, X e st

Define S1(Wo) = {Wo(g.€1) | ¢ € G}, and S2(Wo) = {Wo(g, €y+1) | ¢ € G}. By the
natural correspondence

¢(g5 el) = lI”O(g7 el)s ®(g7 e])+l) = “IJO(g’ ep+1)s

we obtainG -equivariant mappings.: S.(®) — S.(¥o) for e =1, 2.
We can denote® M d),e;) = o(M(0),e) = X(a(®),b(9),c(0),d(H)). Since
f(X(x,0,%,0)=(1:0) andf X (0*,0,%))=(0:1), we see

((0).d(0)) # (0. 0) (V60 7 0),

@ (a(0). c(0)) # (0. 0) (6).
Next, using

-K,, € KN 1(1,0,0Q 0) (fKI,,q)M(H) = M(fﬁ)(pr,q),
we obtain

O((—Kp.)M(0), &) = V(=K 4, X(a(0), b(0), c(0), d(0)))
= X(a(0), —b(0), c(0), —d(0)),
(M (=0)(—K)p.q). &) = X(a(=0), b(=0), c(=0), d(—1)).
Hence we see that #) and ¢ @) are even functions, anb ) andd @) are odd func-

tions. In particular, there exist smooth even functidn$d), do(f) such thatb §) =
bo(6)0 and d @) = do(h)6.
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Now we defineA Sp(1) as the subgroup aK NN (p, ¢) = Sp(1) x Sp(1) consisting
of matrices in the form

a —C
a c
c a
—c a
By direct calculation, we see
(b) M () is commutative with each element af Sp(1).

Moreover, we obtain

S|

a —

L X,y ay) o (a ) {
a

x+jx'}
y—Jy

—c a
under the natural correspondence

x+jx'}

X(x,y,x',y) — [ -
y =y

This means the action ok Sp(1) on F (H) correspondents to the left scalar multipli-
cation. In particular, we obtain

(© The A Sp(1)-action onF # ) is free.

Moreover, we see the sét £ 1(P1(R)) is A Sp(1)-invariant.
Since f (M (0), e1)) = (1 : tanh¥), we see the curve(M(0), e1) is transverse to
each orbit of theA Sp(1)-action, by the facts (b), (c). Hence we obtain

(@ O +d@P #0 (40 70)

Here we obtain d'(0), b'(0), c'(6),d’'(0)) # (0,0, Q 0) {¥¥) by making use of the

equation f (M(0),e)) = (1 : tanhy). Sincea @), c(9) are even functions, we see
a’(0) = ¢/(0) = 0, and henceb(0), dp(0)) = ('(0),d’'(0)) # (0, 0). Combining this

result with (a), we obtain

(e) (@(9). c(9)) 7 (0, 0) # (bo(6), do(9))  (v0)

Here we define new smooth functions by

o(0) = \/1a@)>+[c@O)2,  70(0) = \/1bo(6)[* + |do(0)|?
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a(t) + jc(0)
o)

bo(0) — jdo(0)
70(6)

Moreover we definer(8) = 19(#)0. Then, 7(#) is an odd function andv(9), 5(0) are
even function with values in quaternions of modulus one. oeg,

a(f) = B0) =

(0(9)+j6(9))0z(9)] - [0(9)}
(b(0) — jd(0)5(0) T(0) ]

By (d), we obtain

d - (@d/do(bO)> + ldO))
A PN OO

0 (V0 #0).

Then 7/(0) = 79(0) > 0 by (¢). Hence we see’(d) > 0 (v#). Therefore,7: R —
(—=r,r) (0<r <1)is asmooth difftomorphism. The existence of such is assur
by the equationja(6)|? + |b(0)|? + |[c(0)|? + |d(0)|? = 1 (V6).

Here we use the following identification again

CPA UL VI DUy @ Vy e (U + jUs) @ (Vi — jV2) € HP.
By the diffeomorphismr: R — (—r, r), we can describe
SU®) ={U @V e H™ | |V|| <r |U|?+|V|?=1}.
First we defineh;: S1(®) — S1(P) by
hU & V) =Ualr (V) @ VB (V).

Thenh, is a K -equivariant deffeomorphism by definition. Moreover, eleain the fol-
lowing:

(f) hy(®(M(0). &)) = o(0)er ® T(0)epe1  (V0)

Since the function tanfy/ /1 + (tanh¥)? is a diffeomorphism and odd function
from R onto the open interval {1/v/2, 1/v/2), we can definey: (—r,r) —
(-1/v/2, 1/v/2) by the equation

tanh@

v/1+ (tanhp)?2

Then the mappingy is a diffeomorphism and odd function. So we define an even
function yo: (—r, r) — R by ~v(0) = v0(0)0 (V0).

(7 (0)) = (V0).
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Next we definehy: S1(®) — S1(Vo) by U @ V — Uy ® Vo(||V]]), where~y; =
NU|I7*/1—~(]|V])2 Thenh; is also ak -equivariant deffeomorphism by definition.
Moreover, we obtain the following:

@ ha(o(0)er & T(0)ey+1) = Wo(M(0), &)
The composition, o h; is also aK -equivariant diffeomorphism and
(h2 0 ha)(P(M(0), &1)) = Wo(M(0), &1)

by (), (g). By making use of Lemma 4.5, we sé&e ¢ h1)(P(g, €1)) = Wo(g, €1) for
eachg € G.

Consequently, we sef; = hy o hy and henceFy: S1(®) — S1(Wp) is a smooth
diffeomorphism. By the quite similar argument, we see that@ -equivariant mapping
Fy: So(P) — S»(Wo) is also a smooth diffeomorphism.

Since the family of three open sel® & ( §i x S1(®) and G x S»(®) is an
open covering ofG x $**%~1 and the restriction ofb G x §¥*4—-1 _, g4r+da—1
is smooth on these three open sets, we see that the abtion G of S*6ff ! is
smooth.

Consequently, we obtain the following result.

Theorem 4.8. Let a smooth actionp: N(p,q) x F(H) — F(H) and an
N(p, g)-equivariant smooth mapping: F(H) — P1(H) be given. Suppose that the
following conditions are satisfied
1. neN(p,q)NK,Y € F(H)= ¢(n,Y)=¢(n,Y).

2. f¥)=@+jc:b—jd)= N(p.q)yr D N(p,q)Nl(a,b,c,d).

Then there exists a smooti -actish  ¢fA**%~1 uniquely which is an ex-
tension of the standar -actiofr and an extension of the giveN(p, g)-action ¢.
Moreover the isotropy subgroup a¥ € F(H) containsl(a, b, ¢, d), if f(Y)=(a+jc:

b — jd).

5. Construction of (¢, f)

In the previous section, we show how to construct a smootloraaf Sp(p, ¢)
on §%*4—1 from a pair ¢, f), where ¢ is a smoothN g, ¢ )-action oi$’ = F(H)
whose restriction ok N N(p, g) coincides with the restriction of the standard action
of K =Sp(p)xSp(g) and f : F H )— P1(H) is a smoothN p, g )-equivariant mapping
satisfying the conditions in Theorem 4.8.

Now we consider how to construct such a pair, f). Define the circleSy in
§4*4—1 and involutionsJy on Sy by

So={se;+1€, | s> +1*=1; 5,1 € R},
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—s€ +1€p41 (e =),

Je(se +tep+1) = { $61— €501 (=),

Now we give a pair ¢o, fo) of a smooth one-parameter grodwp: R x So — Sp and a
smooth functionfy: So — P1(R) satisfying the conditions

(a) Je90(0, Y) = go(—0, J-(Y)) (e =)

(b) fo(Y)=(a:0) = fo(Je(Y)) =(—a:b) (e=1)
fo(¥)=(a:b) =

(c) Soloo(0, Y)) = (a coshd + b sinhd : a sinhd + b coshY)

(d) fo¥)=(1:0) =Y =+e

(e) fo¥)=0: 1))=Y =tepu

From the pair ¢o, fo), we can construct a desired padf, (f). The method is quite
similar as one in the previous section and as one in$$, so we omit the descrip-
tion. Notice that each open orbit df p(q )-actioh corresponds to an equivalence
class of open orbits of the one-parameter grggpwhere two open orbits of the one-
parameter groupy are equivalent if the one is mapped onto the other by the unvol
tions J.

The next problem is how to construct a paiip( fo) satisfying the conditions (a)—
(e). First we prepare the following lemma [1, Lemma 10.1].

Lemma 5.1. There exist smooth functions, B defined Rrsatisfying the con-
ditions
(1) A(x): odd function B(x): even function,
() AW < 1(x| <1), A@)=1 @ >1), A)=—1 (x < -1),
(3) B(x)=0 (x| > 1),
(4) A'(x) >0 (x| <1),
(5) B(x)A'(x) = A(x)?> — 1 (Vx).

For each positive integer: , define new smooth functidps B,,, C,, by

An(1) = Awo) *A(won-1)A(wan—2)"" 0 < 7<),

B, (1) = s4m232(—1)jB(wj) O< 7<),
j=0
cwr=m(e+]) (Ger<D)

Heres =n/(8m —4) andw; = (1 — 2js)/s. Then the following conditions are satisfied

by (1)—(5):
(6) Bm (T)A;/n(T) = Am (7)2 - 11
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(7) Am (7T - T) = _Am(T)’ Bm(7T - T) = Bm(T)y
8) A,(M)Cu(r)=1 (0< 7 <7/2).

Put
0 0
Ly=—t|=—) +s(= Y =se +t
' (85)1/ s<8t)y’ TG,

which is the unit tangent vector field ofy. We seeL {J.) = —L(&) o J1 for any
smooth function on Sp. Denote byY =Y ) € Sy as follows:

Y (1) = (cosr)ey + (sinT)e,+1.
Now we define smooth functions on an open setSgty

B, () 0<7<m,
B,(—7) —-7w<7<0,

oY) = {

_ [ =AM O< <,
h(¥) = { Ap(—7) —m <7<,

—Cpu(7) —% <7< %
k() = T 3T
Cu(m—1) §<T<7.
Moreover we define
_J((Y):1) Y #+tey,
foll) = { (1:k(Y)) Y #+€p.

Then we obtain a smooth functiofy: So — P1(R) by (7), (8).
Since J,Y(r)=Y(r —7) and J_Y(r) =Y(—7), we obtain
g(J=(Y)) = g(¥),
fo(Y) =(a :b) = fo(J+(Y)) = (—a : D).
Then we see that the functiofy satisfies the conditions (b), (d), (e).

Now we define a one-parameter grogp on Sy as the one corresponding to the
tangent vector fielggL , that ishy is defined by the following:

§(¢o(0, Y)) — £(Y)
0

g(Y)Ly(§) = lim
for Y € Sy and any smooth functiog on Sp. On the other hand, we see

g(Y)Ly(h)=1—h(Y)? for Y #+te,
g(V)Ly(k) =1—k(Y)*> for Y #+ep
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by (6)—(8). Hence we obtaind€/do)(¢o(9, Y)) = 1 — £(po(d, Y))? for &€ = h, k. There-
fore we obtain&(¢o(0, Y)) = (£(Y) + tanhd)/(1 + £(Y) tanhd) for £ = h, k. Then we
see the pair ¢, fo) satisfies the condition (c). Moreover, we obtaln¢o(f, JLY) =
po(—0,Y). So the condition (a) holds fapy.

Consequently, the pairpf, fo) satisfies all conditions (a)—(e). Pdt, the corre-
sponding smooth action @&p(p, ¢g) on $4*%~1 Then we see the actio®,  has just
2m open orbits ons47*4—1,

Now we can state the following result.

Theorem 5.2. For any positive integerm , there exists a smooth action of
Sp(p, ¢) on $**4=1 which has just2m open orbits.

6. Concluding remark

For any real number , a smooth actidn  8f(p, ¢) on $**%~1 is defined
by W, (A, X) = AX||AX|~*exp(c log| AX|), wherei =/~1. We call¥. the twisted
linear action [6]. Forc = 0, the actio’p is described byWo(A, X) = AX||AX| L.
This is the standard action considerd in the second half efstttion 4.

The restrictedSp(p) x Sp(g)-action of the twisted linear actiow. is the standard
action and we see that the twisted linear actibn has jusetbrbeits and two of
them are open orbits and one of them is compact orbit of codéine 1. Moreover
we see that a matriy4 is contained in the isotropy algebra abiat X of the com-
pact orbit, if and only ifMX = (1-ic)mX for some real numbem

By a routine work, we obtain the following result.

Theorem 6.1. Between two twisted linear actiong, anbl.., there exists an
equivariant homeomorphism if and only|i| = |¢/|.
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