ON SMOOTH Sp(p, q)-ACTIONS ON $S^{4p+4q-1}$

Dedicated to the memory of Professor Katsuo Kawakubo

FUICHI UCHIDA*

(Received July 14, 2000)

0. Introduction

Consider the standard $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ action on the (4p + 4q - 1)-sphere $S^{4p+4q-1}$. This action has codimension-one principal orbits with $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$ as the principal isotropy subgroup. Furthermore, the fixed point set of the restricted $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$ action is diffeomorphic to the seven-sphere S^7 .

In the previous papers [4, 5], we have studied smooth $SO_0(p, q)$ -actions on S^{p+q-1} , each of which is an extension of the standard $SO(p) \times SO(q)$ action on S^{p+q-1} . In this paper, we shall study smooth Sp(p, q)-actions on $S^{4p+4q-1}$, each of which is an extension of the standard $Sp(p) \times Sp(q)$ action on $S^{4p+4q-1}$, and we shall show such an action is characterized by a pair (ϕ, f) satisfying certain conditions, where ϕ is a smooth Sp(1, 1)-action on S^7 , and $f: S^7 \to P_1(\mathbf{H})$ is a smooth mapping.

The pair (ϕ, f) was introduced by Asoh [1] to consider smooth **SL**(2, **C**)-actions on the 3-sphere, and was improved by our previous papers [4, 5]. The pair was used also by Mukōyama [2] to consider smooth **Sp**(2, **R**)-actions on the 4-sphere. He studies also smooth **SU**(*p*, *q*)-actions on $S^{2p+2q-1}$ [3]. Here, we notice that the Lie groups **SL**(2, **C**) and **Sp**(2, **R**) are locally isomorphic to **SO**₀(3, 1) and **SO**₀(3, 2), respectively.

The author wishes to express gratitude to the referees and the editors for their invaluable advice.

1. Standard representation of Sp(p,q)

Let Sp(p,q) denote the group of complex matrices of degree 2p + 2q defined by the equations

$${}^tAJ_{p+q}A=J_{p+q}, \quad {}^tAK_{p,q}\bar{A}=K_{p,q}.$$

²⁰⁰⁰ Mathematics Subject Classification : Primary 57S20.

^{*}Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan No. 10640058

Here,

$$J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}, \qquad K_{p,q} = \begin{bmatrix} -I_p & 0 & 0 & 0 \\ 0 & I_q & 0 & 0 \\ 0 & 0 & -I_p & 0 \\ 0 & 0 & 0 & I_q \end{bmatrix}.$$

Consider the linear mapping $\mathbf{J} = cKJ : \mathbf{C}^{2p+2q} \to \mathbf{C}^{2p+2q}$. Here, $K = K_{p,q}, J = J_{p+q}$ and c is the complex conjugation. Since $K^2 = I, J^2 = -I$ and KJ = JK, we obtain $\mathbf{J}^2 = -I$. Furthermore, we see $\mathbf{J}(zX) = \overline{z}\mathbf{J}(X)$ for each $X \in \mathbf{C}^{2p+2q}$ and $z \in \mathbf{C}$. Hence, the linear mapping \mathbf{J} defines a quaternion structure on \mathbf{C}^{2p+2q} . We see $\mathbf{J}(AX) = A\mathbf{J}(X)$ for each $A \in \mathbf{Sp}(p,q)$ and $X \in \mathbf{C}^{2p+2q}$, by the definition of $\mathbf{Sp}(p,q)$. Therefore, the quaternion structure \mathbf{J} is $\mathbf{Sp}(p,q)$ -equivariant.

Now we decompose an element X of \mathbb{C}^{2p+2q} into $X = {}^{t}[U_1, V_1, U_2, V_2]$, where $U_1, U_2 \in \mathbb{C}^p$ and $V_1, V_2 \in \mathbb{C}^q$. Then we see

$$\mathbf{J}^{t}[U_{1}, V_{1}, U_{2}, V_{2}] = {}^{t}[-\bar{U}_{2}, \bar{V}_{2}, \bar{U}_{1}, -\bar{V}_{1}].$$

Hence we obtain the following equation for each $\alpha, \beta \in \mathbb{C}$:

$$(\alpha \boldsymbol{I} + \beta \mathbf{J}) \begin{bmatrix} \boldsymbol{U}_1 \\ \boldsymbol{V}_1 \\ \boldsymbol{U}_2 \\ \boldsymbol{V}_2 \end{bmatrix} = \begin{bmatrix} \alpha \boldsymbol{U}_1 - \beta \bar{\boldsymbol{U}}_2 \\ \alpha \boldsymbol{V}_1 + \beta \bar{\boldsymbol{V}}_2 \\ \alpha \boldsymbol{U}_2 + \beta \bar{\boldsymbol{U}}_1 \\ \alpha \boldsymbol{V}_2 - \beta \bar{\boldsymbol{V}}_1 \end{bmatrix}$$

Therefore, we can identify naturally C^{2p+2q} having the quaternion structure **J** with the quaternion vector space \mathbf{H}^{p+q} having the right scalar multiplication by the following correspondence:

$${}^{t}[U_1, V_1, U_2, V_2] \rightarrow {}^{t}[U_1 + jU_2, V_1 - jV_2].$$

Denote by I(a, b, c, d) the isotropy group at

$$a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1}$$

with respect to the standard representation of $\mathbf{Sp}(p,q)$ on \mathbf{C}^{2p+2q} , where $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_{2p+2q}$ are the standard basis of \mathbf{C}^{2p+2q} and a, b, c, d are complex numbers with $(a, b, c, d) \neq (0, 0, 0, 0)$. Then, we see the followings:

$$\dim \frac{\mathbf{Sp}(p,q)}{\mathbf{I}(a,b,c,d)} = 4p + 4q - 1,$$

$$\mathbf{I}(1,0,0,0) = \mathbf{I}(0,0,1,0) = \mathbf{Sp}(p-1,q),$$

$$\mathbf{I}(0,1,0,0) = \mathbf{I}(0,0,0,1) = \mathbf{Sp}(p,q-1),$$

On Smooth Sp(p,q)-actions on $S^{4p+4q-1}$

$$\bigcap_{(a,b,c,d)\neq(0,0,0,0)} \mathbf{I}(a,b,c,d) = \mathbf{Sp}(p-1,q-1).$$

For $(a, b, c, d) \neq (0, 0, 0, 0)$ and $(a', b', c', d') \neq (0, 0, 0, 0)$, we define an equivalence relation:

$$(a+jc,b-jd) \sim (a'+jc',b'-jd') \Longleftrightarrow \begin{cases} a'+jc' = (a+jc)(\alpha+j\beta), \\ b'-jd' = (b-jd)(\alpha+j\beta) \end{cases}$$

for some quaternion $\alpha + j\beta \neq 0$. The set of equivalence classes is naturally identified with the 1-dimensional quaternion projective space $\mathbf{P}_1(\mathbf{H})$. Then, we see the following:

$$(a+jc,b-jd) \sim (a'+jc',b'-jd') \iff \mathbf{I}(a,b,c,d) = \mathbf{I}(a',b',c',d').$$

2. Certain closed subgroups of Sp(p,q)

Put

$$Sp(p) \times Sp(q) = Sp(p,q) \cap U(2p+2q),$$

$$Sp(p-1) \times Sp(q-1) = I(1,0,0,0) \cap I(0,1,0,0) \cap U(2p+2q).$$

Then, $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ is the maximal compact subgroup of $\mathbf{Sp}(p,q)$, and $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$ is the principal isotropy subgroup of the standard $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ action on \mathbf{C}^{2p+2q} which is the restriction of the standard representation of $\mathbf{Sp}(p,q)$.

Now we shall search all subalgebras \mathcal{G} of Lie $\mathbf{Sp}(p,q)$ satisfying the following conditions:

$$\mathcal{G} \supset \text{Lie}(\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)), \ \mathcal{G} \neq \text{Lie}\,\mathbf{Sp}(p,q),$$

dim Lie $\mathbf{Sp}(p,q) - \dim \mathcal{G} \leq 4p + 4q - 1.$

Here, Lie $\operatorname{Sp}(p,q)$ denotes the Lie algebra of $\operatorname{Sp}(p,q)$ which is a Lie subalgebra of $M_{2p+2q}(\mathbb{C})$ with the bracket operation [A, B] = AB - BA, and so on.

Let Ad: $\mathbf{Sp}(p,q) \to \operatorname{Aut}(\operatorname{Lie} \mathbf{Sp}(p,q))$ be the adjoint representation defined by AMA^{-1} ; $A \in \mathbf{Sp}(p,q)$, $M \in \operatorname{Lie} \mathbf{Sp}(p,q)$. Then we can decompose $\operatorname{Lie} \mathbf{Sp}(p,q)$ into

$$\operatorname{Lie} \operatorname{Sp}(p,q) = \mathcal{K} \oplus \mathcal{S} \oplus \mathcal{U} \oplus \mathcal{V} \oplus \mathcal{T}$$

as a direct sum of $Ad|_{(Sp(p-1)\times Sp(q-1))}$ -invariant vector spaces. Here,

$$\mathcal{K} = \operatorname{Lie}(\operatorname{Sp}(p-1) \times \operatorname{Sp}(q-1)),$$

$$\mathcal{S} = \nu_{p-1} \otimes \nu_{q-1}^*,$$

$$\mathcal{U} = \nu_{p-1} \oplus \nu_{p-1},$$

$$\mathcal{V} = \nu_{q-1} \oplus \nu_{q-1},$$

$$\mathcal{T} = \mathbf{R}^{10}.$$

Then the desired algebra \mathcal{G} can be decomposed into

$$\mathcal{G} = \mathcal{K} \oplus (\mathcal{G} \cap \mathcal{S}) \oplus (\mathcal{G} \cap \mathcal{U}) \oplus (\mathcal{G} \cap \mathcal{V}) \oplus (\mathcal{G} \cap \mathcal{T}).$$

Under the bracket operation, we obtain the following data.

$$\begin{split} [\mathcal{K},\mathcal{S}] &= \mathcal{S}, & [\mathcal{K},\mathcal{U}] = \mathcal{U}, & [\mathcal{K},\mathcal{V}] = \mathcal{V}, & [\mathcal{K},\mathcal{T}] = \mathbf{0}, \\ [\mathcal{T},\mathcal{S}] &= \mathbf{0}, & [\mathcal{T},\mathcal{U}] = \mathcal{U}, & [\mathcal{T},\mathcal{V}] = \mathcal{V}, & [\mathcal{T},\mathcal{T}] = \mathcal{T}, \\ [\mathcal{S},\mathcal{U}] &= \mathcal{V}, & [\mathcal{S},\mathcal{V}] = \mathcal{U}, & [\mathcal{U},\mathcal{V}] = \mathcal{S}, \\ [\mathcal{U},\mathcal{U}] &\subset \mathcal{K} \oplus \mathcal{T}, & [\mathcal{V},\mathcal{V}] \subset \mathcal{K} \oplus \mathcal{T}. \end{split}$$

Moreover we obtain the following.

$$\dim \mathcal{S} = 4(p-1)(q-1), \quad \dim \mathcal{U} = 8p-8, \\ \dim \mathcal{V} = 8q-8, \qquad \qquad \dim \mathcal{T} = 10.$$

By a routine work, we obtain the following result.

Lemma 2.1. Suppose $p \ge 2$ and $q \ge 2$. Let \mathcal{G} be a proper Lie subalgebra of Lie **Sp**(p,q) satisfying the following conditions:

$$\mathcal{G} \supset \operatorname{Lie}(\operatorname{Sp}(p-1) \times \operatorname{Sp}(q-1)), \quad \mathcal{G} \neq \operatorname{Lie} \operatorname{Sp}(p,q),$$

dim Lie $\operatorname{Sp}(p,q) - \dim \mathcal{G} \leq 4p + 4q - 1.$

Then, G is one of the following:

(1) G ⊃ Lie I(a, b, c, d) for some (a, b, c, d) ≠ (0, 0, 0, 0) such that G ∩ (U ⊕ V) = (Lie I(a, b, c, d)) ∩ (U ⊕ V).
 (2) G = Lie(Sp(p, 1) × Sp(q − 1)) for q = 2.
 (3) G = Lie(Sp(p − 1) × Sp(1, q)) for p = 2.
 (4) p = q = 2, dim G = 21 and G satisfies the following condition: G ∩ Lie(Sp(2) × Sp(2)) = A⁻¹ Lie(ΔSp(1) × (Sp(1) × Sp(1)))A, for some A ∈ Sp(2) × Sp(2).

3. Smooth Sp(p,q) actions on $S^{4p+4q-1}$

Consider the standard action of $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ on $S^{4p+4q-1}$ defined by

$$\psi \colon (\mathbf{Sp}(p) \times \mathbf{Sp}(q)) \times S^{4p+4q-1} \longrightarrow S^{4p+4q-1},$$

$$\psi(A, X) = AX; \ A \in \mathbf{Sp}(p) \times \mathbf{Sp}(q), \ X \in S^{4p+4q-1}$$

The action ψ has $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$ as the principal isotropy type and $\mathbf{Sp}(p) \times \mathbf{Sp}(q-1)$ and $\mathbf{Sp}(p-1) \times \mathbf{Sp}(q)$ as singular isotropy types. Moreover the codimension of principal orbits is one.

Put $G = \mathbf{Sp}(p, q)$, $K = \mathbf{Sp}(p) \times \mathbf{Sp}(q)$ and $H = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$. Here, we consider $S^{4p+4q-1}$ as the unit sphere of C^{2p+2q} . Then the fixed point set F(H) of restricted *H*-action is the 7-sphere as follows:

$$F(H) = \{ a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1} \},\$$

where a, b, c, d are complex numbers satisfying $|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$.

Let us consider a smooth G-action Φ on $S^{4p+4q-1}$ such that the restricted K-action of Φ coincides with the standard action ψ .

Then we obtain a mapping $f: F(H) \to \mathbf{P}_1(\mathbf{H})$ defined by the condition

$$f(Y) = (a + jc : b - jd) \iff G_Y \supset \mathbf{I}(a, b, c, d).$$

Since the isotropy subgroup G_Y at $Y \in F(H)$ contains H, G_Y contains a unique subgroup of the form I(a, b, c, d) by Lemma 2.1.

Lemma 3.1. For any smooth *G*-action Φ on $S^{4p+4q-1}$ such that the restricted *K*-action of Φ coincides with the standard action ψ , the relations $G_{\mathbf{e}_1} = \mathbf{Sp}(p-1,q)$ and $G_{\mathbf{e}_{p+1}} = \mathbf{Sp}(p,q-1)$ are hold. In particular, the orbits through \mathbf{e}_1 and \mathbf{e}_{p+1} are open in $S^{4p+4q-1}$.

Proof. First we obtain $G_{\mathbf{e}_1} \supset \mathbf{Sp}(p-1,q)$ and $G_{\mathbf{e}_{p+1}} \supset \mathbf{Sp}(p,q-1)$ by the following facts:

$$\begin{aligned} &\mathbf{Sp}(p-1)\times\mathbf{Sp}(q)\subset\mathbf{I}(a,b,c,d)\Longleftrightarrow b=d=0,\\ &\mathbf{Sp}(p)\times\mathbf{Sp}(q-1)\subset\mathbf{I}(a,b,c,d)\Longleftrightarrow a=c=0,\\ &\mathbf{I}(1,0,0,0)=\mathbf{Sp}(p-1,q),\ \mathbf{I}(0,1,0,0)=\mathbf{Sp}(p,q-1). \end{aligned}$$

On the other hand, by Lemma 2.1 we obtain $G_{\mathbf{e}_1} \subset \mathbf{Sp}(1) \times \mathbf{Sp}(p-1,q)$ and $G_{\mathbf{e}_{p+1}} \subset \mathbf{Sp}(p,q-1) \times \mathbf{Sp}(1)$. By considering the restricted *K*-action ψ , we obtain $G_{\mathbf{e}_1} = \mathbf{Sp}(p-1,q)$ and $G_{\mathbf{e}_{p+1}} = \mathbf{Sp}(p,q-1)$. In particular, since dim $G/\mathbf{Sp}(p-1,q) = \dim G/\mathbf{Sp}(p,q-1) = 4p+4q-1$, the orbits through \mathbf{e}_1 and \mathbf{e}_{p+1} are open in $S^{4p+4q-1}$.

Lemma 3.2. For any smooth *G*-action Φ on $S^{4p+4q-1}$ such that the restricted *K*-action of Φ coincides with the standard action ψ , the mapping $f: F(H) \to \mathbf{P}_1(\mathbf{H})$ defined by the condition

$$f(Y) = (a + jc : b - jd) \iff G_Y \supset \mathbf{I}(a, b, c, d)$$

is smooth.

Proof. First we define 10 elements of Lie G as follows:

$$\begin{split} A_1 &= E_{1,p} - E_{p,1} + E_{p+q+1,2p+q} - E_{2p+q,p+q+1}, \\ A_2 &= -i(E_{1,p} + E_{p,1} - E_{p+q+1,2p+q} - E_{2p+q,p+q+1}), \\ A_3 &= E_{2p+q,1} - E_{1,2p+q} + E_{p+q+1,p} - E_{p,p+q+1}, \\ A_4 &= i(E_{2p+q,1} + E_{1,2p+q} + E_{p+q+1,p} + E_{p,p+q+1}), \\ C &= E_{p,p+1} + E_{p+1,p} - E_{2p+q,2p+q+1} - E_{2p+q+1,2p+q}, \\ B_1 &= E_{p+1,p+q} - E_{p+q,p+1} + E_{2p+q+1,2p+2q} - E_{2p+2q,2p+q+1}, \\ B_2 &= -i(E_{p+1,p+q} + E_{p+q,p+1} - E_{2p+q+1,2p+2q} - E_{2p+2q,2p+q+1}), \\ B_3 &= E_{2p+2q,p+1} - E_{p+1,2p+2q} + E_{2p+q+1,p+q} - E_{p+q,2p+q+1}, \\ B_4 &= i(E_{2p+2q,p+1} + E_{p+1,2p+2q} + E_{2p+q+1,p+q} + E_{p+q,2p+q+1}), \\ D &= E_{p+q,1} + E_{1,p+q} - E_{2p+2q,p+q+1} - E_{p+q+1,2p+2q}. \end{split}$$

Then we see the following relations:

$$b_1A_1 + b_2A_2 + d_1A_3 + d_2A_4 + C \in \text{Lie I}(1, b, 0, d),$$

$$a_1B_1 + a_2B_2 + c_1B_3 + c_2B_4 + D \in \text{Lie I}(a, 1, c, 0),$$

where each coefficients are real numbers defined by $a = a_1 + ia_2$, $b = b_1 + ib_2$, $c = c_1 + ic_2$ and $d = d_1 + id_2$. Moreover, we see that each of A_1 , A_2 , A_3 , A_4 , B_1 , B_2 , B_3 and B_4 is an element of Lie *K*.

Now we define a Lie algebra homomorphism Φ^+ : Lie $G \longrightarrow \Gamma(S^{4p+4q-1})$ by

$$\Phi^+(M)_Y(h) = \lim_{t \to 0} \frac{h(\Phi(\exp(-tM), Y)) - h(Y)}{t},$$

where $\Gamma(-)$ denotes the Lie algebra consisting of smooth vector fields on a given manifold, $M \in \text{Lie } G$ and h is a smooth function defined on an open neighborhood of Y. For $M \in \text{Lie } G$, we see $M \in \text{Lie } G_Y \iff \Phi^+(M)_Y = 0$.

Now we see that the tangent vector fields $\Phi^+(A_1)$, $\Phi^+(A_2)$, $\Phi^+(A_3)$, $\Phi^+(A_4)$, $\Phi^+(B_1)$, $\Phi^+(B_2)$, $\Phi^+(B_3)$ and $\Phi^+(B_4)$ are linearly independent at each point Y of F(H). Because, if they are linearly dependent at $Y \in F(H)$, a non-trivial linear combination of A_1 , A_2 , A_3 , A_4 , B_1 , B_2 , B_3 and B_4 is contained in Lie G_Y and it is a contradiction to the isotropy types of the standard K-action ψ .

Let us denote by $(M, M')_Y$ the inner product of two tangent vector fields $\Phi^+(M)$, $\Phi^+(M')$ at Y with respect to the standard Riemannian metric on $S^{4p+4q-1}$. Denote by A[Y], B[Y] the Gram matrices as follows:

 $(A_s, A_t)_Y$: (s, t)-component of A[Y], $(B_s, B_t)_Y$: (s, t)-component of B[Y].

Then A[Y], B[Y] are non-singular at each point $Y \in F(H)$. Moreover, we see the following:

$$f(Y) = (1:b - jd) \implies A[Y] \begin{bmatrix} b_1 \\ b_2 \\ d_1 \\ d_2 \end{bmatrix} = - \begin{bmatrix} (A_1, C)_Y \\ (A_2, C)_Y \\ (A_3, C)_Y \\ (A_4, C)_Y \end{bmatrix},$$
$$f(Y) = (a + jc:1) \implies B[Y] \begin{bmatrix} a_1 \\ a_2 \\ c_1 \\ c_2 \end{bmatrix} = - \begin{bmatrix} (B_1, D)_Y \\ (B_2, D)_Y \\ (B_3, D)_Y \\ (B_4, D)_Y \end{bmatrix}.$$

Hence we see that each of $a_1, a_2, b_1, b_2, c_1, c_2, d_1$ and d_2 is a smooth function of Y on an open set of F(H). In fact, b_i, d_j are smooth on the open set of F(H) defined by $(a, c) \neq (0, 0)$ and a_i, c_j are smooth on the open set of F(H) defined by $(b, d) \neq (0, 0)$.

Therefore, the mapping $f: F(H) \rightarrow \mathbf{P}_1(\mathbf{H})$ is smooth.

Denote by N(p,q) the centralizer of Sp(p-1,q-1) in Sp(p,q). Then the group N(p,q) acts naturally on

$$\mathbf{C}^{4} = \{ a\mathbf{e}_{1} + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1} \}$$

as the restriction of the standard action of Sp(p,q) on C^{2p+2q} . By the correspondence

$$\mathbb{C}^4 \ni a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1} \longleftrightarrow \begin{bmatrix} a+jc\\b-jd \end{bmatrix} \in \mathbf{H}^2,$$

the group N(p,q) acts naturally on $\mathbf{P}_1(\mathbf{H})$. In fact, for $n \in N(p,q)$

$$n(a + jc : b - jd) = (a' + jc' : b' - jd')$$

if and only if

$$n(a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1})$$

= $a'\mathbf{e}_1 + b'\mathbf{e}_{p+1} + c'\mathbf{e}_{p+q+1} + d'\mathbf{e}_{2p+q+1}$.

Notice that N(p,q) is naturally isomorphic to Sp(1, 1). On the other hand, the group N(p,q) acts naturally on F(H) as the restriction of the given action Φ .

Lemma 3.3. For any smooth *G*-action Φ on $S^{4p+4q-1}$ such that the restricted *K*-action of Φ coincides with the standard action ψ , the mapping $f: F(H) \to \mathbf{P}_1(\mathbf{H})$

defined in Lemma 3.2 is N(p,q)-equivariant. In particular,

$$f(Y) = (a + jc : b - jd) \Longrightarrow N(p,q)_Y \supset N(p,q) \cap \mathbf{I}(a,b,c,d).$$

Proof. Suppose f(Y) = (a + jc : b - jd) for $Y \in F(H)$. Then G_Y contains $\mathbf{I}(a, b, c, d)$. Let $n \in N(p, q)$. Then $G_{\Phi(n,Y)} = nG_Y n^{-1}$ contains $n\mathbf{I}(a, b, c, d)n^{-1}$. On the other hand, we see that n(a + jc : b - jd) = (a' + jc' : b' - jd') if and only if $n\mathbf{I}(a, b, c, d)n^{-1} = \mathbf{I}(a', b', c', d')$. By these fact, we obtain $f(\Phi(n, Y)) = nf(Y)$. Hence the mapping $f: F(H) \to \mathbf{P}_1(\mathbf{H})$ is N(p, q)-equivariant. Moreover, $G_Y \supset \mathbf{I}(a, b, c, d)$ implies

$$N(p,q)_Y \supset N(p,q) \cap \mathbf{I}(a,b,c,d).$$

4. Construction of Sp(p, q)-actions

Under the natural isomorphism of N(p,q) to Sp(1, 1), we define $M(\theta) \in N(p,q)$ as the matrix corresponding to the following

$\cosh\theta \sinh\theta$		-	
$\sinh\theta\cosh\theta$			
	$\cosh\theta$	$-\sinh\theta$	•
_	$-\sinh\theta$	$\cosh\theta$	

Now we prepare the following result.

Lemma 4.1. The equation

$$\mathbf{Sp}(p,q) = (\mathbf{Sp}(p) \times \mathbf{Sp}(q))N(p,q)\mathbf{I}(a,b,c,d)$$

holds for each $(a, b, c, d) \neq (0, 0, 0, 0)$.

Proof. Consider the standard action of Sp(p,q) on C^{2p+2q} . Put

$$Y = a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1}$$
.

For any $g \in \mathbf{Sp}(p,q)$, we decompose $gY = {}^{t}[U_1, V_1, U_2, V_2]$, where $U_1, U_2 \in \mathbb{C}^{p}$ and $V_1, V_2 \in \mathbb{C}^{q}$. Then we see

$$-\|U_1\|^2 + \|V_1\|^2 - \|U_2\|^2 + \|V_2\|^2 = -|a|^2 + |b|^2 - |c|^2 + |d|^2.$$

Hence, we can choose $k \in K = \mathbf{Sp}(p) \times \mathbf{Sp}(q)$ as follows:

$$k^{-1}gY = s\mathbf{e}_1 + t\mathbf{e}_{p+1}$$
 : $s = \sqrt{\|U_1\|^2 + \|U_2\|^2}, t = \sqrt{\|V_1\|^2 + \|V_2\|^2}.$

Next, we can choose $M(\theta) \in N(p,q)$ as follows:

$$M(-\theta)k^{-1}gY = \sqrt{|a|^2 + |c|^2}\mathbf{e}_1 + \sqrt{|b|^2 + |d|^2}\mathbf{e}_{p+1}.$$

Finally, we can choose $n \in N(p,q) \cap K$ such that $n^{-1}M(-\theta)k^{-1}gY = Y$. In particular, we obtain $n^{-1}M(-\theta)k^{-1}g \in I(a, b, c, d)$.

As in the previous section, we use the notations $G = \mathbf{Sp}(p,q)$, $K = \mathbf{Sp}(p) \times \mathbf{Sp}(q)$ and $H = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$.

Moreover, we use the notations I(a, b, c, d), F(H) and N(p, q). In this section, we suppose the following situation:

- 1. a smooth action $\phi: N(p,q) \times F(H) \longrightarrow F(H)$ is given.
- 2. an N(p,q)-equivariant smooth mapping $f: F(H) \longrightarrow \mathbf{P}_1(\mathbf{H})$ is given.
- 3. the following conditions are satisfied:
 - (a) $n \in N(p,q) \cap K, Y \in F(H) \Longrightarrow \phi(n,Y) = \psi(n,Y).$
 - (b) $f(Y) = (a + jc : b jd) \Longrightarrow N(p,q)_Y \supset N(p,q) \cap I(a,b,c,d).$

Notice that such a situation is realized if there is a smooth *G*-action on $S^{4p+4q-1}$ which is an extension of the standard *K*-action ψ on $S^{4p+4q-1}$. These facts are proved in lemmas 3.2, 3.3.

We shall show how to construct a smooth $G = \mathbf{Sp}(p, q)$ -action on $S^{4p+4q-1}$ from the pair (ϕ, f) . First, we prepare several lemmas.

Lemma 4.2. The following relations hold.

$$f(Y) = (1:0) \iff K_Y = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q),$$

$$f(Y) = (0:1) \iff K_Y = \mathbf{Sp}(p) \times \mathbf{Sp}(q-1).$$

Proof. Notice that the isotropy subgroup K_Y for $Y \in F(H)$ is one of the following:

$$\mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1), \ \mathbf{Sp}(p-1) \times \mathbf{Sp}(q), \ \mathbf{Sp}(p) \times \mathbf{Sp}(q-1).$$

Under the natural isomorphism of N(p,q) to Sp(1, 1), the group $K \cap N(p,q)$ can be identified with $Sp(1) \times Sp(1)$. Here we denote

$$K \cap N(p,q) = \mathbf{Sp}(1) \times \mathbf{Sp}(1).$$

Under this identification, we see $(\mathbf{Sp}(1) \times \mathbf{Sp}(1))_{(\alpha;\beta)} = 1 \times 1$ for each $(\alpha : \beta) \in \mathbf{P}_1(\mathbf{H})$ satisfying $\alpha\beta \neq 0$. Hence we see that $K_Y = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1)$, if $f(Y) = (\alpha : \beta)$ satisfying $\alpha\beta \neq 0$. On the other hand, if f(Y) = (a + jc : b - jd), then we see

$$K_Y \supset K \cap N(p,q)_Y \supset (\mathbf{Sp}(1) \times \mathbf{Sp}(1)) \cap \mathbf{I}(a,b,c,d)$$

In particular, we see

$$(\mathbf{Sp}(1) \times \mathbf{Sp}(1)) \cap \mathbf{I}(1, 0, 0, 0) = 1 \times \mathbf{Sp}(1),$$

 $(\mathbf{Sp}(1) \times \mathbf{Sp}(1)) \cap \mathbf{I}(0, 1, 0, 0) = \mathbf{Sp}(1) \times 1.$

By these facts, we obtain the desired result.

Lemma 4.3.
$$Y \in F(H)$$
, $f(Y) = (a + jc : b - jd)$ be given. Then

$$g = k_1 n_1 h_1 = k_2 n_2 h_2 \Longrightarrow \psi(k_1, \phi(n_1, Y)) = \psi(k_2, \phi(n_2, Y))$$

for any $k_1, k_2 \in K$; $n_1, n_2 \in N(p,q)$; $h_1, h_2 \in I(a, b, c, d)$.

Proof. Put

$$X = X(a, b, c, d) = a\mathbf{e}_1 + b\mathbf{e}_{p+1} + c\mathbf{e}_{p+q+1} + d\mathbf{e}_{2p+q+1}$$

First, we consider the standard representation of $G = \mathbf{Sp}(p, q)$ on \mathbb{C}^{2p+2q} . We can describe by the above notation

$$n_t X(a, b, c, d) = X_t = X(a_t, b_t, c_t, d_t), \quad (t = 1, 2).$$

By the assumption $g = k_1 n_1 h_1 = k_2 n_2 h_2$, we obtain

$$gX(a, b, c, d) = k_1X(a_1, b_1, c_1, d_1) = k_2X(a_2, b_2, c_2, d_2).$$

Hence we obtain $gX = k_1X_1 = k_2X_2$. Put $k = k_1^{-1}k_2$. Then we obtain $K_{X_1} = K_{kX_2} = kK_{X_2}k^{-1}$. By the form of isotropy subgroups, we obtain

(a)
$$K_{X_1} = K_{X_2}, \quad k \in N(K_{X_t}) \quad (t = 1, 2)$$

By Lemma 4.2, we obtain the following:

(b)

$$(a_t, c_t) \neq (0, 0) \neq (b_t, d_t) \iff K_{X_t} = \operatorname{Sp}(p-1) \times \operatorname{Sp}(q-1)$$

$$(a_t, c_t) \neq (0, 0) = (b_t, d_t) \iff K_{X_t} = \operatorname{Sp}(p-1) \times \operatorname{Sp}(q)$$

$$(a_t, c_t) = (0, 0) \neq (b_t, d_t) \iff K_{X_t} = \operatorname{Sp}(p \to 1) \times \operatorname{Sp}(q)$$
$$(a_t, c_t) = (0, 0) \neq (b_t, d_t) \iff K_{X_t} = \operatorname{Sp}(p) \times \operatorname{Sp}(q - 1)$$

Moreover, we obtain

(c)
$$k_1^{-1}k_2n_2n_1^{-1} \in \mathbf{I}(a_1, b_1, c_1, d_1)$$

because the element $k_1^{-1}k_2n_2n_1^{-1}$ leaves the point X_1 fixed.

Now we consider case by case.

[1] The case $(b_1, d_1) = (0, 0)$. By (a), (b), we see $(b_2, d_2) = (0, 0)$. By $n_1 X = X_1$,

$$f(\phi(n_1, Y)) = n_1 f(Y) = (a_1 + jc_1 : 0) = (1 : 0).$$

Then, by (b), we see $K_{\phi(n_1,Y)} = \mathbf{Sp}(p-1) \times \mathbf{Sp}(q)$. On the other hand,

$$k_1^{-1}k_2n_2n_1^{-1} \in \mathbf{I}(a_1, 0, c_1, 0) = \mathbf{I}(1, 0, 0, 0) = \mathbf{Sp}(p - 1, q)$$

by (c). By the second half of (a), we obtain $k_1^{-1}k_2 \in (\mathbf{Sp}(1) \times \mathbf{Sp}(p-1)) \times \mathbf{Sp}(q)$ and hence we can decompose

$$k_1^{-1}k_2 = k'k'': k' \in \mathbf{Sp}(p-1) \times \mathbf{Sp}(q), k'' \in \mathbf{Sp}(1) \times 1.$$

Then $k''n_2n_1^{-1} \in N(p,q) \cap \mathbf{Sp}(p-1,q) = 1 \times \mathbf{Sp}(1)$ and hence we obtain

$$k_1^{-1}k_2n_2n_1^{-1} \in K \cap \operatorname{Sp}(p-1,q) = \operatorname{Sp}(p-1) \times \operatorname{Sp}(q).$$

Under these preparation, we obtain

$$\begin{split} \psi(k_2, \phi(n_2, Y)) &= \psi(k_2, \phi(n_2 n_1^{-1} n_1, Y)) \\ &= \psi(k_2, \phi(n_2 n_1^{-1}, \phi(n_1, Y))) \\ &= \psi(k_2, \psi(n_2 n_1^{-1}, \phi(n_1, Y))) \\ &= \psi(k_2 n_2 n_1^{-1}, \phi(n_1, Y)) \\ &= \psi(k_1, \psi(k_1^{-1} k_2 n_2 n_1^{-1}, \phi(n_1, Y))) \\ &= \psi(k_1, \phi(n_1, Y)). \end{split}$$

[2] The case $(a_1, c_1) = (0, 0)$ is similarly proved.

[3] The case $(a_1, c_1) \neq (0, 0) \neq (b_1, d_1)$. In this case, we see $(a_2, c_2) \neq (0, 0) \neq (b_2, d_2)$ by (a), (b). Now we can decompose

$$k_1^{-1}k_2 = k'k'': k' \in \mathbf{Sp}(p-1) \times \mathbf{Sp}(q-1), k'' \in \mathbf{Sp}(1) \times \mathbf{Sp}(1)$$

by the second half of (a). Then, $k''n_2n_1^{-1} \in \mathbf{I}(a_1, b_1, c_1, d_1)$ by (c). Since $\mathbf{I}(a_1, b_1, c_1, d_1) = n_1\mathbf{I}(a, b, c, d)n_1^{-1}$, we obtain $k''n_2 = n_1h$; $h \in \mathbf{I}(a, b, c, d)$, where $h \in N(p,q) \cap \mathbf{I}(a, b, c, d) \subset N(p,q)_Y$. Under these preparation, we obtain

$$\psi(k_2, \phi(n_2, Y)) = \psi(k_1k'k'', \phi(n_2, Y))$$

= $\psi(k_1k'', \phi(n_2, Y))$
= $\psi(k_1, \phi(k'', \phi(n_2, Y)))$
= $\psi(k_1, \phi(k''n_2, Y))$
= $\psi(k_1, \phi(n_1h, Y))$

$$= \psi(k_1, \phi(n_1, \phi(h, Y))) = \psi(k_1, \phi(n_1, Y)).$$

This completes the proof.

Now we define $\Phi(g, Y) \in S^{4p+4q-1}$ for each $g \in G, Y \in F(H)$ by

$$\Phi(g, Y) = \psi(k, \phi(n, Y)).$$

Here we decompose $g = knh : k \in K$, $n \in N(p,q)$ and $h \in I(a, b, c, d)$, for f(Y) = (a + jc : b - jd). Lemma 4.3 assures the well-definedness of $\Phi(g, Y)$.

Lemma 4.4. Suppose

$$\psi(k_1, Y_1) = \psi(k_2, Y_2)$$
; $Y_1, Y_2 \in F(H), k_1, k_2 \in K$.

Then the relation $\Phi(gk_1, Y_1) = \Phi(gk_2, Y_2)$ holds for any $g \in G = \mathbf{Sp}(p, q)$.

Proof. By the assumption, $K_{Y_1} = K_{Y_2}$ and there is a decomposition

 $k_1^{-1}k_2 = k''k': k' \in K_{Y_2}, k'' \in \mathbf{Sp}(1) \times \mathbf{Sp}(1).$

Now we give a decomposition

$$gk_1 = knh$$
: $k \in K$, $n \in N(p,q)$, $h \in I(a_1, b_1, c_1, d_1)$.

Here we assume $f(Y_t) = (a_t + jc_t : b_t - jd_t)$, (t = 1, 2). Then

$$gk_2 = gk_1k''k' = knhk''k'.$$

On the other hand, we obtain

$$\mathbf{I}(a_1, b_1, c_1, d_1) = k'' \mathbf{I}(a_2, b_2, c_2, d_2)(k'')^{-1}$$

from $Y_1 = \psi(k'', Y_2) = \phi(k'', Y_2)$. Hence we see

$$h \in \mathbf{I}(a_1, b_1, c_1, d_1) \Longrightarrow h' = (k'')^{-1}hk'' \in \mathbf{I}(a_2, b_2, c_2, d_2).$$

Put n' = nk''. Then, $n' \in N(p,q)$ and $gk_2 = kn'h'k'$. In this decomposition, we can show $k' \in I(a_2, b_2, c_2, d_2)$ by considering the isotropy subgroup at Y_2 case by case. Hence we see

$$\Phi(gk_2, Y_2) = \psi(k, \phi(n', Y_2))$$

$$= \psi(k, \phi(n, \psi(k'', Y_2)))$$

= $\psi(k, \phi(n, Y_1))$
= $\Phi(gk_1, Y_1).$

By this lemma, we may define a mapping $\Phi: G \times S^{4p+4q-1} \longrightarrow S^{4p+4q-1}$ by $\Phi(g, \psi(k, Y)) = \Phi(gk, Y) : g \in G, k \in K, Y \in F(H)$. The right-hand side is already defined.

It is easy to see that the mapping Φ is an abstract action of G on $S^{4p+4q-1}$ which is an extension of the standard *K*-action ψ and an extension of the given N(p,q)-action ϕ . It remains to show Φ is smooth.

First we state the following result which is an accurate form of Lemma 4.1. The proof is quite similar, so we omit it.

Lemma 4.5. There is a decomposition

$$g = kM(\theta)h$$
 : $k \in K, \ \theta \in \mathbf{R}, \ h \in \mathbf{I}(1, \beta, 0, 0)$

for any $\beta > 0$ and any $g \in G$.

Put

$$\mathbf{P}_1(\mathbf{R}) = \{ (a:b) \in \mathbf{P}_1(\mathbf{H}) \mid a, b \in \mathbf{R} \}.$$

Then, $\mathbf{P}_1(\mathbf{R})$ is a 1-dimensional submanifold of $\mathbf{P}_1(\mathbf{H})$. Define

$$S = f^{-1}(\mathbf{P}_1(\mathbf{R})).$$

Because the isotropy subgroups at two points (1 : 0), (0 : 1) are both $Sp(1) \times Sp(1)$ with respect to the standard N(p, q)-action on $P_1(\mathbf{H})$, we see that the orbits through these points are open and hence the given N(p, q)-equivariant smooth mapping $f: F(H) \to P_1(\mathbf{H})$ is transversal on $P_1(\mathbf{R})$. Hence S is a 4-dimensional submanifold of F(H). Put

$$S_{+} = \{ Y \in S \mid f(Y) = (1 : \beta), \ \beta > 0 \}.$$

Then S_+ is an open submanifold of S.

Hereafter, we denote $\beta = \beta(Y)$ for $Y \in S_+$ such that $f(Y) = (1 : \beta)$. Now we see the following:

$$f(\phi(M(\theta), Y)) = (\cosh \theta + \beta \sinh \theta : \sinh \theta + \beta \cosh \theta)$$

for $Y \in S_+$ and θ , where $\beta = \beta(Y)$. Hence $\phi(M(\theta), Y) \in S$ in general. Therefore,

 $\phi(M(\theta), Y) \in S_+$ if and only if

$$(\cosh \theta + \beta \sinh \theta)(\sinh \theta + \beta \cosh \theta) > 0.$$

In this case, we obtain the following:

$$\beta(\phi(M(\theta), Y)) = \beta + \frac{(1 - \beta^2) \tanh \theta}{1 + \beta \tanh \theta}.$$

Here we define a matrix P(Y) of degree 2p + 2q as follows:

$$P(Y) = \frac{1}{1+\beta^2} (E_{1,1} + \beta E_{1,p+1} + \beta E_{p+1,1} + \beta^2 E_{p+1,p+1}).$$

We see trace P(Y) = 1. Notice that

trace
$$(gP(Y)g^*) = \cosh 2\theta + \frac{2\beta}{1+\beta^2}\sinh 2\theta$$

for the decomposition $g = kM(\theta)h : k \in K$, $h \in I(1, \beta, 0, 0)$, where $Y \in S_+, \beta = \beta(Y)$. Now we define

$$\mathbf{D}_{+} = \{(\theta, Y) \in \mathbf{R} \times S_{+} \mid \phi(M(\theta), Y) \in S_{+}\},\$$
$$W_{+} = \left\{(g, Y) \in G \times S_{+} \mid \pm \operatorname{trace}(gP(Y)g^{*}) \neq \frac{1 - \beta^{2}}{1 + \beta^{2}}, \ \beta = \beta(Y)\right\}.$$

Clearly \mathbf{D}_+ is an open set of $\mathbf{R} \times S_+$ and W_+ is an open set of $G \times S_+$.

Now we have the following results, whose proof is quite similar to that of [4, Lemma 4.7]. So we omit the proof.

Lemma 4.6. For $(g, Y) \in G \times S_+$, $(g, Y) \in W_+$ if and only if there is a decomposition

$$g = kM(\theta)h$$
: $k \in K$, $h \in I(1, \beta, 0, 0)$, $\phi(M(\theta), Y) \in S_+$

where $\beta = \beta(Y)$.

Lemma 4.7. There is a smooth mapping $\Delta: W_+ \to K/H \times \mathbf{D}_+$ defined by $\Delta(g, Y) = (kH, (\theta, Y))$, where $g = kM(\theta)h$; $k \in K, \theta \in \mathbf{R}$, and $h \in \mathbf{I}(1, \beta, 0, 0)$ for $\beta = \beta(Y)$.

Put $W(\Phi) = (1 \times \psi)(\mu \times 1)^{-1}(W_+)$, where ψ is the *K*-action and μ is the multiplication on *G*. Then $W(\Phi)$ is an open set of $G \times S^{4p+4q-1}$ and we obtain the following

commutative diagram:

where $\phi'(kH, (\theta, Y)) = \psi(k, \phi(M(\theta), Y))$. Since $1 \times \psi$ is a smooth submersion, we see that the restriction $\Phi|_{W(\Phi)}$ is a smooth mapping.

Define $S_1(\Phi) = \{ \Phi(g, \mathbf{e}_1) \mid g \in G \}$ and $S_2(\Phi) = \{ \Phi(g, \mathbf{e}_{p+1}) \mid g \in G \}.$

We shall show that these two sets are open in $S^{4p+4q-1}$ and the *G*-action Φ is smooth on these sets.

Here we define the standard G-action Ψ_0 on $S^{4p+4q-1}$ by

$$\Psi_0(g,X) = \|gX\|^{-1}gX; \ g \in G, \ X \in S^{4p+4q-1}.$$

Define $S_1(\Psi_0) = \{\Psi_0(g, \mathbf{e}_1) \mid g \in G\}$, and $S_2(\Psi_0) = \{\Psi_0(g, \mathbf{e}_{p+1}) \mid g \in G\}$. By the natural correspondence

$$\Phi(g, \mathbf{e}_1) \mapsto \Psi_0(g, \mathbf{e}_1), \quad \Phi(g, \mathbf{e}_{p+1}) \mapsto \Psi_0(g, \mathbf{e}_{p+1}),$$

we obtain G-equivariant mappings $F_{\varepsilon} \colon S_{\varepsilon}(\Phi) \to S_{\varepsilon}(\Psi_0)$ for $\varepsilon = 1, 2$.

We can denote $\Phi(M(\theta), \mathbf{e}_1) = \phi(M(\theta), \mathbf{e}_1) = X(a(\theta), b(\theta), c(\theta), d(\theta))$. Since f(X(*, 0, *, 0)) = (1 : 0) and f(X(0, *, 0, *)) = (0 : 1), we see

(a)
$$\begin{array}{l} (b(\theta), d(\theta)) \neq (0, 0) \quad (\forall \theta \neq 0), \\ (a(\theta), c(\theta)) \neq (0, 0) \quad (\forall \theta). \end{array}$$

Next, using

$$-K_{p,q} \in K \cap \mathbf{I}(1,0,0,0), \quad (-K_{p,q})M(\theta) = M(-\theta)(-K_{p,q}),$$

we obtain

$$\Phi((-K_{p,q})M(\theta), \mathbf{e}_1) = \psi(-K_{p,q}, X(a(\theta), b(\theta), c(\theta), d(\theta)))$$

= $X(a(\theta), -b(\theta), c(\theta), -d(\theta)),$
$$\Phi(M(-\theta)(-K_{p,q}), \mathbf{e}_1) = X(a(-\theta), b(-\theta), c(-\theta), d(-\theta)).$$

Hence we see that $a(\theta)$ and $c(\theta)$ are even functions, and $b(\theta)$ and $d(\theta)$ are odd functions. In particular, there exist smooth even functions $b_0(\theta)$, $d_0(\theta)$ such that $b(\theta) = b_0(\theta)\theta$ and $d(\theta) = d_0(\theta)\theta$.

Now we define $\Delta \operatorname{Sp}(1)$ as the subgroup of $K \cap N(p,q) = \operatorname{Sp}(1) \times \operatorname{Sp}(1)$ consisting of matrices in the form

$\left[a \right]$		$-\bar{c}$		
	a		Ē	
<u>c</u>		ā		·
	-c		ā	

By direct calculation, we see

(b) $M(\theta)$ is commutative with each element of Δ Sp(1).

Moreover, we obtain

$$\begin{bmatrix} a & |& -\bar{c} \\ \hline a & \bar{c} \\ \hline c & \bar{a} \\ \hline |& -c & |& \bar{a} \end{bmatrix} X(x, y, x', y') \longleftrightarrow (a + jc) \begin{bmatrix} x + jx' \\ y - jy' \end{bmatrix}$$

under the natural correspondence

$$X(x, y, x', y') \longleftrightarrow \begin{bmatrix} x + jx' \\ y - jy' \end{bmatrix}.$$

This means the action of Δ **Sp**(1) on F(H) correspondents to the left scalar multiplication. In particular, we obtain

(c) The
$$\Delta$$
 Sp(1)-action on $F(H)$ is free.

Moreover, we see the set $S = f^{-1}(\mathbf{P}_1(\mathbf{R}))$ is $\Delta \mathbf{Sp}(1)$ -invariant.

Since $f(\phi(M(\theta), \mathbf{e}_1)) = (1 : \tanh \theta)$, we see the curve $\phi(M(\theta), \mathbf{e}_1)$ is transverse to each orbit of the $\Delta \mathbf{Sp}(1)$ -action, by the facts (b), (c). Hence we obtain

(d)
$$\frac{d}{d\theta}(|b(\theta)|^2 + |d(\theta)|^2) \neq 0 \quad (\forall \theta \neq 0)$$

Here we obtain $(a'(\theta), b'(\theta), c'(\theta), d'(\theta)) \neq (0, 0, 0, 0)$ ($\forall \theta$) by making use of the equation $f(\phi(M(\theta), \mathbf{e}_1)) = (1 : \tanh \theta)$. Since $a(\theta), c(\theta)$ are even functions, we see a'(0) = c'(0) = 0, and hence $(b_0(0), d_0(0)) = (b'(0), d'(0)) \neq (0, 0)$. Combining this result with (a), we obtain

(e)
$$(a(\theta), c(\theta)) \neq (0, 0) \neq (b_0(\theta), d_0(\theta))$$
 $(\forall \theta)$

Here we define new smooth functions by

$$\sigma(\theta) = \sqrt{|a(\theta)|^2 + |c(\theta)|^2}, \qquad \tau_0(\theta) = \sqrt{|b_0(\theta)|^2 + |d_0(\theta)|^2}$$

On Smooth Sp(p,q)-actions on $S^{4p+4q-1}$

$$\alpha(\theta) = \frac{\overline{a(\theta) + jc(\theta)}}{\sigma(\theta)}, \qquad \beta(\theta) = \frac{\overline{b_0(\theta) - jd_0(\theta)}}{\tau_0(\theta)}$$

Moreover we define $\tau(\theta) = \tau_0(\theta)\theta$. Then, $\tau(\theta)$ is an odd function and $\alpha(\theta)$, $\beta(\theta)$ are even function with values in quaternions of modulus one. Moreover,

$$\begin{bmatrix} (a(\theta) + jc(\theta))\alpha(\theta) \\ (b(\theta) - jd(\theta)\beta(\theta) \end{bmatrix} = \begin{bmatrix} \sigma(\theta) \\ \tau(\theta) \end{bmatrix}.$$

By (d), we obtain

$$\frac{d}{d\theta}\tau(\theta) = \frac{(d/d\theta)(|b(\theta)|^2 + |d(\theta)|^2)}{2\sqrt{|b(\theta)|^2 + |d(\theta)|^2}} \neq 0 \quad (\forall \theta \neq 0).$$

Then $\tau'(0) = \tau_0(0) > 0$ by (e). Hence we see $\tau'(\theta) > 0$ ($\forall \theta$). Therefore, $\tau : \mathbf{R} \longrightarrow (-r, r)$ ($0 < r \le 1$) is a smooth diffeomorphism. The existence of such r is assured by the equation $|a(\theta)|^2 + |b(\theta)|^2 + |c(\theta)|^2 + |d(\theta)|^2 = 1$ ($\forall \theta$).

Here we use the following identification again

$$\mathbf{C}^{2p+2q} \ni U_1 \oplus V_1 \oplus U_2 \oplus V_2 \longleftrightarrow (U_1 + jU_2) \oplus (V_1 - jV_2) \in \mathbf{H}^{p+q}.$$

By the diffeomorphism $\tau : \mathbf{R} \longrightarrow (-r, r)$, we can describe

$$S_1(\Phi) = \{ U \oplus V \in \mathbf{H}^{p+q} \mid ||V|| < r, ||U||^2 + ||V||^2 = 1 \}.$$

First we define $h_1: S_1(\Phi) \longrightarrow S_1(\Phi)$ by

$$h_1(U \oplus V) = U\alpha(\tau^{-1}(||V||)) \oplus V\beta(\tau^{-1}(||V||)).$$

Then h_1 is a *K*-equivariant deffeomorphism by definition. Moreover, we obtain the following:

(f)
$$h_1(\Phi(M(\theta), \mathbf{e}_1)) = \sigma(\theta)\mathbf{e}_1 \oplus \tau(\theta)\mathbf{e}_{p+1} \quad (\forall \theta)$$

Since the function $\tanh \theta / \sqrt{1 + (\tanh \theta)^2}$ is a diffeomorphism and odd function from **R** onto the open interval $(-1/\sqrt{2}, 1/\sqrt{2})$, we can define $\gamma: (-r, r) \longrightarrow (-1/\sqrt{2}, 1/\sqrt{2})$ by the equation

$$\gamma(\tau(\theta)) = \frac{\tanh \theta}{\sqrt{1 + (\tanh \theta)^2}} \quad (\forall \theta).$$

Then the mapping γ is a diffeomorphism and odd function. So we define an even function $\gamma_0: (-r, r) \to \mathbf{R}$ by $\gamma(\theta) = \gamma_0(\theta)\theta$ ($\forall \theta$).

Next we define $h_2: S_1(\Phi) \longrightarrow S_1(\Psi_0)$ by $U \oplus V \mapsto U\gamma_1 \oplus V\gamma_0(||V||)$, where $\gamma_1 = ||U||^{-1}\sqrt{1 - \gamma(||V||)^2}$. Then h_2 is also a *K*-equivariant defeeomorphism by definition. Moreover, we obtain the following:

(g)
$$h_2(\sigma(\theta)\mathbf{e}_1 \oplus \tau(\theta)\mathbf{e}_{p+1}) = \Psi_0(M(\theta), \mathbf{e}_1)$$

The composition $h_2 \circ h_1$ is also a K-equivariant diffeomorphism and

$$(h_2 \circ h_1)(\Phi(M(\theta), \mathbf{e}_1)) = \Psi_0(M(\theta), \mathbf{e}_1)$$

by (f), (g). By making use of Lemma 4.5, we see $(h_2 \circ h_1)(\Phi(g, \mathbf{e}_1)) = \Psi_0(g, \mathbf{e}_1)$ for each $g \in G$.

Consequently, we see $F_1 = h_2 \circ h_1$ and hence $F_1 \colon S_1(\Phi) \longrightarrow S_1(\Psi_0)$ is a smooth diffeomorphism. By the quite similar argument, we see that the *G*-equivariant mapping $F_2 \colon S_2(\Phi) \longrightarrow S_2(\Psi_0)$ is also a smooth diffeomorphism.

Since the family of three open sets $W(\Phi)$, $G \times S_1(\Phi)$ and $G \times S_2(\Phi)$ is an open covering of $G \times S^{4p+4q-1}$ and the restriction of $\Phi: G \times S^{4p+4q-1} \longrightarrow S^{4p+4q-1}$ is smooth on these three open sets, we see that the action Φ of G on $S^{4p+4q-1}$ is smooth.

Consequently, we obtain the following result.

Theorem 4.8. Let a smooth action $\phi: N(p,q) \times F(H) \longrightarrow F(H)$ and an N(p,q)-equivariant smooth mapping $f: F(H) \longrightarrow \mathbf{P}_1(\mathbf{H})$ be given. Suppose that the following conditions are satisfied:

1. $n \in N(p,q) \cap K, Y \in F(H) \Longrightarrow \phi(n,Y) = \psi(n,Y).$

2. $f(Y) = (a + jc : b - jd) \Longrightarrow N(p,q)_Y \supset N(p,q) \cap \mathbf{I}(a, b, c, d).$

Then there exists a smooth G-action Φ on $S^{4p+4q-1}$ uniquely, which is an extension of the standard K-action ψ and an extension of the given N(p,q)-action ϕ . Moreover, the isotropy subgroup at $Y \in F(H)$ contains I(a, b, c, d), if f(Y) = (a + jc : b - jd).

5. Construction of (ϕ, f)

In the previous section, we show how to construct a smooth action of $\mathbf{Sp}(p,q)$ on $S^{4p+4q-1}$ from a pair (ϕ, f) , where ϕ is a smooth N(p,q)-action on $S^7 = F(H)$ whose restriction on $K \cap N(p,q)$ coincides with the restriction of the standard action of $K = \mathbf{Sp}(p) \times \mathbf{Sp}(q)$ and $f: F(H) \to \mathbf{P}_1(\mathbf{H})$ is a smooth N(p,q)-equivariant mapping satisfying the conditions in Theorem 4.8.

Now we consider how to construct such a pair (ϕ, f) . Define the circle S_0 in $S^{4p+4q-1}$ and involutions J_{\pm} on S_0 by

$$S_0 = \{s\mathbf{e}_1 + t\mathbf{e}_{p+1} \mid s^2 + t^2 = 1; s, t \in \mathbf{R}\},\$$

On Smooth Sp(p,q)-actions on $S^{4p+4q-1}$

$$J_{\varepsilon}(s\mathbf{e}_{1}+t\mathbf{e}_{p+1}) = \begin{cases} -s\mathbf{e}_{1}+t\mathbf{e}_{p+1} & (\varepsilon=+), \\ s\mathbf{e}_{1}-t\mathbf{e}_{p+1} & (\varepsilon=-). \end{cases}$$

Now we give a pair (ϕ_0, f_0) of a smooth one-parameter group $\phi_0 \colon \mathbf{R} \times S_0 \to S_0$ and a smooth function $f_0 \colon S_0 \to \mathbf{P}_1(\mathbf{R})$ satisfying the conditions

(a)
$$J_{\varepsilon}\phi_0(\theta, Y) = \phi_0(-\theta, J_{\varepsilon}(Y))$$
 ($\varepsilon = \pm$)

(b)

(c)

$$f_0(Y) = (a:b) \Longrightarrow f_0(J_{\varepsilon}(Y)) = (-a:b) \quad (\varepsilon = \pm)$$

$$f_0(Y) = (a:b) \Longrightarrow$$

 $f_0(\phi_0(\theta, Y)) = (a \cosh \theta + b \sinh \theta : a \sinh \theta + b \cosh \theta)$

- (d) $f_0(Y) = (1:0) \iff Y = \pm \mathbf{e}_1$
- (e) $f_0(Y) = (0:1) \iff Y = \pm \mathbf{e}_{p+1}$

From the pair (ϕ_0, f_0) , we can construct a desired pair (ϕ, f) . The method is quite similar as one in the previous section and as one in [5, §5], so we omit the description. Notice that each open orbit of N(p, q)-action ϕ corresponds to an equivalence class of open orbits of the one-parameter group ϕ_0 , where two open orbits of the oneparameter group ϕ_0 are equivalent if the one is mapped onto the other by the involutions J_{\pm} .

The next problem is how to construct a pair (ϕ_0, f_0) satisfying the conditions (a)–(e). First we prepare the following lemma [1, Lemma 10.1].

Lemma 5.1. There exist smooth functions A, B defined on \mathbf{R} satisfying the conditions

- (1) A(x): odd function, B(x): even function,
- (2) $|A(x)| < 1(|x| < 1), A(x) = 1 \ (x \ge 1), A(x) = -1 \ (x \le -1),$
- (3) $B(x) = 0 \ (|x| \ge 1),$
- (4) A'(x) > 0 (|x| < 1),
- (5) $B(x)A'(x) = A(x)^2 1 \quad (\forall x).$

For each positive integer m, define new smooth functions A_m, B_m, C_m by

$$A_{m}(\tau) = A(\omega_{0})^{-1}A(\omega_{2m-1})A(\omega_{4m-2})^{-1} \quad (0 < \tau < \pi),$$

$$B_{m}(\tau) = s \sum_{j=0}^{4m-2} (-1)^{j}B(\omega_{j}) \quad (0 \le \tau \le \pi),$$

$$C_{m}(\tau) = -A_{m}\left(\tau + \frac{\pi}{2}\right) \quad \left(-\frac{\pi}{2} < \tau < \frac{\pi}{2}\right).$$

Here $s = \pi/(8m-4)$ and $\omega_j = (\tau - 2js)/s$. Then the following conditions are satisfied by (1)–(5):

(6) $B_m(\tau)A'_m(\tau) = A_m(\tau)^2 - 1,$

(7) $A_m(\pi - \tau) = -A_m(\tau), \ B_m(\pi - \tau) = B_m(\tau),$ (8) $A_m(\tau)C_m(\tau) = 1 \ (0 < \tau < \pi/2).$

Put

$$L_Y = -t \left(\frac{\partial}{\partial s}\right)_Y + s \left(\frac{\partial}{\partial t}\right)_Y, \quad Y = s\mathbf{e}_1 + t\mathbf{e}_{p+1},$$

which is the unit tangent vector field on S_0 . We see $L(\xi J_{\pm}) = -L(\xi) \circ J_{\pm}$ for any smooth function ξ on S_0 . Denote by $Y = Y(\tau) \in S_0$ as follows:

$$Y(\tau) = (\cos \tau)\mathbf{e}_1 + (\sin \tau)\mathbf{e}_{p+1}.$$

Now we define smooth functions on an open set of S_0 by

$$g(Y) = \begin{cases} B_m(\tau) & 0 \le \tau \le \pi, \\ B_m(-\tau) & -\pi \le \tau \le 0, \end{cases}$$
$$h(Y) = \begin{cases} -A_m(\tau) & 0 < \tau < \pi, \\ A_m(-\tau) & -\pi < \tau < 0, \end{cases}$$
$$k(Y) = \begin{cases} -C_m(\tau) & -\frac{\pi}{2} < \tau < \frac{\pi}{2}, \\ C_m(\pi - \tau) & \frac{\pi}{2} < \tau < \frac{3\pi}{2}. \end{cases}$$

Moreover we define

$$f_0(Y) = \begin{cases} (h(Y):1) & Y \neq \pm \mathbf{e}_1, \\ (1:k(Y)) & Y \neq \pm \mathbf{e}_{p+1}. \end{cases}$$

Then we obtain a smooth function $f_0: S_0 \to \mathbf{P}_1(\mathbf{R})$ by (7), (8). Since $J_+Y(\tau) = Y(\pi - \tau)$ and $J_-Y(\tau) = Y(-\tau)$, we obtain

$$g(J_{\pm}(Y)) = g(Y),$$

$$f_0(Y) = (a:b) \Longrightarrow f_0(J_{\pm}(Y)) = (-a:b).$$

Then we see that the function f_0 satisfies the conditions (b), (d), (e).

Now we define a one-parameter group ϕ_0 on S_0 as the one corresponding to the tangent vector field gL, that is, ϕ_0 is defined by the following:

$$g(Y)L_Y(\xi) = \lim_{\theta \to 0} \frac{\xi(\phi_0(\theta, Y)) - \xi(Y)}{\theta}$$

for $Y \in S_0$ and any smooth function ξ on S_0 . On the other hand, we see

$$g(Y)L_Y(h) = 1 - h(Y)^2 \quad \text{for} \quad Y \neq \pm \mathbf{e}_1,$$

$$g(Y)L_Y(k) = 1 - k(Y)^2 \quad \text{for} \quad Y \neq \pm \mathbf{e}_{p+1}$$

by (6)–(8). Hence we obtain $(d\xi/d\theta)(\phi_0(\theta, Y)) = 1 - \xi(\phi_0(\theta, Y))^2$ for $\xi = h, k$. Therefore we obtain $\xi(\phi_0(\theta, Y)) = (\xi(Y) + \tanh\theta)/(1 + \xi(Y)\tanh\theta)$ for $\xi = h, k$. Then we see the pair (ϕ_0, f_0) satisfies the condition (c). Moreover, we obtain $J_{\pm}\phi_0(\theta, J_{\pm}Y) = \phi_0(-\theta, Y)$. So the condition (a) holds for ϕ_0 .

Consequently, the pair (ϕ_0, f_0) satisfies all conditions (a)–(e). Put Φ_m the corresponding smooth action of $\mathbf{Sp}(p,q)$ on $S^{4p+4q-1}$. Then we see the action Φ_m has just 2m open orbits on $S^{4p+4q-1}$.

Now we can state the following result.

Theorem 5.2. For any positive integer m, there exists a smooth action of $\mathbf{Sp}(p,q)$ on $S^{4p+4q-1}$, which has just 2m open orbits.

6. Concluding remark

For any real number *c*, a smooth action Ψ_c of $\mathbf{Sp}(p,q)$ on $S^{4p+4q-1}$ is defined by $\Psi_c(A, X) = AX ||AX||^{-1} \exp(ic \log ||AX||)$, where $i = \sqrt{-1}$. We call Ψ_c the twisted linear action [6]. For c = 0, the action Ψ_0 is described by $\Psi_0(A, X) = AX ||AX||^{-1}$. This is the standard action considerd in the second half of the section 4.

The restricted $\mathbf{Sp}(p) \times \mathbf{Sp}(q)$ -action of the twisted linear action Ψ_c is the standard action and we see that the twisted linear action Ψ_c has just three orbits and two of them are open orbits and one of them is compact orbit of codimension 1. Moreover we see that a matrix M is contained in the isotropy algebra at a point X of the compact orbit, if and only if MX = (1 - ic)mX for some real number m.

By a routine work, we obtain the following result.

Theorem 6.1. Between two twisted linear actions Ψ_c and $\Psi_{c'}$, there exists an equivariant homeomorphism if and only if |c| = |c'|.

References

- [1] T. Asoh: On smooth SL(2, C) actions on 3-manifolds, Osaka J. Math. 24 (1987), 271–298.
- [2] K. Mukōyama: Smooth Sp(2, R)-actions on the 4-sphere, Tôhoku Math. J. 48 (1996), 543–560.
- [3] K. Mukōyama: Smooth SU(p,q)-actions on the (2p + 2q 1)-sphere and on the complex projective (p+q-1)-space, Kyushu J. Math. **55** (2001), 213–236.
- [4] F. Uchida: On smooth $SO_0(p,q)$ -actions on S^{p+q-1} , Osaka J. Math. 26 (1989), 775–787.
- [5] F. Uchida: On smooth $SO_0(p,q)$ -actions on S^{p+q-1} , II, Tôhoku Math. J. 49 (1997), 185–202.
- [6] F. Uchida: On a method to construct analytic actions of non-compact Lie groups on a sphere, Tôhoku Math. J. 39 (1987), 61–69.

Department of Mathematical Sciences Faculty of Science Yamagata University Koshirakawa, Yamagata 990-8560 Japan e-mail: fuchida@sci.kj.yamagata-u.ac.jp