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0. Introduction

Consider the standardSp( )× Sp( ) action on the (4 + 4− 1)-sphere 4 +4 −1.
This action has codimension-one principal orbits withSp( −1)×Sp( −1) as the prin-
cipal isotropy subgroup. Furthermore, the fixed point set ofthe restrictedSp( − 1)×
Sp( − 1) action is diffeomorphic to the seven-sphere7.

In the previous papers [4, 5], we have studied smoothSO0( )-actions on
+ −1, each of which is an extension of the standardSO( ) × SO( ) action on
+ −1. In this paper, we shall study smoothSp( )-actions on 4 +4 −1, each of

which is an extension of the standardSp( )×Sp( ) action on 4 +4 −1, and we shall
show such an action is characterized by a pair (φ ) satisfying certain conditions,
whereφ is a smoothSp(1 1)-action on 7, and : 7→ P1(H) is a smooth mapping.

The pair (φ ) was introduced by Asoh [1] to consider smoothSL(2 C)-actions
on the 3-sphere, and was improved by our previous papers [4, 5]. The pair was used
also by Muk̄oyama [2] to consider smoothSp(2 R)-actions on the 4-sphere. He stud-
ies also smoothSU( )-actions on 2 +2 −1 [3]. Here, we notice that the Lie groups
SL(2 C) and Sp(2 R) are locally isomorphic toSO0(3 1) andSO0(3 2), respectively.

The author wishes to express gratitude to the referees and the editors for their in-
valuable advice.

1. Standard representation of Sp(p q)

Let Sp( ) denote the group of complex matrices of degree 2 + 2 defined by
the equations

+ = + ¯ =
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Here,

=

[
0
− 0

]
=




− 0 0 0
0 0 0
0 0 − 0
0 0 0




Consider the linear mappingJ = : C2 +2 → C2 +2 . Here, = =

+ and is the complex conjugation. Since2 = 2 = − and = ,
we obtainJ2 = − . Furthermore, we seeJ( ) = J̄( ) for each ∈ C2 +2 and
∈ C. Hence, the linear mappingJ defines a quaternion structure onC2 +2 . We see

J( ) = J( ) for each ∈ Sp( ) and ∈ C2 +2 , by the definition ofSp( ).
Therefore, the quaternion structureJ is Sp( )-equivariant.

Now we decompose an element ofC2 +2 into = [ 1 1 2 2], where

1 2 ∈ C and 1 2 ∈ C . Then we see

J [ 1 1 2 2] = [− 2̄ 2̄ 1̄ − 1̄]

Hence we obtain the following equation for eachα β ∈ C:

(α + βJ)




1

1

2

2


 =




α 1− β 2̄

α 1 + β 2̄

α 2 + β 1̄

α 2− β 1̄




Therefore, we can identify naturallyC2 +2 having the quaternion structureJ with the
quaternion vector spaceH + having the right scalar multiplication by the following
correspondence:

[ 1 1 2 2] → [ 1 + 2 1− 2]

Denote byI ( ) the isotropy group at

e1 + e +1 + e + +1 + e2 + +1

with respect to the standard representation ofSp( ) on C2 +2 , where e1, e2 . . .,
e2 +2 are the standard basis ofC2 +2 and are complex numbers with
( ) 6= (0 0 0 0). Then, we see the followings:

dim
Sp( )

I ( )
= 4 + 4 − 1

I (1 0 0 0) =I (0 0 1 0) =Sp( − 1 )

I (0 1 0 0) =I (0 0 0 1) =Sp( − 1)
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⋂

( ) 6=(0 0 0 0)

I ( ) = Sp( − 1 − 1)

For ( ) 6= (0 0 0 0) and ( ′ ′ ′ ′) 6= (0 0 0 0), we define an equiva-
lence relation:

( + − ) ∼ ( ′ + ′ ′ − ′)⇐⇒
{ ′ + ′ = ( + )(α + β)

′ − ′ = ( − )(α + β)

for some quaternionα + β 6= 0. The set of equivalence classes is naturally identified
with the 1-dimensional quaternion projective spaceP1(H). Then, we see the following:

( + − ) ∼ ( ′ + ′ ′ − ′)⇐⇒ I ( ) = I ( ′ ′ ′ ′)

2. Certain closed subgroups of Sp(p q)

Put

Sp( )× Sp( ) = Sp( ) ∩ U(2 + 2 )

Sp( − 1)× Sp( − 1) = I (1 0 0 0)∩ I (0 1 0 0)∩ U(2 + 2 )

Then, Sp( )× Sp( ) is the maximal compact subgroup ofSp( ), and Sp( − 1)×
Sp( − 1) is the principal isotropy subgroup of the standardSp( ) × Sp( ) action on
C2 +2 which is the restriction of the standard representation ofSp( ).

Now we shall search all subalgebrasG of Lie Sp( ) satisfying the following
conditions:

G ⊃ Lie(Sp( − 1)× Sp( − 1)) G 6= Lie Sp( )

dim LieSp( )− dimG ≤ 4 + 4 − 1

Here, LieSp( ) denotes the Lie algebra ofSp( ) which is a Lie subalgebra of

2 +2 (C) with the bracket operation [ ] = − , and so on.
Let Ad: Sp( ) → Aut(Lie Sp( )) be the adjoint representation defined by
−1; ∈ Sp( ) ∈ Lie Sp( ). Then we can decompose LieSp( ) into

Lie Sp( ) = K ⊕ S ⊕ U ⊕ V ⊕ T

as a direct sum of Ad|(Sp( −1)×Sp( −1))-invariant vector spaces. Here,

K = Lie(Sp( − 1)× Sp( − 1))

S = ν −1⊗ ν∗−1

U = ν −1⊕ ν −1

V = ν −1⊕ ν −1
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T = R10

Then the desired algebraG can be decomposed into

G = K ⊕ (G ∩ S)⊕ (G ∩ U)⊕ (G ∩ V)⊕ (G ∩ T )

Under the bracket operation, we obtain the following data.

[K S] = S [K U ] = U [K V] = V [K T ] = 0
[T S] = 0 [T U ] = U [T V] = V [T T ] = T
[S U ] = V [S V] = U [U V] = S
[U U ] ⊂ K ⊕ T [V V] ⊂ K ⊕ T

Moreover we obtain the following.

dimS = 4( − 1)( − 1) dimU = 8 − 8
dimV = 8 − 8 dimT = 10

By a routine work, we obtain the following result.

Lemma 2.1. Suppose ≥ 2 and ≥ 2. Let G be a proper Lie subalgebra of
Lie Sp( ) satisfying the following conditions:

G ⊃ Lie(Sp( − 1)× Sp( − 1)) G 6= Lie Sp( )

dim LieSp( )− dimG ≤ 4 + 4 − 1

Then, G is one of the following:
(1) G ⊃ Lie I ( ) for some( ) 6= (0 0 0 0) such thatG ∩ (U ⊕ V) =
(Lie I ( )) ∩ (U ⊕ V).
(2) G = Lie(Sp( 1)× Sp( − 1)) for = 2.
(3) G = Lie(Sp( − 1)× Sp(1 )) for = 2.
(4) = = 2, dimG = 21 and G satisfies the following condition: G ∩ Lie(Sp(2)×
Sp(2)) = −1 Lie( Sp(1)× (Sp(1)× Sp(1))) , for some ∈ Sp(2)× Sp(2).

3. Smooth Sp(p q) actions on S4p+4q−1

Consider the standard action ofSp( )× Sp( ) on 4 +4 −1 defined by

ψ : (Sp( )× Sp( ))× 4 +4 −1 −→ 4 +4 −1

ψ( ) = ; ∈ Sp( )× Sp( ) ∈ 4 +4 −1

The actionψ has Sp( − 1)× Sp( − 1) as the principal isotropy type andSp( ) ×
Sp( −1) andSp( −1)×Sp( ) as singular isotropy types. Moreover the codimension
of principal orbits is one.
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Put =Sp( ), = Sp( )× Sp( ) and =Sp( − 1)× Sp( − 1).
Here, we consider 4 +4 −1 as the unit sphere of 2 +2 . Then the fixed point set

( ) of restricted -action is the 7-sphere as follows:

( ) = { e1 + e +1 + e + +1 + e2 + +1}

where are complex numbers satisfying| |2 + | |2 + | |2 + | |2 = 1.
Let us consider a smooth -action on4 +4 −1 such that the restricted

-action of coincides with the standard actionψ.
Then we obtain a mapping : ( )→ P1(H) defined by the condition

( ) = ( + : − )⇐⇒ ⊃ I ( )

Since the isotropy subgroup at∈ ( ) contains , contains a unique sub-
group of the formI ( ) by Lemma 2.1.

Lemma 3.1. For any smooth -action on 4 +4 −1 such that the restricted
-action of coincides with the standard actionψ, the relations e1 = Sp( − 1 )

and e +1 = Sp( − 1) are hold. In particular, the orbits throughe1 and e +1 are
open in 4 +4 −1.

Proof. First we obtain e1 ⊃ Sp( − 1 ) and e +1 ⊃ Sp( − 1) by the
following facts:

Sp( − 1)× Sp( ) ⊂ I ( )⇐⇒ = = 0

Sp( )× Sp( − 1)⊂ I ( )⇐⇒ = = 0

I (1 0 0 0) =Sp( − 1 ) I (0 1 0 0) =Sp( − 1)

On the other hand, by Lemma 2.1 we obtaine1 ⊂ Sp(1) × Sp( − 1 ) and

e +1 ⊂ Sp( − 1) × Sp(1). By considering the restricted -actionψ, we obtain

e1 = Sp( − 1 ) and e +1 = Sp( − 1). In particular, since dim /Sp( − 1 ) =
dim /Sp( −1) = 4 +4 −1, the orbits throughe1 and e +1 are open in 4 +4 −1.

Lemma 3.2. For any smooth -action on 4 +4 −1 such that the restricted
-action of coincides with the standard actionψ, the mapping : ( ) → P1(H)

defined by the condition

( ) = ( + : − )⇐⇒ ⊃ I ( )

is smooth.
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Proof. First we define 10 elements of Lie as follows:

1 = 1 − 1 + + +1 2 + − 2 + + +1

2 = − ( 1 + 1 − + +1 2 + − 2 + + +1)

3 = 2 + 1− 1 2 + + + +1 − + +1

4 = ( 2 + 1 + 1 2 + + + +1 + + +1)

= +1 + +1 − 2 + 2 + +1− 2 + +1 2 +

1 = +1 + − + +1 + 2 + +1 2 +2 − 2 +2 2 + +1

2 = − ( +1 + + + +1− 2 + +1 2 +2 − 2 +2 2 + +1)

3 = 2 +2 +1− +1 2 +2 + 2 + +1 + − + 2 + +1

4 = ( 2 +2 +1 + +1 2 +2 + 2 + +1 + + + 2 + +1)

= + 1 + 1 + − 2 +2 + +1− + +1 2 +2

Then we see the following relations:

1 1 + 2 2 + 1 3 + 2 4 + ∈ Lie I (1 0 )

1 1 + 2 2 + 1 3 + 2 4 + ∈ Lie I ( 1 0)

where each coefficients are real numbers defined by =1+ 2, = 1+ 2, = 1+ 2

and = 1 + 2. Moreover, we see that each of1, 2, 3, 4, 1, 2, 3 and 4

is an element of Lie .
Now we define a Lie algebra homomorphism+ : Lie −→ ( 4 +4 −1) by

+( ) ( ) = lim
→0

( (exp(− ) ))− ( )

where (−) denotes the Lie algebra consisting of smooth vector fields on a given
manifold, ∈ Lie and is a smooth function defined on an open neighborhood
of Y. For ∈ Lie , we see ∈ Lie ⇐⇒ +( ) = 0.

Now we see that the tangent vector fields+( 1), +( 2), +( 3), +( 4),
+( 1), +( 2), +( 3) and +( 4) are linearly independent at each point of
( ). Because, if they are linearly dependent at∈ ( ), a non-trivial linear com-

bination of 1, 2, 3, 4, 1, 2, 3 and 4 is contained in Lie and it is a
contradiction to the isotropy types of the standard -actionψ.

Let us denote by ( ′) the inner product of two tangent vector fields+( ),
+( ′) at with respect to the standard Riemannian metric on4 +4 −1. Denote by
[ ], [ ] the Gram matrices as follows:

( ) : ( )-component of [ ]

( ) : ( )-component of [ ]
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Then [ ], [ ] are non-singular at each point ∈ ( ). Moreover, we see the
following:

( ) = (1 : − ) =⇒ [ ]




1

2

1

2


 = −




( 1 )
( 2 )
( 3 )
( 4 )




( ) = ( + : 1) =⇒ [ ]




1

2

1

2


 = −




( 1 )
( 2 )
( 3 )
( 4 )




Hence we see that each of1 2 1 2 1 2 1 and 2 is a smooth function of
on an open set of ( ). In fact, , are smooth on the open set of ( ) defined

by ( ) 6= (0 0) and , are smooth on the open set of ( ) defined by ( )6=
(0 0).

Therefore, the mapping : ( )→ P1(H) is smooth.

Denote by ( ) the centralizer ofSp( −1 −1) in Sp( ). Then the group
( ) acts naturally on

C4 = { e1 + e +1 + e + +1 + e2 + +1}

as the restriction of the standard action ofSp( ) on C2 +2 . By the correspondence

C4 ∋ e1 + e +1 + e + +1 + e2 + +1←→
[

+
−

]
∈ H2

the group ( ) acts naturally onP1(H). In fact, for ∈ ( )

( + : − ) = ( ′ + ′ : ′ − ′)

if and only if

( e1 + e +1 + e + +1 + e2 + +1)

= ′e1 + ′e +1 + ′e + +1 + ′e2 + +1

Notice that ( ) is naturally isomorphic toSp(1 1). On the other hand, the
group ( ) acts naturally on ( ) as the restriction of the given action .

Lemma 3.3. For any smooth -action on 4 +4 −1 such that the restricted
-action of coincides with the standard actionψ, the mapping : ( ) → P1(H)
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defined inLemma 3.2is ( )-equivariant. In particular,

( ) = ( + : − ) =⇒ ( ) ⊃ ( ) ∩ I ( )

Proof. Suppose ( ) = ( + : − ) for ∈ ( ). Then contains
I ( ). Let ∈ ( ). Then ( ) = −1 contains I ( ) −1. On
the other hand, we see that ( + :− ) = ( ′ + ′ : ′ − ′) if and only if
I ( ) −1 = I ( ′ ′ ′ ′). By these fact, we obtain ( ( )) = ( ). Hence

the mapping : ( )→ P1(H) is ( )-equivariant. Moreover, ⊃ I ( )
implies

( ) ⊃ ( ) ∩ I ( )

4. Construction of Sp(p q)-actions

Under the natural isomorphism of ( ) toSp(1 1), we define (θ) ∈ ( )
as the matrix corresponding to the following




coshθ sinhθ
sinhθ coshθ

coshθ − sinhθ
− sinhθ coshθ




Now we prepare the following result.

Lemma 4.1. The equation

Sp( ) = (Sp( )× Sp( )) ( )I ( )

holds for each( ) 6= (0 0 0 0).

Proof. Consider the standard action ofSp( ) on C2 +2 . Put

= e1 + e +1 + e + +1 + e2 + +1

For any ∈ Sp( ), we decompose = [1 1 2 2], where 1 2 ∈ C and

1 2 ∈ C . Then we see

−‖ 1‖2 + ‖ 1‖2− ‖ 2‖2 + ‖ 2‖2 = −| |2 + | |2− | |2 + | |2

Hence, we can choose∈ = Sp( )× Sp( ) as follows:

−1 = e1 + e +1 : =
√
‖ 1‖2 + ‖ 2‖2 =

√
‖ 1‖2 + ‖ 2‖2
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Next, we can choose (θ) ∈ ( ) as follows:

(−θ) −1 =
√
| |2 + | |2e1 +

√
| |2 + | |2e +1

Finally, we can choose ∈ ( )∩ such that −1 (−θ) −1 = . In particular,
we obtain −1 (−θ) −1 ∈ I ( ).

As in the previous section, we use the notations =Sp( ), = Sp( )×Sp( )
and =Sp( − 1)× Sp( − 1).

Moreover, we use the notationsI ( ), ( ) and ( ).
In this section, we suppose the following situation:

1. a smooth actionφ : ( )× ( ) −→ ( ) is given.
2. an ( )-equivariant smooth mapping : ( )−→ P1(H) is given.
3. the following conditions are satisfied:

(a) ∈ ( ) ∩ , ∈ ( ) =⇒ φ( ) = ψ( ).
(b) ( ) = ( + : − ) =⇒ ( ) ⊃ ( ) ∩ I ( ).

Notice that such a situation is realized if there is a smooth -action on 4 +4 −1

which is an extension of the standard -actionψ on 4 +4 −1. These facts are proved
in lemmas 3.2, 3.3.

We shall show how to construct a smooth =Sp( )-action on 4 +4 −1 from
the pair (φ ). First, we prepare several lemmas.

Lemma 4.2. The following relations hold.

( ) = (1 : 0)⇐⇒ = Sp( − 1)× Sp( )

( ) = (0 : 1)⇐⇒ = Sp( )× Sp( − 1)

Proof. Notice that the isotropy subgroup for∈ ( ) is one of the follow-
ing:

Sp( − 1)× Sp( − 1) Sp( − 1)× Sp( ) Sp( )× Sp( − 1)

Under the natural isomorphism of ( ) toSp(1 1), the group ∩ ( ) can be
identified with Sp(1)× Sp(1). Here we denote

∩ ( ) = Sp(1)× Sp(1)

Under this identification, we see (Sp(1)× Sp(1))(α:β) = 1× 1 for each (α : β) ∈ P1(H)
satisfyingαβ 6= 0. Hence we see that =Sp( − 1)× Sp( − 1), if ( ) = (α : β)
satisfyingαβ 6= 0. On the other hand, if ( ) = ( + :− ), then we see

⊃ ∩ ( ) ⊃ (Sp(1)× Sp(1))∩ I ( )
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In particular, we see

(Sp(1)× Sp(1))∩ I (1 0 0 0) = 1× Sp(1)

(Sp(1)× Sp(1))∩ I (0 1 0 0) =Sp(1)× 1

By these facts, we obtain the desired result.

Lemma 4.3. ∈ ( ) ( ) = ( + : − ) be given. Then

= 1 1 1 = 2 2 2 =⇒ ψ( 1 φ( 1 )) = ψ( 2 φ( 2 ))

for any 1 2 ∈ ; 1 2 ∈ ( ); 1 2 ∈ I ( ).

Proof. Put

= ( ) = e1 + e +1 + e + +1 + e2 + +1

First, we consider the standard representation of =Sp( ) on C2 +2 . We can de-
scribe by the above notation

( ) = = ( ) ( = 1 2)

By the assumption =1 1 1 = 2 2 2, we obtain

( ) = 1 ( 1 1 1 1) = 2 ( 2 2 2 2)

Hence we obtain = 1 1 = 2 2. Put = −1
1 2. Then we obtain 1 = 2 =

2
−1. By the form of isotropy subgroups, we obtain

1 = 2 ∈ ( ) ( = 1 2)(a)

By Lemma 4.2, we obtain the following:

( ) 6= (0 0) 6= ( ) ⇐⇒ = Sp( − 1)× Sp( − 1)
( ) 6= (0 0) = ( )⇐⇒ = Sp( − 1)× Sp( )
( ) = (0 0) 6= ( ) ⇐⇒ = Sp( )× Sp( − 1)

(b)

Moreover, we obtain

−1
1 2 2

−1
1 ∈ I ( 1 1 1 1)(c)

because the element−1
1 2 2

−1
1 leaves the point 1 fixed.

Now we consider case by case.
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[1] The case (1 1) = (0 0). By (a), (b), we see (2 2) = (0 0). By 1 = 1,

(φ( 1 )) = 1 ( ) = ( 1 + 1 : 0) = (1 : 0)

Then, by (b), we see φ( 1 ) = Sp( − 1)× Sp( ). On the other hand,

−1
1 2 2

−1
1 ∈ I ( 1 0 1 0) = I (1 0 0 0) =Sp( − 1 )

by (c). By the second half of (a), we obtain−1
1 2 ∈ (Sp(1)× Sp( − 1))× Sp( ) and

hence we can decompose

−1
1 2 = ′ ′′ : ′ ∈ Sp( − 1)× Sp( ) ′′ ∈ Sp(1)× 1

Then ′′
2

−1
1 ∈ ( ) ∩ Sp( − 1 ) = 1× Sp(1) and hence we obtain

−1
1 2 2

−1
1 ∈ ∩ Sp( − 1 ) = Sp( − 1)× Sp( )

Under these preparation, we obtain

ψ( 2 φ( 2 )) = ψ( 2 φ( 2
−1
1 1 ))

= ψ( 2 φ( 2
−1
1 φ( 1 )))

= ψ( 2 ψ( 2
−1
1 φ( 1 )))

= ψ( 2 2
−1
1 φ( 1 ))

= ψ( 1 ψ( −1
1 2 2

−1
1 φ( 1 )))

= ψ( 1 φ( 1 ))

[2] The case (1 1) = (0 0) is similarly proved.
[3] The case (1 1) 6= (0 0) 6= ( 1 1). In this case, we see (2 2) 6= (0 0) 6= ( 2 2)
by (a), (b). Now we can decompose

−1
1 2 = ′ ′′ : ′ ∈ Sp( − 1)× Sp( − 1) ′′ ∈ Sp(1)× Sp(1)

by the second half of (a). Then, ′′
2

−1
1 ∈ I ( 1 1 1 1) by (c). Since

I ( 1 1 1 1) = 1I ( ) −1
1 , we obtain ′′

2 = 1 ; ∈ I ( ), where
∈ ( ) ∩ I ( ) ⊂ ( ) . Under these preparation, we obtain

ψ( 2 φ( 2 )) = ψ( 1
′ ′′ φ( 2 ))

= ψ( 1
′′ φ( 2 ))

= ψ( 1 φ( ′′ φ( 2 )))

= ψ( 1 φ( ′′
2 ))

= ψ( 1 φ( 1 ))
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= ψ( 1 φ( 1 φ( )))

= ψ( 1 φ( 1 ))

This completes the proof.

Now we define ( )∈ 4 +4 −1 for each ∈ ∈ ( ) by

( ) = ψ( φ( ))

Here we decompose = :∈ ∈ ( ) and ∈ I ( ), for ( ) =
( + : − ). Lemma 4.3 assures the well-definedness of ( ).

Lemma 4.4. Suppose

ψ( 1 1) = ψ( 2 2) ; 1 2 ∈ ( ) 1 2 ∈

Then the relation ( 1 1) = ( 2 2) holds for any ∈ = Sp( ).

Proof. By the assumption, 1 = 2 and there is a decomposition

−1
1 2 = ′′ ′ : ′ ∈ 2

′′ ∈ Sp(1)× Sp(1)

Now we give a decomposition

1 = : ∈ ∈ ( ) ∈ I ( 1 1 1 1)

Here we assume ( ) = ( + : − ) ( = 1 2). Then

2 = 1
′′ ′ = ′′ ′

On the other hand, we obtain

I ( 1 1 1 1) = ′′I ( 2 2 2 2)(
′′)−1

from 1 = ψ( ′′
2) = φ( ′′

2). Hence we see

∈ I ( 1 1 1 1) =⇒ ′ = ( ′′)−1 ′′ ∈ I ( 2 2 2 2)

Put ′ = ′′. Then, ′ ∈ ( ) and 2 = ′ ′ ′. In this decomposition, we can
show ′ ∈ I ( 2 2 2 2) by considering the isotropy subgroup at2 case by case.
Hence we see

( 2 2) = ψ( φ( ′
2))
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= ψ( φ( ψ( ′′
2)))

= ψ( φ( 1))

= ( 1 1)

By this lemma, we may define a mapping :× 4 +4 −1 −→ 4 +4 −1 by
( ψ( )) = ( ) : ∈ ∈ ∈ ( ). The right-hand side is already

defined.
It is easy to see that the mapping is an abstract action of on4 +4 −1

which is an extension of the standard -actionψ and an extension of the given
( )-action φ. It remains to show is smooth.

First we state the following result which is an accurate formof Lemma 4.1. The
proof is quite similar, so we omit it.

Lemma 4.5. There is a decomposition

= (θ) : ∈ θ ∈ R ∈ I (1 β 0 0)

for any β > 0 and any ∈ .

Put

P1(R) = {( : ) ∈ P1(H) | ∈ R}

Then, P1(R) is a 1-dimensional submanifold ofP1(H). Define

= −1(P1(R))

Because the isotropy subgroups at two points (1 : 0), (0 : 1) are both Sp(1) ×
Sp(1) with respect to the standard ( )-action onP1(H), we see that the orbits
through these points are open and hence the given ( )-equivariant smooth map-
ping : ( )→ P1(H) is transversal onP1(R). Hence is a 4-dimensional subman-
ifold of ( ). Put

+ = { ∈ | ( ) = (1 : β) β > 0}

Then + is an open submanifold of .
Hereafter, we denoteβ = β( ) for ∈ + such that ( ) = (1 :β).
Now we see the following:

(φ( (θ) )) = (coshθ + β sinhθ : sinhθ + β coshθ)

for ∈ + and θ, where β = β( ). Henceφ( (θ) ) ∈ in general. Therefore,
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φ( (θ) ) ∈ + if and only if

(coshθ + β sinhθ)(sinhθ + β coshθ) > 0

In this case, we obtain the following:

β(φ( (θ) )) = β +
(1− β2) tanhθ

1 +β tanhθ

Here we define a matrix ( ) of degree 2 + 2 as follows:

( ) =
1

1 +β2
( 1 1 + β 1 +1 + β +1 1 + β2

+1 +1)

We see trace ( ) = 1. Notice that

trace( ( ) ∗) = cosh 2θ +
2β

1 +β2
sinh 2θ

for the decomposition = (θ) : ∈ ∈ I (1 β 0 0), where ∈ + β = β( ).
Now we define

D+ = {(θ ) ∈ R× + | φ( (θ) ) ∈ +}

+ =

{
( ) ∈ × +

∣∣∣ ± trace( ( ) ∗) 6= 1− β2

1 +β2
β = β( )

}

Clearly D+ is an open set ofR× + and + is an open set of × +.
Now we have the following results, whose proof is quite similar to that of [4,

Lemma 4.7]. So we omit the proof.

Lemma 4.6. For ( ) ∈ × +, ( ) ∈ + if and only if there is a decom-
position

= (θ) : ∈ ∈ I (1 β 0 0) φ( (θ) ) ∈ +

whereβ = β( ).

Lemma 4.7. There is a smooth mapping : + → / × D+ defined by
( ) = ( (θ )), where = (θ) ; ∈ θ ∈ R, and ∈ I (1 β 0 0)

for β = β( ).

Put ( ) = (1×ψ)(µ×1)−1( +), whereψ is the -action andµ is the multipli-
cation on . Then ( ) is an open set of× 4 +4 −1 and we obtain the following
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commutative diagram:

× × +
1×ψ−−−−→ × 4 +4 −1

yµ×1

x∪

× + ⊃ + −−−−→ ( )
y

y

/ × D+
φ′

−−−−→ 4 +4 −1

whereφ′( (θ )) = ψ( φ( (θ) )). Since 1× ψ is a smooth submersion, we see
that the restriction | ( ) is a smooth mapping.

Define 1( ) = { ( e1) | ∈ } and 2( ) = { ( e +1) | ∈ }.
We shall show that these two sets are open in4 +4 −1 and the -action is

smooth on these sets.
Here we define the standard -action0 on 4 +4 −1 by

0( ) = ‖ ‖−1 ; ∈ ∈ 4 +4 −1

Define 1( 0) = { 0( e1) | ∈ }, and 2( 0) = { 0( e +1) | ∈ }. By the
natural correspondence

( e1) 7→ 0( e1) ( e +1) 7→ 0( e +1)

we obtain -equivariant mappingsε : ε( )→ ε( 0) for ε = 1, 2.
We can denote ( (θ) e1) = φ( (θ) e1) = ( (θ) (θ) (θ) (θ)). Since

( (∗ 0 ∗ 0)) = (1 : 0) and ( (0∗ 0 ∗)) = (0 : 1), we see

( (θ) (θ)) 6= (0 0) (∀θ 6= 0)
( (θ) (θ)) 6= (0 0) (∀θ)(a)

Next, using

− ∈ ∩ I (1 0 0 0) (− ) (θ) = (−θ)(− )

we obtain

((− ) (θ) e1) = ψ(− ( (θ) (θ) (θ) (θ)))

= ( (θ) − (θ) (θ) − (θ))

( (−θ)(− ) e1) = ( (−θ) (−θ) (−θ) (−θ))

Hence we see that (θ) and (θ) are even functions, and (θ) and (θ) are odd func-
tions. In particular, there exist smooth even functions0(θ), 0(θ) such that (θ) =

0(θ)θ and (θ) = 0(θ)θ.
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Now we define Sp(1) as the subgroup of ∩ ( ) = Sp(1)×Sp(1) consisting
of matrices in the form




−¯
¯

¯
− ¯




By direct calculation, we see

(θ) is commutative with each element of Sp(1)(b)

Moreover, we obtain



−¯
¯

¯
− ¯


 ( ′ ′)←→ ( + )

[
+ ′

− ′

]

under the natural correspondence

( ′ ′)←→
[

+ ′

− ′

]

This means the action of Sp(1) on ( ) correspondents to the left scalar multipli-
cation. In particular, we obtain

The Sp(1)-action on ( ) is free.(c)

Moreover, we see the set =−1(P1(R)) is Sp(1)-invariant.
Since (φ( (θ) e1)) = (1 : tanhθ), we see the curveφ( (θ) e1) is transverse to

each orbit of the Sp(1)-action, by the facts (b), (c). Hence we obtain

θ
(| (θ)|2 + | (θ)|2) 6= 0 (∀θ 6= 0)(d)

Here we obtain (′(θ) ′(θ) ′(θ) ′(θ)) 6= (0 0 0 0) (∀θ) by making use of the
equation (φ( (θ) e1)) = (1 : tanhθ). Since (θ) (θ) are even functions, we see
′(0) = ′(0) = 0, and hence (0(0) 0(0)) = ( ′(0) ′(0)) 6= (0 0). Combining this

result with (a), we obtain

( (θ) (θ)) 6= (0 0) 6= ( 0(θ) 0(θ)) (∀θ)(e)

Here we define new smooth functions by

σ(θ) =
√
| (θ)|2 + | (θ)|2 τ0(θ) =

√
| 0(θ)|2 + | 0(θ)|2
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α(θ) =
(θ) + (θ)
σ(θ)

β(θ) = 0(θ)− 0(θ)
τ0(θ)

Moreover we defineτ (θ) = τ0(θ)θ. Then, τ (θ) is an odd function andα(θ), β(θ) are
even function with values in quaternions of modulus one. Moreover,

[
( (θ) + (θ))α(θ)
( (θ)− (θ)β(θ)

]
=

[
σ(θ)
τ (θ)

]

By (d), we obtain

θ
τ (θ) =

( / θ)(| (θ)|2 + | (θ)|2)

2
√
| (θ)|2 + | (θ)|2

6= 0 (∀θ 6= 0)

Then τ ′(0) = τ0(0) > 0 by ( ). Hence we seeτ ′(θ) > 0 (∀θ). Therefore,τ : R −→
(− ) (0 < ≤ 1) is a smooth diffeomorphism. The existence of such is assured
by the equation| (θ)|2 + | (θ)|2 + | (θ)|2 + | (θ)|2 = 1 (∀θ).

Here we use the following identification again

C2 +2 ∋ 1⊕ 1 ⊕ 2 ⊕ 2←→ ( 1 + 2)⊕ ( 1− 2) ∈ H +

By the diffeomorphismτ : R −→ (− ), we can describe

1( ) = { ⊕ ∈ H + | ‖ ‖ < ‖ ‖2 + ‖ ‖2 = 1}

First we define 1 : 1( ) −→ 1( ) by

1( ⊕ ) = α(τ−1(‖ ‖))⊕ β(τ−1(‖ ‖))

Then 1 is a -equivariant deffeomorphism by definition. Moreover, weobtain the fol-
lowing:

1( ( (θ) e1)) = σ(θ)e1⊕ τ (θ)e +1 (∀θ)(f)

Since the function tanhθ/
√

1 + (tanhθ)2 is a diffeomorphism and odd function
from R onto the open interval (−1/

√
2 1/

√
2), we can defineγ : (− ) −→

(−1/
√

2 1/
√

2) by the equation

γ(τ (θ)) =
tanhθ√

1 + (tanhθ)2
(∀θ)

Then the mappingγ is a diffeomorphism and odd function. So we define an even
function γ0 : (− )→ R by γ(θ) = γ0(θ)θ (∀θ).
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Next we define 2 : 1( ) −→ 1( 0) by ⊕ 7→ γ1⊕ γ0(‖ ‖), whereγ1 =
‖ ‖−1

√
1− γ(‖ ‖)2. Then 2 is also a -equivariant deffeomorphism by definition.

Moreover, we obtain the following:

2(σ(θ)e1⊕ τ (θ)e +1) = 0( (θ) e1)(g)

The composition 2 ◦ 1 is also a -equivariant diffeomorphism and

( 2 ◦ 1)( ( (θ) e1)) = 0( (θ) e1)

by (f), (g). By making use of Lemma 4.5, we see (2 ◦ 1)( ( e1)) = 0( e1) for
each ∈ .

Consequently, we see1 = 2 ◦ 1 and hence 1 : 1( ) −→ 1( 0) is a smooth
diffeomorphism. By the quite similar argument, we see that the -equivariant mapping

2 : 2( ) −→ 2( 0) is also a smooth diffeomorphism.
Since the family of three open sets ( ), × 1( ) and × 2( ) is an

open covering of × 4 +4 −1 and the restriction of : × 4 +4 −1 −→ 4 +4 −1

is smooth on these three open sets, we see that the action of on4 +4 −1 is
smooth.

Consequently, we obtain the following result.

Theorem 4.8. Let a smooth actionφ : ( ) × ( ) −→ ( ) and an
( )-equivariant smooth mapping : ( ) −→ P1(H) be given. Suppose that the

following conditions are satisfied:
1. ∈ ( ) ∩ , ∈ ( ) =⇒ φ( ) = ψ( ).
2. ( ) = ( + : − ) =⇒ ( ) ⊃ ( ) ∩ I ( ).

Then there exists a smooth -action on4 +4 −1 uniquely, which is an ex-
tension of the standard -actionψ and an extension of the given( )-action φ.
Moreover, the isotropy subgroup at ∈ ( ) containsI ( ), if ( ) = ( + :
− ).

5. Construction of ( f )

In the previous section, we show how to construct a smooth action of Sp( )
on 4 +4 −1 from a pair (φ ), whereφ is a smooth ( )-action on 7 = ( )
whose restriction on ∩ ( ) coincides with the restriction of the standard action
of = Sp( )×Sp( ) and : ( )→ P1(H) is a smooth ( )-equivariant mapping
satisfying the conditions in Theorem 4.8.

Now we consider how to construct such a pair (φ ). Define the circle 0 in
4 +4 −1 and involutions ± on 0 by

0 = { e1 + e +1 | 2 + 2 = 1; ∈ R}
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ε( e1 + e +1) =

{− e1 + e +1 (ε = +)
e1 − e +1 (ε = −)

Now we give a pair (φ0 0) of a smooth one-parameter groupφ0 : R× 0→ 0 and a
smooth function 0 : 0→ P1(R) satisfying the conditions

εφ0(θ ) = φ0(−θ ε( )) (ε = ±)(a)

0( ) = ( : ) =⇒ 0( ε( )) = (− : ) (ε = ±)(b)

0( ) = ( : ) =⇒
0(φ0(θ )) = ( coshθ + sinhθ : sinhθ + coshθ)(c)

0( ) = (1 : 0)⇐⇒ = ±e1(d)

0( ) = (0 : 1)⇐⇒ = ±e +1(e)

From the pair (φ0 0), we can construct a desired pair (φ ). The method is quite
similar as one in the previous section and as one in [5,§5], so we omit the descrip-
tion. Notice that each open orbit of ( )-actionφ corresponds to an equivalence
class of open orbits of the one-parameter groupφ0, where two open orbits of the one-
parameter groupφ0 are equivalent if the one is mapped onto the other by the involu-
tions ±.

The next problem is how to construct a pair (φ0 0) satisfying the conditions (a)–
(e). First we prepare the following lemma [1, Lemma 10.1].

Lemma 5.1. There exist smooth functions defined onR satisfying the con-
ditions
(1) ( ): odd function, ( ): even function,
(2) | ( )| < 1(| | < 1), ( ) = 1 ( ≥ 1), ( ) =−1 ( ≤ −1),
(3) ( ) = 0 (| | ≥ 1),
(4) ′( ) > 0 (| | < 1),
(5) ( ) ′( ) = ( )2− 1 (∀ ).

For each positive integer , define new smooth functions by

(τ ) = (ω0)−1 (ω2 −1) (ω4 −2)−1 (0< τ < π)

(τ ) =
4 −2∑

=0

(−1) (ω ) (0≤ τ ≤ π)

(τ ) = −
(
τ +

π

2

) (
−π

2
< τ <

π

2

)

Here =π/(8 − 4) andω = (τ − 2 )/ . Then the following conditions are satisfied
by (1)–(5):
(6) (τ ) ′ (τ ) = (τ )2 − 1,
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(7) (π − τ ) = − (τ ), (π − τ ) = (τ ),
(8) (τ ) (τ ) = 1 (0< τ < π/2).

Put

= −
(
∂

∂

)
+

(
∂

∂

)
= e1 + e +1

which is the unit tangent vector field on0. We see (ξ ±) = − (ξ) ◦ ± for any
smooth functionξ on 0. Denote by = (τ ) ∈ 0 as follows:

(τ ) = (cosτ )e1 + (sinτ )e +1

Now we define smooth functions on an open set of0 by

( ) =

{
(τ ) 0≤ τ ≤ π
(−τ ) −π ≤ τ ≤ 0

( ) =

{− (τ ) 0< τ < π

(−τ ) −π < τ < 0

( ) =





− (τ ) −π
2
< τ <

π

2

(π − τ )
π

2
< τ <

3π
2

Moreover we define

0( ) =

{
( ( ) : 1) 6= ±e1

(1 : ( )) 6= ±e +1

Then we obtain a smooth function0 : 0→ P1(R) by (7) (8).
Since + (τ ) = (π − τ ) and − (τ ) = (−τ ), we obtain

( ±( )) = ( )

0( ) = ( : ) =⇒ 0( ±( )) = (− : )

Then we see that the function0 satisfies the conditions (b), (d), (e).
Now we define a one-parameter groupφ0 on 0 as the one corresponding to the

tangent vector field , that is,φ0 is defined by the following:

( ) (ξ) = lim
θ→0

ξ(φ0(θ ))− ξ( )
θ

for ∈ 0 and any smooth functionξ on 0. On the other hand, we see

( ) ( ) = 1− ( )2 for 6= ±e1

( ) ( ) = 1− ( )2 for 6= ±e +1
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by (6)–(8). Hence we obtain (ξ/ θ)(φ0(θ )) = 1− ξ(φ0(θ ))2 for ξ = . There-
fore we obtainξ(φ0(θ )) = (ξ( ) + tanhθ)/(1 + ξ( ) tanhθ) for ξ = . Then we
see the pair (φ0 0) satisfies the condition (c). Moreover, we obtain±φ0(θ ± ) =
φ0(−θ ). So the condition (a) holds forφ0.

Consequently, the pair (φ0 0) satisfies all conditions (a)–(e). Put the corre-
sponding smooth action ofSp( ) on 4 +4 −1. Then we see the action has just
2 open orbits on 4 +4 −1.

Now we can state the following result.

Theorem 5.2. For any positive integer , there exists a smooth action of
Sp( ) on 4 +4 −1, which has just2 open orbits.

6. Concluding remark

For any real number , a smooth action ofSp( ) on 4 +4 −1 is defined
by ( ) = ‖ ‖−1 exp( log‖ ‖), where =

√
−1. We call the twisted

linear action [6]. For = 0, the action 0 is described by 0( ) = ‖ ‖−1.
This is the standard action considerd in the second half of the section 4.

The restrictedSp( )×Sp( )-action of the twisted linear action is the standard
action and we see that the twisted linear action has just three orbits and two of
them are open orbits and one of them is compact orbit of codimension 1. Moreover
we see that a matrix is contained in the isotropy algebra at a point of the com-
pact orbit, if and only if = (1− ) for some real number .

By a routine work, we obtain the following result.

Theorem 6.1. Between two twisted linear actions and ′ , there exists an
equivariant homeomorphism if and only if| | = | ′|.
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