ON SMOOTH $\operatorname{Sp}(p, q)$-ACTIONS ON $S^{4 p+4 q-1}$

Dedicated to the memory of Professor Katsuo Kawakubo

Fuichi UCHIDA*

(Received July 14, 2000)

0. Introduction

Consider the standard $\mathbf{S p}(p) \times \mathbf{S p}(q)$ action on the $(4 p+4 q-1)$-sphere $S^{4 p+4 q-1}$. This action has codimension-one principal orbits with $\mathbf{S p}(p-1) \times \mathbf{S p}(q-1)$ as the principal isotropy subgroup. Furthermore, the fixed point set of the restricted $\mathbf{S p}(p-1) \times$ $\mathbf{S p}(q-1)$ action is diffeomorphic to the seven-sphere S^{7}.

In the previous papers $[4,5]$, we have studied smooth $\mathbf{S O}_{0}(p, q)$-actions on S^{p+q-1}, each of which is an extension of the standard $\mathbf{S O}(p) \times \mathbf{S O}(q)$ action on S^{p+q-1}. In this paper, we shall study smooth $\mathbf{S p}(p, q)$-actions on $S^{4 p+4 q-1}$, each of which is an extension of the standard $\mathbf{S p}(p) \times \mathbf{S p}(q)$ action on $S^{4 p+4 q-1}$, and we shall show such an action is characterized by a pair (ϕ, f) satisfying certain conditions, where ϕ is a smooth $\mathbf{S p}(1,1)$-action on S^{7}, and $f: S^{7} \rightarrow \mathbf{P}_{1}(\mathbf{H})$ is a smooth mapping.

The pair (ϕ, f) was introduced by Asoh [1] to consider smooth $\mathbf{S L}(2, \mathbf{C})$-actions on the 3 -sphere, and was improved by our previous papers [4,5]. The pair was used also by Mukōyama [2] to consider smooth $\mathbf{S p}(2, \mathbf{R})$-actions on the 4 -sphere. He studies also smooth $\mathbf{S U}(p, q)$-actions on $S^{2 p+2 q-1}$ [3]. Here, we notice that the Lie groups $\mathbf{S L}(2, \mathbf{C})$ and $\mathbf{S p}(2, \mathbf{R})$ are locally isomorphic to $\mathbf{S O _ { 0 }}(3,1)$ and $\mathbf{S O}(3,2)$, respectively.

The author wishes to express gratitude to the referees and the editors for their invaluable advice.

1. Standard representation of $\operatorname{Sp}(p, q)$

Let $\mathbf{S p}(p, q)$ denote the group of complex matrices of degree $2 p+2 q$ defined by the equations

$$
{ }^{t} A J_{p+q} A=J_{p+q}, \quad{ }^{t} A K_{p, q} \bar{A}=K_{p, q} .
$$

[^0]Here,

$$
J_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right], \quad K_{p, q}=\left[\begin{array}{cccc}
-I_{p} & 0 & 0 & 0 \\
0 & I_{q} & 0 & 0 \\
0 & 0 & -I_{p} & 0 \\
0 & 0 & 0 & I_{q}
\end{array}\right] .
$$

Consider the linear mapping $\mathbf{J}=c K J: \mathbf{C}^{2 p+2 q} \rightarrow \mathbf{C}^{2 p+2 q}$. Here, $K=K_{p, q}, J=$ J_{p+q} and c is the complex conjugation. Since $K^{2}=I, J^{2}=-I$ and $K J=J K$, we obtain $\mathbf{J}^{2}=-I$. Furthermore, we see $\mathbf{J}(z X)=\bar{z} \mathbf{J}(X)$ for each $X \in \mathbf{C}^{2 p+2 q}$ and $z \in \mathbf{C}$. Hence, the linear mapping \mathbf{J} defines a quaternion structure on $\mathbf{C}^{2 p+2 q}$. We see $\mathbf{J}(A X)=A \mathbf{J}(X)$ for each $A \in \mathbf{S p}(p, q)$ and $X \in \mathbf{C}^{2 p+2 q}$, by the definition of $\mathbf{S p}(p, q)$. Therefore, the quaternion structure \mathbf{J} is $\mathbf{S p}(p, q)$-equivariant.

Now we decompose an element X of $\mathbf{C}^{2 p+2 q}$ into $X={ }^{t}\left[U_{1}, V_{1}, U_{2}, V_{2}\right]$, where $U_{1}, U_{2} \in \mathbf{C}^{p}$ and $V_{1}, V_{2} \in \mathbf{C}^{q}$. Then we see

$$
\mathbf{J}^{t}\left[U_{1}, V_{1}, U_{2}, V_{2}\right]={ }^{t}\left[-\bar{U}_{2}, \bar{V}_{2}, \bar{U}_{1},-\bar{V}_{1}\right] .
$$

Hence we obtain the following equation for each $\alpha, \beta \in \mathbf{C}$:

$$
(\alpha I+\beta \mathbf{J})\left[\begin{array}{c}
U_{1} \\
V_{1} \\
U_{2} \\
V_{2}
\end{array}\right]=\left[\begin{array}{c}
\alpha U_{1}-\beta \bar{U}_{2} \\
\alpha V_{1}+\beta \bar{V}_{2} \\
\alpha U_{2}+\beta \bar{U}_{1} \\
\alpha V_{2}-\beta \bar{V}_{1}
\end{array}\right] .
$$

Therefore, we can identify naturally $\mathbf{C}^{2 p+2 q}$ having the quaternion structure \mathbf{J} with the quaternion vector space \mathbf{H}^{p+q} having the right scalar multiplication by the following correspondence:

$$
{ }^{t}\left[U_{1}, V_{1}, U_{2}, V_{2}\right] \rightarrow{ }^{t}\left[U_{1}+j U_{2}, V_{1}-j V_{2}\right] .
$$

Denote by $\mathbf{I}(a, b, c, d)$ the isotropy group at

$$
a \mathbf{e}_{1}+b \mathbf{e}_{p+1}+c \mathbf{e}_{p+q+1}+d \mathbf{e}_{2 p+q+1}
$$

with respect to the standard representation of $\mathbf{S p}(p, q)$ on $\mathbf{C}^{2 p+2 q}$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$, $\mathbf{e}_{2 p+2 q}$ are the standard basis of $\mathbf{C}^{2 p+2 q}$ and a, b, c, d are complex numbers with $(a, b, c, d) \neq(0,0,0,0)$. Then, we see the followings:

$$
\begin{aligned}
& \operatorname{dim} \frac{\mathbf{S p}(p, q)}{\mathbf{I}(a, b, c, d)}=4 p+4 q-1, \\
& \mathbf{I}(1,0,0,0)=\mathbf{I}(0,0,1,0)=\mathbf{S p}(p-1, q), \\
& \mathbf{I}(0,1,0,0)=\mathbf{I}(0,0,0,1)=\mathbf{S p}(p, q-1),
\end{aligned}
$$

$$
\bigcap_{(a, b, c, d) \neq(0,0,0,0)} \mathbf{I}(a, b, c, d)=\mathbf{S p}(p-1, q-1)
$$

For $(a, b, c, d) \neq(0,0,0,0)$ and $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \neq(0,0,0,0)$, we define an equivalence relation:

$$
(a+j c, b-j d) \sim\left(a^{\prime}+j c^{\prime}, b^{\prime}-j d^{\prime}\right) \Longleftrightarrow\left\{\begin{array}{l}
a^{\prime}+j c^{\prime}=(a+j c)(\alpha+j \beta) \\
b^{\prime}-j d^{\prime}=(b-j d)(\alpha+j \beta)
\end{array}\right.
$$

for some quaternion $\alpha+j \beta \neq 0$. The set of equivalence classes is naturally identified with the 1-dimensional quaternion projective space $\mathbf{P}_{1}(\mathbf{H})$. Then, we see the following:

$$
(a+j c, b-j d) \sim\left(a^{\prime}+j c^{\prime}, b^{\prime}-j d^{\prime}\right) \Longleftrightarrow \mathbf{I}(a, b, c, d)=\mathbf{I}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)
$$

2. Certain closed subgroups of $\operatorname{Sp}(p, q)$

Put

$$
\begin{aligned}
& \mathbf{S p}(p) \times \mathbf{S p}(q)=\mathbf{S p}(p, q) \cap \mathbf{U}(2 p+2 q) \\
& \mathbf{S p}(p-1) \times \mathbf{S p}(q-1)=\mathbf{I}(1,0,0,0) \cap \mathbf{I}(0,1,0,0) \cap \mathbf{U}(2 p+2 q)
\end{aligned}
$$

Then, $\mathbf{S p}(p) \times \mathbf{S p}(q)$ is the maximal compact subgroup of $\mathbf{S p}(p, q)$, and $\mathbf{S p}(p-1) \times$ $\mathbf{S p}(q-1)$ is the principal isotropy subgroup of the standard $\mathbf{S p}(p) \times \mathbf{S p}(q)$ action on $\mathbf{C}^{2 p+2 q}$ which is the restriction of the standard representation of $\mathbf{S p}(p, q)$.

Now we shall search all subalgebras \mathcal{G} of $\operatorname{Lie} \operatorname{Sp}(p, q)$ satisfying the following conditions:

$$
\begin{aligned}
& \mathcal{G} \supset \operatorname{Lie}(\mathbf{S p}(p-1) \times \mathbf{S p}(q-1)), \mathcal{G} \neq \operatorname{Lie} \mathbf{S p}(p, q) \\
& \quad \operatorname{dim} \operatorname{Lie} \mathbf{S p}(p, q)-\operatorname{dim} \mathcal{G} \leq 4 p+4 q-1
\end{aligned}
$$

Here, Lie $\mathbf{S p}(p, q)$ denotes the Lie algebra of $\mathbf{S p}(p, q)$ which is a Lie subalgebra of $M_{2 p+2 q}(\mathbf{C})$ with the bracket operation $[A, B]=A B-B A$, and so on.

Let $\operatorname{Ad}: \mathbf{S p}(p, q) \rightarrow \operatorname{Aut}(\operatorname{Lie} \mathbf{S p}(p, q))$ be the adjoint representation defined by $A M A^{-1} ; A \in \mathbf{S p}(p, q), M \in \operatorname{Lie} \mathbf{S p}(p, q)$. Then we can decompose $\operatorname{Lie} \mathbf{S p}(p, q)$ into

$$
\operatorname{Lie} \mathbf{S p}(p, q)=\mathcal{K} \oplus \mathcal{S} \oplus \mathcal{U} \oplus \mathcal{V} \oplus \mathcal{T}
$$

as a direct sum of $\left.\operatorname{Ad}\right|_{(\operatorname{Sp}(p-1) \times \operatorname{Sp}(q-1))}$-invariant vector spaces. Here,

$$
\begin{aligned}
\mathcal{K} & =\operatorname{Lie}(\mathbf{S p}(p-1) \times \mathbf{S p}(q-1)), \\
\mathcal{S} & =\nu_{p-1} \otimes \nu_{q-1}^{*}, \\
\mathcal{U} & =\nu_{p-1} \oplus \nu_{p-1}, \\
\mathcal{V} & =\nu_{q-1} \oplus \nu_{q-1},
\end{aligned}
$$

$$
\mathcal{T}=\mathbf{R}^{10}
$$

Then the desired algebra \mathcal{G} can be decomposed into

$$
\mathcal{G}=\mathcal{K} \oplus(\mathcal{G} \cap \mathcal{S}) \oplus(\mathcal{G} \cap \mathcal{U}) \oplus(\mathcal{G} \cap \mathcal{V}) \oplus(\mathcal{G} \cap \mathcal{T})
$$

Under the bracket operation, we obtain the following data.

$$
\begin{array}{lll}
{[\mathcal{K}, \mathcal{S}]=\mathcal{S},} & {[\mathcal{K}, \mathcal{U}]=\mathcal{U},} & {[\mathcal{K}, \mathcal{V}]=\mathcal{V}, \quad[\mathcal{K}, \mathcal{T}]=\mathbf{0}} \\
{[\mathcal{T}, \mathcal{S}]=\mathbf{0},} & {[\mathcal{T}, \mathcal{U}]=\mathcal{U},} & {[\mathcal{T}, \mathcal{V}]=\mathcal{V}, \quad[\mathcal{T}, \mathcal{T}]=\mathcal{T}} \\
{[\mathcal{S}, \mathcal{U}]=\mathcal{V},} & {[\mathcal{S}, \mathcal{V}]=\mathcal{U},} & {[\mathcal{U}, \mathcal{V}]=\mathcal{S},} \\
{[\mathcal{U}, \mathcal{U}] \subset \mathcal{K} \oplus \mathcal{T},} & {[\mathcal{V}, \mathcal{V}] \subset \mathcal{K} \oplus \mathcal{T} .} &
\end{array}
$$

Moreover we obtain the following.

$$
\begin{array}{ll}
\operatorname{dim} \mathcal{S}=4(p-1)(q-1), & \operatorname{dim} \mathcal{U}=8 p-8 \\
\operatorname{dim} \mathcal{V}=8 q-8, & \operatorname{dim} \mathcal{T}=10
\end{array}
$$

By a routine work, we obtain the following result.

Lemma 2.1. Suppose $p \geq 2$ and $q \geq 2$. Let \mathcal{G} be a proper Lie subalgebra of Lie $\mathbf{S p}(p, q)$ satisfying the following conditions:

$$
\begin{aligned}
& \mathcal{G} \supset \operatorname{Lie}(\mathbf{S p}(p-1) \times \mathbf{S p}(q-1)), \quad \mathcal{G} \neq \operatorname{Lie} \mathbf{S p}(p, q) \\
& \operatorname{dim} \operatorname{Lie} \mathbf{S p}(p, q)-\operatorname{dim} \mathcal{G} \leq 4 p+4 q-1
\end{aligned}
$$

Then, \mathcal{G} is one of the following:
(1) $\mathcal{G} \supset \operatorname{Lie} \mathbf{I}(a, b, c, d)$ for some $(a, b, c, d) \neq(0,0,0,0)$ such that $\mathcal{G} \cap(\mathcal{U} \oplus \mathcal{V})=$ $(\operatorname{Lie} \mathbf{I}(a, b, c, d)) \cap(\mathcal{U} \oplus \mathcal{V})$.
(2) $\mathcal{G}=\operatorname{Lie}(\mathbf{S p}(p, 1) \times \mathbf{S p}(q-1))$ for $q=2$.
(3) $\mathcal{G}=\operatorname{Lie}(\mathbf{S p}(p-1) \times \mathbf{S p}(1, q))$ for $p=2$.
(4) $p=q=2, \operatorname{dim} \mathcal{G}=21$ and \mathcal{G} satisfies the following condition: $\mathcal{G} \cap \operatorname{Lie}(\mathbf{S p}(2) \times$ $\mathbf{S p}(2))=A^{-1} \operatorname{Lie}(\Delta \mathbf{S p}(1) \times(\mathbf{S p}(1) \times \mathbf{S p}(1))) A$, for some $A \in \mathbf{S p}(2) \times \mathbf{S p}(2)$.

3. Smooth $\operatorname{Sp}(p, q)$ actions on $S^{4 p+4 q-1}$

Consider the standard action of $\mathbf{S p}(p) \times \mathbf{S p}(q)$ on $S^{4 p+4 q-1}$ defined by

$$
\begin{aligned}
& \psi:(\mathbf{S p}(p) \times \mathbf{S p}(q)) \times S^{4 p+4 q-1} \longrightarrow S^{4 p+4 q-1} \\
& \psi(A, X)=A X ; A \in \mathbf{S p}(p) \times \mathbf{S p}(q), X \in S^{4 p+4 q-1}
\end{aligned}
$$

The action ψ has $\mathbf{S p}(p-1) \times \mathbf{S p}(q-1)$ as the principal isotropy type and $\mathbf{S p}(p) \times$ $\mathbf{S p}(q-1)$ and $\mathbf{S p}(p-1) \times \mathbf{S p}(q)$ as singular isotropy types. Moreover the codimension of principal orbits is one.

Put $G=\mathbf{S p}(p, q), K=\mathbf{S p}(p) \times \mathbf{S p}(q)$ and $H=\mathbf{S p}(p-1) \times \mathbf{S p}(q-1)$.
Here, we consider $S^{4 p+4 q-1}$ as the unit sphere of $C^{2 p+2 q}$. Then the fixed point set $F(H)$ of restricted H-action is the 7 -sphere as follows:

$$
F(H)=\left\{a \mathbf{e}_{1}+b \mathbf{e}_{p+1}+c \mathbf{e}_{p+q+1}+d \mathbf{e}_{2 p+q+1}\right\}
$$

where a, b, c, d are complex numbers satisfying $|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}=1$.
Let us consider a smooth G-action Φ on $S^{4 p+4 q-1}$ such that the restricted K-action of Φ coincides with the standard action ψ.

Then we obtain a mapping $f: F(H) \rightarrow \mathbf{P}_{1}(\mathbf{H})$ defined by the condition

$$
f(Y)=(a+j c: b-j d) \Longleftrightarrow G_{Y} \supset \mathbf{I}(a, b, c, d)
$$

Since the isotropy subgroup G_{Y} at $Y \in F(H)$ contains H, G_{Y} contains a unique subgroup of the form $\mathbf{I}(a, b, c, d)$ by Lemma 2.1.

Lemma 3.1. For any smooth G-action Φ on $S^{4 p+4 q-1}$ such that the restricted K-action of Φ coincides with the standard action ψ, the relations $G_{\mathbf{e}_{1}}=\mathbf{S p}(p-1, q)$ and $G_{\mathbf{e}_{p+1}}=\mathbf{S p}(p, q-1)$ are hold. In particular, the orbits through \mathbf{e}_{1} and \mathbf{e}_{p+1} are open in $S^{4 p+4 q-1}$.

Proof. First we obtain $G_{\mathbf{e}_{1}} \supset \mathbf{S p}(p-1, q)$ and $G_{\mathbf{e}_{p+1}} \supset \mathbf{S p}(p, q-1)$ by the following facts:

$$
\begin{aligned}
& \mathbf{S p}(p-1) \times \mathbf{S p}(q) \subset \mathbf{I}(a, b, c, d) \Longleftrightarrow b=d=0 \\
& \mathbf{S p}(p) \times \mathbf{S p}(q-1) \subset \mathbf{I}(a, b, c, d) \Longleftrightarrow a=c=0 \\
& \mathbf{I}(1,0,0,0)=\mathbf{S p}(p-1, q), \mathbf{I}(0,1,0,0)=\mathbf{S p}(p, q-1)
\end{aligned}
$$

On the other hand, by Lemma 2.1 we obtain $G_{\mathbf{e}_{1}} \subset \mathbf{S p}(1) \times \mathbf{S p}(p-1, q)$ and $G_{\mathbf{e}_{p+1}} \subset \mathbf{S p}(p, q-1) \times \mathbf{S p}(1)$. By considering the restricted K-action ψ, we obtain $G_{\mathbf{e}_{1}}=\mathbf{S p}(p-1, q)$ and $G_{\mathbf{e}_{p+1}}=\mathbf{S p}(p, q-1)$. In particular, since $\operatorname{dim} G / \mathbf{S p}(p-1, q)=$ $\operatorname{dim} G / \mathbf{S p}(p, q-1)=4 p+4 q-1$, the orbits through \mathbf{e}_{1} and \mathbf{e}_{p+1} are open in $S^{4 p+4 q-1}$.

Lemma 3.2. For any smooth G-action Φ on $S^{4 p+4 q-1}$ such that the restricted K-action of Φ coincides with the standard action ψ, the mapping $f: F(H) \rightarrow \mathbf{P}_{1}(\mathbf{H})$ defined by the condition

$$
f(Y)=(a+j c: b-j d) \Longleftrightarrow G_{Y} \supset \mathbf{I}(a, b, c, d)
$$

is smooth.

Proof. First we define 10 elements of Lie G as follows:

$$
\begin{aligned}
A_{1} & =E_{1, p}-E_{p, 1}+E_{p+q+1,2 p+q}-E_{2 p+q, p+q+1}, \\
A_{2} & =-i\left(E_{1, p}+E_{p, 1}-E_{p+q+1,2 p+q}-E_{2 p+q, p+q+1}\right), \\
A_{3} & =E_{2 p+q, 1}-E_{1,2 p+q}+E_{p+q+1, p}-E_{p, p+q+1}, \\
A_{4} & =i\left(E_{2 p+q, 1}+E_{1,2 p+q}+E_{p+q+1, p}+E_{p, p+q+1}\right), \\
C & =E_{p, p+1}+E_{p+1, p}-E_{2 p+q, 2 p+q+1}-E_{2 p+q+1,2 p+q}, \\
B_{1} & =E_{p+1, p+q}-E_{p+q, p+1}+E_{2 p+q+1,2 p+2 q}-E_{2 p+2 q, 2 p+q+1}, \\
B_{2} & =-i\left(E_{p+1, p+q}+E_{p+q, p+1}-E_{2 p+q+1,2 p+2 q}-E_{2 p+2 q, 2 p+q+1}\right), \\
B_{3} & =E_{2 p+2 q, p+1}-E_{p+1,2 p+2 q}+E_{2 p+q+1, p+q}-E_{p+q, 2 p+q+1}, \\
B_{4} & =i\left(E_{2 p+2 q, p+1}+E_{p+1,2 p+2 q}+E_{2 p+q+1, p+q}+E_{p+q, 2 p+q+1}\right), \\
D & =E_{p+q, 1}+E_{1, p+q}-E_{2 p+2 q, p+q+1}-E_{p+q+1,2 p+2 q} .
\end{aligned}
$$

Then we see the following relations:

$$
\begin{aligned}
& b_{1} A_{1}+b_{2} A_{2}+d_{1} A_{3}+d_{2} A_{4}+C \in \operatorname{Lie} \mathbf{I}(1, b, 0, d) \\
& a_{1} B_{1}+a_{2} B_{2}+c_{1} B_{3}+c_{2} B_{4}+D \in \operatorname{Lie} \mathbf{I}(a, 1, c, 0)
\end{aligned}
$$

where each coefficients are real numbers defined by $a=a_{1}+i a_{2}, b=b_{1}+i b_{2}, c=c_{1}+i c_{2}$ and $d=d_{1}+i d_{2}$. Moreover, we see that each of $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}$ and B_{4} is an element of Lie K.

Now we define a Lie algebra homomorphism Φ^{+}: Lie $G \longrightarrow \Gamma\left(S^{4 p+4 q-1}\right)$ by

$$
\Phi^{+}(M)_{Y}(h)=\lim _{t \rightarrow 0} \frac{h(\Phi(\exp (-t M), Y))-h(Y)}{t}
$$

where $\Gamma(-)$ denotes the Lie algebra consisting of smooth vector fields on a given manifold, $M \in$ Lie G and h is a smooth function defined on an open neighborhood of Y. For $M \in \operatorname{Lie} G$, we see $M \in \operatorname{Lie} G_{Y} \Longleftrightarrow \Phi^{+}(M)_{Y}=0$.

Now we see that the tangent vector fields $\Phi^{+}\left(A_{1}\right), \Phi^{+}\left(A_{2}\right), \Phi^{+}\left(A_{3}\right), \Phi^{+}\left(A_{4}\right)$, $\Phi^{+}\left(B_{1}\right), \Phi^{+}\left(B_{2}\right), \Phi^{+}\left(B_{3}\right)$ and $\Phi^{+}\left(B_{4}\right)$ are linearly independent at each point Y of $F(H)$. Because, if they are linearly dependent at $Y \in F(H)$, a non-trivial linear combination of $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}$ and B_{4} is contained in Lie G_{Y} and it is a contradiction to the isotropy types of the standard K-action ψ.

Let us denote by $\left(M, M^{\prime}\right)_{Y}$ the inner product of two tangent vector fields $\Phi^{+}(M)$, $\Phi^{+}\left(M^{\prime}\right)$ at Y with respect to the standard Riemannian metric on $S^{4 p+4 q-1}$. Denote by $A[Y], B[Y]$ the Gram matrices as follows:

$$
\begin{array}{ll}
\left(A_{s}, A_{t}\right)_{Y}: & (s, t) \text {-component of } A[Y], \\
\left(B_{s}, B_{t}\right)_{Y}: & (s, t) \text {-component of } B[Y] .
\end{array}
$$

Then $A[Y], B[Y]$ are non-singular at each point $Y \in F(H)$. Moreover, we see the following:

$$
\left.\begin{array}{rl}
f(Y)=(1: b-j d) \Longrightarrow A[Y]
\end{array}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
d_{1} \\
d_{2}
\end{array}\right]=-\left[\begin{array}{l}
\left(A_{1}, C\right)_{Y} \\
\left(A_{2}, C\right)_{Y} \\
\left(A_{3}, C\right)_{Y} \\
\left(A_{4}, C\right)_{Y}
\end{array}\right], ~\left[\begin{array}{l}
a_{1} \\
a_{2} \\
c_{1} \\
c_{2}
\end{array}\right]=-\left[\begin{array}{l}
\left(B_{1}, D\right)_{Y} \\
\left(B_{2}, D\right)_{Y} \\
\left(B_{3}, D\right)_{Y} \\
\left(B_{4}, D\right)_{Y}
\end{array}\right] . ~ . ~ . ~ a+j c: 1\right) \Longrightarrow B[Y)=(a) .
$$

Hence we see that each of $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}$ and d_{2} is a smooth function of Y on an open set of $F(H)$. In fact, b_{i}, d_{j} are smooth on the open set of $F(H)$ defined by $(a, c) \neq(0,0)$ and a_{i}, c_{j} are smooth on the open set of $F(H)$ defined by $(b, d) \neq$ (0,0).

Therefore, the mapping $f: F(H) \rightarrow \mathbf{P}_{1}(\mathbf{H})$ is smooth.
Denote by $N(p, q)$ the centralizer of $\mathbf{S p}(p-1, q-1)$ in $\mathbf{S p}(p, q)$. Then the group $N(p, q)$ acts naturally on

$$
\mathbf{C}^{4}=\left\{a \mathbf{e}_{1}+b \mathbf{e}_{p+1}+c \mathbf{e}_{p+q+1}+d \mathbf{e}_{2 p+q+1}\right\}
$$

as the restriction of the standard action of $\mathbf{S p}(p, q)$ on $\mathbf{C}^{2 p+2 q}$. By the correspondence

$$
\mathbf{C}^{4} \ni a \mathbf{e}_{1}+b \mathbf{e}_{p+1}+c \mathbf{e}_{p+q+1}+d \mathbf{e}_{2 p+q+1} \longleftrightarrow\left[\begin{array}{c}
a+j c \\
b-j d
\end{array}\right] \in \mathbf{H}^{2}
$$

the group $N(p, q)$ acts naturally on $\mathbf{P}_{1}(\mathbf{H})$. In fact, for $n \in N(p, q)$

$$
n(a+j c: b-j d)=\left(a^{\prime}+j c^{\prime}: b^{\prime}-j d^{\prime}\right)
$$

if and only if

$$
\begin{aligned}
& n\left(a \mathbf{e}_{1}+b \mathbf{e}_{p+1}+c \mathbf{e}_{p+q+1}+d \mathbf{e}_{2 p+q+1}\right) \\
= & a^{\prime} \mathbf{e}_{1}+b^{\prime} \mathbf{e}_{p+1}+c^{\prime} \mathbf{e}_{p+q+1}+d^{\prime} \mathbf{e}_{2 p+q+1} .
\end{aligned}
$$

Notice that $N(p, q)$ is naturally isomorphic to $\mathbf{S p}(1,1)$. On the other hand, the group $N(p, q)$ acts naturally on $F(H)$ as the restriction of the given action Φ.

Lemma 3.3. For any smooth G-action Φ on $S^{4 p+4 q-1}$ such that the restricted K-action of Φ coincides with the standard action ψ, the mapping $f: F(H) \rightarrow \mathbf{P}_{1}(\mathbf{H})$
defined in Lemma 3.2 is $N(p, q)$-equivariant. In particular,

$$
f(Y)=(a+j c: b-j d) \Longrightarrow N(p, q)_{Y} \supset N(p, q) \cap \mathbf{I}(a, b, c, d)
$$

Proof. Suppose $f(Y)=(a+j c: b-j d)$ for $Y \in F(H)$. Then G_{Y} contains $\mathbf{I}(a, b, c, d)$. Let $n \in N(p, q)$. Then $G_{\Phi(n, Y)}=n G_{Y} n^{-1}$ contains $n \mathbf{I}(a, b, c, d) n^{-1}$. On the other hand, we see that $n(a+j c: b-j d)=\left(a^{\prime}+j c^{\prime}: b^{\prime}-j d^{\prime}\right)$ if and only if $n \mathbf{I}(a, b, c, d) n^{-1}=\mathbf{I}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$. By these fact, we obtain $f(\Phi(n, Y))=n f(Y)$. Hence the mapping $f: F(H) \rightarrow \mathbf{P}_{1}(\mathbf{H})$ is $N(p, q)$-equivariant. Moreover, $G_{Y} \supset \mathbf{I}(a, b, c, d)$ implies

$$
N(p, q)_{Y} \supset N(p, q) \cap \mathbf{I}(a, b, c, d)
$$

4. Construction of $\operatorname{Sp}(p, q)$-actions

Under the natural isomorphism of $N(p, q)$ to $\mathbf{S p}(1,1)$, we define $M(\theta) \in N(p, q)$ as the matrix corresponding to the following

$$
\left[\left.\begin{array}{r|r}
\cosh \theta & \sinh \theta \\
\sinh \theta & \cosh \theta
\end{array} \right\rvert\, \begin{array}{l}
\\
\hline
\end{array}\right.
$$

Now we prepare the following result.
Lemma 4.1. The equation

$$
\mathbf{S p}(p, q)=(\mathbf{S p}(p) \times \mathbf{S p}(q)) N(p, q) \mathbf{I}(a, b, c, d)
$$

holds for each $(a, b, c, d) \neq(0,0,0,0)$.
Proof. Consider the standard action of $\mathbf{S p}(p, q)$ on $\mathbf{C}^{2 p+2 q}$. Put

$$
Y=a \mathbf{e}_{1}+b \mathbf{e}_{p+1}+c \mathbf{e}_{p+q+1}+d \mathbf{e}_{2 p+q+1} .
$$

For any $g \in \mathbf{S p}(p, q)$, we decompose $g Y={ }^{t}\left[U_{1}, V_{1}, U_{2}, V_{2}\right]$, where $U_{1}, U_{2} \in \mathbf{C}^{p}$ and $V_{1}, V_{2} \in \mathbf{C}^{q}$. Then we see

$$
-\left\|U_{1}\right\|^{2}+\left\|V_{1}\right\|^{2}-\left\|U_{2}\right\|^{2}+\left\|V_{2}\right\|^{2}=-|a|^{2}+|b|^{2}-|c|^{2}+|d|^{2} .
$$

Hence, we can choose $k \in K=\mathbf{S p}(p) \times \mathbf{S p}(q)$ as follows:

$$
k^{-1} g Y=s \mathbf{e}_{1}+t \mathbf{e}_{p+1} \quad: s=\sqrt{\left\|U_{1}\right\|^{2}+\left\|U_{2}\right\|^{2}}, t=\sqrt{\left\|V_{1}\right\|^{2}+\left\|V_{2}\right\|^{2}} .
$$

Next, we can choose $M(\theta) \in N(p, q)$ as follows:

$$
M(-\theta) k^{-1} g Y=\sqrt{|a|^{2}+|c|^{2}} \mathbf{e}_{1}+\sqrt{|b|^{2}+|d|^{2}} \mathbf{e}_{p+1}
$$

Finally, we can choose $n \in N(p, q) \cap K$ such that $n^{-1} M(-\theta) k^{-1} g Y=Y$. In particular, we obtain $n^{-1} M(-\theta) k^{-1} g \in \mathbf{I}(a, b, c, d)$.

As in the previous section, we use the notations $G=\mathbf{S p}(p, q), K=\mathbf{S p}(p) \times \mathbf{S p}(q)$ and $H=\mathbf{S p}(p-1) \times \mathbf{S p}(q-1)$.

Moreover, we use the notations $\mathbf{I}(a, b, c, d), F(H)$ and $N(p, q)$.
In this section, we suppose the following situation:

1. a smooth action $\phi: N(p, q) \times F(H) \longrightarrow F(H)$ is given.
2. an $N(p, q)$-equivariant smooth mapping $f: F(H) \longrightarrow \mathbf{P}_{1}(\mathbf{H})$ is given.
3. the following conditions are satisfied:
(a) $n \in N(p, q) \cap K, Y \in F(H) \Longrightarrow \phi(n, Y)=\psi(n, Y)$.
(b) $f(Y)=(a+j c: b-j d) \Longrightarrow N(p, q)_{Y} \supset N(p, q) \cap \mathbf{I}(a, b, c, d)$.

Notice that such a situation is realized if there is a smooth G-action on $S^{4 p+4 q-1}$ which is an extension of the standard K-action ψ on $S^{4 p+4 q-1}$. These facts are proved in lemmas 3.2, 3.3.

We shall show how to construct a smooth $G=\mathbf{S p}(p, q)$-action on $S^{4 p+4 q-1}$ from the pair (ϕ, f). First, we prepare several lemmas.

Lemma 4.2. The following relations hold.

$$
\begin{aligned}
& f(Y)=(1: 0) \Longleftrightarrow K_{Y}=\mathbf{S p}(p-1) \times \mathbf{S p}(q), \\
& f(Y)=(0: 1) \Longleftrightarrow K_{Y}=\mathbf{S p}(p) \times \mathbf{S p}(q-1) .
\end{aligned}
$$

Proof. Notice that the isotropy subgroup K_{Y} for $Y \in F(H)$ is one of the following:

$$
\mathbf{S p}(p-1) \times \mathbf{S p}(q-1), \mathbf{S p}(p-1) \times \mathbf{S p}(q), \mathbf{S p}(p) \times \mathbf{S p}(q-1)
$$

Under the natural isomorphism of $N(p, q)$ to $\mathbf{S p}(1,1)$, the group $K \cap N(p, q)$ can be identified with $\mathbf{S p}(1) \times \mathbf{S p}(1)$. Here we denote

$$
K \cap N(p, q)=\mathbf{S p}(1) \times \mathbf{S p}(1) .
$$

Under this identification, we see $(\mathbf{S p}(1) \times \mathbf{S p}(1))_{(\alpha: \beta)}=1 \times 1$ for each $(\alpha: \beta) \in \mathbf{P}_{1}(\mathbf{H})$ satisfying $\alpha \beta \neq 0$. Hence we see that $K_{Y}=\mathbf{S p}(p-1) \times \mathbf{S p}(q-1)$, if $f(Y)=(\alpha: \beta)$ satisfying $\alpha \beta \neq 0$. On the other hand, if $f(Y)=(a+j c: b-j d)$, then we see

$$
K_{Y} \supset K \cap N(p, q)_{Y} \supset(\mathbf{S p}(1) \times \mathbf{S p}(1)) \cap \mathbf{I}(a, b, c, d) .
$$

In particular, we see

$$
\begin{aligned}
& (\mathbf{S p}(1) \times \mathbf{S p}(1)) \cap \mathbf{I}(1,0,0,0)=1 \times \mathbf{S p}(1) \\
& (\mathbf{S p}(1) \times \mathbf{S p}(1)) \cap \mathbf{I}(0,1,0,0)=\mathbf{S p}(1) \times 1
\end{aligned}
$$

By these facts, we obtain the desired result.

Lemma 4.3. $\quad Y \in F(H), \quad f(Y)=(a+j c: b-j d)$ be given. Then

$$
g=k_{1} n_{1} h_{1}=k_{2} n_{2} h_{2} \Longrightarrow \psi\left(k_{1}, \phi\left(n_{1}, Y\right)\right)=\psi\left(k_{2}, \phi\left(n_{2}, Y\right)\right)
$$

for any $k_{1}, k_{2} \in K ; n_{1}, n_{2} \in N(p, q) ; h_{1}, h_{2} \in \mathbf{I}(a, b, c, d)$.

Proof. Put

$$
X=X(a, b, c, d)=a \mathbf{e}_{1}+b \mathbf{e}_{p+1}+c \mathbf{e}_{p+q+1}+d \mathbf{e}_{2 p+q+1}
$$

First, we consider the standard representation of $G=\mathbf{S p}(p, q)$ on $\mathbf{C}^{2 p+2 q}$. We can describe by the above notation

$$
n_{t} X(a, b, c, d)=X_{t}=X\left(a_{t}, b_{t}, c_{t}, d_{t}\right), \quad(t=1,2)
$$

By the assumption $g=k_{1} n_{1} h_{1}=k_{2} n_{2} h_{2}$, we obtain

$$
g X(a, b, c, d)=k_{1} X\left(a_{1}, b_{1}, c_{1}, d_{1}\right)=k_{2} X\left(a_{2}, b_{2}, c_{2}, d_{2}\right)
$$

Hence we obtain $g X=k_{1} X_{1}=k_{2} X_{2}$. Put $k=k_{1}^{-1} k_{2}$. Then we obtain $K_{X_{1}}=K_{k X_{2}}=$ $k K_{X_{2}} k^{-1}$. By the form of isotropy subgroups, we obtain
(a)

$$
K_{X_{1}}=K_{X_{2}}, \quad k \in N\left(K_{X_{t}}\right) \quad(t=1,2)
$$

By Lemma 4.2, we obtain the following:

$$
\begin{align*}
& \left(a_{t}, c_{t}\right) \neq(0,0) \neq\left(b_{t}, d_{t}\right) \Longleftrightarrow K_{X_{t}}=\mathbf{S p}(p-1) \times \mathbf{S p}(q-1) \\
& \left(a_{t}, c_{t}\right) \neq(0,0)=\left(b_{t}, d_{t}\right) \Longleftrightarrow K_{X_{t}}=\mathbf{S p}(p-1) \times \mathbf{S p}(q) \tag{b}\\
& \left(a_{t}, c_{t}\right)=(0,0) \neq\left(b_{t}, d_{t}\right) \Longleftrightarrow K_{X_{t}}=\mathbf{S p}(p) \times \mathbf{S p}(q-1)
\end{align*}
$$

Moreover, we obtain
(c)

$$
k_{1}^{-1} k_{2} n_{2} n_{1}^{-1} \in \mathbf{I}\left(a_{1}, b_{1}, c_{1}, d_{1}\right)
$$

because the element $k_{1}^{-1} k_{2} n_{2} n_{1}^{-1}$ leaves the point X_{1} fixed.
Now we consider case by case.
[1] The case $\left(b_{1}, d_{1}\right)=(0,0)$. By (a), (b), we see $\left(b_{2}, d_{2}\right)=(0,0)$. By $n_{1} X=X_{1}$,

$$
f\left(\phi\left(n_{1}, Y\right)\right)=n_{1} f(Y)=\left(a_{1}+j c_{1}: 0\right)=(1: 0) .
$$

Then, by (b), we see $K_{\phi\left(n_{1}, Y\right)}=\mathbf{S p}(p-1) \times \mathbf{S p}(q)$. On the other hand,

$$
k_{1}^{-1} k_{2} n_{2} n_{1}^{-1} \in \mathbf{I}\left(a_{1}, 0, c_{1}, 0\right)=\mathbf{I}(1,0,0,0)=\mathbf{S p}(p-1, q)
$$

by (c). By the second half of (a), we obtain $k_{1}^{-1} k_{2} \in(\mathbf{S p}(1) \times \mathbf{S p}(p-1)) \times \mathbf{S p}(q)$ and hence we can decompose

$$
k_{1}^{-1} k_{2}=k^{\prime} k^{\prime \prime}: k^{\prime} \in \mathbf{S p}(p-1) \times \mathbf{S p}(q), k^{\prime \prime} \in \mathbf{S p}(1) \times 1
$$

Then $k^{\prime \prime} n_{2} n_{1}^{-1} \in N(p, q) \cap \mathbf{S p}(p-1, q)=1 \times \mathbf{S p}(1)$ and hence we obtain

$$
k_{1}^{-1} k_{2} n_{2} n_{1}^{-1} \in K \cap \mathbf{S p}(p-1, q)=\mathbf{S p}(p-1) \times \mathbf{S p}(q)
$$

Under these preparation, we obtain

$$
\begin{aligned}
\psi\left(k_{2}, \phi\left(n_{2}, Y\right)\right) & =\psi\left(k_{2}, \phi\left(n_{2} n_{1}^{-1} n_{1}, Y\right)\right) \\
& =\psi\left(k_{2}, \phi\left(n_{2} n_{1}^{-1}, \phi\left(n_{1}, Y\right)\right)\right) \\
& =\psi\left(k_{2}, \psi\left(n_{2} n_{1}^{-1}, \phi\left(n_{1}, Y\right)\right)\right) \\
& =\psi\left(k_{2} n_{2} n_{1}^{-1}, \phi\left(n_{1}, Y\right)\right) \\
& =\psi\left(k_{1}, \psi\left(k_{1}^{-1} k_{2} n_{2} n_{1}^{-1}, \phi\left(n_{1}, Y\right)\right)\right) \\
& =\psi\left(k_{1}, \phi\left(n_{1}, Y\right)\right) .
\end{aligned}
$$

[2] The case $\left(a_{1}, c_{1}\right)=(0,0)$ is similarly proved.
[3] The case $\left(a_{1}, c_{1}\right) \neq(0,0) \neq\left(b_{1}, d_{1}\right)$. In this case, we see $\left(a_{2}, c_{2}\right) \neq(0,0) \neq\left(b_{2}, d_{2}\right)$ by (a), (b). Now we can decompose

$$
k_{1}^{-1} k_{2}=k^{\prime} k^{\prime \prime}: k^{\prime} \in \mathbf{S p}(p-1) \times \mathbf{S p}(q-1), \quad k^{\prime \prime} \in \mathbf{S p}(1) \times \mathbf{S p}(1)
$$

by the second half of (a). Then, $k^{\prime \prime} n_{2} n_{1}^{-1} \in \mathbf{I}\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ by (c). Since $\mathbf{I}\left(a_{1}, b_{1}, c_{1}, d_{1}\right)=n_{1} \mathbf{I}(a, b, c, d) n_{1}^{-1}$, we obtain $k^{\prime \prime} n_{2}=n_{1} h ; h \in \mathbf{I}(a, b, c, d)$, where $h \in N(p, q) \cap \mathbf{I}(a, b, c, d) \subset N(p, q)_{Y}$. Under these preparation, we obtain

$$
\begin{aligned}
\psi\left(k_{2}, \phi\left(n_{2}, Y\right)\right) & =\psi\left(k_{1} k^{\prime} k^{\prime \prime}, \phi\left(n_{2}, Y\right)\right) \\
& =\psi\left(k_{1} k^{\prime \prime}, \phi\left(n_{2}, Y\right)\right) \\
& =\psi\left(k_{1}, \phi\left(k^{\prime \prime}, \phi\left(n_{2}, Y\right)\right)\right) \\
& =\psi\left(k_{1}, \phi\left(k^{\prime \prime} n_{2}, Y\right)\right) \\
& =\psi\left(k_{1}, \phi\left(n_{1} h, Y\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\psi\left(k_{1}, \phi\left(n_{1}, \phi(h, Y)\right)\right) \\
& =\psi\left(k_{1}, \phi\left(n_{1}, Y\right)\right)
\end{aligned}
$$

This completes the proof.
Now we define $\Phi(g, Y) \in S^{4 p+4 q-1}$ for each $g \in G, Y \in F(H)$ by

$$
\Phi(g, Y)=\psi(k, \phi(n, Y))
$$

Here we decompose $g=k n h: k \in K, n \in N(p, q)$ and $h \in \mathbf{I}(a, b, c, d)$, for $f(Y)=$ $(a+j c: b-j d)$. Lemma 4.3 assures the well-definedness of $\Phi(g, Y)$.

Lemma 4.4. Suppose

$$
\psi\left(k_{1}, Y_{1}\right)=\psi\left(k_{2}, Y_{2}\right) ; \quad Y_{1}, Y_{2} \in F(H), \quad k_{1}, k_{2} \in K
$$

Then the relation $\Phi\left(g k_{1}, Y_{1}\right)=\Phi\left(g k_{2}, Y_{2}\right)$ holds for any $g \in G=\mathbf{S p}(p, q)$.

Proof. By the assumption, $K_{Y_{1}}=K_{Y_{2}}$ and there is a decomposition

$$
k_{1}^{-1} k_{2}=k^{\prime \prime} k^{\prime}: \quad k^{\prime} \in K_{Y_{2}}, \quad k^{\prime \prime} \in \mathbf{S p}(1) \times \mathbf{S p}(1)
$$

Now we give a decomposition

$$
g k_{1}=k n h: \quad k \in K, \quad n \in N(p, q), \quad h \in \mathbf{I}\left(a_{1}, b_{1}, c_{1}, d_{1}\right)
$$

Here we assume $f\left(Y_{t}\right)=\left(a_{t}+j c_{t}: b_{t}-j d_{t}\right),(t=1,2)$. Then

$$
g k_{2}=g k_{1} k^{\prime \prime} k^{\prime}=k n h k^{\prime \prime} k^{\prime}
$$

On the other hand, we obtain

$$
\mathbf{I}\left(a_{1}, b_{1}, c_{1}, d_{1}\right)=k^{\prime \prime} \mathbf{I}\left(a_{2}, b_{2}, c_{2}, d_{2}\right)\left(k^{\prime \prime}\right)^{-1}
$$

from $Y_{1}=\psi\left(k^{\prime \prime}, Y_{2}\right)=\phi\left(k^{\prime \prime}, Y_{2}\right)$. Hence we see

$$
h \in \mathbf{I}\left(a_{1}, b_{1}, c_{1}, d_{1}\right) \Longrightarrow h^{\prime}=\left(k^{\prime \prime}\right)^{-1} h k^{\prime \prime} \in \mathbf{I}\left(a_{2}, b_{2}, c_{2}, d_{2}\right)
$$

Put $n^{\prime}=n k^{\prime \prime}$. Then, $n^{\prime} \in N(p, q)$ and $g k_{2}=k n^{\prime} h^{\prime} k^{\prime}$. In this decomposition, we can show $k^{\prime} \in \mathbf{I}\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ by considering the isotropy subgroup at Y_{2} case by case. Hence we see

$$
\Phi\left(g k_{2}, Y_{2}\right)=\psi\left(k, \phi\left(n^{\prime}, Y_{2}\right)\right)
$$

$$
\begin{aligned}
& =\psi\left(k, \phi\left(n, \psi\left(k^{\prime \prime}, Y_{2}\right)\right)\right) \\
& =\psi\left(k, \phi\left(n, Y_{1}\right)\right) \\
& =\Phi\left(g k_{1}, Y_{1}\right)
\end{aligned}
$$

By this lemma, we may define a mapping $\Phi: G \times S^{4 p+4 q-1} \longrightarrow S^{4 p+4 q-1}$ by $\Phi(g, \psi(k, Y))=\Phi(g k, Y): g \in G, k \in K, Y \in F(H)$. The right-hand side is already defined.

It is easy to see that the mapping Φ is an abstract action of G on $S^{4 p+4 q-1}$ which is an extension of the standard K-action ψ and an extension of the given $N(p, q)$-action ϕ. It remains to show Φ is smooth.

First we state the following result which is an accurate form of Lemma 4.1. The proof is quite similar, so we omit it.

Lemma 4.5. There is a decomposition

$$
g=k M(\theta) h: \quad k \in K, \quad \theta \in \mathbf{R}, \quad h \in \mathbf{I}(1, \beta, 0,0)
$$

for any $\beta>0$ and any $g \in G$.
Put

$$
\mathbf{P}_{1}(\mathbf{R})=\left\{(a: b) \in \mathbf{P}_{1}(\mathbf{H}) \mid a, b \in \mathbf{R}\right\} .
$$

Then, $\mathbf{P}_{1}(\mathbf{R})$ is a 1-dimensional submanifold of $\mathbf{P}_{1}(\mathbf{H})$. Define

$$
S=f^{-1}\left(\mathbf{P}_{1}(\mathbf{R})\right)
$$

Because the isotropy subgroups at two points $(1: 0)$, $(0: 1)$ are both $\mathbf{S p}(1) \times$ $\mathbf{S p}(1)$ with respect to the standard $N(p, q)$-action on $\mathbf{P}_{1}(\mathbf{H})$, we see that the orbits through these points are open and hence the given $N(p, q)$-equivariant smooth mapping $f: F(H) \rightarrow \mathbf{P}_{1}(\mathbf{H})$ is transversal on $\mathbf{P}_{1}(\mathbf{R})$. Hence S is a 4-dimensional submanifold of $F(H)$. Put

$$
S_{+}=\{Y \in S \mid f(Y)=(1: \beta), \beta>0\} .
$$

Then S_{+}is an open submanifold of S.
Hereafter, we denote $\beta=\beta(Y)$ for $Y \in S_{+}$such that $f(Y)=(1: \beta)$.
Now we see the following:

$$
f(\phi(M(\theta), Y))=(\cosh \theta+\beta \sinh \theta: \sinh \theta+\beta \cosh \theta)
$$

for $Y \in S_{+}$and θ, where $\beta=\beta(Y)$. Hence $\phi(M(\theta), Y) \in S$ in general. Therefore,
$\phi(M(\theta), Y) \in S_{+}$if and only if

$$
(\cosh \theta+\beta \sinh \theta)(\sinh \theta+\beta \cosh \theta)>0
$$

In this case, we obtain the following:

$$
\beta(\phi(M(\theta), Y))=\beta+\frac{\left(1-\beta^{2}\right) \tanh \theta}{1+\beta \tanh \theta} .
$$

Here we define a matrix $P(Y)$ of degree $2 p+2 q$ as follows:

$$
P(Y)=\frac{1}{1+\beta^{2}}\left(E_{1,1}+\beta E_{1, p+1}+\beta E_{p+1,1}+\beta^{2} E_{p+1, p+1}\right)
$$

We see trace $P(Y)=1$. Notice that

$$
\operatorname{trace}\left(g P(Y) g^{*}\right)=\cosh 2 \theta+\frac{2 \beta}{1+\beta^{2}} \sinh 2 \theta
$$

for the decomposition $g=k M(\theta) h: k \in K, h \in \mathbf{I}(1, \beta, 0,0)$, where $Y \in S_{+}, \beta=\beta(Y)$.
Now we define

$$
\begin{aligned}
& \mathbf{D}_{+}=\left\{(\theta, Y) \in \mathbf{R} \times S_{+} \mid \phi(M(\theta), Y) \in S_{+}\right\}, \\
& W_{+}=\left\{(g, Y) \in G \times S_{+} \left\lvert\, \pm \operatorname{trace}\left(g P(Y) g^{*}\right) \neq \frac{1-\beta^{2}}{1+\beta^{2}}\right., \beta=\beta(Y)\right\} .
\end{aligned}
$$

Clearly \mathbf{D}_{+}is an open set of $\mathbf{R} \times S_{+}$and W_{+}is an open set of $G \times S_{+}$.
Now we have the following results, whose proof is quite similar to that of $[4$, Lemma 4.7]. So we omit the proof.

Lemma 4.6. For $(g, Y) \in G \times S_{+},(g, Y) \in W_{+}$if and only if there is a decomposition

$$
g=k M(\theta) h: \quad k \in K, \quad h \in \mathbf{I}(1, \beta, 0,0), \quad \phi(M(\theta), Y) \in S_{+}
$$

where $\beta=\beta(Y)$.

Lemma 4.7. There is a smooth mapping $\Delta: W_{+} \rightarrow K / H \times \mathbf{D}_{+}$defined by $\Delta(g, Y)=(k H,(\theta, Y))$, where $g=k M(\theta) h ; k \in K, \theta \in \mathbf{R}$, and $h \in \mathbf{I}(1, \beta, 0,0)$ for $\beta=\beta(Y)$.

Put $W(\Phi)=(1 \times \psi)(\mu \times 1)^{-1}\left(W_{+}\right)$, where ψ is the K-action and μ is the multiplication on G. Then $W(\Phi)$ is an open set of $G \times S^{4 p+4 q-1}$ and we obtain the following
commutative diagram:

where $\phi^{\prime}(k H,(\theta, Y))=\psi(k, \phi(M(\theta), Y))$. Since $1 \times \psi$ is a smooth submersion, we see that the restriction $\left.\Phi\right|_{W(\Phi)}$ is a smooth mapping.

Define $S_{1}(\Phi)=\left\{\Phi\left(g, \mathbf{e}_{1}\right) \mid g \in G\right\}$ and $S_{2}(\Phi)=\left\{\Phi\left(g, \mathbf{e}_{p+1}\right) \mid g \in G\right\}$.
We shall show that these two sets are open in $S^{4 p+4 q-1}$ and the G-action Φ is smooth on these sets.

Here we define the standard G-action Ψ_{0} on $S^{4 p+4 q-1}$ by

$$
\Psi_{0}(g, X)=\|g X\|^{-1} g X ; g \in G, \quad X \in S^{4 p+4 q-1} .
$$

Define $S_{1}\left(\Psi_{0}\right)=\left\{\Psi_{0}\left(g, \mathbf{e}_{1}\right) \mid g \in G\right\}$, and $S_{2}\left(\Psi_{0}\right)=\left\{\Psi_{0}\left(g, \mathbf{e}_{p+1}\right) \mid g \in G\right\}$. By the natural correspondence

$$
\Phi\left(g, \mathbf{e}_{1}\right) \mapsto \Psi_{0}\left(g, \mathbf{e}_{1}\right), \quad \Phi\left(g, \mathbf{e}_{p+1}\right) \mapsto \Psi_{0}\left(g, \mathbf{e}_{p+1}\right),
$$

we obtain G-equivariant mappings $F_{\varepsilon}: S_{\varepsilon}(\Phi) \rightarrow S_{\varepsilon}\left(\Psi_{0}\right)$ for $\varepsilon=1,2$.
We can denote $\Phi\left(M(\theta), \mathbf{e}_{1}\right)=\phi\left(M(\theta), \mathbf{e}_{1}\right)=X(a(\theta), b(\theta), c(\theta), d(\theta))$. Since $f(X(*, 0, *, 0))=(1: 0)$ and $f(X(0, *, 0, *))=(0: 1)$, we see
(a)

$$
\begin{aligned}
& (b(\theta), d(\theta)) \neq(0,0) \quad(\forall \theta \neq 0), \\
& (a(\theta), c(\theta)) \neq(0,0) \quad(\forall \theta) .
\end{aligned}
$$

Next, using

$$
-K_{p, q} \in K \cap \mathbf{I}(1,0,0,0), \quad\left(-K_{p, q}\right) M(\theta)=M(-\theta)\left(-K_{p, q}\right),
$$

we obtain

$$
\begin{aligned}
\Phi\left(\left(-K_{p, q}\right) M(\theta), \mathbf{e}_{1}\right) & =\psi\left(-K_{p, q}, X(a(\theta), b(\theta), c(\theta), d(\theta))\right) \\
& =X(a(\theta),-b(\theta), c(\theta),-d(\theta)), \\
\Phi\left(M(-\theta)\left(-K_{p, q}\right), \mathbf{e}_{1}\right) & =X(a(-\theta), b(-\theta), c(-\theta), d(-\theta)) .
\end{aligned}
$$

Hence we see that $a(\theta)$ and $c(\theta)$ are even functions, and $b(\theta)$ and $d(\theta)$ are odd functions. In particular, there exist smooth even functions $b_{0}(\theta), d_{0}(\theta)$ such that $b(\theta)=$ $b_{0}(\theta) \theta$ and $d(\theta)=d_{0}(\theta) \theta$.

Now we define $\Delta \mathbf{S p}(1)$ as the subgroup of $K \cap N(p, q)=\mathbf{S p}(1) \times \mathbf{S p}(1)$ consisting of matrices in the form
$\left[\begin{array}{c|c|c|c}a & & -\bar{c} & \\ \hline & a & & \bar{c} \\ \hline c & & \bar{a} & \\ \hline & -c & & \bar{a}\end{array}\right]$.

By direct calculation, we see
(b) $\quad M(\theta)$ is commutative with each element of $\Delta \mathbf{S p}(1)$.

Moreover, we obtain

$$
\left[\begin{array}{c|c|c|c}
a & & -\bar{c} & \\
\hline & a & & \bar{c} \\
\hline c & & \bar{a} & \\
\hline & -c & & \bar{a}
\end{array}\right] X\left(x, y, x^{\prime}, y^{\prime}\right) \longleftrightarrow(a+j c)\left[\begin{array}{l}
x+j x^{\prime} \\
y-j y^{\prime}
\end{array}\right]
$$

under the natural correspondence

$$
X\left(x, y, x^{\prime}, y^{\prime}\right) \longleftrightarrow\left[\begin{array}{l}
x+j x^{\prime} \\
y-j y^{\prime}
\end{array}\right]
$$

This means the action of $\Delta \mathbf{S p}(1)$ on $F(H)$ correspondents to the left scalar multiplication. In particular, we obtain
(c)

$$
\text { The } \Delta \mathbf{S p}(1) \text {-action on } F(H) \text { is free. }
$$

Moreover, we see the set $S=f^{-1}\left(\mathbf{P}_{1}(\mathbf{R})\right)$ is $\Delta \mathbf{S p}(1)$-invariant.
Since $f\left(\phi\left(M(\theta), \mathbf{e}_{1}\right)\right)=(1: \tanh \theta)$, we see the curve $\phi\left(M(\theta), \mathbf{e}_{1}\right)$ is transverse to each orbit of the $\Delta \mathbf{S p}(1)$-action, by the facts (b), (c). Hence we obtain
(d)

$$
\frac{d}{d \theta}\left(|b(\theta)|^{2}+|d(\theta)|^{2}\right) \neq 0 \quad(\forall \theta \neq 0)
$$

Here we obtain $\left(a^{\prime}(\theta), b^{\prime}(\theta), c^{\prime}(\theta), d^{\prime}(\theta)\right) \neq(0,0,0,0)(\forall \theta)$ by making use of the equation $f\left(\phi\left(M(\theta), \mathbf{e}_{1}\right)\right)=(1: \tanh \theta)$. Since $a(\theta), c(\theta)$ are even functions, we see $a^{\prime}(0)=c^{\prime}(0)=0$, and hence $\left(b_{0}(0), d_{0}(0)\right)=\left(b^{\prime}(0), d^{\prime}(0)\right) \neq(0,0)$. Combining this result with (a), we obtain
(e)

$$
(a(\theta), c(\theta)) \neq(0,0) \neq\left(b_{0}(\theta), d_{0}(\theta)\right)
$$

Here we define new smooth functions by

$$
\sigma(\theta)=\sqrt{|a(\theta)|^{2}+|c(\theta)|^{2}}, \quad \tau_{0}(\theta)=\sqrt{\left|b_{0}(\theta)\right|^{2}+\left|d_{0}(\theta)\right|^{2}}
$$

$$
\alpha(\theta)=\frac{\overline{a(\theta)+j c(\theta)}}{\sigma(\theta)}, \quad \beta(\theta)=\frac{\overline{b_{0}(\theta)-j d_{0}(\theta)}}{\tau_{0}(\theta)}
$$

Moreover we define $\tau(\theta)=\tau_{0}(\theta) \theta$. Then, $\tau(\theta)$ is an odd function and $\alpha(\theta), \beta(\theta)$ are even function with values in quaternions of modulus one. Moreover,

$$
\left[\begin{array}{l}
(a(\theta)+j c(\theta)) \alpha(\theta) \\
(b(\theta)-j d(\theta) \beta(\theta)
\end{array}\right]=\left[\begin{array}{l}
\sigma(\theta) \\
\tau(\theta)
\end{array}\right]
$$

By (d), we obtain

$$
\frac{d}{d \theta} \tau(\theta)=\frac{(d / d \theta)\left(|b(\theta)|^{2}+|d(\theta)|^{2}\right)}{2 \sqrt{|b(\theta)|^{2}+|d(\theta)|^{2}}} \neq 0 \quad(\forall \theta \neq 0)
$$

Then $\tau^{\prime}(0)=\tau_{0}(0)>0$ by (e). Hence we see $\tau^{\prime}(\theta)>0(\forall \theta)$. Therefore, $\tau: \mathbf{R} \longrightarrow$ $(-r, r) \quad(0<r \leq 1)$ is a smooth diffeomorphism. The existence of such r is assured by the equation $|a(\theta)|^{2}+|b(\theta)|^{2}+|c(\theta)|^{2}+|d(\theta)|^{2}=1(\forall \theta)$.

Here we use the following identification again

$$
\mathbf{C}^{2 p+2 q} \ni U_{1} \oplus V_{1} \oplus U_{2} \oplus V_{2} \longleftrightarrow\left(U_{1}+j U_{2}\right) \oplus\left(V_{1}-j V_{2}\right) \in \mathbf{H}^{p+q}
$$

By the diffeomorphism $\tau: \mathbf{R} \longrightarrow(-r, r)$, we can describe

$$
S_{1}(\Phi)=\left\{U \oplus V \in \mathbf{H}^{p+q} \mid\|V\|<r,\|U\|^{2}+\|V\|^{2}=1\right\} .
$$

First we define $h_{1}: S_{1}(\Phi) \longrightarrow S_{1}(\Phi)$ by

$$
h_{1}(U \oplus V)=U \alpha\left(\tau^{-1}(\|V\|)\right) \oplus V \beta\left(\tau^{-1}(\|V\|)\right)
$$

Then h_{1} is a K-equivariant deffeomorphism by definition. Moreover, we obtain the following:

$$
\begin{equation*}
h_{1}\left(\Phi\left(M(\theta), \mathbf{e}_{1}\right)\right)=\sigma(\theta) \mathbf{e}_{1} \oplus \tau(\theta) \mathbf{e}_{p+1} \quad(\forall \theta) \tag{f}
\end{equation*}
$$

Since the function $\tanh \theta / \sqrt{1+(\tanh \theta)^{2}}$ is a diffeomorphism and odd function from \mathbf{R} onto the open interval $(-1 / \sqrt{2}, 1 / \sqrt{2})$, we can define $\gamma:(-r, r) \longrightarrow$ $(-1 / \sqrt{2}, 1 / \sqrt{2})$ by the equation

$$
\gamma(\tau(\theta))=\frac{\tanh \theta}{\sqrt{1+(\tanh \theta)^{2}}} \quad(\forall \theta)
$$

Then the mapping γ is a diffeomorphism and odd function. So we define an even function $\gamma_{0}:(-r, r) \rightarrow \mathbf{R}$ by $\gamma(\theta)=\gamma_{0}(\theta) \theta(\forall \theta)$.

Next we define $h_{2}: S_{1}(\Phi) \longrightarrow S_{1}\left(\Psi_{0}\right)$ by $U \oplus V \mapsto U \gamma_{1} \oplus V \gamma_{0}(\|V\|)$, where $\gamma_{1}=$ $\|U\|^{-1} \sqrt{1-\gamma(\|V\|)^{2}}$. Then h_{2} is also a K-equivariant deffeomorphism by definition. Moreover, we obtain the following:

$$
\begin{equation*}
h_{2}\left(\sigma(\theta) \mathbf{e}_{1} \oplus \tau(\theta) \mathbf{e}_{p+1}\right)=\Psi_{0}\left(M(\theta), \mathbf{e}_{1}\right) \tag{g}
\end{equation*}
$$

The composition $h_{2} \circ h_{1}$ is also a K-equivariant diffeomorphism and

$$
\left(h_{2} \circ h_{1}\right)\left(\Phi\left(M(\theta), \mathbf{e}_{1}\right)\right)=\Psi_{0}\left(M(\theta), \mathbf{e}_{1}\right)
$$

by (f), (g). By making use of Lemma 4.5, we see $\left(h_{2} \circ h_{1}\right)\left(\Phi\left(g, \mathbf{e}_{1}\right)\right)=\Psi_{0}\left(g, \mathbf{e}_{1}\right)$ for each $g \in G$.

Consequently, we see $F_{1}=h_{2} \circ h_{1}$ and hence $F_{1}: S_{1}(\Phi) \longrightarrow S_{1}\left(\Psi_{0}\right)$ is a smooth diffeomorphism. By the quite similar argument, we see that the G-equivariant mapping $F_{2}: S_{2}(\Phi) \longrightarrow S_{2}\left(\Psi_{0}\right)$ is also a smooth diffeomorphism.

Since the family of three open sets $W(\Phi), G \times S_{1}(\Phi)$ and $G \times S_{2}(\Phi)$ is an open covering of $G \times S^{4 p+4 q-1}$ and the restriction of $\Phi: G \times S^{4 p+4 q-1} \longrightarrow S^{4 p+4 q-1}$ is smooth on these three open sets, we see that the action Φ of G on $S^{4 p+4 q-1}$ is smooth.

Consequently, we obtain the following result.
Theorem 4.8. Let a smooth action $\phi: N(p, q) \times F(H) \longrightarrow F(H)$ and an $N(p, q)$-equivariant smooth mapping $f: F(H) \longrightarrow \mathbf{P}_{1}(\mathbf{H})$ be given. Suppose that the following conditions are satisfied:

1. $n \in N(p, q) \cap K, Y \in F(H) \Longrightarrow \phi(n, Y)=\psi(n, Y)$.
2. $f(Y)=(a+j c: b-j d) \Longrightarrow N(p, q)_{Y} \supset N(p, q) \cap \mathbf{I}(a, b, c, d)$.

Then there exists a smooth G-action Φ on $S^{4 p+4 q-1}$ uniquely, which is an extension of the standard K-action ψ and an extension of the given $N(p, q)$-action ϕ. Moreover, the isotropy subgroup at $Y \in F(H)$ contains $\mathbf{I}(a, b, c, d)$, if $f(Y)=(a+j c$: $b-j d)$.

5. Construction of (ϕ, f)

In the previous section, we show how to construct a smooth action of $\mathbf{S p}(p, q)$ on $S^{4 p+4 q-1}$ from a pair (ϕ, f), where ϕ is a smooth $N(p, q)$-action on $S^{7}=F(H)$ whose restriction on $K \cap N(p, q)$ coincides with the restriction of the standard action of $K=\mathbf{S p}(p) \times \mathbf{S p}(q)$ and $f: F(H) \rightarrow \mathbf{P}_{1}(\mathbf{H})$ is a smooth $N(p, q)$-equivariant mapping satisfying the conditions in Theorem 4.8.

Now we consider how to construct such a pair (ϕ, f). Define the circle S_{0} in $S^{4 p+4 q-1}$ and involutions $J_{ \pm}$on S_{0} by

$$
S_{0}=\left\{s \mathbf{e}_{1}+t \mathbf{e}_{p+1} \mid s^{2}+t^{2}=1 ; s, t \in \mathbf{R}\right\}
$$

$$
J_{\varepsilon}\left(s \mathbf{e}_{1}+t \mathbf{e}_{p+1}\right)=\left\{\begin{aligned}
-s \mathbf{e}_{1}+t \mathbf{e}_{p+1} & (\varepsilon=+), \\
s \mathbf{e}_{1}-t \mathbf{e}_{p+1} & (\varepsilon=-) .
\end{aligned}\right.
$$

Now we give a pair (ϕ_{0}, f_{0}) of a smooth one-parameter group $\phi_{0}: \mathbf{R} \times S_{0} \rightarrow S_{0}$ and a smooth function $f_{0}: S_{0} \rightarrow \mathbf{P}_{1}(\mathbf{R})$ satisfying the conditions
(a)

$$
J_{\varepsilon} \phi_{0}(\theta, Y)=\phi_{0}\left(-\theta, J_{\varepsilon}(Y)\right) \quad(\varepsilon= \pm)
$$

(b)

$$
\begin{aligned}
& f_{0}(Y)=(a: b) \Longrightarrow f_{0}\left(J_{\varepsilon}(Y)\right)=(-a: b) \quad(\varepsilon= \pm) \\
& f_{0}(Y)=(a: b) \Longrightarrow
\end{aligned}
$$

(c)

$$
f_{0}\left(\phi_{0}(\theta, Y)\right)=(a \cosh \theta+b \sinh \theta: a \sinh \theta+b \cosh \theta)
$$

(d) $\quad f_{0}(Y)=(1: 0) \Longleftrightarrow Y= \pm \mathbf{e}_{1}$
(e) $\quad f_{0}(Y)=(0: 1) \Longleftrightarrow Y= \pm \mathbf{e}_{p+1}$

From the pair (ϕ_{0}, f_{0}), we can construct a desired pair (ϕ, f). The method is quite similar as one in the previous section and as one in [5, §5], so we omit the description. Notice that each open orbit of $N(p, q)$-action ϕ corresponds to an equivalence class of open orbits of the one-parameter group ϕ_{0}, where two open orbits of the oneparameter group ϕ_{0} are equivalent if the one is mapped onto the other by the involutions $J_{ \pm}$.

The next problem is how to construct a pair (ϕ_{0}, f_{0}) satisfying the conditions (a)(e). First we prepare the following lemma [1, Lemma 10.1].

Lemma 5.1. There exist smooth functions A, B defined on \mathbf{R} satisfying the conditions
(1) $A(x)$: odd function, $B(x)$: even function,
(2) $|A(x)|<1(|x|<1), A(x)=1(x \geq 1), A(x)=-1(x \leq-1)$,
(3) $B(x)=0(|x| \geq 1)$,
(4) $A^{\prime}(x)>0(|x|<1)$,
(5) $B(x) A^{\prime}(x)=A(x)^{2}-1(\forall x)$.

For each positive integer m, define new smooth functions A_{m}, B_{m}, C_{m} by

$$
\begin{aligned}
& A_{m}(\tau)=A\left(\omega_{0}\right)^{-1} A\left(\omega_{2 m-1}\right) A\left(\omega_{4 m-2}\right)^{-1} \quad(0<\tau<\pi) \\
& B_{m}(\tau)=s \sum_{j=0}^{4 m-2}(-1)^{j} \boldsymbol{B}\left(\omega_{j}\right) \quad(0 \leq \tau \leq \pi) \\
& C_{m}(\tau)=-A_{m}\left(\tau+\frac{\pi}{2}\right) \quad\left(-\frac{\pi}{2}<\tau<\frac{\pi}{2}\right)
\end{aligned}
$$

Here $s=\pi /(8 m-4)$ and $\omega_{j}=(\tau-2 j s) / s$. Then the following conditions are satisfied by (1)-(5):
(6) $B_{m}(\tau) A_{m}^{\prime}(\tau)=A_{m}(\tau)^{2}-1$,
(7) $A_{m}(\pi-\tau)=-A_{m}(\tau), B_{m}(\pi-\tau)=B_{m}(\tau)$,
(8) $A_{m}(\tau) C_{m}(\tau)=1(0<\tau<\pi / 2)$.

Put

$$
L_{Y}=-t\left(\frac{\partial}{\partial s}\right)_{Y}+s\left(\frac{\partial}{\partial t}\right)_{Y}, Y=s \mathbf{e}_{1}+t \mathbf{e}_{p+1}
$$

which is the unit tangent vector field on S_{0}. We see $L\left(\xi J_{ \pm}\right)=-L(\xi) \circ J_{ \pm}$for any smooth function ξ on S_{0}. Denote by $Y=Y(\tau) \in S_{0}$ as follows:

$$
Y(\tau)=(\cos \tau) \mathbf{e}_{1}+(\sin \tau) \mathbf{e}_{p+1} .
$$

Now we define smooth functions on an open set of S_{0} by

$$
\begin{aligned}
& g(Y)= \begin{cases}B_{m}(\tau) & 0 \leq \tau \leq \pi, \\
B_{m}(-\tau) & -\pi \leq \tau \leq 0,\end{cases} \\
& h(Y)= \begin{cases}-A_{m}(\tau) & 0<\tau<\pi, \\
A_{m}(-\tau) & -\pi<\tau<0,\end{cases} \\
& k(Y)= \begin{cases}-C_{m}(\tau) & -\frac{\pi}{2}<\tau<\frac{\pi}{2}, \\
C_{m}(\pi-\tau) & \frac{\pi}{2}<\tau<\frac{3 \pi}{2} .\end{cases}
\end{aligned}
$$

Moreover we define

$$
f_{0}(Y)= \begin{cases}(h(Y): 1) & Y \neq \pm \mathbf{e}_{1}, \\ (1: k(Y)) & Y \neq \pm \mathbf{e}_{p+1} .\end{cases}
$$

Then we obtain a smooth function $f_{0}: S_{0} \rightarrow \mathbf{P}_{1}(\mathbf{R})$ by (7), (8).
Since $J_{+} Y(\tau)=Y(\pi-\tau)$ and $J_{-} Y(\tau)=Y(-\tau)$, we obtain

$$
\begin{aligned}
& g\left(J_{ \pm}(Y)\right)=g(Y) \\
& f_{0}(Y)=(a: b) \Longrightarrow f_{0}\left(J_{ \pm}(Y)\right)=(-a: b) .
\end{aligned}
$$

Then we see that the function f_{0} satisfies the conditions (b), (d), (e).
Now we define a one-parameter group ϕ_{0} on S_{0} as the one corresponding to the tangent vector field $g L$, that is, ϕ_{0} is defined by the following:

$$
g(Y) L_{Y}(\xi)=\lim _{\theta \rightarrow 0} \frac{\xi\left(\phi_{0}(\theta, Y)\right)-\xi(Y)}{\theta}
$$

for $Y \in S_{0}$ and any smooth function ξ on S_{0}. On the other hand, we see

$$
\begin{gathered}
g(Y) L_{Y}(h)=1-h(Y)^{2} \quad \text { for } \quad Y \neq \pm \mathbf{e}_{1}, \\
g(Y) L_{Y}(k)=1-k(Y)^{2} \quad \text { for } \quad Y \neq \pm \mathbf{e}_{p+1}
\end{gathered}
$$

by (6)-(8). Hence we obtain $(d \xi / d \theta)\left(\phi_{0}(\theta, Y)\right)=1-\xi\left(\phi_{0}(\theta, Y)\right)^{2}$ for $\xi=h, k$. Therefore we obtain $\xi\left(\phi_{0}(\theta, Y)\right)=(\xi(Y)+\tanh \theta) /(1+\xi(Y) \tanh \theta)$ for $\xi=h, k$. Then we see the pair $\left(\phi_{0}, f_{0}\right)$ satisfies the condition (c). Moreover, we obtain $J_{ \pm} \phi_{0}\left(\theta, J_{ \pm} Y\right)=$ $\phi_{0}(-\theta, Y)$. So the condition (a) holds for ϕ_{0}.

Consequently, the pair $\left(\phi_{0}, f_{0}\right)$ satisfies all conditions (a)-(e). Put Φ_{m} the corresponding smooth action of $\mathbf{S p}(p, q)$ on $S^{4 p+4 q-1}$. Then we see the action Φ_{m} has just $2 m$ open orbits on $S^{4 p+4 q-1}$.

Now we can state the following result.

Theorem 5.2. For any positive integer m, there exists a smooth action of $\mathbf{S p}(p, q)$ on $S^{4 p+4 q-1}$, which has just $2 m$ open orbits.

6. Concluding remark

For any real number c, a smooth action Ψ_{c} of $\mathbf{S p}(p, q)$ on $S^{4 p+4 q-1}$ is defined by $\Psi_{c}(A, X)=A X\|A X\|^{-1} \exp (i c \log \|A X\|)$, where $i=\sqrt{-1}$. We call Ψ_{c} the twisted linear action [6]. For $c=0$, the action Ψ_{0} is described by $\Psi_{0}(A, X)=A X\|A X\|^{-1}$. This is the standard action considerd in the second half of the section 4.

The restricted $\mathbf{S p}(p) \times \mathbf{S p}(q)$-action of the twisted linear action Ψ_{c} is the standard action and we see that the twisted linear action Ψ_{c} has just three orbits and two of them are open orbits and one of them is compact orbit of codimension 1. Moreover we see that a matrix M is contained in the isotropy algebra at a point X of the compact orbit, if and only if $M X=(1-i c) m X$ for some real number m.

By a routine work, we obtain the following result.
Theorem 6.1. Between two twisted linear actions Ψ_{c} and $\Psi_{c^{\prime}}$, there exists an equivariant homeomorphism if and only if $|c|=\left|c^{\prime}\right|$.

References

[1] T. Asoh: On smooth SL(2, C) actions on 3-manifolds, Osaka J. Math. 24 (1987), 271-298.
[2] K. Mukōyama: Smooth $\mathbf{S p}(2, \mathbf{R})$-actions on the 4-sphere, Tôhoku Math. J. 48 (1996), 543-560.
[3] K. Mukōyama: Smooth $\mathbf{S U}(p, q)$-actions on the $(2 p+2 q-1)$-sphere and on the complex projective $(p+q-1)$-space, Kyushu J. Math. 55 (2001), 213-236.
[4] F. Uchida: On smooth $\mathbf{S O}_{0}(p, q)$-actions on S^{p+q-1}, Osaka J. Math. 26 (1989), 775-787.
[5] F. Uchida: On smooth $\mathbf{S O}_{0}(p, q)$-actions on S^{p+q-1}, II, Tôhoku Math. J. 49 (1997), 185-202.
[6] F. Uchida: On a method to construct analytic actions of non-compact Lie groups on a sphere, Tôhoku Math. J. 39 (1987), 61-69.

Department of Mathematical Sciences
Faculty of Science
Yamagata University
Koshirakawa, Yamagata 990-8560
Japan
e-mail: fuchida@sci.kj.yamagata-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 57S20.
 *Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan No. 10640058

