CLIFFORD INDEX OF SMOOTH ALGEBRAIC CURVES OF ODD GONALITY WITH BIG $W_{d}^{r}(C)^{*}$

Dedicated to Professor Sang Moon Kim on the occassion of his retirement.

Edoardo BALLICO † and Changho KEEM^{\ddagger}

(Received July 19, 2000)

0. Introduction

Let C be a smooth projective irreducible algebraic curve over the field of complex numbers \mathbb{C} or a compact Riemann surface of genus g. Let $J(C)$ be the Jacobian variety of the curve C, which is a g-dimensional abelian variety parameterizing all the line bundles of given degree d on C. We denote by $W_{d}^{r}(C)$ a subvariety of the Jacobian variety $J(C)$ consisting of line bundles of degree d with $r+1$ or more independent global sections.

If $d>g+r-2$, one can compute the dimension of $W_{d}^{r}(C)$ by using the RiemannRoch formula, and this dimension is independent of C. If $d \leq g+r-2$, the dimension of $W_{d}^{r}(C)$ is known to be greater than or equal to the Brill-Noether number $\rho(d, g, r):=g-(r+1)(g-d+r)$ for any curve C, and is equal to $\rho(d, g, r)$ for general curve C by theorems of Kleiman-Laksov [13] and Griffiths-Harris [7]. On the other hand, the maximal possible dimension of $W_{d}^{r}(C)$ for this range of d, g and r is $d-2 r$ and the maximum is attained if and only if C is hyperelliptic by a well known theorem of H. Martens [16].

From a result of M. Coppens, G. Martens and C. Keem [4, Corollary 3.3.2], it is known that for curves of odd gonality - i.e. curves for which the minimal number of sheets of a covering over \mathbb{P}^{1} is odd — the theorem of H. Martens can be refined significantly.

[^0]Proposition A (Coppens, Keem and G. Martens). Let C be a smooth algebraic curve of odd gonality. Then

$$
\operatorname{dim} W_{d}^{r}(C) \leq d-3 r
$$

for $d \leq g-1$.
Furthermore, by a recent progress made by G. Martens [14] as well as a result of T. Kato and C. Keem [11], it is known that if the dimension of $W_{d}^{r}(C)$ for curves C of odd gonality is near to the maximum possible value, then C is of very special type of curves.

Proposition B (G. Martens [14, Theorem 2]). Let C be a smooth projective irreducible curve of genus g over the complex number field. Assume that the gonality of C is odd. If $\operatorname{dim} W_{d}^{r}(C)=d-3 r$ for some $d \leq g-2$ and $r>0$ then C is either trigonal, smooth plane sextic, birational to a plane curve of degree 7 (in this case only $g=13$ and $g=14$ occur; with a simple $g_{12}^{4}=g_{5}^{1}+g_{7}^{2}$ or a very ample $g_{12}^{4}=g_{5}^{1}+g_{7}^{2}$ respectively) or an extremal space curve of degree 10 with a very ample $g_{15}^{5}=g_{10}^{3}+g_{5}^{1}$.

Proposition C (T. Kato, C. Keem [11, Theorem 1]). Let C be a smooth irreducible projective curve of genus g over the complex number field. Assume the gonality of C is odd and $\operatorname{dim} W_{d}^{r}(C)=d-3 r-1$ for some $d \leq g-4$ and $r>0$. Then C is 5 -gonal with $10 \leq g \leq 18, g=20$ or 7-gonal of genus 21 ; furthermore C is a smooth plane sextic (resp. octic) in case $\operatorname{gon}(C)=5, g=10($ resp. gon $(C)=7, g=21)$.

The purpose of this paper is to chase a further generalization of the above results of G. Martens and Kato-Keem. We use standard notation for divisors, linear series, invertible sheaves and line bundles on algebraic curves following [3]. As usual, g_{d}^{r} is an r-dimensional linear series of degree d on C, which may be possibly incomplete. If D is a divisor on C, we write $|D|$ for the associated complete linear series on C. By K_{C} or K we denote a canonical divisor on C. If L is a line bundle (or an invertible sheaf) we sometimes abbreviate the notation $H^{i}(C, L)\left(\right.$ resp. $\left.\operatorname{dim} H^{i}(C, L)\right)$ by $H^{i}(L)$ (resp. $\left.h^{i}(L)\right)$ for simplicity when no confusion is likely to occur. Also, for a divisor D on C we write $H^{i}(D), h^{i}(D)$ instead of $H^{i}\left(C, \mathcal{O}_{C}(D)\right)$, $\operatorname{dim} H^{i}\left(C, \mathcal{O}_{C}(D)\right)$. A base-point-free g_{d}^{r} on C defines a morphism $f: C \rightarrow \mathbb{P}^{r}$ onto a non-degenerate irreducible (possibly singular) curve in \mathbb{P}^{r}. If f is birational onto its image $f(C)$ the given g_{d}^{r} is called simple or birationally very ample. In case the given g_{d}^{r} is not simple, let C^{\prime} be the normalization of $f(C)$. Then there is a morphism (a non-trivial covering map) $C \rightarrow C^{\prime}$ and we use the same notation f for this covering map of some degree k induced by the original morphism $f: C \rightarrow \mathbb{P}^{r}$. The gonality of C which is the minimal sheet number of a covering over \mathbb{P}^{1} is denoted by gon (C). We also recall that given a line bundle $L \in \operatorname{Pic}(C)$, the $\operatorname{Clifford}$ index $\operatorname{Cliff}(L)$ of L is defined by
$\operatorname{Cliff}(L):=\operatorname{deg} L-2\left(h^{0}(L)-1\right)$, and the Clifford index $\operatorname{Cliff}(C)$ of C is defined by

$$
\operatorname{Cliff}(C):=\min \left\{\operatorname{Cliff}(L): L \in \operatorname{Pic}(C) \text { with } h^{0}(L) \geq 2 \text { and } h^{1}(L) \geq 2\right\} .
$$

We say that a line bundle L contributes to the Clifford index of C if $h^{0}(L) \geq 2$ and $h^{1}(L) \geq 2$. As is well-known, the Clifford index of a smooth algebraic curve is a measurement how special a curve is in the sense of moduli. Specifically, if $k=\operatorname{gon}(C)$ then $\operatorname{Cliff}(C) \leq k-2$ for any curve C and $\operatorname{Cliff}(C)=k-2$ for a general k-gonal curve; cf. [12] for more details. The result of this paper is the following theorem.

Theorem 1. Let $e \geq 0$ be a fixed integer and let C be a smooth algebraic curve of genus $g \geq 4 e+7$. Suppose that the gonality gon (C) of the curve C is an odd integer. Assume that

$$
d-3 r-e \leq \operatorname{dim} W_{d}^{r}(C)
$$

for some $d, r \geq 1$ such that $d \leq g-e-3$. Then

$$
\operatorname{Cliff}(C) \leq 2(e+1)
$$

In proving our result, we use standard techniques in the theory of linear series on curves such as the Castelnuovo-Severi inequality, excess linear series argument as well as the Accola-Griffiths-Harris theorem.

1. Proof of Theorem 1

A proof of Theorem 1 requires several preparatory results and we begin with the following theorem due to Matelski [15]; see also [9, Corollary 1].

Lemma 2. Let C be a smooth algebraic curve of genus $g \geq 4 j+3, j \geq 0$. If $\operatorname{dim} W_{d}^{1}(C)=d-2-j$ for some d such that $j+2 \leq d \leq g-1-j$, then $\operatorname{dim} W_{2 j+2}^{1}(C) \geq$ j.

For positive integers d, r, let $m=[(d-1) /(r-1)], \varepsilon=d-m(r-1)-1, \varepsilon_{1}=d-m_{1} r-1$. We set

$$
\pi(d, r)=\frac{m(m-1)}{2}(r-1)+m \varepsilon
$$

Lemma 3 (Castelnuovo's bound). Assume C admits a base-point-free and simple linear series g_{d}^{r}. Then $g \leq \pi(d, r)$.

Lemma 4 ([1, §7]). If C admits infinite number of base-point-free simple linear series g_{d}^{r} 's, then $g \leq \pi(d+1, r+1)$.

Lemma 5 (Excess linear series [3, VII Exercise C, page 329]). On any curve C,

$$
\operatorname{dim} W_{d-1}^{r}(C) \geq \operatorname{dim} W_{d}^{r}(C)-r-1
$$

The following is a special case of the so-called Castelnuovo-Severi inequality.
Lemma 6 (Castelnuovo-Severi bound [2, Theorem 3.5]). Assume there exist two curves C_{1} and C_{2} of genus g_{1} and g_{2}, respectively, so that C is a k_{i}-sheeted covering of $C_{i}(i=1,2)$. If k_{1} and k_{2} are coprime, then

$$
g \leq\left(k_{1}-1\right)\left(k_{2}-1\right)+k_{1} g_{1}+k_{2} g_{2}
$$

Lemma 7 (Extension of H. Martens' theorem [10]). Let d and r be positive integers such that $d \leq g+r-4, r \geq 1$. If

$$
\operatorname{dim} W_{d}^{r}(C) \geq d-2 r-2 \geq 0
$$

then C is either hyperelliptic, trigonal, bi-elliptic, tetragonal, a smooth plane sextic or a double covering of a curve of genus 2 .

We also need the following result due to M. Coppens and G. Martens which may be considered as a "Clifford's theorem" for curves of odd gonality.

Lemma 8 (M. Coppens, G. Martens [5]). Let D be an effective divisor on a curve C of genus g and of odd gonality such that $\operatorname{deg} D<g$. Then $\operatorname{dim}|D| \leq$ $(1 / 3) \operatorname{deg} D$.

Proof of Theorem 1. For $e=0$, the result holds by Proposition B if C does not belong to the following special classes of curves described in Proposition B;
(i) a 5-gonal curve of genus $g=14$ with a very ample $g_{12}^{4}=g_{5}^{1}+g_{7}^{2}$
(ii) a 5-gonal curve of genus $g=13$ with a simple $g_{12}^{4}=g_{5}^{1}+g_{7}^{2}$
(iii) a 5 -gonal extremal space curve of degree 10 and genus $g=16$ with a very ample $g_{15}^{5}=g_{5}^{1}+g_{10}^{3}$.
We first argue that these curves do not satisfy $\operatorname{dim} W_{d}^{r}(C)=d-3 r$ for any $d \leq g-3$ and $r>0$. If $\operatorname{dim} W_{d}^{r}(C)=d-3 r$ for some $d \leq g-3$ with $r=1$ or $r=2$, then C must be a curve of gonality $\operatorname{gon}(C) \leq 4$ by Lemma 7. Therefore we now assume that $\operatorname{dim} W_{d}^{r}(C)=d-3 r$ for some $d \leq g-3$ with $r \geq 3$.

CASE (i): If C is a 5 -gonal curve of genus $g=14$ with a very ample $g_{12}^{4}=$ $g_{5}^{1}+g_{7}^{2}, W_{d}^{r}(C)=\emptyset$ for any $r \geq 3$ and $d \leq 9$ by Lemma 3 (Castelnuovo genus bound). Since $g=14$ and $d \leq g-3$, we have $r \leq 3$ by Lemma 8 . Furthermore, it is easy to see that $\operatorname{dim} W_{10}^{3}(C) \leq 0$. Suppose otherwise. Then there exist infinitely many $g_{10}^{3} \in W_{10}^{3}(C)$ which must be base-point-free and simple. Therefore one can apply

Lemma 4 to get the contradiction $g \leq 12$. Finally, suppose that $\operatorname{dim} W_{11}^{3}(C)=2$. Since we already have $\operatorname{dim} W_{10}^{3}(C) \leq 0$, it is clear that a general $\mathcal{L} \in W_{11}^{3}(C)$ is base-pointfree and hence birationally very ample. For a general $\mathcal{L}=g_{11}^{3} \in W_{11}^{3}(C)$, we consider $h^{0}\left(C, K \mathcal{L}^{-1} \otimes \mathcal{O}_{C}\left(-g_{5}^{1}\right)\right.$. If $h^{0}\left(C, K \mathcal{L}^{-1} \otimes \mathcal{O}_{C}\left(-g_{5}^{1}\right)\right) \geq 4$, then $\left|K \mathcal{L}^{-1} \otimes \mathcal{O}_{C}\left(-g_{5}^{1}\right)\right|=$ g_{10}^{3} for a general $\mathcal{L} \in W_{11}^{3}(C)$, and hence $\operatorname{dim} W_{10}^{3}(C)=2$, contrary to $\operatorname{dim} W_{10}^{3}(C) \leq 0$. Therefore we must have $h^{0}\left(C, K \mathcal{L}^{-1} \otimes \mathcal{O}_{C}\left(-g_{5}^{1}\right)\right) \leq 3$ for a general $\mathcal{L} \in W_{11}^{3}(C)$. Then, by the base-point-free pencil trick, applied to the natural map

$$
H^{0}(C, \mathcal{L}) \oplus H^{0}(C, \mathcal{L}) \longrightarrow H^{0}\left(C, \mathcal{L} \otimes \mathcal{O}_{C}\left(g_{5}^{1}\right)\right)
$$

one concludes that $h^{0}\left(C, \mathcal{L} \otimes \mathcal{O}\left(-g_{5}^{1}\right)\right) \geq 2$, for a a general $\mathcal{L} \in W_{11}^{3}(C)$, which in turn implies $\operatorname{dim} W_{6}^{1}(C)=2$. Then by Lemma 7, we have $\operatorname{gon}(C) \leq 4$, which is a contradiction.

CASE (ii): If C is a 5 -gonal curve of genus $g=13$, exactly the same argument as in the Case (i) is still valid for this case to show that $\operatorname{dim} W_{d}^{r}(C) \lesseqgtr d-3 r$ for any $d \leq g-3$ and $r>0$.

CASE (iii): Let C be a 5 -gonal extremal space curve of degree 10 and genus $g=16$. Note that C is a complete intersection of a quintic and a quadric in \mathbb{P}^{3}. For $d \leq 9$ and $r \geq 3, W_{d}^{r}(C)=\emptyset$ by Lemma 3. For the case $(d, r)=(10,3)$, we apply the same argument as in the case (i) above to show that $\operatorname{dim} W_{10}^{3}(C) \leq 0$. For the case $(d, r)=(11,3)$, suppose that $\operatorname{dim} W_{11}^{3}(C)=2$. Since we already have $\operatorname{dim} W_{10}^{3}(C) \leq 0$, a general g_{11}^{3} must be base-point-free and simple. Then by Lemma 4 we get a contradiction $g \leq 15$. Let $(d, r)=(12,3)$ and assume that $\operatorname{dim} W_{12}^{3}(C)=3$. For a general $\mathcal{L}=g_{12}^{3} \in W_{12}^{3}(C)$, we again consider $h^{0}\left(C, K \mathcal{L}^{-1} \otimes \mathcal{O}_{C}\left(-g_{5}^{1}\right)\right)$. If $h^{0}\left(C, K \mathcal{L}^{-1} \otimes \mathcal{O}_{C}\left(-g_{5}^{1}\right)\right) \geq 5$, then $\left|K \mathcal{L}^{-1} \otimes \mathcal{O}_{C}\left(-g_{5}^{1}\right)\right|=g_{13}^{4}$ for a general $\mathcal{L} \in W_{12}^{3}(C)$, and hence $\operatorname{dim} W_{13}^{4}(C) \geq 3$, a contradiction to Proposition A. Therefore we must have $h^{0}\left(C, K \mathcal{L}^{-1} \otimes \mathcal{O}_{C}\left(-g_{5}^{1}\right)\right) \leq 4$ for a general $\mathcal{L} \in W_{12}^{3}(C)$. By applying the base-pointfree pencil trick to the natural map

$$
H^{0}(C, \mathcal{L}) \oplus H^{0}(C, \mathcal{L}) \longrightarrow H^{0}\left(C, \mathcal{L} \otimes \mathcal{O}_{C}\left(g_{5}^{1}\right)\right)
$$

one concludes that $h^{0}\left(C, \mathcal{L} \otimes \mathcal{O}\left(-g_{5}^{1}\right)\right) \geq 2$, for a a general $\mathcal{L} \in W_{12}^{3}(C)$, which in turn implies $\operatorname{dim} W_{7}^{1}(C) \geq 3$. Then by Lemma 7 , we have $\operatorname{gon}(C) \leq 4$, which is a contradiction. Let $(d, r)=(12,4)$ and assume that $\operatorname{dim} W_{12}^{4}(C)=0$. If g_{12}^{4} is not simple, then C is either trigonal or a double cover of a curve of genus $h \leq 2$, a contradiction. If g_{12}^{4} is simple, then $g \leq 15$ by Lemma 3, again a contradiction. For the case $(d, r)=$ $(13,3)$, we can use an argument almost parallel to the case $(d, r)=(12,3)$ to show that $\operatorname{dim} W_{13}^{3}(C) \lesseqgtr 4$. Finally let $(d, r)=(13,4)$ and assume that $\operatorname{dim} W_{13}^{4}(C)=1$. Since we already know $W_{12}^{4}(C)=\emptyset$, every $g_{13}^{4} \in W_{13}^{4}(C)$ is base-point-free and hence simple. Therefore one applies Lemma 4 to get the contradiction $g \leq 15$. In all, we conclude that our theorem holds for $e=0$.

For $e=1$, the theorem is valid by Proposition C. Hence from now on, we may assume that $e \geq 2$ and $\operatorname{gon}(C) \geq 7$; note that if $g \geq 4 e+7$, the curves C in

Proposition B and Proposition C have gon $(C) \leq 5$. By induction, we assume that $\operatorname{dim} W_{d}^{r}(C)=d-3 r-e$ for some $d \leq g-e-3$ and $r \geq 1$.

Let Z be an irreducible component of $W_{d}^{r}(C)$ of dimension $d-3 r-e$ and let $g_{d}^{r}(z)$ be the linear series associated to an element $z \in Z$. By the fact that no component of $W_{d}^{r}(C)$ is properly contained in a component of $W_{d}^{r+1}(C)$, we may assume that $g_{d}^{r}(z)$ is complete for a general $z \in Z$; cf. [3, Lemma 3.5-page 182]. By shrinking if necessary, one may further assume that $g_{d}^{r}(z)$ is base-point-free for a general $z \in Z$. We first treat the case $r=1$, which is relatively easy.

Claim 1. If $r=1$, then $\operatorname{Cliff}(C) \leq 2(e+1)$.
For $r=1$, we set $\operatorname{dim} W_{d}^{1}(C)=d-2-j=d-3-e \geq 0 ; j=e+1$. Therefore we have $j+2 \leq e+3 \leq d \leq g-1-j$, where the last inequality comes from our assumption $d \leq g-e-3$. Hence Lemma 2 applies to get the inequality

$$
\operatorname{dim} W_{2(e+1)+2}^{1}(C)=\operatorname{dim} W_{2 e+4}^{1}(C) \geq e+1
$$

By Lemma 5, one has $\operatorname{dim} W_{2 e+3}^{1}(C) \geq e-1 \geq 0$ and it follows that

$$
\operatorname{Cliff}(C) \leq(2 e+3)-2=2 e+1 \leq 2 e+2,
$$

as wanted; note that $g_{2 e+3}^{1} \in W_{2 e+3}^{1}(C)$ contributes to the Clifford index of C by the genus assumption $g \geq 4 e+7$. Therefore, for the rest of the proof, we may assume that $r \geq 2$ and that

$$
\begin{equation*}
\operatorname{dim} W_{n}^{1}(C) \leq n-4-e \tag{1}
\end{equation*}
$$

for any $n \leq g-e-3$.
Claim 2. If $r \geq 2$, then $g_{d}^{r}(z)$ is simple for a general $z \in Z$.
Assume $g_{d}^{r}(z)$ is compounded for a general $z \in Z$. Then $g_{d}^{r}(z)$ induces an n-sheeted covering map $\pi: C \rightarrow C^{\prime}$ onto a smooth curve C^{\prime} of genus g^{\prime} with $n \mid d$ and $n \geq 2$. Then $g_{d}^{r}(z)$ is the pull back of a base-point-free complete series $g_{d / n}^{r}$ on C^{\prime} with respect to π; i.e. $g_{d}^{r}(z)=\pi^{*}\left(g_{d / n}^{r}\right)$.

Let $g^{\prime}=0$. Then $(d / n)-r=g^{\prime}=0$ and $Z \subset r \cdot W_{n}^{1}(C)$. Hence one has

$$
d-3 r-e \leq \operatorname{dim} W_{n}^{1}(C) \leq n-4-e,
$$

where the second inequality follows from (1). Therefore $(n-3)(r-1) \leq-1$ and hence it follows that $n=2$; but this is a contradiction since C is non-hyperelliptic.

Next, we assume $g^{\prime}>0$. By de Franchis' theorem, we may assume that the map
$W_{d / n}^{r}\left(C^{\prime}\right) \xrightarrow{\pi^{*}} Z$ is finite dominant map. Hence,

$$
0 \leq d-3 r-e=\operatorname{dim} Z \leq \operatorname{dim} W_{d / n}^{r}\left(C^{\prime}\right)
$$

Assume $g_{d / n}^{r}$ is special. Then $\operatorname{dim} W_{d / n}^{r}\left(C^{\prime}\right) \leq(d / n)-2 r$ by H. Martens' theorem [16]. Hence, we have $0 \leq d-3 r-e=\operatorname{dim} Z \leq(d / n)-2 r$. Therefore it follows that $(n-1) d \leq n(r+e)$ and $d \geq 3 r+e$. Hence we have

$$
\operatorname{Cliff}(C) \leq d-2 r \leq \frac{n}{n-1}(r+e)-2 r
$$

and a simple computation leads to $\operatorname{Cliff}(C) \leq 2 e+2$ as wanted.
Assume $g_{d / n}^{r}$ is non-special. Again by de Franchis' theorem, the map $J\left(C^{\prime}\right)=$ $W_{d / n}^{r}\left(C^{\prime}\right) \xrightarrow{\pi^{*}} Z$ is a finite dominant map and

$$
\begin{equation*}
\operatorname{dim} W_{d / n}^{r}\left(C^{\prime}\right)=\operatorname{dim} \operatorname{Jac}\left(C^{\prime}\right)=g^{\prime}=\frac{d}{n}-r=\operatorname{dim} Z=d-3 r-e \tag{2}
\end{equation*}
$$

We shall treat the cases $n=2$ and $n \geq 3$ separately.
$n=2$: Since $\operatorname{gon}(C)=k$ is odd, the morphism $C \longrightarrow \mathbb{P}^{1}$ induced by a g_{k}^{1} does not factor through π. Hence, Lemma 6 (Castelnuovo-Severi bound) gives $g \leq k-1+2 g^{\prime}$. Since $k \leq 2 \cdot \operatorname{gon}\left(C^{\prime}\right) \leq 2 \cdot\left(g^{\prime}+3\right) / 2$, we get $g \leq 3 g^{\prime}+2$. Note that the equality (2) for $n=2$ implies $d=4 r+2 e$ and $g^{\prime}=r+e$. Therefore from the assumption $d \leq g-e-3$, we have $d+e+3 \leq g \leq 3 g^{\prime}+2 \Rightarrow 4 r+2 e+e+3 \leq 3 g^{\prime}+2 \Rightarrow g^{\prime} \leq e-1$. Hence $g \leq 3(e-1)+2$, a contradiction to $g \geq 4 e+7$.
$n \geq 3$: We remark that $\pi^{*}\left(W_{d / n-r+1}^{1}\left(C^{\prime}\right)\right) \subset W_{d-n(r-1)}^{1}(C)$. Hence by the equality (2), we have

$$
\begin{align*}
\operatorname{dim} \pi^{*}\left(W_{d / n-r+1}^{1}\left(C^{\prime}\right)\right)=\operatorname{dim} W_{d / n-r+1}^{1}\left(C^{\prime}\right) & =\operatorname{dim} J\left(C^{\prime}\right)=d-3 r-e \tag{3}\\
& \leq \operatorname{dim} W_{d-n(r-1)}^{1}(C)
\end{align*}
$$

Since $d-3 r-e \geq d-n(r-1)-3-e$ for $n \geq 3$ and $d-n(r-1) \leq g-e-3$, the above inequality (3) is contradictory to our assumption (1). And this finishes the proof of Claim 2.

Since $g_{d}^{r}(z)$ is simple for a general $z \in Z$ if $r \geq 2$, we may apply Accola-GriffithsHarris theorem [8, page 73] to our current situation and we have the following inequality;

$$
d-3 r-e \leq \operatorname{dim} W_{d}^{r}(C) \leq \operatorname{dim} T_{|D|} W_{d}^{r}(C) \leq h^{0}(2 D)-3 r \quad \text { for } \quad D \in g_{d}^{r}(z)
$$

and it follows that

$$
d-e \leq h^{0}(2 D)=2 d+1-g+h^{1}(2 D) .
$$

On the other hand, by the numerical bound $d \leq g-e-3$ which we have assumed, we see that $h^{1}(2 D) \geq g-d-1-e \geq 2$ and hence the linear series $|2 D|$ contributes to the Clifford index of C. Therefore we finally have
(4) $\quad \operatorname{Cliff}(C) \leq \operatorname{Cliff}(2 D)=2 d-2 h^{0}(2 D)+2 \leq 2 d-2(d-e-1)=2(e+1)$,
and this finishes the proof of the theorem.

One may refine the statement in Theorem 1 for small $e \leq 6$ as follows by looking at our proof more carefully, which Takao Kato has kindly informed the authors through Akira Ohbuchi.

Corollary 9. Let e be a fixed integer with $0 \leq e \leq 6$ and let C be a smooth algebraic curve of genus $g \geq 4 e+7$. Suppose that the gonality gon (C) of the curve C is an odd integer. Assume that

$$
d-3 r-e \leq \operatorname{dim} W_{d}^{r}(C)
$$

for some $d, r \geq 1$ such that $d \leq g-e-3$. Then

$$
\operatorname{Cliff}(C) \leq 2(e+1)
$$

Furthermore the equality holds if and only if C is a smooth plane curve of degree $2 e+6$.

Proof. We use the same notations which we used in the proof of Theorem 1. We first remark that everywhere in the course of the proof of Theorem 1, we indeed had $\operatorname{Cliff}(C) \leq 2 e+1$ except for the case $r \geq 2$ and $g_{d}^{r}(z)$ is simple for a general $z \in Z$. Therefore, we assume $\operatorname{Cliff}(C)=2 e+2$ and $g_{d}^{r}(z)=|D|$ is simple for a general $z \in Z$ and $r \geq 2$. Hence by the inequality (4), $\operatorname{Cliff}(2 D)=\operatorname{Cliff}(C)=2 e+2$. We now distinguish two cases.
(i) $2 d \leq g-1$: By [5, Theorem C] which provides an upper bound of the degree of a complete linear series \mathcal{D} such that $\operatorname{Cliff}(C)=\operatorname{Cliff}(\mathcal{D})$, we have $2 d \leq 4 e+8$. On the other hand

$$
2 e+2=\operatorname{Cliff}(C) \leq \operatorname{Cliff}(D)=d-2 r \leq 2 e+4-2 r,
$$

and it follows that $r \leq 1$, contrary to our assumption $r \geq 2$.
(ii) $2 d \geq g-1$: Note that $|K-2 D|=g_{2 g-2-2 d}^{g-d-2-e}$ since $\operatorname{Cliff}(K-2 D)=\operatorname{Cliff}(2 D)$. We again apply [5, Theorem C] to the linear series $|K-2 D| ; d^{\prime}=\operatorname{deg}|K-2 D|=$ $2 g-2-2 d \leq 4 e+8$ and hence

$$
r^{\prime}=\operatorname{dim}|K-2 D| \leq e+3
$$

We now briefly recall the so-called Clifford dimension of a smooth algebraic curve C, denoted by $\operatorname{Cliffdim}(C)$, which is defined to be the minimum possible dimension $r(\mathcal{D})$ of a complete linear series \mathcal{D} such that $\operatorname{Cliff}(C)=\operatorname{Cliff}(\mathcal{D})$ and \mathcal{D} contributes to the Clifford index of C; cf. [6, page 174]. By $r^{\prime} \leq e+3$ and by our numerical hypothesis $e \leq 6$, we have

$$
\operatorname{Cliffdim}(C) \leq r^{\prime} \leq e+3 \leq 9
$$

which in turn implies $\operatorname{Cliffdim}(C)=1$ or 2 by the last statement in [6, page 203], which asserts in particular that for $3 \leq r \leq 9$ a curve of Clifford dimension r is of even gonality. The case $\operatorname{Cliff} \operatorname{dim}(C)=1$ cannot occur; if then $\operatorname{gon}(C)=2 e+4$ and C is of even gonality. Therefore $\operatorname{Cliffdim}(C)=2$ and by a simple fact that a complete linear series \mathcal{D} with $\operatorname{dim}(\mathcal{D})=\operatorname{Cliffdim}(C) \geq 2$ is very ample [6, Lemma 1.1, page 177], we deduce that C is a smooth plane curve of degree $2 e+6$.

References

[1] R.D.M. Accola: On Castelnuovo's inequality for algebraic curves I, Trans. Amer. Math. Soc. 251 (1979), 357-373.
[2] R.D.M. Accola: Topics in the theory of Riemann surfaces, Lecture Notes in Math. 1595, Springer Verlag, 1994
[3] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris: Geometry of Algebraic Curves I, Springer Verlag, 1985.
[4] M. Coppens, C. Keem and G. Martens: Primitive linear series on curves, Manuscripta Math. 77 (1992), 237-264.
[5] M. Coppens and G. Martens: Secant spaces and Clifford's theorem, Composition Math. 78 (1991), 193-212.
[6] E. Eisenbud, H. Lange, G. Martens and F.O. Schreyer: The Clifford dimensions of a projective curve, Composition Math. 72 (1989), 173-204.
[7] P. Griffiths and J. Harris: The dimension of the variety of special linear systems on a general curve, Duke Math. J. 47 (1980), 233-272.
[8] J. Harris: Curves in projective space, Séminaire de mathématiques supérieures 85 Univ. Montréal, 1982.
[9] R. Horiuchi: Gap orders of meromorphic functions on Riemann surfaces, J. reine angew. Math. 336 (1982), 213-220.
[10] C. Keem: On the variety of special linear systems on an algebraic curve, Math. Annalen 288 (1990), 309-322.
[11] T. Kato and C. Keem: G. Martens dimension theorem for curves of odd gonality, Geometriae Dedicata 78 (1999), 301-313.
[12] C. Keem and S. Kim: On the Clifford index of a general (e+2)-gonal curve, Manuscripta Math. 63 (1989), 83-88.
[13] S. Kleiman and D. Laksov: On the existence of special divisors, Am. J. Math. 94 (1972), 431-436.
[14] G. Martens: On curves of odd gonality, Arch. Math. 67 (1996), 80-88.
[15] J.P. Matelski: On geometry of algebraic curves, Ph.D. Thesis, Princeton (1978).
[16] H. Martens: On the varieties of special divisors on a curve, J. Reine Angew. Math. 233 (1967), 111-120.

Edoardo Ballico

Department of Mathematics University of Trento 38050 Povo (TN) Italy
e-mail: ballico@science.unitn.it
Changho Keem
Department of Mathematics Seoul National University
Seoul 151-742 South Korea
e-mail: ckeem@math.snu.ac.kr

[^0]: *The authors are grateful to Professors Akira Ohbuchi and Takao Kato for several comments and suggestions on a previous version of this paper.
 \dagger Partially supported by MURST.
 \ddagger Partially supported by Seoam Scholarship Foundation for a visit to the Department of Mathematics of University of Notre Dame where this manuscript was prepared for publication. Also supported in part by KOSEF 981-0101-005-1.

