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0. Introduction

Throughout the papeKk  will denote a fixed field. By an algebra, mean a ba-
sic connected finite dimensional non-simple associakivelgeksa with an identity. For
an algebraA , we shall denote by mad the category of finitelyegdad leftA -
modules, and by mod the stable module category of mad . We denotedbyhe
residue class ofi € A in A/sOCA .

Let A and A’ be selfinjective algebras. In this paper, we are interestethe
guestion of when a socle equivalence betwéen  Ahdnduces a stable equivalence
modA ~ modA’, where A andA’ are said to be socle equivalent if there is an al-
gebra isomorphism betweefi/ socA andA’/socA’. It is proved in [6] thatA and
A’ are socle equivalent and stably equivalent provided that d Ahare Hochschild
extension algebras of an algebra, say , without orientedesym its quiver, by
Homg (A, K). It is, however, that a socle equivalence does notyingpktable equiv-
alence, in general (see [3], [2]). The aim of this paper ishows a sufficient condi-
tion in terms of akK -regular map for socle equivalent selfitijecalgebras to be sta-
ble equivalence, wher& -linear map: A — K is called a regular map oA if
A =¢(1y) : A — K for an isomorphismy : A — Homg (A, K) in modA . Our main
theorem is stated as follows.

Theorem. Let A and A’ be socle equivalent selfinjective algebras, say:
A/socA = A’/socA’. Assume that there are regular mapsof A and )\ of A’
such thatA(ab) = N (a'd’) for all a,b € radA and a’, b’ € radA’ with @’ = p(a) and
b = p(l;). Then the stable categoriesodA and modA’ are equivalent.

In the last section, we shall see that Hochschild extensigebaas, of an algebra
without oriented cycles in its quiver, satisfy the assumptfor regular maps in the
theorem.

For basic background and notations, we refer to [1] and [7].
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1. Preliminaries

Let A be a selfinjective algebra. We denote By the full subcategory of mod
consisting of finite dimensional projective let -modulesid by morfP, the category
of morphisms inP, whose objects are the morphisnfs P;:— Py such that so@, C
Imf C radPo. A morphismey : f — f’ between two objectsf P; — Py and
f' P — Plis a paire = (p1, go) formed by two homomorphismg; : P, — P/ and
o i Po— Py with @of = f'¢1.

On the set of morphisme = (p1, @o) from f : PL — Py to f' : P{ — P§, we
have an equivalence relatien such thaty = (o1, vo) ~ ¥ = (11, ¥o) if wo—1o = f'w
for somew : Py — P;. We denote by hor®, the homotopy category of mat,
whose objects are the objects of iy and the morphismsy] in homP, are the
equivalence classes of morphisms= (1, ¢o) in morP, with respect to~. Then we
have the fully faithful and dens& -linear functor Cok : hBn — mod(A/socA )
which assigns to an objegt P; — Py of homP, its cokernel Cokf and to a mor-
phism [p] : f — f’ the induced morphism Cak: Cok f — Cokf’. The categories
homP, and mod{/socA ) are equivalent. See [6] or [4] in detalil.

The following lemma is proved in [4].

Lemma 1.1. Let[¢] : f — f’ be a morphism irhomP,. ThenCoky factors
through a projective module imodA if and only if there is a morphismp = (¥1, %) :
f — f’ in morP, such that[p] = [«] and ¢pf = 0.

By Lemma 1.1, we have an equivalence relationsuch that ¢] = [(v1, po)] =
[¥] = [(¢1, ¥0)] in homP, if and only if Cok(p — v) factors through a projective
module in modA . We denote by hdR) the stable homotopy category whose objects
are objects in hor?, and morphisms [p]] are equivalence classes of morphismg [
in homP, with respect tox~. Then two categories hof, and modA are naturally
equivalent.

For an automorphisnv of A and aA -moduleM ,M denotes theA -module ob-
tained fromM by changing the operation of as follows: m = v(a)m for each
a € A andm € M. Similarly, N, is defined for a rightA -modulév . We recall a
regular map attached to a selfinjective algebra. A map called a regular map ok
if Ais aK -linear map fromA taK and satisfie4Aa) # O for any nonzero element
a of A. A regular map\ of A is called v-commutative if \(ba) = \(v(a)b) for all
a,be A. Let p: A — Homg (A, K) be a leftA -module isomorphism. The right mul-
tiplication mapR, :A — A,b — ba induces an algebra automorphismof A such
that o : A — Homg (A, K), is a A -bimodule isomorphism, and thes(1,) is a v-
commutative regular map ok , becausg(1x)}(v(a)b) = {o(dr)a} () = {¢(a)}(b) =
{ap(15)} () = {©(14)}(ba). The automorphisny is uniquely determined bys  up to
inner automorphism, and is called the Nakayama automarplait A. Note that the
Nakayama automorphism always exists for a selfinjectivelaty
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Conversely, given a regular mapof A, we have the leftA -module isomorphism
ox - A — Homg (A, K), a — (b — A(ba)). Note that a regular map of A is a
v-commutative, where- is the automorphism defined hy,. We denote by the al-
gebra automorphism o /socA given byv(a) = v(a) for a € A, because/(socA ) =
socA . Also, note that Hog A//radA, K) ~ ;socA =~ socHom (\/SOCA, K ),
becauseA is non-simple selfinjective. We also denotexbyhe residue class in
Homg (A/socA, K ) Homg (A/radA, K) of x € Homg (A/socA, K). We need the
following isomorphisms.

Lemma 1.2. The A -bimodule isomorphism : A — Homg (A, K), induces the
following isomorphisms

w1 A— ,1Homg (A, K)
2 : radA — ;-1 Homg (A/SocA, K )
3 : radA/socA — ;-1 Homg (radA/socA, K )

where ¢1 is a A-bimodule isomorphism ang,, ¢3 are A/socA-bimodule isomor-
phisms.

Proof. We set\ = ¢(1,) which is v-commutative. Then\(ab) = \(v—(ab)) =
Abr—a)) for all a, b € A. The 1, ¢, Or 3, respectively, is defined byp;(a)}(b) =
Mab), {p2(c)}(a) = A(ca) or {<p3(E)}(c7) = Xcd), respectively, for alla,b € A and
c,d €radA . ]

2. Stable equivalence

In this section we shall prove the theorem stated in Intrtdoc The idea of the
proof owes to the previous works [6] and [4].

Let A and A’ be two selfinjective algebras which are socle equivaleny, sa
A/socA = A'/socA’. Let {e;}; and {¢/}’-; be complete sets of orthogonal primi-
tive idempotents ofA and\’, respectively, such thgb ¢;) = ¢; for eachi . For each
a € A, we choose a representative, sdye A’, of the residue clasp a), and define
a map by the correspondence induced by algebra isomorphism

P A—A,a—d.
For a € e; Aej, the right multiplication mapR, from\e; tave; is also denoted by
simply.
Let ¢ : A — Homg (A, K), and ¢’ : A’ — Homg (A’, K),» be bimodule isomor-

phisms. It is immediate that

Homg (p~*, K) : ;-: Homg (A/ socA, K )— ,7— Homg (A'/ socA’, K),,
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is a A/socA -bimodule isomorphism. From this, the composite
Y= gplz_l Hom(p~1, K)yp, : radA — 7 pi—1(radA’),

is a A/socA -bimodule isomorphism

radA v, 7 pir-i(radA’),
(2.1) wzl Lo;

—1
-1 Hom(A/ socA, K ) e -K)

p7—1Hom(A’/socA’, K),
where ¢, : radA — ;-1 Hom(A/socA, K ) andy, : 77 radA’ — Hom(A’/socA’, K)
are the isomorphisms in Lemma 1.2. We get v/pr~1: A/socA = A’/socA’ and
q(e;) = ¢ for eachi . Theng(arb) = q(a)y(r)p(b) for anya,b € A andr € radA,
and we can lift{e;”"}_, to {e/}"_; a complete set of orthogonal primitive idempotents
of A’. There uniquely existg for each such thite; ~ A’e” as A’-modules, be-
causeA’ is assumed to be basic.

Assuming(a) = p(a) for all a € radA, let us define a functaG  =Gg, G1) :
homP, — homP,., which plays an important role for the proof of the theorerheT
object correspondence is

Go(r) = (W(rij))ij - ©iN'e]! — DjN'e]

for an objectr =£; ) :®:;Ae; — ®jAe; of homP,, wherer;; € radA by the
definition of morphisms in ho®,. Let f = (b, a) :r — t be a morphism of mdP,
between two objects = ;) ©iAe; — DjAe; andt =y ki DrAex — BiAey,
and letb = by )« ,a =& ) . The morphism correspondence is then given b

G1([fN) = [ f1: Golr) — Gol1),
where 7 = (G(b), p(a)) € morPax..

Lemma 2.1. G is a well-defined functor.

Proof. We putp(a) = (p(a;n)ji, 4(b) = @0i)ix, and f = (g(b), pa)). We
shall show thatG1([ f]) is a morphism in honP,.. For this, we first claim thalf =
(g(b), p(a)) : Go(r) — Go(t) is a morphism of moP,,, that is, the following diagram
is commutative:

Go(r)
@iA/ef’ 9 GBjA'ej-

L}(b)l lﬁ(ﬂ)

@€ _ G, SN e.
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In fact, it follows that

RaoyRaw) = (@Gi))in(o(ta))u = (’l/) <Zk: biktkl>)

il

(+(Zran)) = @on@ams
j il

= Rp(a) RGo(r)-

Next, we have to show thati  preserves the equivalence nelatian morpy,.
Assume that there is a map &{ jx) ®jAe; — ®rAe, such thatR, =R,R. =R .
Thenaj; =), cjxtu € radA becausey, € radA , and

(W) = (w (Z cjktkl)) : (Z a(c,k)w(tkl)) = @) ()
| j,

k Jjl k

On the other handi(a;;)) = p(aj;) +sj for somes;; € socA’ by our assumption.
Moreover, we haves(; ;) =tfx) k(¥ (t))u for some map ) jx @,A’e} — @ANe,
because Imf; ;) C @;s0cA’e; C Im(i)(ti))u- It holds that

(plajn)ji = Wlajr) — sj)ji = (@(cjr) = tjx) jk (WD) -

Thus, G, is well-defined. Now it is easy to check th& &(, G1) is a functor (cf.
[6] or [4]). ]

Proposition 2.2. Assume that)(a) = p(a) for all a € radA. Then stable homo-
topy categorieshom”P, and homP,. are equivalent.

Proof. We can construct the inverse funciGéft : homP,, — homP, whose
object correspondence i64(r') = (v 1(/))); : @ihe; — @jAe; for all objects
r'=(r;)ij - ©iN'el — @ A€ of homPy,. The morphism is given by ([(, a')]) =
[((q=2(B}))ix- (p~1(a))0)] for any morphism [6', a)] = [((Bje)ix. (aj);0)] : ' — ' of
homPy,:, wherer’ = (r],);j : ©iA'e;’ — @jA'e; andt’ = (t))u : ©xA'ef — @A e are
objects of honP,.. ThereforeG is an equivalent functor.

We shall show that the functag is stable (in the sense of Lerhrba If a mor-
phism [p,a)]:r — t in homP, satisfiesR,R, =0, then

Ry Ry = ¥(r)pla) = y(ra) =0,
thus the proof is completed. U

Proof of Theorem. LetA and\’ be socle equivalent selfinjective algebras, say
p . A/socA = A’/socA’. Note that we may identify mod (or modA’) with
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homP, (or homP,,, respectively). Assume that there are regular mapsf A and
N of A’ such that\(ab) = N (p(a)p(d)) for all a,b € radA . There are bimodule iso-
morphismsy : A — Hom(A, K), and ¢’ : A’ — Hom(A’, K),, such that\ = p(1,)
and N = ¢'(14/). Leta, b € radA . It holds that

{Hom(p~%, K)p3(b)}(p(@)) = pa(b)(@)
= Aab) = N (p(a)p(»))
= {5 Hp(@)).

Then the following diagram is commutative:

radA / SocA —r 5 radA’/ socA’

o) |+

-1
Hom(radA / socA, K ) Hom™ . K) Hom(radA’/ socA’, K).

By (2.1), we havey(a) = ¢, "Homg (p=2, K)pa(a) = ¢y “Homg (02, K)ps(a) =
p(a) for all @ € radA. Consequently, the stable homotopy categories Agnand
homP,. are equivalent by Proposition 2.2. [

3. Example: Hochschild extension algebras

Let A be aK -algebra without oriented cycles in its ordinaryvguiand DA =
Homg (A, K). A K -bilinear mapa : A x A — DA is called a 2-cocycle itx(ab, c¢) +
ala, b)e = ala, be) + aa(b, ¢) for all a,b,c € A. For any 2-cocyclex: A x A — DA,
we denote byA x, DA the Hochschild extension algebra af YA corresponding
to «a, that is, A x, DA is equal toA ® DA as aK -vectorspace, and its multiplication
is given by @,u)b,v) = @b,av +ub +a(a, b)) for all a,b € A andu,v € DA. In
casea = 0, A xo DA is called a trivial extension algebra of hyA  and denoted
simply by A x DA. An algebraA x, DA is selfinjective. In [6], Yamagata proved that
Ax, DA and A x DA are socle equivalence algebras which naturally induce ldesta
equivalence. In this section, we shall show that these agebx, DA and A x DA
satisfy the assumption of the main theorem, namely, we shwadbtruct regular maps
satisfying the required condition.

We consider a fixed 2-cocycle : A x A — DA. Let {¢;}_,, {&;}/-, and {]}\,
be complete sets of orthogonal primitive idempotentsdofA x DA and A x, DA,
respectively, such that; = (¢;, 0) ande] = (¢;, f;) for some f; € DA as elements of
A@® DA. For any elements, y € A@ DA, we denote bycy or -y the multiplication
in Ax DA or Ax, DA, respectively. We define & -linear mgp A DA)/SOCA x

DA) — (A xq DA)/SOCA x o DA) by p(x) =3_,;¢i -cixe; - ) for all x € A x DA.
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Lemma 3.1. p is an algebra isomorphism.

Proof. We setx’ =}, ¢; - gixe; - ¢} forall x = 3. cixe; € A x DA. Note
that x’ € soc(A x, DA) for all x € soc(A x DA) because so@d(x DA) = socDA =
Soc( x, DA). Thenp is well-defined and bijective becausé:; - ;) =¢; = (g; - €})e;
for eachi , and its inverse is defined by >z ei(ei - x -€l)e; for x € A x, DA.

Let r € rad(A x DA) andx,y € A x DA. Note thatr’ - x’ = (rx)’ ([6, Lemma
3.2]), and hence’ - {(xy) —x’-y'} = 0. Since radd x, DA) = {r' | r € rad(A x DA)},
we have £y )— x’ -y’ € soc(A x, DA). Consequentlyp is an algebra isomorphism.

O

Let A\, and )\, be K -linear maps fromA x, DA to K defined byA,(a, u) = u(14)
and A, (a, u) = u(La) — 32, { fileiae)) + fi(eiae;) + aleiae;, e;)(e;) + ale;, eiae;)(1a)}
for all a € A andu € DA. Then both)\, and )\, are regular maps ofi x, DA.

Lemma 3.2. Xo((a, u)(b, v)) = AL (p(a,u) - p(b,v)) for all (a,u) and (b,v) €
rad(A x DA).

Proof. Leta,b € radA andu,v € DA. It holds that\o((a, u)(b, v)) = v(a)+u(b).
On the other hand, we may assumpér) =3, c; - €ixe; - ¢ for all x € A x DA.
It holds that

Plau)- plb.v) = > el -cila, u)e; - £ - (b, vex - &
ijk

=" eila, u)(b, v)ex - £
ik

= E <eiabek, e;ave, + ejubey + fie;abey
ik

+ e;abey fi +e;a(e;abey, e) + ale;, e,-abek)),

because’ - x’ = (rx) for all x € A x DA andr € rad(A x DA) ([6, Lemma 3.2]).
Therefore, we have,(p(a, u)-p(b, v)) = >, {v(exeia)+u(bere;)} = v(a)+u(b). O

If a base fieldK is an algebraically closed andka -algebra oo ori-
ented cycles in its quiver, then any Hochschild extensigelaa A x, DA is isomor-
phic to the trivial extension algebra x DA. However, if K is not an algebraically
closed, there exists a Hochschild extension algebra wisiciot isomorphic toA x DA
(see [5], [2]).
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