A CLUSTER OF SETS OF EXCEPTIONAL TIMES OF LINEAR BROWNIAN MOTION

Yasuki ISOZAKI

(Received June 7, 2000)

1. Introduction and the main theorems

Aspandiiarov-Le Gall [1] studied the following random closed sets K^{-}, K and $K^{\prime}:$ Let $\left(B_{t} ; t \geq 0\right)$ be a linear standard Brownian motion starting at 0 , and let

$$
\begin{aligned}
K^{-} & =\left\{t \in[0,1] ; \int_{s}^{t}\left(B_{u}-B_{t}\right) d u \leq 0 \quad \text { for every } s \in[0, t) .\right\} \\
K & =\left\{t \in K^{-} ; \int_{t}^{s}\left(B_{u}-B_{t}\right) d u \leq 0 \quad \text { for every } s \in(t, 1] .\right\} \\
K^{\prime} & =\left\{t \in K^{-} ; \int_{t}^{s}\left(B_{u}-B_{t}\right) d u \geq 0 \quad \text { for every } s \in(t, 1] .\right\}
\end{aligned}
$$

They computed the Hausdorff dimension of K^{-}, K and K^{\prime}.

Theorem ([1]). It holds $\operatorname{dim} K^{-}=3 / 4, \operatorname{dim} K=1 / 2$ and $\operatorname{dim} K^{\prime} \leq 1 / 2$ almost surely. The set K^{\prime} is possibly empty or $\operatorname{dim} K^{\prime}=1 / 2$, both with positive probability. The same statements hold if the weak inequalities in the definition of K^{-}, K and K^{\prime} are replaced by the strict inequalities.

In this paper, we consider a cluster of random sets having various dimension. For $\alpha \geq 0$ and $c>0$, we define the following functions $V(\alpha, c)$ increasing on \mathbb{R} :

$$
V(\alpha, c ; y)=y^{\alpha} \quad \text { for } y>0 ; V(\alpha, c ; 0)=0 ; V(\alpha, c ; y)=-\frac{|y|^{\alpha}}{c} \quad \text { for } y<0
$$

Let $\alpha, \alpha_{+}, \alpha_{-} \geq 0, c, c_{+}, c_{-}>0$ and write V for $V(\alpha, c), V_{ \pm}$for $V\left(\alpha_{ \pm}, c_{ \pm}\right)$. We define the random sets depending on the functions V, V_{+}and V_{-}:
(1.2) $K\left(V_{-} ; V_{+}\right)=\left\{t \in K^{-}\left(V_{-}\right) ; \int_{t}^{s} V_{+}\left(B_{u}-B_{t}\right) d u \leq 0 \quad\right.$ for every $\left.s \in(t, 1].\right\}$,

AMS 1991 subject classifications. Primary 60J65; Secondary 60J55.

$$
\begin{equation*}
K^{\prime}\left(V_{-} ; V_{+}\right)=\left\{t \in K^{-}\left(V_{-}\right) ; \int_{t}^{s} V_{+}\left(B_{u}-B_{t}\right) d u \geq 0 \quad \text { for every } s \in(t, 1] .\right\} \tag{1.3}
\end{equation*}
$$

These sets consist of exceptional times in the sense that $P\left[t \in K^{-}(V)\right]=0$ for every $t \in(0,1]$ and $P\left[t \in K\left(V_{-} ; V_{+}\right)\right]=P\left[t \in K^{\prime}\left(V_{-} ; V_{+}\right)\right]=0$ for every $t \in[0,1]$.

Theorem 1. We define $\nu=1 /(2+\alpha)$, $\nu_{-}=1 /\left(2+\alpha_{-}\right)$and $\nu_{+}=1 /\left(2+\alpha_{+}\right)$.
Let $\rho, \rho_{-}, \rho_{+} \in(0,1)$ be the unique solutions of the equations

$$
\begin{aligned}
c^{\nu} \sin \pi \nu(1-\rho) & =\sin \pi \nu \rho \\
c_{-}^{\nu_{-}} \sin \pi \nu_{-}\left(1-\rho_{-}\right) & =\sin \pi \nu_{-} \rho_{-} \\
c_{+}^{\nu_{+}} \sin \pi \nu_{+}\left(1-\rho_{+}\right) & =\sin \pi \nu_{+} \rho_{+}
\end{aligned}
$$

respectively.
(a) For $V=V(\alpha, c)$, we have almost surely $\operatorname{dim} K^{-}(V)=1-\rho / 2$.

For $V_{+}=V\left(\alpha_{+}, c_{+}\right)$and $V_{-}=V\left(\alpha_{-}, c_{-}\right)$we have (b) and (c):
(b) $\operatorname{dim} K\left(V_{-} ; V_{+}\right) \leq 1-\left(\rho_{-}+\rho_{+}\right) / 2$ almost surely and

$$
P\left[\operatorname{dim} K\left(V_{-} ; V_{+}\right) \geq 1-\frac{\rho_{-}+\rho_{+}}{2}\right]>0 .
$$

(c) $\operatorname{dim} K^{\prime}\left(V_{-} ; V_{+}\right) \leq\left(1-\rho_{-}+\rho_{+}\right) / 2$ almost surely and

$$
P\left[\operatorname{dim} K^{\prime}\left(V_{-} ; V_{+}\right) \geq \frac{1-\rho_{-}+\rho_{+}}{2}\right]>0 .
$$

The behavior of V, V_{+}and V_{-}outside any neighborhood of the origin have no influence on the Hausdorff dimension; We could state the theorem in that fashon. The parameters $\rho, \rho_{-}, \rho_{+} \in(0,1)$ in the statement of Theorem 1 are continuous and increasing in c, c_{+}, c_{-}and have the range $(0,1)$ since $\lim _{c \rightarrow 0} \rho=0$ and $\lim _{c \rightarrow \infty} \rho=1$. In fact, they are equal to the probability of some event related to the parameters in the theorem, see the remark 4 in [4].

Note that for fixed α, it holds $\rho=1 / 2$ if $c=1$. Hence the statements in the theorem in [1] for K^{-}and K^{\prime} can be included in Theorem 1 since $K^{-}=K^{-}(V(1,1))$ and $K^{\prime}=K^{\prime}(V(1,1) ; V(1,1))$. The implication by Theorem 1 on K, however, is weaker than [1], since we have not obtained the almost sure estimate from below.

Let $\alpha, \tilde{\alpha} \geq 0$ and $c, \tilde{c}>0$. If $V=V(\alpha, c)$ and $\tilde{V}=V(\tilde{\alpha}, \tilde{c})$, then there is no inclusion in general between $K^{-}(V)$ and $K^{-}(\tilde{V})$. However it is easy to see, for each α, that $K^{-}(V(\alpha, c)) \subset K^{-}(V(\alpha, \tilde{c}))$ if $\tilde{c}<c$. Hence we obtain a family

$$
\left\{K^{-}(V(\alpha, c)) ; c \in(0,1)\right\}
$$

of decreasing random sets having strictly decreasing dimension.

The estimate in Theorem 1 for $\operatorname{dim} K^{-}(V)$ is exhaustive in the following sense: Let H be the set of times t when B_{t} attains its past-maximum:

$$
H:=\left\{t \in[0,1] ; B_{t}=\sup _{0 \leq s \leq t} B_{s}\right\} .
$$

It is well known that $\operatorname{dim} H=1 / 2$ a.s. Since $H \subset K^{-}(V(\alpha, c)) \subset[0,1]$, we have $1 / 2 \leq \operatorname{dim} K^{-}(V) \leq 1$. The range of $1-\rho / 2$ is exactly $(1 / 2,1)$ and the trivial case $K^{-}(V)=H$ or $K^{-}(V)=[0,1]$ could be included if we allow $c=\infty$ or $c=0$.

The estimate in Theorem 1 for $\operatorname{dim} K\left(V_{-} ; V_{+}\right)$is also exhaustive in the following sense: Let τ be the time when the maximum on $[0,1]$ of B is attained: $B_{\tau} \geq$ B_{t} for every $t \in[0,1]$. The inclusion $\{\tau\} \subset K\left(V_{-} ; V_{+}\right) \subset[0,1]$ implies $0 \leq$ $\operatorname{dim} K\left(V_{-} ; V_{+}\right) \leq 1$ and the range of the value $1-\left(\rho_{-}+\rho_{+}\right) / 2$ is exactly $(0,1)$. The extreme cases could also be included here.

In the same sense as Aspandiiarov and LeGall [1] noted concerning $K^{\prime}, K^{\prime}\left(V_{-} ; V_{+}\right)$ can be interpreted as a weakened notion of the increasing points of Brownian motion and it is not straightforward to exhibit an element of $K^{\prime}\left(V_{-} ; V_{+}\right)$.

If both V_{-}and V_{+}are $V(\alpha, c)$ then $\left(1-\rho_{-}+\rho_{+}\right) / 2=1 / 2$ irrespective of α and c. This motivates the next theorem, which could be a version of settlement of a conjecture at the end of [1]: $\operatorname{dim} K^{\prime}=1 / 2$ a.s. on the event $\left\{B_{1}>0\right\}$.

Theorem 2. Let $\mathcal{V}=\{V: \mathbb{R} \rightarrow \mathbb{R} ; V(0)=0, V$ is strictly increasing $\}$.
We define $\tilde{K}^{\prime}(V ; V)$ for $V \in \mathcal{V}$ in the same way as (1.3) replacing the weak inequalities by strict inequalities in the definition of $K^{\prime}(V ; V)$:

$$
\begin{aligned}
& \tilde{K}^{\prime}(V ; V)=\left\{t \in[0,1] ; \int_{s}^{t} V\left(B_{u}-B_{t}\right) d u<0\right. \text { for every } s \in[0, t), \\
&\text { and } \left.\int_{t}^{s} V\left(B_{u}-B_{t}\right) d u>0 \quad \text { for every } s \in(t, 1] .\right\} .
\end{aligned}
$$

Then we have $P\left[\operatorname{dim} \tilde{K}^{\prime}(V ; V)=1 / 2\right]>0, P\left[\tilde{K}^{\prime}(V ; V) \subset\{0,1\}\right]>0$ and

$$
P\left[\operatorname{dim} \tilde{K}^{\prime}(V ; V)=\frac{1}{2} \quad \text { or } \quad \tilde{K}^{\prime}(V ; V) \subset\{0,1\}\right]=1
$$

Remark 1. When the set $\tilde{K}^{\prime}(V ; V)$ consists of exceptional times, we have the dichotomy that $\operatorname{dim} \tilde{K}^{\prime}(V ; V)=1 / 2$ if it is not empty.

The result of Theorem 2 is stronger than Theorem 1(c) for each strictly increasing functions $V(\alpha, c)$, i.e. $\alpha>0$, while Theorem 2 says nothing about $V(0, c)$.

Theorem 2 is in fact a corollary of the following Theorem 3 due essentially to Bertoin [3].

Let $V \in \mathcal{V}, x \in \mathbb{R}$ and $X=(X(t) ; t \geq 0)$ be a cadlag path with $\liminf _{t \rightarrow \infty} X(t)=$ $+\infty$. We define, inspired by Bertoin [3],

$$
\begin{gathered}
K_{\infty}^{\prime}(V, x, X)=\left\{t \in[0, \infty) ; \int_{s}^{t} V\left(X_{u}-x\right) d u \leq 0 \quad \text { for every } s \in[0, t),\right. \\
\text { and } \left.\int_{t}^{s} V\left(X_{u}-x\right) d u \geq 0 \quad \text { for every } s \in(t, \infty) .\right\}, \\
K_{1}^{\prime}(V, x, X)=\left\{t \in[0,1] ; \int_{s}^{t} V\left(X_{u}-x\right) d u \leq 0 \quad \text { for every } s \in[0, t),\right. \\
\text { and } \left.\int_{t}^{s} V\left(X_{u}-x\right) d u \geq 0 \quad \text { for every } s \in(t, 1] .\right\} .
\end{gathered}
$$

It is then easy to see $\tilde{K}^{\prime}(V ; V) \bigcup\{0,1\}=\cup_{\sharp K_{1}^{\prime}(V, x, B)=1} K_{1}^{\prime}(V, x, B)$.
In other words, $K_{\infty}^{\prime}(V, x, X)$ and $K_{1}^{\prime}(V, x, X)$ consist of the locations of the overall minimum of the function $s \mapsto \int_{0}^{s} V\left(X_{u}-x\right) d u$ on $[0, \infty)$ or $[0,1]$ respectively and $\tilde{K}^{\prime}(V ; V)$ is the collections of such t 's that the function $s \mapsto \int_{0}^{s} V\left(B_{u}-B_{t}\right) d u$ has the unique minimum at $s=t$.

The following results are proven in Bertoin [3] in the case where $V(y) \equiv y=$ $V(1,1 ; y)$.

Theorem 3. Let $V \in \mathcal{V}$ and X be a Lévy process with no positive jump such that $\lim _{\inf _{t \rightarrow \infty}} X(t)=+\infty$ a.s. Let $a(x)$ be the rightmost element of $K_{\infty}^{\prime}(V, x, X)$.
(a) $\{a(x)-a(0) ; x \geq 0\}$ and the process $T^{X}(x):=\inf \left\{t \geq 0 ; X_{t} \geq x\right\}$ have the same law.
(b) For every fixed $x \in \mathbb{R}, P^{X}\left[\sharp K_{\infty}^{\prime}(V, x, X)=1\right]=1$.
(c) Let $g(0)=\sup \{t \geq 0 ; X(t) \leq 0\}$ be the last exit time from $(-\infty, 0]$. If $V \in \mathcal{V}$ satisfies $V(y)=-V(-y)$, then $a(0)$ and $g(0)-a(0)$ are independent and have the same law.
(d) If X is a Brownian motion with unit drift, then $\{a(x)-a(0) ; x \geq 0\}$ has the Lévy measure $(2 \pi)^{-1 / 2} y^{-3 / 2} e^{-y / 2} d y$ on $(0, \infty)$. If, moreover, $V \in \mathcal{V}$ satisfies $V(y)=-V(-y)$, then the density of the common law of $a(0)$ and $g(0)-a(0)$ is $2^{-1 / 4} \Gamma(1 / 4)^{-1} y^{-3 / 4} e^{-y / 2} d y$ on $(0, \infty)$.

Remark 2. The statement (a) and the first sentence in (d) hold for nondecreasing V satisfying $V(0)=0$. The second sentence in (d) was known to Jean Bertoin(private communication).

This paper is organized as follows: We prove Theorem 1 in Section 2 using Theorem 4, which contains an asymptotic estimate for some fluctuating additive functionals. Theorems 2 and 3 are proven in Section 3. We prove Theorem 4 in Section 4 using a theorem in [4].

Acknowledgement. The author would express his gratitude to Professor Shin'ichi Kotani for his careful reading of a draft of this paper and for his helpful comment. Thanks also goes to the anonymous referee for advice on improving the presentation.

2. Proof of Theorem 1

The argument here mimics that of Aspandiiarov and Le Gall [1] line by line. We first state Theorem 4, an estimate for the distribution of the first hitting time of $\int_{0}^{t} V\left(B_{u}\right) d u$, next define suitable approximations of $K^{-}(V), K\left(V_{-} ; V_{+}\right)$and $K^{\prime}\left(V_{-} ; V_{+}\right)$ and obtain some preliminary estimates. From that point on, we only need the straightforward changes.

Theorem 4. Let $\alpha \geq 0, c>0, V=V(\alpha, c), \nu=1 /(2+\alpha)$ and $\rho \in(0,1)$ be the solution of $c^{\nu} \sin \pi \nu(1-\rho)=\sin \pi \nu \rho$. We denote by $p(t, x, y ; V)$ the probability $P\left[\forall s \in[0, t], x+\int_{0}^{s} V\left(y+B_{u}\right) d u \leq 0\right]$.

For any $t>0, x<0, y \in \mathbb{R}$ and there exist constants $C_{0}(t, x, y ; V)>0$, $C_{1}(\alpha, c)>0$ and $\tilde{C}(x, y)>0$ such that it holds

$$
\begin{align*}
& \sup _{\sigma>0} \sigma^{-\rho} p\left(t, \sigma^{1 / \nu} x, \sigma y ; V\right)=C_{0}(t, x, y ; V) \tag{2.4}\\
& \lim _{\sigma \rightarrow 0} \sigma^{-\rho} p\left(t, \sigma^{1 / \nu} x, \sigma y ; V\right)=C_{1}(\alpha, c) t^{-\rho / 2} \tilde{C}(x, y) \tag{2.5}
\end{align*}
$$

Moreover it holds

$$
\begin{equation*}
C_{0}(t, x, y ; V) \leq \mathrm{const} t^{-\rho / 2}\left(|x|^{\nu \rho} \vee\left|y^{-}\right|^{\rho}\right) \tag{2.6}
\end{equation*}
$$

Definition. Let $\varepsilon \in[0,1 / 2], a \in[0,1-\varepsilon]$ and $b \in[\varepsilon, 1]$.
For $V, V_{+}, V_{-} \in \cup_{\alpha \geq 0, c>0}\{V(\alpha, c)\}$ we define

$$
\begin{aligned}
K_{\varepsilon, a}^{-}(V)= & \left\{t \in[a+\varepsilon, 1] ; \int_{s}^{t} V\left(B_{u}-B_{t}\right) d u \leq 0 \quad \text { for every } s \in[a, t-\varepsilon]\right\} \\
K_{\varepsilon, b}^{+}(V)= & \left\{t \in[0, b-\varepsilon] ; \int_{t}^{s} V\left(B_{u}-B_{t}\right) d u \leq 0 \quad \text { for every } s \in[t+\varepsilon, b]\right\} \\
K_{\varepsilon, b}^{*}(V)= & \left\{t \in[0, b-\varepsilon] ; \int_{t}^{s} V\left(B_{u}-B_{t}\right) d u \geq 0 \quad \text { for every } s \in[t+\varepsilon, b]\right\} \\
& K_{\varepsilon, a, b}\left(V_{-} ; V_{+}\right)=K_{\varepsilon, a}^{-}\left(V_{-}\right) \cap K_{\varepsilon, b}^{+}\left(V_{+}\right) \\
& K_{\varepsilon, a, b}^{\prime}\left(V_{-} ; V_{+}\right)=K_{\varepsilon, a}^{-}\left(V_{-}\right) \cap K_{\varepsilon, b}^{*}\left(V_{+}\right)
\end{aligned}
$$

We also define

$$
\begin{align*}
K_{\varepsilon}^{-}(V)=K_{\varepsilon, 0}^{-}(V), & K^{-}(V)=K_{0}^{-}(V) \tag{2.7}\\
K_{\varepsilon}\left(V_{-} ; V_{+}\right)=K_{\varepsilon, 0,1}\left(V_{-} ; V_{+}\right), & K\left(V_{-} ; V_{+}\right)=K_{0}\left(V_{-} ; V_{+}\right) \tag{2.8}
\end{align*}
$$

$$
\begin{equation*}
K_{\varepsilon}^{\prime}\left(V_{-} ; V_{+}\right)=K_{\varepsilon, 0,1}^{\prime}\left(V_{-} ; V_{+}\right), \quad K^{\prime}\left(V_{-} ; V_{+}\right)=K_{0}^{\prime}\left(V_{-} ; V_{+}\right) . \tag{2.9}
\end{equation*}
$$

Lemma 5. Let $\alpha, \alpha_{+}, \alpha_{-} \geq 0, c, c_{+}, c_{-}>0$ and let ρ, ρ_{+}, ρ_{-}be defined in the statement of Theorem 1.
(a) For any $V=V(\alpha, c), 0<\varepsilon<1 / 2$ and $t>a$, it holds

$$
\left(\frac{t-a}{\varepsilon}\right)^{\rho / 2} P\left[t \in K_{\varepsilon, a}^{-}(V)\right]<\text { const }
$$

There exists a constant $C_{3}(V)>0$ such that it holds

$$
P\left[t \in K_{\varepsilon, a}^{-}(V)\right] \sim C_{3}(V)\left(\frac{\varepsilon}{t-a}\right)^{\rho / 2}
$$

as $\varepsilon \searrow 0$ for every t.
(b) For any $V_{+}=V\left(\alpha_{+}, c_{+}\right), V_{-}=V\left(\alpha_{-}, c_{-}\right), 0<\varepsilon<1 / 2$ and $t \in(a, b)$,

$$
\begin{gathered}
\left(\frac{t-a}{\varepsilon}\right)^{\rho_{-} / 2}\left(\frac{b-t}{\varepsilon}\right)^{\rho_{+} / 2} P\left[t \in K_{\varepsilon, a, b}\left(V_{-} ; V_{+}\right)\right]<\mathrm{const}, \\
\left(\frac{t-a}{\varepsilon}\right)^{\rho_{-} / 2}\left(\frac{b-t}{\varepsilon}\right)^{\left(1-\rho_{+}\right) / 2} P\left[t \in K_{\varepsilon, a, b}^{\prime}\left(V_{-} ; V_{+}\right)\right]<\mathrm{const} .
\end{gathered}
$$

We denote by $V_{+}(-\cdot)$ the function $y \mapsto V_{+}(-y)$. It holds as $\varepsilon \searrow 0$

$$
\begin{aligned}
& P\left[t \in K_{\varepsilon, a, b}\left(V_{-} ; V_{+}\right)\right] \sim C_{3}\left(V_{-}\right) C_{3}\left(V_{+}\right)\left(\frac{\varepsilon}{t-a}\right)^{\rho_{-} / 2}\left(\frac{\varepsilon}{b-t}\right)^{\rho_{+} / 2} \\
& P\left[t \in K_{\varepsilon, a, b}^{\prime}\left(V_{-} ; V_{+}\right)\right] \sim C_{3}\left(V_{-}\right) C_{3}\left(V_{+}(-\cdot)\right)\left(\frac{\varepsilon}{t-a}\right)^{\rho_{-} / 2}\left(\frac{\varepsilon}{b-t}\right)^{\left(1-\rho_{+}\right) / 2}
\end{aligned}
$$

Proof. We only prove (a) since the statement (b) follows by time-reversal $\tilde{B}_{s}=$ B_{1-s} and by reflection $\tilde{B}_{s}=-B_{s}$.

Let $P_{(x, y)}^{V}$ be the law of the following two-dimensional diffusion $(X(t), Y(t))$:

$$
Y(t)=y+B(t), \quad X(t)=x+\int_{0}^{t} V(Y(s)) d s .
$$

By the strong Markov property,

$$
P\left[t \in K_{\varepsilon, a}^{-}(V)\right]=E_{(0,0)}^{V}[p(t-a-\varepsilon, X(\varepsilon), Y(\varepsilon) ; V)]
$$

Under $P_{(0,0}^{V}$, the law of $(X(\varepsilon), Y(\varepsilon))$ is the same as that of $\left(\varepsilon^{1 / 2 \nu} X(1), \varepsilon^{1 / 2} Y(1)\right)$. By (2.4) and (2.6), we have for any $\varepsilon>0$,

$$
\begin{aligned}
& \varepsilon^{-\rho / 2} p\left(t-a-\varepsilon, \varepsilon^{1 / 2 \nu} X(1), \varepsilon^{1 / 2} Y(1) ; V\right) \\
& \quad<\operatorname{const}(t-a-\varepsilon)^{-\rho / 2}\left(\left|X(1)^{-}\right|^{\nu \rho} \vee\left|Y(1)^{-}\right|^{\rho}\right) \\
& \quad<\operatorname{const}(t-a)^{-\rho / 2}\left(\left|X(1)^{-}\right|^{\nu \rho} \vee\left|Y(1)^{-}\right|^{\rho}\right) .
\end{aligned}
$$

The quantity $((t-a) / \varepsilon)^{\rho / 2} P\left[t \in K_{\varepsilon, a}^{-}(V)\right]$ is hence bounded. This bound also enables us to prove the second sentence of (a) with $C_{3}(V)=C_{1}(\alpha, c) E_{(0,0)}^{V}[\tilde{C}(X(1), Y(1))]$.

Lemma 6. We use the same notations as the previous lemma. It holds for any $\varepsilon \in(0,1 / 2)$ and $0<s<t<1$,

$$
\begin{gather*}
P\left[\{s, t\} \subset K_{\varepsilon, a}^{-}(V)\right] \leq \text { const } \frac{\varepsilon^{\rho}}{s^{\rho / 2}(t-s)^{\rho / 2}}, \tag{2.10}\\
P\left[\{s, t\} \subset K_{\varepsilon, a, b}\left(V_{-} ; V_{+}\right)\right] \leq \frac{\text { const } \varepsilon^{\rho_{-}+\rho_{+}}}{s^{\rho_{-} / 2}(t-s)^{\left(\rho_{-}+\rho_{+}\right) / 2}(1-t)^{\rho_{+} / 2}}, \tag{2.11}\\
P\left[\{s, t\} \subset K_{\varepsilon, a, b}^{\prime}\left(V_{-} ; V_{+}\right)\right] \leq \frac{\text { const } \varepsilon^{\rho_{-+}+\left(1-\rho_{+}\right.}}{s^{\rho_{-} / 2}(t-s)^{\left(\rho_{-}+1-\rho_{+}\right) / 2}(1-t)^{\left(1-\rho_{+}\right) / 2}} . \tag{2.12}
\end{gather*}
$$

The constants here depend on $\alpha, \alpha_{+}, \alpha_{-}$and c, c_{+}, c_{-}.

Proof. This can be done using Lemma 5. See the proof of Proposition 4 in [1].

Lemma 7. Let $\mathcal{F}_{a, b}$ be the σ-field $\sigma\left(B_{u}-B_{a} ; u \in[a, b]\right)$ for $0 \leq a<b \leq 1$.
For any $\alpha \geq 0, c>0$ and $V=V(\alpha, c)$ there exist $\mathcal{F}_{a, b}$-measurable random variables $U_{a, b,-}, U_{a, b,+}$ and $U_{a, b, *}$ such that

$$
\begin{align*}
P\left[K^{-}(V) \cap[a, b] \neq \emptyset \mid \mathcal{F}_{a, 1}\right] & \leq(b-a)^{\rho / 2} U_{a, b,-} \tag{2.13}\\
P\left[K^{+}(V) \cap[a, b] \neq \emptyset \mid \mathcal{F}_{0, b}\right] & \leq(b-a)^{\rho / 2} U_{a, b,+} \tag{2.14}\\
P\left[K^{*}(V) \cap[a, b] \neq \emptyset \mid \mathcal{F}_{0, b}\right] & \leq(b-a)^{(1-\rho) / 2} U_{a, b, *} \tag{2.15}
\end{align*}
$$

and $E_{0}\left[\left(U_{a, b,-}\right)^{2}\right] \leq \mathrm{const} a^{-\rho}, E_{0}\left[\left(U_{a, b,+}\right)^{2}\right] \leq \operatorname{const}(1-b)^{-\rho}, E_{0}\left[\left(U_{a, b, *}\right)^{2}\right] \leq$ const $(1-b)^{-1+\rho}$. The constants here depend on α and c.

Proof. We prove (2.14) since (2.13), (2.15) and the corresponding moment estimates follow by time-reversal $\tilde{B}_{s}=B_{1-s}$ and by reflection $\tilde{B}_{s}=-B_{s}$.

Let $\eta_{a, b}$ be the amplitude of B_{s} on $[a, b]$. Note that V is increasing. By modifying the argument in the proof of Lemma 7 in [1], we can take

$$
U_{a, b,+}=(b-a)^{-\rho / 2} p\left(1-b,(b-a) V\left(-\eta_{a, b}\right),-\eta_{a, b} ; V\right)
$$

The bound of the moment follows by (2.6) and by the fact that $\eta_{a, b}$ has the same law as $(b-a)^{1 / 2} \eta_{0,1}$.

Proof of Theorem 1. The upper estimates for the Hausdorff dimension is obtained by the argument in the proof Proposition 6 in [1].

To obtain the lower estimates, we define the normalized Lebesgue measures: For any Borel subset F of $[0,1]$, let

$$
\begin{aligned}
\mu_{\varepsilon}^{-}(F) & =\varepsilon^{-\rho / 2}\left|F \cap K_{\varepsilon}^{-}(V)\right|, \\
\mu_{\varepsilon}(F) & =\varepsilon^{-\left(\rho_{-}+\rho_{+}\right) / 2}\left|F \cap K_{\varepsilon}\left(V_{-} ; V_{+}\right)\right|, \\
\mu_{\varepsilon}^{\prime}(F) & =\varepsilon^{-\left(\rho_{-}+1-\rho_{+}\right) / 2}\left|F \cap K_{\varepsilon}^{\prime}\left(V_{-} ; V_{+}\right)\right| .
\end{aligned}
$$

We denote by \mathcal{M}_{f} the Polish space of all finite measures on [0,1] equipped with the topology of weak convergence, and by $C([0,1])$ the Banach space of all continuous map from $[0,1]$ to \mathbb{R}.

Let $\left(\varepsilon_{n}\right)$ be a sequence strictly decreasing to 0 . We define the random variables ζ^{n} taking values in $\mathcal{M}_{f} \times C([0,1])$ by $\zeta^{n}=\left(\mu_{\varepsilon_{n}},\left(B_{t} ; 0 \leq t \leq 1\right)\right)$. We define $\zeta^{-, n}$ and $\zeta^{\prime \prime n}$ in the same way using $\mu_{\varepsilon_{n}}^{-}$and $\mu_{\varepsilon_{n}}^{\prime}$. The argument in [1] ensures that we may assume the sequence $\left(\zeta^{n}\right)$ is weakly convergent by extracting a subsequence. Skorohod's representation theorem says that there is a probalility space carrying a sequence of random variables $\overline{\zeta^{n}}=\left(\mu^{n},\left(B_{t}^{n} ; 0 \leq t \leq 1\right)\right)$ and a random variable $\overline{\zeta^{\infty}}=\left(\mu^{\infty},\left(B_{t}^{\infty} ; 0 \leq t \leq\right.\right.$ 1)) such that $\overline{\zeta^{n}}$ and ζ^{n} have the same law and $\overline{\zeta^{n}}$ converges to $\overline{\zeta^{\infty}}$ almost surely.

Let $K\left(V_{-} ; V_{+} ; B^{\infty}\right)$ be defined in the same way as $K\left(V_{-} ; V_{+}\right)$replacing B by B^{∞}. To prove that μ^{∞} is a.s. supported on $K\left(V_{-} ; V_{+} ; B^{\infty}\right)$, we change the definition of $G(\eta, \gamma)$ appearing in the proof of Lemma 9 in [1].

$$
G(\eta, \gamma)=\left\{t<1-\eta ; \sup _{t+\eta<s \leq 1} \int_{t}^{s} V_{+}\left(B_{u}^{\infty}-B_{t}^{\infty}\right) d u>\gamma\right\} .
$$

Since V_{+}has no discontinuities of the second kind, it is locally bounded and hence we can deduce, from the occupation time formula, that $G(\eta, \gamma)$ is an open set.

On the other hand, μ^{n} is a.s. supported on

$$
\left\{t \leq 1-\varepsilon_{n} ; \sup _{t+\varepsilon_{n}<s \leq 1} \int_{t}^{s} V_{+}\left(B_{u}^{n}-B_{t}^{n}\right) d u \leq 0\right\}
$$

To deduce that $\mu^{\infty}(G(\eta, \gamma))=0$ and μ^{∞} is a.s. supported on $K\left(V_{-} ; V_{+} ; B^{\infty}\right)$ by the argument in the proof of Lemma 9 in [1], we need only to prove the following:
(2.16) For fixed s and $t, \int_{t}^{s} V_{+}\left(B_{u}^{n}-B_{t}^{n}\right) d u \rightarrow \int_{t}^{s} V_{+}\left(B_{u}^{\infty}-B_{t}^{\infty}\right) d u \quad$ as $n \rightarrow \infty$.

To prove (2.16), let $\varepsilon, \varepsilon^{\prime}$ be arbitrary positive numbers and let

$$
R^{\infty}\left(\varepsilon^{\prime}, s\right):=\left\{x \in \mathbb{R} ; \exists u<s,\left|x-B_{u}^{\infty}\right|<2 \varepsilon^{\prime}\right\} .
$$

Since V_{+}has discontinuity only at the origin (when $\alpha=0$), there exists $0<\delta<$ ε^{\prime} such that for any $x, y \in R^{\infty}\left(\varepsilon^{\prime}, s\right)$ satisfying $|x-y|<\delta$ and $|x|>\varepsilon^{\prime}$, it holds $\left|V_{+}(x)-V_{+}(y)\right|<\varepsilon$.

We can make $\int_{t}^{s} 1_{\left\{\left|B_{u}^{\infty}-B_{t}^{\infty}\right| \leq 3 \varepsilon^{\prime}\right\}} d u$ arbitrarily small by taking ε^{\prime} small, and hence $\int_{t}^{s} V_{+}\left(B_{u}^{n}-B_{t}^{n}\right) 1_{\left\{\left|B_{u}^{n}-B_{t}^{n}\right| \leq \varepsilon^{\prime}\right\}} d u$ is also small if $\left\|B^{n}-B^{\infty}\right\|<\varepsilon^{\prime}$, since V_{+}is bounded on $R^{\infty}\left(\varepsilon^{\prime}, s\right)$.

For $u \in[t, s]$ satisfying $\left|B_{u}^{\infty}-B_{t}^{\infty}\right|>\varepsilon^{\prime}$, we have $\left|V_{+}\left(B_{u}^{n}-B_{t}^{n}\right)-V_{+}\left(B_{u}^{\infty}-B_{t}^{\infty}\right)\right|<$ ε if $\left\|B^{n}-B^{\infty}\right\|<\delta / 2$, which is satisfied for all large n.

We have thus proven (2.16).
Using Lemma 5 and the weak convergence we have

$$
\begin{aligned}
E\left[\mu^{-, \infty}([0,1])\right] & =\int_{0}^{1} d t t^{-\rho / 2} C_{3}(V)>0 \\
E\left[\mu^{\infty}([0,1])\right] & =\int_{0}^{1} d t t^{-\rho_{-} / 2} C_{3}\left(V_{-}\right)(1-t)^{-\rho_{+} / 2} C_{3}\left(V_{+}\right)>0 \\
E\left[\mu^{\prime, \infty}([0,1])\right] & =\int_{0}^{1} d t t^{-\rho_{-} / 2} C_{3}\left(V_{-}\right)(1-t)^{-\left(1-\rho_{+}\right) / 2} C_{3}\left(V_{+}(-\cdot)\right)>0 .
\end{aligned}
$$

The positivity of these values is, through Frostman's lemma, related to the positivity of $P\left[\operatorname{dim} K^{-}(V) \leq 1-\rho / 2\right]$ and its companions; The a.s. estimate from below follows by the scaling property of Brownian motion as in [1].

3. Proof of Theorems $\mathbf{3}$ and 2

In this section, V is an strictly increasing function with $V(0)=0$ and $a(x)$ is the rightmost element in $K_{\infty}^{\prime}(V, x, X)$.

Lemma 8. (a) If $x_{0}<x_{1}$ and there exists a triple $\left(t_{0}, t_{1}, t_{2}\right)$ such that

$$
\begin{aligned}
& t_{0} \in K_{\infty}^{\prime}\left(V, x_{0}, X\right) \backslash K_{\infty}^{\prime}\left(V, x_{1}, X\right), \\
& t_{1} \in K_{\infty}^{\prime}\left(V, x_{0}, X\right) \cap K_{\infty}^{\prime}\left(V, x_{1}, X\right), \\
& t_{2} \in K_{\infty}^{\prime}\left(V, x_{1}, X\right) \backslash K_{\infty}^{\prime}\left(V, x_{0}, X\right),
\end{aligned}
$$

then it holds $t_{0}<t_{1}<t_{2}$.
(b) The cardinality of $K_{\infty}^{\prime}\left(V, x_{0}, X\right) \cap K_{\infty}^{\prime}\left(V, x_{1}, X\right)$ are 0 or 1 for all $x_{0}<x_{1}$. For all but countable x 's, the cardinality of $K_{\infty}^{\prime}(V, x, X)$'s are 1 .
(c) If $\int_{0}^{t} V\left(X_{u}-x\right) d u$ is continuous in t and x, then $a(x)$ is right contnuous.

Proof. We first note that for $s<t, \int_{s}^{t} V\left(X_{u}-x\right) d u$ is strictly decreasing in x.
(a) Assume $t_{1}<t_{0}$. We then have $\int_{t_{1}}^{t^{5}} V\left(X_{u}-x_{0}\right) d u=0$ and $\int_{t_{1}}^{t^{0}} V\left(X_{u}-x_{1}\right) d u>$ 0 , which is a contradiction. We can prove $t_{1}<t_{2}$ by the same argument and timereversal.
(b) If both t_{0} and t_{1} with $t_{0}<t_{1}$ belong to $K_{\infty}^{\prime}\left(V, x_{0}, X\right) \cap K_{\infty}^{\prime}\left(V, x_{1}, X\right)$ then we have $\int_{t_{0}}^{t_{1}} V\left(X_{u}-x_{0}\right) d u=0=\int_{t_{0}}^{t_{1}} V\left(X_{u}-x_{1}\right) d u$, which provides a contradiction.

By (a) and the first part of (b), we have for any $x_{0}<x_{1}, t_{0} \in K_{\infty}^{\prime}\left(V, x_{0}, X\right)$ and $t_{1} \in K_{\infty}^{\prime}\left(V, x_{1}, X\right), t_{1}-t_{0} \geq \sum_{x \in\left(x_{0}, x_{1}\right)} \operatorname{diam} K_{\infty}^{\prime}(V, x, X)$. Hence at most countably many x 's admit diam $K_{\infty}^{\prime}(V, x, X)>0$.
(c) For any sequence $t_{n} \rightarrow t_{\infty}$ and $x_{n} \rightarrow x_{\infty}$ such that $t_{n} \in K_{\infty}^{\prime}\left(V, x_{n}, X\right)$, we prove $t_{\infty} \in K_{\infty}^{\prime}\left(V, x_{\infty}, X\right)$. If s is greater than t_{∞}, then eventually $s>t_{n}$. By the definition of $t_{n} \in K_{\infty}^{\prime}\left(V, x_{n}, X\right)$,

$$
0 \leq \int_{t_{n}}^{s} V\left(X_{r}-x_{n}\right) d r \rightarrow \int_{t_{\infty}}^{s} V\left(X_{r}-x_{\infty}\right) d r
$$

If $s<t_{\infty}, \int_{s}^{t_{\infty}} V\left(X_{r}-x_{\infty}\right) d r \leq 0$ by the same argument and this establishes $t_{\infty} \in$ $K_{\infty}^{\prime}\left(V, x_{\infty}, X\right)$.

We have thus proven that $a(x+) \equiv \lim _{\delta \backslash 0} a(x+\delta)$ is in $K_{\infty}^{\prime}(V, x, X)$. It follows from (a) that $a(x+)$ dominates every element in $K_{\infty}^{\prime}(V, x, X)$ and hence $a(x+)=a(x)$.

Lemma 9. If X is a Lévy process with no positive jumps which satisfies $\lim _{t \rightarrow \infty} X_{t}=\infty$, then for any $x \geq 0$, the two processes $\left(X_{t}-x ; 0 \leq t \leq a(x)\right)$ and $(X-x) \circ \theta_{a(x)} \equiv\left(X_{a(x)+t}-x ; t \geq 0\right)$ are independent. Moreover, the law of the latter process does not depend on x.

Proof. It can be proved by the same argument in Bertoin [3].
We define $I_{s}^{x}=\int_{0}^{s} V\left(X_{u}-x\right) d u$ and $m_{s}^{x}=\inf _{0 \leq t \leq s} I_{t}^{x}$. Then $a(x)$ is the last exit time for the process $\left(X_{t}-x, I_{t}^{x}-m_{t}^{x}\right)$ from the point $(0,0)$, which is finite almost surely. It can also be proved $X_{a(x)}=x$. This enables us to apply the result by Getoor on the last exit decomposition as in Bertoin [3].

Proof of Theorem 3(a). To use Lemma 8(c), we first show that $f(x, t)=$ $\int_{0}^{t} V\left(X_{u}-x\right) d u$ is jointly continuous in t and x. Fix an $\tau>0$ and $\xi>0$. The set

$$
R(\tau, \xi)=\left\{X_{t}-x ; 0 \leq t \leq \tau,|x|<\xi\right\}
$$

is bounded and so is its image by $V(\cdot)$. This implies $f(x, t)$ is uniformly continuous in t on the rectangle $\{0 \leq t \leq \tau,|x|<\xi\}$.

Single point sets are not essentially polar for a Lévy process with no positive jump diverging to $+\infty$. There exist local times $L_{t}(\cdot)$, the sojourn time density, so that

$$
f(x, t)=\int_{R(\tau, \xi)} V(y) L_{t}(y+x) d y
$$

for $0 \leq t \leq \tau$ and $|x|<\xi$. See e.g. Bertoin [2]. Let a and x^{\prime} be two points such that $|x|<\xi,\left|x^{\prime}\right|<\xi$. By making x^{\prime} arbitraily close to x, the \mathcal{L}^{1}-norm of $L_{t}\left(y+x^{\prime}\right)-$
$L_{t}(y+x)$ with respect to $d y$ can be made arbitrarily small since $L_{t}(\cdot)$ is integrable. The boundedness of V on $R(\tau, \xi)$ enables us to conclude that $f(x, t)$ is continuous in x. Local uniform continuity in t combined with this implies continuity in two variables.

Hence right continuity of $a(x)$ follows from Lemma 8(c). Let $\tilde{a}(y)$ be the rightmost location of the overall minimum of $\int_{0}^{t} V\left(X_{a(x)+s}-x-y\right) d s$. By Lemma 8(a), we have $a(x+y)=a(x)+\tilde{a}(y)$ for $x \geq 0$ and $y>0$. The rest can be done just like the proof of Theorem 1 in Bertoin [3].

Proof of Theorem 3(b). For any $0 \leq x<x_{1}$, the event $\left\{\sharp K_{\infty}^{\prime}\left(V, x_{1}, X\right) \geq 2\right\}$ is independent of $\left(X_{t}-x ; 0 \leq t \leq a(x)\right)$ because it is the event that $\int_{0}^{s} V\left(X_{a(x)+t}-x_{1}\right) d t$ attains its overall minimum at least twice. Hence $P^{X}\left[\sharp K_{\infty}^{\prime}(V, x, X) \geq 2\right]$ is the same value for all $x \geq 0$. If it is positive, then with a positive probability, $\{x \in$ $\left.[0, \infty) ; \sharp K_{\infty}^{\prime}(V, x, X) \geq 2\right\}$ has positive mass with respect to the Lebesgue measure. This contradicts Lemma 8(b).

In the case where $x<0$, we just condition on the event that I_{t}^{x} hits 0 . We resort to the strong Markov property at the first time $X_{t}=0$ after $I_{t}^{x}=0$ and finally use $P^{X}\left[\sharp K_{\infty}^{\prime}(V, 0, X)=1\right]=1$.

Proof of Theorem 3(c). We follow the argument by Bertoin [3]. Independence is proven in Lemma 9. By (b), $a(0)$ is the unique location of the overall minimum of $\int_{0}^{t} V\left(X_{s}\right) d s$. We define a new process \hat{X} by $\hat{X}_{t}=-X_{g(0)-t-0}$ for $0 \leq t \leq g(0)$, $\hat{X}_{t}=X_{t}$ for $t>g(0)$. It is known that \hat{X} and X have the same law. Since V is an odd function,

$$
\hat{I}_{t}=\int_{0}^{t} V\left(\hat{X}_{u}\right) d u=\int_{g(0)-t}^{g(0)} V\left(-X_{u}\right) d u=I_{g(0)-t}-\int_{0}^{g(0)} V\left(X_{u}\right) d u .
$$

The unique location of the minimum of \hat{I}_{t} is $g(0)-a(0)$ and has the same law as that of $a(0)$.

Proof of Theorem 3(d). This is proven in the same way as the final part of Theorem 1 in [3].

Now we restate Theorem 2 as the following Lemma. Note that $K^{\prime}\left(V, B_{1} / 2, B\right) \subset$ $(0,1)$ if $B_{1}>0$ and the following lemma implies $\operatorname{dim} \tilde{K}^{\prime}(V ; V)=1 / 2$ a.s. on the event $\left\{B_{1}>0\right\}$.

Lemma 10. Let $a_{1}(x)$ be the rightmost element in $K_{1}^{\prime}(V, x, B)$. It holds $\operatorname{dim} \tilde{K}^{\prime}(V ; V)=1 / 2$ a.s. on $\left\{\exists x, K_{1}^{\prime}(V, x, B) \subset(0,1)\right\}=\left\{\exists x, 0<a_{1}(x)<1\right\}$, and $\tilde{K}^{\prime}(V ; V) \subset\{0,1\}$ a.s. on $\left\{\forall x, K_{1}^{\prime}(V, x, B)=\{0\}\right.$ or $\left.1 \in K_{1}^{\prime}(V, x, B)\right\}=\left\{\forall x, a_{1}(x)=\right.$ 0 or 1$\}$.

Proof. We first note that, by the continuity of $B(t), B\left(a_{1}(x)\right)=x$ if $0<a_{1}(x)<$ 1 and hence $\tilde{K}^{\prime}(V ; V) \cup\{0,1\}=\left\{a_{1}(x) ; \sharp K_{1}^{\prime}(V, x, B)=1\right\}$. The symmetric difference of $\tilde{K}^{\prime}(V ; V)$ and $\left\{a_{1}(x) ; x \in \mathbb{R}\right\}$ is at most a countable set, which has no effect on the Hausdorff dimension.

We define the event for $\xi \in \mathbb{R}, \eta>0, x \in R$ and $\varepsilon>0$,

$$
E(\xi, \eta, x, \varepsilon)=\left\{K_{1}^{\prime}(V, x, B) \subset(0,1), B_{1}-x-\varepsilon \geq \xi, I_{1}^{x+\varepsilon}-m_{1}^{x+\varepsilon} \geq \eta\right\}
$$

Let \tilde{B} be the process conditioned on $E(\xi, \eta, x, \varepsilon)$. Since $P[E(\xi, \eta, x, \varepsilon)]>0$, the law of \tilde{B} is absolutely continuous with respect to the law of a standard Brownian motion on $[0,1]$, and hence to the law of a Brownian motion on $[0,1]$ with unit drift.

If X is a Brownian motion on $[0, \infty)$ with unit drift independent of B, then

$$
P\left[\forall t \geq 0, \eta+\int_{0}^{t} V\left(X_{u}+\xi\right) d u>0\right]>0
$$

Let \tilde{X} be the conditioned process on this event.
Now we define Z by $Z_{t}=\tilde{B}_{t}$ for $t \in[0,1]$ and $Z_{t}=\tilde{B}_{1}+\tilde{X}_{t-1}$ for $t>1$. The law of Z is absolutely continuous with respect to the law of a Brownian motion on $[0, \infty)$ with unit drift. For all $x^{\prime}<x+\varepsilon$, it follows from definition $K_{1}^{\prime}\left(V, x^{\prime}, \tilde{B}\right) \equiv$ $K_{\infty}^{\prime}\left(V, x^{\prime}, Z\right) \subset(0,1)$ and hence $0<a_{1}\left(x^{\prime}\right)=a\left(x^{\prime}\right)<1$.

By a general theory for subordinators, for every $\varepsilon>0, \operatorname{dim}\left\{a\left(x^{\prime}\right) ; x<x^{\prime}<x+\right.$ $\varepsilon\}=1 / 2$ a.s. on the event $\{0<a(x)<a(x+\varepsilon)<1\}$. See e.g. Bertoin [2] Theorem III.15. Now we have a.s. on $E(\xi, \eta, x, \varepsilon)$,

$$
\frac{1}{2}=\operatorname{dim}\left\{a\left(x^{\prime}\right) ; x<x^{\prime}<x+\varepsilon\right\}=\operatorname{dim}\left\{a_{1}\left(x^{\prime}\right) ; x<x^{\prime}<x+\varepsilon\right\} .
$$

Let

$$
F(\xi, \eta, x, \varepsilon):=\left\{a_{1}\left(x^{\prime}\right) ; x<x^{\prime}<x+\varepsilon, E(\xi, \eta, x, \varepsilon) \text { occurs }\right\}
$$

a random subset which is nonempty only on the event $E(\xi, \eta, x, \varepsilon)$. Since $\tilde{K}^{\prime}(V ; V) \backslash\{0,1\}$ is the same as a countable union of the random subsets of the form $F(\xi, \eta, x, \varepsilon)$, the dichotomy that $\operatorname{dim}\left(\tilde{K}^{\prime}(V ; V) \backslash\{0,1\}\right)=1 / 2$ or $\tilde{K}^{\prime}(V ; V) \backslash\{0,1\}=\emptyset$ holds.

Finally, if $K_{1}^{\prime}(V, x, B) \neq\{0\}$ and $1 \notin K_{1}^{\prime}(V, x, B)$ for some x, then there exists an x^{\prime} such that $K_{1}^{\prime}\left(V, x^{\prime}, B\right) \subset(0,1)$ by the continuity of $\int_{0}^{t} V\left(B_{s}-x^{\prime}\right) d s$ in x^{\prime}.

4. Proof of Theorem 4

We quote a theorem in [4] and the proof of Theorem 4 is based on it. We fix $\alpha \geq$ $0 c>0$ and write $V(y)$ for $V(\alpha, c ; y)$. Throughout this section we set $\nu=1 /(\alpha+2)$ and let $\rho \in(0,1)$ be the unique solution of $c^{\nu} \sin \pi \nu(1-\rho)=\sin \pi \nu \rho$ and $\tilde{C}(x, y)$ be
defined for $x \leq 0, y \in \mathbb{R}$ by
(4.17) $\tilde{C}(x, y)=\Gamma(\nu)^{-1}|x|^{1-\nu+\nu \rho} \exp \left\{\frac{-2 \nu^{2}\left(y^{+}\right)^{1 / \nu}}{|x|}\right\}$

$$
\times \int_{0}^{\infty} d t e^{-t}\left(|x| t+2 \nu^{2} c^{-1}\left|y^{-}\right|^{1 / \nu}\right)^{\nu \rho}\left(|x| t+2 \nu^{2}\left(y^{+}\right)^{1 / \nu}\right)^{-1+\nu-\nu \rho}
$$

Now we have

Theorem 11 ([4]). For $\mu \geq 0, V=V(\alpha, c)$ there exists a constant $C_{4}(\alpha, c)>0$ such that it holds

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0} \int_{0}^{\infty} d t \mu e^{-\mu t} \sigma^{-\rho} p\left(t, \sigma^{1 / \nu} x, \sigma y ; V\right)=C_{4}(\alpha, c) \mu^{\rho / 2} \tilde{C}(x, y) \tag{4.18}
\end{equation*}
$$

Proof of Theorem 4. Since the integrand above, $\sigma^{-\rho} p\left(t, \sigma^{1 / \nu} x, \sigma y ; V\right)$, is decreasing in t,

$$
\limsup _{\sigma \rightarrow 0} \sigma^{-\rho} p\left(t, \sigma^{1 / \nu} x, \sigma y ; V\right)
$$

must be finite for every $t>0$ and it is trivial that $\sigma^{-\rho} p\left(t, \sigma^{1 / \nu} x, \sigma y ; V\right)<\sigma^{-\rho}<1$ for large σ. Hence we know the overall supremum is finite, verifying (2.4), and we denote it by $C_{0}(t, x, y ; V)$, which is clearly monotone decreasing in t and inherites the scaling property from $p(t, x, y, V)$:

$$
C_{0}(t, x, y ; V)=\sigma^{-\rho} C_{0}\left(t, \sigma^{1 / \nu} x, \sigma y ; V\right)=\sigma^{-\rho} C_{0}\left(\sigma^{-2} t, x, y ; V\right)
$$

It is sufficient to prove (2.6) when $x<0$ and $y<0$. We deduce from the scaling property and the monotonicity that

$$
\begin{aligned}
C_{0}(t, x, y ; V) & =|x|^{\nu \rho} C_{0}\left(t,-1, \frac{y}{|x|^{\nu}} ; V\right) \\
& \leq|x|^{\nu \rho} C_{0}\left(t,(-1) \wedge \frac{-|y|^{-1 / \nu}}{|x|},(-1) \wedge \frac{y}{|x|^{\nu}} ; V\right) \\
& =C_{0}\left(t, x \wedge\left(-|y|^{-1 / \nu}\right),\left(-|x|^{\nu}\right) \wedge y ; V\right) \\
& =\left(|x|^{\nu \rho} \vee|y|^{\rho}\right) C_{0}(t,-1,-1 ; V)
\end{aligned}
$$

Combining this with $C_{0}(t, x, y ; V)=t^{-\rho / 2} C_{0}(1, x, y ; V)$, we obtain (2.6).
To prove (2.5), we note that the family $\left\{\sigma^{-\rho} p\left(t, \sigma^{1 / \nu} x, \sigma y ; V\right) ; \sigma>0\right\}$ of decreasing functions has an upper bound $C_{0}(t, x, y ; V)$, which satisfies

$$
\int_{0}^{\infty} d t \mu e^{-\mu t} C_{0}(t, x, y ; V)<\mathrm{const} \int_{0}^{\infty} d t \mu e^{-\mu t} t^{-\rho / 2}<\infty
$$

Given any sequence $\sigma_{n} \searrow 0$, we can choose a subsequence σ_{n}^{\prime} such that the functions $\left(\sigma_{n}^{\prime}\right)^{-\rho} p\left(t,\left(\sigma_{n}^{\prime}\right)^{1 / \nu} x, \sigma_{n}^{\prime} y ; V\right)$ converge pointwise on a dense subset of $\{t>0\}$ and that

$$
\begin{aligned}
& \int_{0}^{\infty} d t \mu e^{-\mu t}\left(\sigma_{n}^{\prime}\right)^{-\rho} p\left(t,\left(\sigma_{n}^{\prime}\right)^{1 / \nu} x, \sigma_{n}^{\prime} y ; V\right) \\
& \quad \rightarrow \int_{0}^{\infty} d t \mu e^{-\mu t} \lim _{n \rightarrow \infty}\left(\sigma_{n}^{\prime}\right)^{-\rho} p\left(t,\left(\sigma_{n}^{\prime}\right)^{1 / \nu} x, \sigma_{n}^{\prime} y ; V\right)
\end{aligned}
$$

By uniqueness of the Laplace transform, we deduce, for any $t>0$,

$$
\lim _{\sigma \rightarrow 0} \sigma^{-\rho} p\left(t, \sigma^{1 / \nu} x, \sigma y ; V\right)=\frac{C_{4}(\alpha, c) \tilde{C}(x, y) t^{-\rho / 2}}{\Gamma(1-\rho / 2)}
$$

References

[1] S. Aspandiiarov and J.-F. Le Gall: Some new classes of exceptional times of linear Brownian motion, Ann. Probab. 23 (1995), 1605-1626.
[2] J. Bertoin: Lévy processes, Cambridge Univ. Press, Cambridge, 1997.
[3] J. Bertoin: The inviscid Burgers equation with Brownian initial velocity, Comm. Math. Phys. 193 (1998), 397-406.
[4] Y. Isozaki and S. Kotani: Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion, Séminaire de Probabilités 34, Lecture Notes in Mathematics 1729 (2000), 374-387.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan e-mail: yasuki@math.sci.osaka-u.ac.jp

