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1. Introduction

In this paper we first introduce the Wick calculus used by kerin [5] and inves-
tigate the algebra for the Wick calculus more precisely ttieare. Next, we consider
the Cauchy problem for some dispersive equations as ancafiph of the Wick cal-
culus.

Let ¢ € S(R") and setg”"(x) = g"(x) = e*g(x — y) whereY =§,7) € R} xR},
andi =v/—1. We define a windowed Fourier transform wf L2(R") by

(Wu)(¥) = / e ux)dx.

R?

By Plancherel’'s theorem we have
(Wu)(¥) = e F 2 [gC—ma()] (),
where
E(g):/R" e *u(x)dx, (F lu)(x)=@r)™" /Rn e eu(€)de.
Using this formula and Plancherel’s theorem, we get
(W Wodyagey = @) [ dn | Jo(e — mPaCe)itea

= (2nr)" g Hiz(Rn)(M, U)LZ(R")

for u,v € L*(R"). If we take ||g||%2(R,,) = (2r)™", then W is an isometric operator
from L?(R") into L?(R*") and we haveW*W = I; on L?(R"). Here W* is the adjoint

operator of W , which is defined by

(W*r)(x) = /Rzn g )r(Y)dy for re LAR?).
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Now, for a(x, £) = a(X) € L¥(R?*), X = (x,£) € R" x R, we define the bounded
linear operatorVick = ¢Wick(x | D) on L3(R") by

(1.1) aV'(x, D)u(x) = (W*a"Wu)(x) for ue L3RY),
wherea* is the multiplication operator by X ). By the definition we siat:
Proposition 1.1. Let a(X) € L>°(R*). Then we have

ick
1@ cza@ey < llall oo @en-
Moreover, ifa(X) is a nonnegative function, thenV'°® is a nonnegative operator on
L?(R").
Proof. For anyu, v € L?(R") we have the following estimate

\(aWid(u, v)2Ry)| = ’(a“Wu, WU)LZ(RZH)‘ < lal| oo reny || We| p2(reny [| W | L2ggeny.

which gives the first part becaus@ is an isometric operatom fi.?(R") into
L?(R™). The second part follows from the equali"{®*u, u) ;2w = (a* Wu, Wu) 22
for any u € L3R"). O

In Section 2 we shall study the product formulas of Wick opesaby takingg £ )
equal to the Gaussian function and introducing some symiaskofa (X, A ) with a
parameterA > 1. In Section 3, the product formulas will be used to prove wred!-
posedness of the Cauchy problem for some dispersive egaatiotivated by the sim-
ilar problem for the Sclidinger type equation. The detail will be explained there.

2. Algebra for Wick calculus

We introduce a class of symbols with a large parameter.

Derinimion 2.1. Let A > 1 be a large parameter amd € R, p, 6 > 0. Then we
say that the functiom x(, {; A) on Ry x R¢ with a large parameten  belongs to the
cIassTp'fg of symbols ifa (,-; A) is in C>*(R" x R") and satisfies

(2.1) w@) = sup |970¢a(x, & A)| ATl < oo
x,£€ER",A>1
|at+B|=k

for all k € Z, :=N U {0}. We denote77, , , simply by 7.
ExampLe 2.2. Letm € R, p, § > 0 anda € ST'o(R" x R"). We set

a(x, & A) =a(A%x, A%€) x p(AFE),
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where ¢ is in C*>°(R") with the supportc {¢ € R*;1/2 < || < 2}. Then we have
aeTwrom,
0,0

From now on, we take x( ) = @) "/*exp(-|x|?/2), which satisfie3|g||i2(Rn) =
(2m)—".

Theorem 2.3 (cf. [5; Proposition 2.1]). Letm € R, p, § >0 anda € 7;’75. Then
(2.2) aV =a” +r" with r € T

wheres = min(p, §) and we denote the pseudo-differential operator of the Weylbs|
b(x, &) by b* = b¥(x, D), that is

. +
b"(x, D)u(x) = (21) " / / = (% g) u(y)dyde. (see[3].)
RZn
Furthermore, ifa is real valued then so is

Corollary 2.4. Letp, § >0anda € 7). Seto = min(p, ¢). For I > 3 we have

=n/2 ok
(2.3) a’=fa+ Y F( 4X> a +r  with r € 75

k=1

where Ax = Y7, {(9/9x,)* + (8/9¢,)*}.

Theorem 2.3 and Corollary 2.4 show that the Wick operatorr@pmates the
pseudodifferential operator of the Weyl symbol.

Theorem 2.5. Let N be a positive even integer and letc 7° b ¢ 7" If
m = N /2 then we have the expansion formulas as foltows

1 1 Wick
— 4 b+ = + i =
(ab 54 b > {a, b}) R, if N=2,

N/2

1 1 Wick (71)/{
b—=a b+ —{a,b +
(“ 2“ 2 - }> 1; 2k

2n H k
3 (axjazj + %azj) a(X)b(Z)

j=1

(2 4) aWiCkaiCk - Wick

z=X

+RN if N > 4,
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1 1 Wick N
<ba2b/~al+2i{b,a}) +R, if N=2
1 1 Wick  N/2 4w
(”“ — ot “}) g
l :
. A k=2
(2.5) leckank — . Wick
2n HX
> (0,02, — =0z, ) | a(x)b(2)
= '
zZ=X
+Ry if N >4,

where
iii
X
" (da db  da Ob
oy =3 (2L 0 in)
; ﬁfjﬁxj (9Xj8§j

and H; denotes the Hamilton vector field ${X) (Note Z, 1 Hx;a0x,b = —{a, b}).

The remainder term®Ry RN are L? bounded operators uniformly with respect to a
large parameterA satisfying

< Cw.ny | Yol@)yw(b) + E 1P|
[Bl<|a|<N
|at+B|=N

(2.6) || RN |l £z2(rry)

A
L(L*(R)

wherea® = 9ga and C(y ) is the constant depending only o  and
ReEmARk 2.6. In the case wher¢/n = 2 and symbals and are real valued,

Lerner [5] proved that

) . 1 Wick
Re (aWikpWiek) = <ab - Ea' .b’> +S

where S satisfies the estimate of the same type as (2.6) (sgedtion 2.3 of [5]). If
N =2 then the second term of the right hand side of (2.6) disaspe

Theorem 2.7. Let N be a positive even integer and letc 7° b € T™". If
m = N /2 then we have the expansion formulas as foltows
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1 Wick /A
7({a, b}) + R2 if N= 2,
I

1 (a b}—}i da_ b WiCk+Nz/‘j(_l)k

i ’ 2 =1 BXJ ’ 8Xj =3 2k71
(2.7) [, pWK] = Wick
/2 gy

1 1 a B atf
Pl X mer X g%

=0 |ov|=21
|Bl=k—21-1

+Ry if N >4,

where R}, satisfies the estimate

(2.8) RNl ciewey < Civny | Nol@)yn(b) + Z [{a®, B }|
[B]<|a|<N—-1
la+B=N—2

where C(’N’n) is the constant depending only e and

Remark 2.8. If N = 4 then the Poisson bracket terms of the right hane sid
(2.8) are equal td|{a, b®}| .~ with |a| = 2. The expansion formulas of Theorems
2.5 and 2.7 hold for symbols, b < Tp’% and moreover for general symbols with a
large parameterA . More general formulas will be given after phnoof of the theo-
rems.

For the proof of theorems, we define the operaipr as
(2.9) (Zyu)(x) = (Wu)(Y)g¥ (x) for u € LAR").

Then it follows from (1.1) that fom € L*°(R")
(2.10) a"Vick = /R ) a(Y)ZydY.
We prepare two lemmas.
Lemma 2.9. Let py(X) =7 "e~1X~¥. Then we have
(2.11) Xy = py(x, D).
Proof. It follows from the definition that

pY(x, DYu(x) = (2r2) " / / T e
'Z’><R’é
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Noting that
/ (=g IC—E2 g = /21 G—2)E =W/ D
we get

py(x, D)u(x) = (47r3)7”/2/ ei(X*Z)ﬁe*|(x+Z)/2*)'\2*(1/4)|xfz|2u(z)dz

n

= (4r3)n/2 / =2 =1/ P~/ y ()
which shows (2.11). [

Lemma 2.10. Leto(X,Y)=0((x, &), (y,n)) =&y —xn and set

py,z(X) — (27T2)—11ei0(X—Z,X—Y)e—(l/Z)\X—Y|2—(l/2)\X—Z\z

— (27T2)7/1ei0(X72,X7Y)ef(1/4)\Y72|27|X7(Y+Z)/2|2‘
Then we have
(2.12) =y Zzu(x) = (We)¥)g" () (Wu)(Z) = py Lu(x) for u € LAR").
Moreover, we get

(213) YyXy = (27T)7”2y on LZ(RH)’
(2.14) ISy 2|l caagey < (@) 2e” /T2,

Proof. Putp” =XyXz; =pyp¥ . Then

p(X) =72 // pr(X +Y)pz(X +Z)e% 7 Yay' az’

’ 2 ’ 2 . !yl
7T—4n //e—\XwLY —Y|°—|X+Z"-Z| eZIO'(Z ,Y)dY/dZ/

12 12 . ’ 7
— // o VP12 22 XA ZY —X4%) gyt g 77

Here, in the last equality, we used the translation of véemlfy’, Z’) — (Y' — X +
Y,Z'— X +Z). Since [ e~ XIPx20(X.) gx = rne=IY* it follows from Fubini's theorem
that

p(X) = 7_r74n€21'a(ZfX,Y7X)/ef\Y/|2+2iU(ZfX,Y')dyl/ef\Z’|2+2ia(Z',Y'7X+Y)dZ/

_ . _ _ _ /2+- _ ’ Y —Xx+ 2
g 20(Z-XY X)/e [V P+2i0(Z=X.Y) gy! . on oIV —X+Y]|
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— W—3n62io(Z—X,Y7X)/672‘Y’7(X7Y)/2|2—(1/2)|X—Y|2+2io(Z—X,Y')dY/

_ 7T73n62ia(ZfX,YfX)f(l/2)|XfY|2/672\Y'|2+2ia(fo,Y'+(X7Y)/2)dY/

. n
T3 io(Z=XY=X)—(1/J|x—Y[* (g) o—(1/2)X=2]?

ﬂ_—n(Zﬂ_)—neia(Z—X,Y—X)—(l/Z)\X—Y|2—(1/2)|X—Z|2’

which shows (2.12). Here, in the fourth equality, we used ttheslation of variables
Y — Y' +(X —7)/2. (2.13) follows from (2.11) and (2.12). We shall show (3.14
SettingY =¢.7n), Z = (z,¢{) € R* x R", we obtain

(We?)(¥) = (4% /2 / () =1/ —y P (/D2 g

= (4?2 / ¥ g (1 Bly 2l [x— ()2
= (2m) " {0/ 2H ) =/ BV =2
Since |[(Wu)(Z)| < [|g% || L2rey ||| L2mny by Schwarz’s inequality, we get from (2.12)

|2y Zzull 2y = [(WeX)W)| [(Wu)(Z)] ||g" || L2rry

_ _ _ 7|2
< (2m)7"e /=2 ”g”iz(R")”uHL?(R")’
which shows (2.14) byig||?gm = (27) " O

Proof of Theorem 2.3 and Corollary 2.4. It follows from (2)1&nd (2.11) that
aV'(x, D) = b (x, D), with

b(X)=m"" / a(X +Y)e P ay.
R2n
Using Taylor's formula

a(Xx+v)= Y~ a<@>(X)§ +ay(X,Y)

la]<N—1
with
1 V&
an(X,¥Y)=N > / 11— )N (X +0Y)do—,
la|=N 0 (6%,
we have

b(X) = Z a‘)(X) yoe gy +ry(X)

™ol R2
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wherery () =" [ro an(X, Ve "Fay e 775", Note that [, Yee "Pgy = 0
for a ¢ (2Z+)*". Hence we get (2.2) if we tak&/ = 2. B = (261,...,208) €
(2Z+)?" then we have with3 = (51, . . ., f2,)

n

1 2 2n
= [ yee gy = H

oo 26, —|Y-\2 o
Y. irdy; =
al Jren =) (28))! / e

oo ! R EIT

ChoosingN = we have

' -n/2 "
aV=pt =y VI (@251 3;25,,2"0(?()) +ry
1B]=0 '
[(1—1)/2] Y

1 /Ax\" Y
= > y(T) al +ry
k=0 :

with ry € T’" ! Replacinga by> o [0-1)/2] (1/k")(—Ax/4Ya, we obtain (2.3) be-
cause

[-1/2] i [(,,1)/2]( 1)k
— — = [(+1)/2]
>4 Y. | =Lroc ). O
k=0 k=0

Proof of Thoerems 2.5 and 2.7. By means of (2.10) we note that
aWickpWick = / / a(V)b(Z2)SyS7dYdZ.
R2 xR2

We use Taylor’'s formula

b(2) = Z b(a)(Y)Q

lal<N-1

+bN(Y7 Z)a

where
Z—-Y)“
by(Y,Z)=N Z / Q—0V 1y +6(z — Y))dﬁg
|a|=N
Then we have
N-1
aWiCkaiCk - Z Z Qa + RO ,
=0 |a|=l

where
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Qq

1
= // a¥)bNY)NZ — Y)*SyS,dYdZ,
Oé' R%HXR%II

RS // a(Y)by(Y, Z)EyT2dYdZ.
R2" x RZ!

In the same way as in the proof of (2.19) of [5], it follows frof@.13), (2.14) and
Cotlar's lemma that we have

IR | ez < Covmllalie > 116 < Clymyro(@) v (b).
|a|=N

The last inequality follows because € 7132’1/2,17 € 7172/’21/2. By means of (2.12),

together with the change of variableX ¢ Y, X — Z) — (-Y, —Z), we see that if
0(R2,) denotes the Weyl symbol a2,,,

—n 1 o o — 2
(@)= @) Y /R L aX F YK +Y)(=) e 2

(2.15) otolza
( / za’e"“Z’Y)e—(l/Z)'ZZdz) dy.
R

Note thatZ®'ei*") = (=i)l*' | Hy'ei??V) and [, eio? Ve 11217 a7 = (2myre= 2V F,
We have the formulas ‘

WA gy 2P = Ly i,

-~ 2 - 2 1 J; iyi2
WD gy gy 02 = <4HyjHYk _ 12k> oI

e WA By Hy Hy e /20T

(2.16)

1 1 2
= <§Hym Hy, Hy, — Z(5j,kHYm + 0, m Hy, +6j,mHYA)> e ",

Furthermore, for anyx we can show by induction ofw| that

« > q a
2.17) e W2ANF (ﬂ> e/ = led (37 A7 (2%)

_ 2
eI,
i q!

q=0 Z=Hy /i

In fact, if we write
o @2IP (HY) o @2IP

l

’

H Hy\
- (e—a/zw (_Y) e<1/2>Y2> (e—u/z)Yz (_Y> e—(l/zwz)
L l
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for somem andy’ with |o/| = |a| — 1, then it equals, by induction hypothesis,

2 = AL (z
o () () (£, )

q=0

Z=Hy /i
q Zo/)
PN RS i PPN e
2 I Hym " e
— q l
90 Z=Hy /i
o 20, A (za/) s 7, AY (za’)
+ Zm VA e_‘Y‘z + 2 Z m=yz e_|y|2
= q' — q!
=0 Z=Hy/i =0 Z=Hy /i

because My, ||2/2i), (Hy/i)’] = (g, Zﬂ)|Z:Hy/i for any 3. The first term of the

right hand side is cancelled by half of the third term beca(®e (|Y|2))e~*" =
—Hy e~ P, Finally we have

H «@
WP (_Y> o WRATE
4

207 AY (Za/) + ZnAY, (Za')

= 2~ la| Z

q=0

_|y|?
Ve,

q!
Z=Hy /i

which gives (2.17) by means at%Z,, 2% = 2qd,,AY 12 + Z,,A%Z* .
It follows from (2.17) that

o(Qa) =7" / a(X +Y)b{(X +Y)
R

A% 1 o (Z\ —|¥[?
Z F ( Z o'la" =1 2 ¢ ay
q=0 a’+a' =« Z=Hy /i
—n (o9} q «
A Z
= ”—| a(X +Y(X+Y)y =L <Y + —) e "ay,
(6% Rf]ﬂ 4=0 q: 2 Z=Hy /i

where we take a convention that &l  inY + Z/2)° for g with |3] = |a| — 2¢ are
ordered to the right hand side. Sin¥eHy, {¥, Y} + HyY;, we have

YjHYk + YkHyj = Hkaj +Hyij.

The repeated use of this formula shows thatif = w; --- W

i and S5 denotes



Wick CaLcuLus AND CAUCHY PROBLEM 133

the permutation group ofiji, ..., jig } then for anyr (0<r < |B]) we have

T . .
/Z Y" Hy _r'(\ﬁ|fr)' Z Yoy Yoy Hy,g,,y HYa(pr

= UGSU\
|8|=r.18"1=|8]—r

r'(\,@| —7r)! Z o) Yot ) Hy o Yot Hy g,y HYU(,-W)

O'ES|5|
1
(s a;:m By = HYogp y Yolipi—n = Yoo
- al'y? .
/+ //:
18 |=r.16" |<18|~r

Hence we may regard that af  in-¢ + Z/2)° are ordered to the left hand side.
Namely, we have

o(Qu) = 7" /R a(X+ Y)b(X +Y)

Y

=AY AN g
— — [ = _ 7|
S (S (3] e
q=0 a’+a!' = Z=Hy /i
Note that
1
Yje_lle = _anje—\Y\z’
1 J;
) ) ;
YijYke_|Y|2 = < aymay 8;7]‘ + jkaym + Ma + 4’1 8Yk> e—‘Y‘z_

In the same way as in the proof of (2.17), we can show that fgraan

(2.19) yoe = p-lel [ 32 Ay (IW"‘) P
q=0 q: W=—"09y
by induction on|a/, if we note [¥,,, (-dy)’] = (anW )‘Wlay_

In view of

(o] oo

A AY, (Az + Ay)
> Xt ZZ =

q=0 g q=0 ¢!

N<
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it follows from (2.19) that

7}‘1

2 Y
(Az +Aw)! B
24 (2 ()
q=0
7T—_n (a) (ZAZ *|Y|2
SNl / a(X + YY) 9X +Y) Z i oIy
" Z=0y+Hy /i
By integration by parts we get
U(Qa) - 2|0‘|al
> 2A, )
X/ Z(—l)‘““Zq—( 2) 7o a(V)OSB(Y + W) ey b e X1 aY,
RZn — q!
90 Z=8y+Hy /i
Hence we obtain
(~1fn
> o) = 5
|e]=1
[eS) on !
2A 7)1
X/ Z( IZ) > Ziow, a(Y)b(y + W) e X Pay
Ry =0 : i=1
Z=6y+Hy/l' w=0
1—2q
[1/2] —1 2n
(=2)7~ Hy,
= Oy, + — | Ow. “Aw)a(Y)b(Y + W
/Rf,” Z q!(l — 2q)! z:; Y i W; ( w)?a(Y)b( )
' w=0
o lx-ripdY
an’

becauseA (Y2, Z;0w,)' = 10 — 1)(X21 Z;0w,)' “Aw. By settingl — g = k, we
have the following rearrangement

N—-1
> o)

=0 |a|=l

N/2 (_1)k 2n Hy k . Y‘ZdY
= s 2kk| /RZ" _AW + Z; <8Yj + l ) aWj a(Y)b(Y + W) e F

= Y j:

w=0
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(—D/? N/2 ~x-rpdY
NN o DA W e
N1 gy Nk 2n Hy koa
3 S (S ()
k=N /2+1 Y q=0 Jj=1
% a(Y)(—Aw)b(Y + W)} el
71-1'1
w=0

= o(l) +o(l2) + o(I3).

Since it follows that for any

2n 2n
(2.20) > Hy,0w,b(Y + W) =0 and (—AW +> ayjawj) b(Y + W) =0,

j=1 j=1
we have
k
2n
Hy,
(—AW e (o4 ) awj) a(V)b(Y + W)
=1 !
(2.21) k =0
2 Hy.
= (> (ayj + —) Ow, | a(¥)b(w)
= l w=y

By means of (2.21) we get the desired expansion formula (2wg show that/, and
Iz are L? bounded operators whose operator norms are bounded bygtitehand side
of (2.6). In fact, we have| | ;2w < Crola)yn(b) becausel, equals gAN/2p)Vick

with a constant factorlz is the sum of the following terms

’ " Cv_ dY v o
< / (o Y (@pry ) e Y|ZF> = Q% 4

for o, 5/, 8" with N/2 < |a| < N, |o| = |+ 3" € 2Z, and ' + 3" = C «a.

Here we denoted C « for 8 = (B4, ..., Bo), & = (o1, ..., ap) if B; < «; for each
j=1...2n. Sincea € TY,, ., b € 7’172{21/2, there exist3’, 3 satisfying 3 C 3,

G" c 3" and |F| +|3"| < N/2 such thatB Y )=, H (a(¥)b(Y)) belong toL>
unformly with respect taA . By integration by parts again, vavé with 3 = 3 + 3"

w
A - - L v_v|2 dY
Qg’,ﬁ” = (_1)|ﬁ Bl (/2, B(Y)ae B Hy@ B (e | X-Y| ) _)
Ry

/n-l‘l
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By this expression we can see
1925/ g || czmey) < Covmy 1Bl o< s

in the same way as in [5; (3.19)]. Now the proof of (2.4) is ctets U

It follows from (2.10) that
pWickgWick = / / a(Y)b(Z2)E,EydYdZ.
R2" x RZ!

We use the same Taylor’s formula bfZ ( ) as aboveQf, 76,?, denote the correspond-
ing terms toR2,,, RS then they are defined only witBy =, replaced ByXy . Since
the Weyl symbol of£;%y equal®zy X ) #rz(X) because of Lemma 2.1@2, is
estimated in the same way as fBf. Using the change of variableX ¢ Y, X—Z) —
(=Y, Z) we have instead of (2.15)

1

a’la!’

o(Qa)= @)™ Y

/ a(X + Y)b(X +Y)(~Y)* ¢~ WA
/ 1= Rf,"
(2.22) ararTe

X ( (—Z)a/e“’(l”e—(l/?)zzdz> dy.
RY

Since the difference between (2.15) and (2.22) is only the flaat Z*' is replaced
by (—Z)* we easily obtain (2.5) by replacingly /i by —Hy/i. The formula (2.7) is
obvious if we note

k k [(k—1)/2]
B B — 2 k k—21—1 | p2/+1
(A+l_> (A l_) == ; (2“1)/4 (-1)'B

and 32 Hy, 0w,a(Y)b(W)|yy—y = —{a. b}(¥). O

As stated in Remark 2.8 the expansion fomulas hold for moreigé symbols:
b and any positive integeN

Theorem 2.11. Leta € L*(R*) and b € Tp’f'(; with p, § > 0 andm € R. Set
o =min(p, §). Let N be a positive integer wittv > m /o and assume that

2n

.23) | > (axj 0z, +

j=1

Hy,

i

k
aZ])) a(X)b(Z)| € L™ for 0<k < ko
zZ=X

for some nonnegative integép < [N/2]. Then we have the expansion formulas as
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follows
(ab)Mick + R if N =1,
Wick
ko (_1)k 2n HX k
. . 8)(62 + — jaz.) CZ(X)b(Z)
(2_24) anckau:k — prs 2k ; < P74 i J
zZ=X
N-1
+ Z Z Ca’ﬂ”ﬁ”gg/’ﬁ/l +R2, if N> 2,
k=ko+1|a|=k B'+p" Ca
|| —|8"+3" |€2Z,
(ab)Wick + RO if N=1,
Wick
ko (71)k 2n Hy k
(2 25) bWiCkaWiCk - 2%k Z (axja i TjaZj> Cl(X)b(Z)
' k=0 : j=1
zZ=X
N-1 .
+ Z Z Ca”ﬁ/’ﬁ//gzg/’ﬁ// + RR, |f N Z 2,
k=kotllal=k  p'+p"Ca
lal—-|8'+8" | €22.

where C,, 5,37 € C are constants depending only en 8’, 3” andn. The remainder

terms RY, RS are L? bounded operators uniformly with respect to a large paramet
A satisfying

(2.26) RS | 222y

IEHH <C )
N ey = . llal Lo renyyv ()

where C(y,») is the constant depending only & and . HEE, 5, is a pseudodif-
ferential operator whose Weyl symbol is given by

dy

Tr_n.

(2.27) (—1)7 " / a(V)b ) H 0 (efwxfn?)
R2"

Furthermore, if) HY (a(X)b@(X)) € L>(R¥") for some ¢ #, 3" 3" then
there exists a constar@(y ,, > 0 depending only onv  and  such that

(2.28) 1267 5 | ez < ClwmllOx Hy (@(X)BO X)) oo rery.

Proof. Even if N is odd, we have the same formula as one justrdgf®.20)
with N /2 repalced by /2] and o(l2) = 0. If a is not smooth enough, the integrand
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of o(I;) and o(I3) must be replaced, in view of the integration by parts, by

k
2n

Hy, ,
a)r +w) [ [ ~aw -3 (ay,. . T‘) o, | et
j=1
w=0

and

N—

ko1 2n " k—q
S () a-awrner +w) (—Z (o0 +52) aw,) e Ix-1P
=0 1 l
w=0
respectively, where we regard tha§ and Ay operatb X W ) even if they are put
on the right hand side. Henc@g, ;. in the proof of Theorem 2.7 must be written
as in the form (2.27). If (2.23) holds then we can use the fétan{@.21) and obtain
(2.24) in the same way as in the proof of Theorem 2.7. L]

Theorem 2.12. Leta € L>*°(R?") andb € Tp’f'(; with p, § > 0 andm € R. Assume
that {a, b} € L>(R?"). Sets = min(p, §). Then, for a positive integeN > m/c we
have

1 ’ .
7({61, b})Wick + RY if N=2,

N—-1
. , 1 . 1
Wick 7 Wicky — Wick
(229) [a"*, "4 = ¢ S({a b)Y Zd TS Chor 5 2
k=2 |a|=k '+3" Ca,07|3 |odd
la|—|5/+5" |€2Z.

+RY if N >3,

where C/, 5 5, € R are constants depending only en ', 3" andn. HereRS, and
Q5 5. satisfy the same property aheorem 2.11In particular, whenN = 3 we have

Wick
(2.30) [a'Vick, pWick] = (%{a,b}) + Rs,

where R3 is an L? bounded operator satisfying
2n
(2.31) |[Rallcewy < Cova | lallz=royya®) + > I{a. x,b} | r=(rey | -

j=1

provided that{a, dx,b} € L>(R*) for j =1,...,2n.
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3. Application

In this last section we shall apply the Wick calculus to theu@g problem for
some dispersive equations. Let us consider the followingc@6a problem

(0, +ia¥(Dy) +a¥(x, Dy)+af(x, D,)u=f in D'(0,T)xR)
epy { o EDa e 0

wherea; € $7%7°Y (j=1,2),a0€ 82, 1/2< k<1 andT > 0. We assume that

1 n
ax() = o [€17, . €)= Db ()¢ I

J=1

for || > 1/4 andb; & )e B>(R") for j=1,...,n.
For the L? well-posedness of the Cauchy problem (G.Pih the case ofx = 1,
the following necessary condition

(3.1) sup / ZReb (c — wh)w;df| < +oo

(x, w)eR" ><S” 1

is shown by Mizohata (see [6]). As to the sufficiency of the well-posedness of the
Cauchy problem (C.R,) in the case ok =1, there are works such as [1], [2], [4], [7],
[8], etc. Here we quote only the sufficient conditions of thau€hy problem (C.R,)
in the case ofx = 1 from [2] and [7] for the comparison with our results whiclillw
be mentioned later.

Theorem (Mizohata see [7]). Let x =1. Supposg3.1) and the condition(3.2);

(3.2) sup
(x,u.))GR" ><Snfl
>0

< oo forall aez}\{0}.

T n
/Za;b,(x—wa)wjde
0

J=1

Then the Cauchy problefC.P.). is L? well-posed.

We remark that, in [7], the following condition

T
(3.3) sup / |08bj(x —wh)|dd < oo for j=1,...,n,
(x,w)eR'x§"~* JO
7>0

which is more restrictive than (3.2), is assumed. But it i$ difficult to see that we
can replace (3.3) with (3.2) in the proof of the theorem fag dufficiency in [7].
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Theorem (Doi, see [2]). Let x = 1. If there exists a positive non-increasing func-
tion A(¢) in C([0, o)) N LY((0, o00)) satisfying

(3.4) |Reb; (x) < A\(|x|) forall xeR", j=1,...,n,
then the Cauchy problertC.P.), is L? well-posed.

About the sufficiency of the Cauchy problem (C.,Pih the case ofx = 1, the
above Theorem (Doi) is the simplest result and powerful. Big not able to handle
the delicate case treated in [7]. We have an example whidkfieat neither (3.2) nor

(3.4) but (3.1).

ExampLE 3.1.

Sinx; i
Y Imbj(x):djx—j

(x) (x)

forx e R", j =1,...,n, wherec =¢1,...,¢,), d = (d1,...,d,) € R"\ {0} with
d; #dy (j #k) are the constant vectors arte) = (1 +|x|?)Y/2.

(35) Rebj(x)ch

Whenk =1, we don't yet know the answer for the question that in theeoahere
bi(x) (j =1,...,n) are given by (3.5) the Cauchy problem (C,Pi$ L? well-posed
or not. However, in the case of/2 < k < 5/6 we can get some results by using the
Wick calculus. Our main theorem in this paper is as follows.

Theorem 3.2. (i) Supposel/2 < xk < 2/3. Then the Cauchy problegC.P.), is
L? well-posed if(3.1) is fulfilled.
(i) Suppose2/3 < k < 5/6. In addtion to(3.1), assume that the following conditions
are satisfied

(3.6) sup / Zaa Reb; (x — wh)w;db| < 0o for |a| =
(x, w)ER"XS" L
(3.7) sup< >|8§“bj(x)\ <oo forjol=1 j=1...,n.

xER’

Then the Cauchy problerfC.P.), is L2 well-posed.

Remark 3.3. b () (j =1...,n) given by (3.5) satisfy (3.1), (3.6) and (3.7). So
Theorem 3.2 (ii) is applicable. In fact, taking the changevafiable;s =0 — x - w,

T . L . T—xw 1 R . + .
/ MWdH = Sln(xj wj(s * w))wjds = 11 - IZs
0

(x — wb) (L+p+s2)1/2

—X-w
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wherep = |x|? — (x - w)? > 0,

T—xw of —XW of
B sin(x; —wj(s +x - w)) _ sin(x; —wj(s +x - w))
h _/0 (1L+p+s2)1/2 wids, 2= 0 (1L +p+s2)L/2 w;ds.
By the second mean value theorem of integration, theresexist R such that

1 o
L= W/o sinx; —w;(s +x - w))w;ds

1 T—x-w )
@t (T —x-wP / SNy =yl +x-whhoyds

S1

1 /ijj(sﬁxw)
= sintdt
(l + p)l/Z xXj—w;j(x-w)

1 xj—w;T ]
+
A+p+ (T —x P2 / sintdt,

xj—wj(s1tx-w)

where in the last equality we changed the variable of integreby 1 =x; —w;(s+x-w).

Since
b
/ sintdt
a

we have|l;] < 4. Similary, we can getl,| < 4. Thus (3.1) are satisfied. In the same
way, it is easy to see that (3.5) satisfies (3.6).

<2 fora,beR,

Proof of Theorem 3.2. First we shall prove (ii) of the theordfor the proof it
suffices to show the following priori estimate

3.9) @] < ¢ (||u(o>+ / ||f<s>||ds)

for t+ € [0,T], u € C([0, T]; H3(RY)) n C([0, T]; L?(R")) with the constantC =
C(T) > 0 where f = @, +iay(D,) +ai(x, Dy) +ay(x, D))u and || - || = || - || .2re)-
Take o, ¢, ¢1, P2 € C§°(R") of real value such that

0<p<l, SUPWC{;SKISZ},
(3.9) o0
pol@?+ S w2 veP=1 forceR,
v=1
1 9
w@=1 on {3<ld<zf. swmnc{3<le<q).
(3.10) 9 1 9 1
=1 on {Z<i <3} supinc {F<ie<geg)



142 H. ANDO, AND Y. MORIMOTO

Put o = @¥(Dy), ¢¥ = ¢¥(Dy) = ¢¥(27VDy) for v > 1. In view of a Littlewood-
Paley decompositiof_ -, gDV w(p,)?=1; we consider

(3.11) (0 +iay, +a) ) urrju=p)f forv=012...,

where

az, =ay,(Dx), a2.(§) = az2(§)y2(277¢),
aill.ljy = ai}l/(‘x’ DX)’ al,l/(x’ f) = al(xv §)w1(2_V§),

ry = [ofal,] + elay +sz Lol (1 - vj(27))a;)” for v > 0.
We shall show that
(3.12) i I u(@)]|? < Collu(n)]?
v=0
with some constan€y > 0. By >"°2(¢%)? = I, we have
(3.13) i oy ag ull? = llagu]? < Coollull?
v=0

with some constan€o o > 0. Since supp, N supp((1—v¥;(27"-)a;) =0 for j =1, 2,
we get

2
> on@— i7" )ay)” <Cy2 M for N €N

J=t LU2RY)

with some constan€y > 0 independent of/, which implies

2

0o 2
(3.14) SOl — w2 )ag) ul| < Coallul?

v=0 || j=1

with some constan€p 1 > 0. Noting that

w wa_ (1 Y _1 day, \" [0, \"
[@u’al,u]_(f{‘:omal,u}) +r Z(axk) <a§k) +ry,

)|l zeary < Co2277 with some constanCo > > O independent

oo, \" 2
v < 2
(5) o) = coa

Where ||rly||E(L2(R”))u

of v and
Oai,, Y (00, \" 2
xy oe ) "

oo

by

v=0

o0
< Co3 Z (2”
v=0
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for k =1,...n with some constant€y s, Co4 > 0, we have

oo

(3.15) S e af,]|? < Coslul?
v=0

with some constanCo s > 0. Thus from (3.13), (3.14) and (3.15) we obtain (3.12).
Setd =1/3 andp =1— 4. Changing £, &) — (A~%x, A%) with A = A(v) = 27,
we have
M ps (8, +iay s +afA) Mpy—solu +riu =) f,

where M) is the scaling operator defined by/{u)(x) = u(\x) and

ap a(€) = a2, (A°€), apa(x, &) =ay, (A °x, A°).
Sincer < 5/6, we seeas € 7;)1;‘) anda 5 € T/;. Set

up = Af‘S"/ZMA_acpfu, fa = Af‘s”/zMA_{sgaﬁ’f.

Since [lua 2 = lp2ull?, | £]2 = [lp2 £1? and S-25y(e2)? = s, we note that

(3.16) > uaw@IP = 1@ D I faw@IP = 11 £ @)
v=0 v=0
(3.17) (0, +ia¥ +al ) ua+ A" 2My sru = fa.

Apply Corollary 2.4 with! = 4 toay,, noting that its symbol depends only d&n
Furthermore, using Theorem 2.3 faf’,, we can see that (3.17) are reduced to the
equations

. i —— Wick — —
(3.18) (Bt +iay'*+ar ) up + A 5”/2MAfarl'f’u +aoa"Up = fas

ick —— Wick

_ _ W _
whereay’it* = a}(D;) andar s =ara - (x, Dy) with

(3.19) GTA(, ) = (e, ) — 7 (Acaan) O €77
andag s € 775. Set

rau = AT2IM L s+ ag .
From (3.18) we have

(3.20) (@ + i + a2 " Vup + rau = fa.
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Since||A~"/2My-sru||® = ||ryul|* andao a € T, it follows from (3.12) and (3.16)
that

(3.21) D lIrawu@|* < Caflu@)|?
v=0

with some constan€; > 0.

Lemma 3.4. Assume(3.1) and (3.6). Then for anyM > 0 there exists
palx, &) € C(Ry x R{) of real value with a large parametesA  such that we have

(3.22) {az.n, pat(x, &) —Reapa(x,£) =0
and moreover

(3.23) 02 palx, O < CATlif [af <1,
(3.24) 08 palx, ) < C(AT°x)A™7 if [o| =1

for x, £ € R" with some constant§€ ¢’ > 0.

Proof. Set
(3.25) px, €)= ij/ Reb; (x — wh)dl, w= £
= Js €]
Then we get

{az, p}(x, &) = Reay(x, &).

Setting pa &, &) = p(A~%x, A1 (A—PE) we obtain (3.22) in view of (3.10). The
estimates (3.23) and (3.24) easily follow from (3.1) and)3. U

Let’s return to the proof of Theorem 3.2. SEt, x, £) = e”2 8 with p,(x, &) of
Lemma 3.4. Then we have

1d i
(3.26) S 1K ua @)
0 )
= Re (KXV'Ck—gtA , KXVICkMA)

- Re(KXVICka, KXVICKMA)

— Re(KXViCkrAu, KXViCkuA)
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because d¥'i¥)* = a3, which follows from the fact that; 4 () is a real valued
function. Here {,-) = (-, -);2®:). By means of (3.23) withh = 0 and Proposition 1.1
we have the estimate

(327) Cy < HKXViCkHL(LZ(Rn)) < Cs3 for A >1
with some constant§’,, Cz > 0. Note that
Kchk chk — KW'Ck(Rea A)chk +l(|ma;|_ A)W|ckaW|ck + l[Kxth (Ima )chk]

Using the expansion formula (2.24) with K, b, =Rey, N =2 andko =0, we
obtain

(3.28) KK (Reay o)V = (Ko (Reay 4)) "™ +

+Ry.

where || Ry [ £ 2rey) < Ca for A > 1 with some constanC, > 0. In fact, by means of
(2.28) we have for = (ay, ag) with ae 70

195 5| cazry < CllKa(Rea2) |~ < C’

because Rey » € 7;)76, and it follows from (3.23) and (3.7) that for = («,, 0) and
B #0

195 5l cz@y < CUOKA) A x)TAP | Loo + || Ka AP Y| < C
In view of (2.28) we see that for = (o, 0) and s’ =0 (5" #Z0)
195 50| ey = 108 (Ka(Rear ) )| cizwey < €'

becaused? (K (Reay2)) also belongs ta.>. Using the expansion formula (2.29)
with N =2 we get similarly

(3.29) KR, (M g )Y | ey < C-

If we use (2.30) of Theorem 2.12 with E, b, &, andN =3 then the remainder
term Rz is L? bounded uniformly with respect tA  on account of (3.23) with= 1.
In view of (3.22), it follows from (3.28) and (3.29) that

(3.30) —Re(( [KW|ck’ \2ka] +KW|ck Wu:k) e KXViCkMA> < CSHMAHZ

where Cs > 0 is a constant independent of > 1. In view of (3.27) and (3.30) it
follows from (3.26) that

(3.31) KX ua (1))

2dt|
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- - c
< KV (1) (||KXV'°ka(r)|| G CsIIrAu(t))

with some constan€g > 0. Set

00 1/2 o 1/2
ur) = <Z IIKXV('5'>‘"A<V)(t)IIZ> . F()= (Z IIvaéﬁ)ka(u)(tV)
v=0 v=0
for t € [0, T]. By virtue of (3.16) and (3.27) we get

B32)  Crllu@ < U@ < Cellu@)ll,  CrllfO] < Fr) < Cell FO]

for t € [0, T] with some constant€7, Cg > 0. Sum up (3.31) with respect te and
make use of Schwarz’s inequality. In view of (3.15), (3.1®.21) and (3.32) we have
the estimate

(3.33) Z—tU(t) < CoU@t)+ F(t) forte|0,T]

with some constan€gy > 0. Consequently we can obtain the desieegriori estimate
(3.8) from (3.33) by using the Gronwall’s inequality and ingt (3.32).

We shall prove the assersion (i) of the theorem. &etl/3 andp =1— 4. Since
k< 2/3, we seeay 5 € sz’g anda; , € Tlfé. We use (2.23) and (2.24) with =1 in
estimating the product ok \"* and a}“™*. Furtheremore, we use them to get (3.29).
About the commutator ok ) and o} we may only use (2.29) witlv = 2. Hence
we get the conclusion without (3.6) and (3.7). ]
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