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1. Introduction

Let be an -dimensional Riemannian manifold isometrically immersed in a
Kählerian manifold (̃ ) endowed with K̈ahler metric and almost complex
structure . For each vector tangent to , we put

(1.1) = +

where and are the tangential and normal components of . Then is an
endomorphism of the tangent bundle . For any nonzero vector tangent to at
a point , the angleθ( ), 0 ≤ θ( ) ≤ π/2 between and the tangent space
is called theWirtinger angleof . The submanifold is calledslant if its Wirtinger
angle θ is constant, i.e.,θ( ) is independent of the choice of the in the tangent
bundle . The Wirtinger angleθ of a slant immersion is called theslant angle. A
slant submanifold with slant angleθ is simply calledθ-slant. Slant submanifolds of a
Kählerian manifold are characterized by the condition2 = for some real number
∈ [−1 0]. Complex and totally real immersions are slant immersions with slant an-

gle 0 andπ/2, respectively (cf. [4, 10]). A slant immersion is calledproper slant if
it is neither complex nor totally real. A proper slant submanifold is called Kählerian
slant if its canonical endomorphism is parallel.

From -action point of views, slant submanifolds are the simplest and the most
natural submanifolds of a K̈ahlerian manifold. Slant submanifolds arise naturally and
play some important roles in the studies of submanifolds of Kählerian manifolds. For
example, K. Kenmotsu and D. Zhou proved in [9] that every surface in a complex
space form ˜ 2(4 ) is proper slant if it has constant curvature and nonzero parallel
mean curvature vector.

When is an oriented surface in a Kählerian manifold ˜ , one also has the no-
tion of Kähler angleα defined byα = cos−1(〈 〉) ∈ [0 π], where { } is a
local positive orthonormal frame field on . The Kähler angleα and the Wirtinger
angle θ of an oriented surface are related byθ( ) = min{α( ) π − α( )} In this
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sense, an oriented surface in a Kählerian manifold is slant if and only if it has con-
stant K̈ahler angle.

Let : → ˜ be an isometric immersion from a Riemannian manifold into a
Kählerian -manifold. We denote by and the second fundamentalform and the
shape operator of the immersion. And by∇ and ∇̃ the Levi-Civita connections of
and ˜ , respectively.

The Gauss and Weingarten formulas of in˜ are given respectively by

∇̃ = ∇ + ( )(1.2)

∇̃ ξ = − ξ + ξ(1.3)

where are tangent to andξ is normal to . The second fundamental form
and the shape operator are related by〈 ξ 〉 = 〈 ( ) ξ〉 The mean curvature
vector of the immersion is defined by = (1/ ) trace , where{ 1 . . . } is a
local orthonormal frame field of the tangent bundle .

A nonminimal submanifold of a Riemannian manifold is calledtotally umbili-
cal (or simply umbilical) if ( ) = ( ) for tangent to . Clearly, um-
bilical submanifolds are the simplest submanifolds which are pseudo-umbilical, i.e.,
the shape operator of at satisfies the condition:

(1.4) =µ

for any ∈ , whereµ = ( ). It is well-known that a umbilical submanifold
of a Euclidean space is nothing but an open portion of an ordinary sphere. Umbili-
cal submanifolds (if they exist) are the simplest submanifolds next to totally geodesic
ones in Riemannian manifolds from extrinsic point of views.However, since the shape
operator of every proper slant surface and also every Kählerian slant submanifold of a
Kählerian manifold must satisfy another condition:

(1.5) =

for any tangent to , there do not exist umbilical Kählerian slant submanifold
in a Kählerian -manifold. For these reasons, it is natural to study the simplest slant
submanifolds which satisfy conditions (1.4) and (1.5). We call such submanifoldsslant
umbilical submanifolds, or simply slumbilical submanifolds.In some sense, slumbil-
ical submanifolds play the role of umbilical submanifolds of Euclidean space in the
family of slant submanifolds. In terms of second fundamental form, an -dimensional
submanifold in a K̈ahlerian manifold is a slumbilical submanifold with slant angle
θ ∈ (0 π/2] if its second fundamental form satisfies

(1.6)
( 1 1) = ( 2 2) = · · · = ( ) = λ 1∗

( 1 ) = λ ∗ ( ) = 0 6= = 2 . . .
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for some functionλ with respect to some orthonormal frame field1 . . . , where

1∗ = cscθ 1 . . . ∗ = cscθ .
The purpose of this article is to obtain the complete classification of slumbilical

submanifolds in complex space forms. Our classification theorem (Theorem 4.1) states
that there exist twelve families of slumbilical submanifolds in complex space forms
with slant angleθ ∈ (0 π/2]. Conversely, every slumbilical submanifold in a complex
space form is given by one of these twelve families.

2. Basic formulas and lemmas

Let ˜ (4 ) denote a K̈ahlerian -manifold with constant holomorphic sectional
curvature 4 . Such K̈ahlerian manifolds are calledcomplex space forms. It is known
that the universal covering of a complete complex space form˜ (4 ) is the complex
projective -space (4 ), the complex Euclidean -spaceC , or the complex hy-
perbolic space (4 ), according to> 0 = 0, or < 0.

Let : → ˜ (4 ) be an isometric immersion of a Riemannian -manifold
into ˜ (4 ). Denote by and˜ the Riemann curvature tensors of and˜ (4 ),
respectively. We denote by〈 〉 the inner product for as well as for̃ (4 ). The
Riemann curvature tensor of̃ (4 ) satisfies

(2.1)
˜ ( ; ) = {〈 〉 〈 〉 − 〈 〉 〈 〉 + 〈 〉 〈 〉

− 〈 〉 〈 〉 + 2〈 〉 〈 〉}

The well-knownequation of Gaussis given by

(2.2)
˜ ( ; ) = ( ; ) + 〈 ( ) ( )〉

− 〈 ( ) ( )〉

for tangent to andξ η normal to .
For the second fundamental form , we define its covariant derivative ∇̄ with

respect to the connection on ⊕ ⊥ by

(2.3) (∇̄ )( ) = ( ( )) − (∇ ) − ( ∇ )

The equation of Codazziis

(2.4) (˜ ( ) )⊥ = (∇̄ )( ) − (∇̄ )( )

where (̃ ( ) )⊥ denotes the normal component of˜ ( ) .
For an endomorphism on the tangent bundle of the submanifold, we define its

covariant derivative∇ by (∇ ) = ∇ ( )− (∇ ) For any vector tangent
to and each vectorξ normal to , we put

(2.5) = + ξ = ξ + ξ
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where and (respectively,ξ and ξ) denote the tangential and normal com-
ponents of (respectively, ξ). Suppose isθ-slant in ˜ (4 ), then we have [1]

2 = −(cos2 θ) 〈 〉 + 〈 〉 = 0(2.6)

(∇ ) = ( ) +(2.7)

( ) − (∇ ) = ( ) − ( )(2.8)

where is the identity map.
For an -dimensional slant submanifold iñ (4 ) with slant angleθ 6= 0,

( ) is an -dimensional subspace of the normal space⊥ . Moreover, the di-
rect sum ⊕ ( ) is invariant under the action of the almost complex structure

. Thus, for each ∈ , there exists a complex subspaceν of ˜ (4 ) such that
˜ (4 ) = ⊕ ( ) ⊕ ν as an orthogonal decomposition.
When is totally real in ˜ (4 ), we shall choose an orthonormal local frame

1 . . . 1∗ . . . ∗ 2 +1 . . . 2 on such that 1∗ = 1 . . . ∗ = where

1 . . . is a local orthonormal frame on . If is properθ-slant in ˜ (4 ), then
must be even; say = 2 (cf. [1]). In this case, we shall choose anorthonormal

local frame 1 . . . 1∗ . . . ∗ 2 +1 . . . 2 on such that

(2.9)
2 = (secθ) 1 . . . 2 = (secθ) 2 −1

1∗ = (cscθ) 1 . . . 2 ∗ = (cscθ) 2

We call such orthonormal framesadapted(slant) frames.
By direct computation we also have

∗ = −(sinθ) = 1 . . . 2(2.10)

(2 −1)∗= −(cosθ) (2 )∗ (2 )∗ = (cosθ) (2 −1)∗

2 = −(cosθ) 2 −1 = 1 . . .
(2.11)

For any vector tangent to we put

∇̃ =
∑

=1

ω ( ) +
∑

=1

ω
∗

( ) ∗(2.12)

∇̃ ∗ =
∑

=1

ω ∗( ) +
∑

=1

ω
∗

∗ ( ) ∗ = 1 . . .(2.13)

Thenω = −ω ω
∗

∗ = −ω ∗

∗ ω ∗ = −ω ∗

. Moreover, we also have

(2.14) ω
∗

=
∑

=1

∗

ω
∗

= 〈 ( ) ∗〉
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whereω1 . . . ω is the dual frame of 1 . . . .
We need the following lemmas.

Lemma 2.1. Let be an -dimensional( = 2 ) proper θ-slant submanifold of
a Kählerian -manifold. Then, with respect to an adapted frame, we have

ω(2 −1)∗

(2 −1)∗ − ω2 −1
2 −1 = cotθ

(
ω(2 )∗

2 −1 − ω(2 −1)∗

2

)
(2.15)

ω(2 −1)∗

(2 )∗ − ω2 −1
2 = cotθ

(
ω(2 −1)∗

2 −1 + ω(2 )∗

2

)
(2.16)

ω(2 )∗

(2 )∗ − ω2
2 = cotθ

(
ω(2 )∗

2 −1 − ω(2 −1)∗

2

)
(2.17)

for any = 1 . . .

Proof. This lemma was proved by taking the derivatives of thefollowing equa-
tions:

〈 (2 −1)∗ (2 −1)∗〉 = 〈 (2 )∗ (2 )∗〉 = 0 〈 (2 )∗ (2 −1)∗〉 = cosθδ

and applying (2.9–13).

Lemma 2.2. Let be an -dimensional properθ-slant submanifold of a com-
plex space form˜ (4 ). Then the curvature tensor̃ of ˜ (4 ) satisfies

(2.18) (˜ ( ) ))⊥ = {〈 〉 − 〈 〉 + 2〈 〉 }

for tangent to , where ( ˜ ( ) ))⊥ denotes the normal component of
˜ ( ) .

Proof. Follows from the curvature formula (2.1).

3. Hopf’s fibration and totally real submanifolds

We recall Hopf’s fibration and its relationship with totallyreal real submanifolds
in complex projective and complex hyperbolic spaces (cf. [11]).

CASE (1). ˜ (4 ) = (4 ) > 0.
Let

2 +1( ) =

{
= ( 1 . . . +1) ∈ C +1 : 〈 〉 =

1
> 0

}

be the hypersphere of constant sectional curvature centered at the origin.
Consider the Hopf fibration:

(3.1) π : 2 +1( ) → (4 )
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Then π is a Riemannian submersion; meaning thatπ∗, restricted to the horizontal
space, is an isometry. Note that given∈ 2 +1( ), the horizontal space at is the
orthogonal complement of w.r.t. the metric induced on2 +1( ) from the usual Her-
mitian Euclidean metric onC +1. Moreover, given a horizontal vector , then is
again horizontal (and tangent to the sphere) andπ∗( ) = (π∗( )), where is the
complex structure on (4 ).

Let ψ : → (4 ) be a totally real isometric immersion. Then there ex-
ists an isometric covering mapτ : ˆ → , and a horizontal isometric immersion

: ˆ → 2 +1( ) such thatψ(τ ) = π( ). Hence every totally real immersion can be
lifted locally (or globally if we assume the manifold is simply connected) to a horizon-
tal immersion of the same Riemannian manifold. Conversely,let : ˆ → 2 +1( ) be
a horizontal isometric immersion. Thenψ = π( ) : → (4 ) is again an isomet-
ric immersion, which is totally real. Under this correspondence, the second fundamen-
tal forms and ψ of and ψ satisfy π∗ = ψ. Moreover, is horizontal with
respect toπ. (We shall denote andψ simply by .).

CASE (2). ˜ (4 ) = ( ) < 0.
Consider the complex number ( + 1)-spaceC +1

1 endowed with the pseudo-
Euclidean metric 0 given by

(3.2) 0 = − 1 1̄ +
+1∑

=2

¯

Put

(3.3) 2 +1
1 ( ) =

{
= ( 1 2 . . . +1) : 〈 〉 =

1
< 0

}

where 〈 〉 denotes the inner product onC +1
1 induced from 0. 2 +1

1 ( ) is known
as an anti-de Sitter space-time.

We put

′ =
{

∈ C +1 : Re〈 〉 = Re〈 〉 = 0
}

1
1 = {λ ∈ : λλ̄ = 1}

Then we have an 1
1 -action on 2 +1

1 ( ), 7→ λ , and at each point ∈ 2 +1
1 ( ),

the vector is tangent to the flow of the action. Since the metric 0 is Hermitian, we
have Re 0( ) = 1/ . The orbit lies in the negative definite plane spanned by and

. The quotient space 2 +1
1 / ∼, under the identification induced from the action, is

the complex hyperbolic space (4 ) with constant holomorphicsectional curvature
4 , with the complex structure induced from the canonical complex structure on

+1
1 via the following totally geodesic fibration:

(3.4) π : 2 +1
1 ( ) → (4 )
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Just as in Case (1), letψ : → C (4 ) be a totally real isometric immersion.
Then there exists an isometric covering mapτ : ˆ → , and a horizontal isometric
immersion : ˆ → 2 +1

1 ( ) such thatψ(τ ) = π( ). Hence every totally real immer-
sion can be lifted locally (or globally if we assume the manifold is simply connected)
to a horizonal immersion. Conversely, let :ˆ → 2 +1

1 ( ) be a horizontal isometric
immersion. Thenψ = π( ) : → C (4 ) is again an isometric immersion, which
is totally real. Similarly, under this correspondence, thesecond fundamental forms
and ψ of and ψ satisfy π∗ = ψ. Moreover, is horizontal with respect toπ.
(We shall also denote andψ simply by .)

4. Classification of slumbilical submanifolds

The main result of this article is the following classification theorem.

Theorem 4.1. Let : → ˜ (4 ) be an isometric slant immersion from a
Riemannian -manifold ( ≥ 2) into a complete simply-connected complex space
form ˜ (4 ) with slant angleθ ∈ (0 π/2]. Then the immersion is slumbilical if and
only if one of the following twelve cases occurs:
(1) is an open portion of the Euclidean -space and is immersed as an
open portion of a slant -plane inC ( = 0).
(2) is an open portion of the real projective -space ( ) of constant curvature
> 0 and is immersed as a totally geodesic totally real submanifold in the complex

projective -space (4 ).
(3) is an open portion of the real hyperbolic -space ( ) of constant curva-
ture < 0 and is immersed as a totally geodesic totally real submanifold in the
complex hyperbolic -space (4 ).
(4) = 2 and is an open portion of the Euclidean2-plane equipped with the flat
metric

(4.1) = −2 cotθ
{

2 + ( + )2 2
}

for some real numbers with 6= 0. Moreover, up to rigid motions ofC , the
immersion is given by

(4.2)
( ) =

( + )1+ −1 cscθ

+ cscθ
− cotθ

(
cos
(√

1 + 2
)

+
cosθ√
1 + 2

sin
(√

1 + 2
) sinθ +√

1 + 2
sin
(√

1 + 2
)

0 . . . 0
)

(5) = 2 and is an open portion of the Euclidean2-plane with the flat metric

(4.3) = −2 cotθ
{

2 + 2 2
}

for some positive number . Moreover, up to rigid motions ofC , the immersion is
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given by

(4.4) ( ) = sinθexp
{ −1 cscθ − cotθ

}
(cos sin 0 . . . 0)

(6) θ = π/2 and is an open portion the warped product of a line and the unit
( − 1)-sphere −1(1) with the warped metric

(4.5) = 2 +
( + )2

1 + 2 1

for some real numbers with 6= 0, where 1 is standard metric on −1(1). More-
over, up to rigid motions ofC , the immersion is given by

(4.6)
( 1 . . . ) =

( + )1+ −1

+
( 1 . . . 0 . . . 0)

2
1 + 2

2 + · · · + 2 = 1

(7) θ = π/2 and is an open portion the Riemannian productR × −1(1/ 2) of a
line and the( −1)-sphere −1

( −2
)

of curvature −2. Moreover, up to rigid motions
of C , the immersion is given by

(4.7)
( 2 . . . ) = exp

{ −1
}(

1 . . . 0 . . . 0
)

2
1 + 2

2 + · · · + 2 = 1

(8) θ = π/2 > 0, and is an open portion the warped product of a line and the
unit ( − 1)-sphere −1(1) with the warped metric

(4.8) = 2 +
cos2

(√ )

2 + 1

for some positive number . Moreover, up to rigid motions of (4 ), the immersion
is the compositionπ ◦ φ, whereφ : → 2 +1( ) ⊂ C +1 is given by

φ( 1 . . . )

=
1√
2 +

(
+
√

sin
(√ )

√
(
sec
(√ )

+ tan
(√ )) /

√
1 . . .(4.9)

(
sec
(√ )

+ tan
(√ )) /

√
0 . . . 0

)
2
1 + 2

2 + · · · + 2 = 1

and π : 2 +1( ) → (4 ) is the projection of the Hopf fibration.
(9) θ = π/2 < 0, and is an open portion the warped product of a line and

−1(1) with the warped metric

(4.10) = 2 +
1

2 exp
{

2
√−

} 1
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for some positive number . Moreover, up to rigid motions of (4 ), the immersion
is the compositionπ ◦ φ, whereφ : → 2 +1

1 ( ) ⊂ C +1
1 is given by

φ( 1 . . . ) =
1
(

+
√− exp

{
−√−

}
√−

exp
{
−
√
−

}
exp

{ (
√−

)
exp

(√
−

)}
1 . . .

exp
{
−
√
−

}
exp

{ (
√−

)
exp

(√
−

)}
0 . . . 0

)
(4.11)

2
1 + 2

2 + · · · + 2 = 1

and π : 2 +1
1 ( ) → (4 ) is the projection of the hyperbolic Hopf fibration.

(10) θ = π/2 < 0, and is an open portion the warped product of a line and
−1(1) with the warped metric

(4.12) = 2 +
cosh2

(√−
)

2 + 1

for some positive number . Moreover, up to rigid motions of (4 ), the immersion
is the compositionπ ◦ φ, whereφ : → 2 +1

1 ( ) ⊂ C +1
1 is given by

φ( 1 . . . ) =
1√
2 +

(
√− − sinh

(√
−

)

cosh
(√

−
)

exp

{
2

(
√−

)
tan−1

(
tanh

(√−
2

))}
1 . . .

cosh
(√

−
)

exp

{
2

(
√−

)
tan−1

(
tanh

(√−
2

))}
0 . . . 0

)
(4.13)

2
1 + 2

2 + · · · + 2 = 1

(11) θ = π/2 < 0, and is an open portion the warped product of a line and the
Euclidean( − 1)-space −1 with the warped metric

(4.14) = 2 + cosh2
(√

−
)

0

where 0 denotes the standard metric on −1. Moreover, up to rigid motions of
(4 ), the immersion is the compositionπ ◦φ, whereφ : → 2 +1

1 ( ) ⊂ C +1
1
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is given by
(4.15)

φ( 2 . . . ) =
cosh

(√−
)

2
√− exp

{
2 tan−1

(
tanh

(√−
2

))}

×


2 tan−1

(
tanh

(√−
2

))
+ sech2

(√
−

) (
+ sinh

(√
−

))
−

∑

=2

2 +

2 tan−1

(
tanh

(√−
2

))
+ sech2

(√
−

) (
+ sinh

(√
−

))
−

∑

=2

2 −

2
√
− 1 . . . 2

√
− 0 . . . 0




(12) θ = π/2 < 0, and is an open portion the warped product of a line and the
real hyperbolic( − 1)-space −1(−1) with the warped metric

(4.16) = 2 − cosh2
(√−

)

2 + −1

where is a positive number satisfying2+ < 0 and −1 denotes the standard metric
on −1(−1) of constant curvature−1. Moreover, up to rigid motions of (4 ),
the immersion is the compositionπ ◦ φ, whereφ : → 2 +1

1 ( ) ⊂ C +1
1 is given

by

(4.17)

φ( 1 2 . . . )

=

(
1
cosh

(√−
)

√
−( 2 + )

exp

{
2

(
√−

)
tan−1

(
tanh

(√−
2

))}
. . .

cosh
(√−

)
√
−( 2 + )

exp

{
2

(
√−

)
tan−1

(
tanh

(√−
2

))}

√
( 2 + )

− sinh
(√−

)
√
−( 2 + )

0 . . . 0
)

2
1 − 2

2 − · · · − 2 = 1

When = 2, the second factor in the product decompositions of mentioned
above shall be replaced by a real line.

Proof. Suppose is an -dimensional slumbilical submanifoldin ˜ (4 ) with
≥ 2. Then the second fundamental form of takes the following form:

(4.18)
( 1 1) = ( 2 2) = · · · = ( ) = λ 1∗

( 1 ) = λ ∗ ( ) = 0 6= = 2 . . .

for some functionλ with respect to some orthonormal frame field1 . . . , where

1∗ = cscθ 1 . . . ∗ = cscθ .
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Using (2.14) and (4.18), we have

(4.19)
ω1∗

1 = λω1 ω
∗

1 = ω1∗ = λω ω
∗

= λω1 2 ≤ ≤
ω

∗

= 0 2≤ 6= ≤

CASE (α). λ = 0.
In this case, is a totally geodesic slant submanifold with slant angleθ ∈

(0 π/2]. When = 0, is thus an open portion of a Euclidean -space and is
immersed as an open portion of a slant -plane inC . When 6= 0, is a totally
geodesic totally real submanifold [4]. Moreover, accordingto [4], is either an open
portion of ( ) or ( ), according to > 0 or < 0, respectively. Hence, when
λ = 0 we obtain statements (1), (2) and (3) of Theorem 4.1.

CASE (β). λ 6= 0 andθ ∈ (0 π/2).
In this case, Lemma 2.1 and (4.19) implies

ω2∗
1∗ = ω2

1 − 2λ cotθω1(4.20)

ω1∗
2 −1∗ = ω1

2 −1 − λ cotθω2 ≥ 2(4.21)

ω1∗
2 ∗ = ω1

2 + λ cotθω2 −1 ≥ 2(4.22)

ω2∗
∗ = ω2 − λ cotθω ≥ 3(4.23)

ω
∗

∗ = ω ≥ 3(4.24)

From the equation of Codazzi with =1 = = 2, and using (4.18–24) and
Lemma 2.2, we get

(4.25) 2λ = 3λω2
1( 1) − 2λ2 cotθ + 3 sinθ cosθ

CASE (β-a). ≥ 3.
From the equation of Codazzi with =1 { } = { 2 } for ≥ 3, and using

(4.18), (4.19) and Lemmas 2.1 and 2.2, we find

(4.26) 2λ = λω2
1( 1) + 2ǫ sinθ cosθ

Combining (4.25) and (4.26) we get

(4.27) 2λω2
1( 1) = 2λ2 cotθ − sinθ cosθ

From the equation of Codazzi with = =1 = 2 −1 for > 1, and using
(4.18–24) and Lemma 2.2, we find

(4.28) ω2
1 ( 2 −1) = −λ cotθ
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Similarly, from the equation of Codazzi with =2 −1 = 1 = 2 for > 1,
and using (4.18–24) and Lemma 2.2, we find

(4.29) λω2
1 ( 2 −1) = sinθ cosθ + λ2 cotθ

by comparing the coefficients of1∗ . Combining (4.28) and (4.29) yields

(4.30) sinθ cosθ + 2λ2 cotθ = 0

Substituting (4.30) into (4.27) yields

(4.31) ω2
1( 1) = 2λ cotθ

On the other hand, from the equation of Codazzi with =2 = = for
≥ 3, and applying (4.18–24) and Lemma 2.2, we find

(4.32) 2λ = 0

Combining (4.26) and (4.32) yields

(4.33) λω2
1( 1) = −2 sinθ cosθ

Equations (4.31) and (4.33) imply

(4.34) sinθ cosθ + λ2 cotθ = 0

From (4.30) and (4.34) we obtainλ = 0 which is a contradiction. Therefore, this case
cannot occur.

CASE (β-b). = 2.
In this case, (4.18) reduces to

(4.35) ( 1 1) = ( 2 2) = λ 1∗ ( 1 2) = λ 2∗

From (4.35) and the equation of Codazzi we have

1λ = λω1
2( 2)(4.36)

2λ = λ2 cotθ + 3 sinθ cosθ(4.37)

ω2
1( 1) = λ cotθ(4.38)

Moreover, from (4.35–38) and the equation of Gauss, we find

(4.39) 1 1(lnλ) − ( 1 lnλ)2 − = λ2 cot2 θ − cotθ 2λ + 3 cos2 θ
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Therefore, by applying (4.37), we get

(4.40) 1 1(lnλ) − ( 1 lnλ)2 =

Let µ be a function on . Then, (4.36) and (4.38) imply that [µ 1 λ−1
2] = 0 if

and only if µ satisfies

(4.41) 2(lnµ) = − cotθ

Thus, there exists a coordinate chart{ } such thatµ 1 = ∂/∂ and λ−1
2 = ∂/∂

if and only if ∂/∂ (lnµ) = − cotθ. Consequently, by puttingµ = − cotθ, we obtain a
coordinate chart{ } such that

(4.42) 1 = cotθ ∂

∂
2 = λ

∂

∂

From (4.42) we know that the metric tensor of is given by

(4.43) = −2 cotθ 2 +
1
λ2

2

Using (4.37) and (4.42) we obtain

(4.44) λ
∂λ

∂
= λ2 cotθ + 3 sinθ cosθ

Solving (4.44) yields

(4.45) λ = ±
√
ϕ( ) 2 cotθ − 3 sin2 θ

First, we assume that

(4.46) λ =
√
ϕ( ) 2 cotθ − 3 sin2 θ

Then (4.42) implies

(4.47)
1(lnλ) =

3 cotθ

2λ2
ϕ′( )

1 1(lnλ) =
4 cotθ

2λ4

{
λ2ϕ′′( ) − 2 cotθϕ′( )2

}

Substituting (4.47) into (4.40) gives

(4.48)

(
2ϕ( ) ϕ′′( ) − ϕ′( )2

)
6 cotθ −

(
6 sin2 θϕ′′( ) + 4 ϕ( )2

)
4 cotθ

+24 2ϕ( ) sin2 θ 2 cotθ + 36 3 sin4 θ = 0
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Since (4.48) holds true on the whole coordinate neighborhood, we obtain = 0. Sim-
ilarly, we also have = 0 for the case:λ = −

√
ϕ( ) 2 cotθ − 3 sin2 θ. Thus, in both

cases, we obtain from (4.45) that

(4.49) λ = ( ) cotθ

for some function ( ).
From (4.40), (4.42) and (4.49), we find that = ( ) satisfies the following second

order differential equation:

(4.50) ′′ = 2 ′2

Solving (4.50) yields ( ) = 1/( + ) for some constants and . Thus we get

(4.51) λ =
cotθ

+

From (4.43) and (4.51), we find

∇∂/∂
∂

∂
=

cotθ
( + )2

∂

∂

∇∂/∂
∂

∂
= − cotθ

∂

∂
+

+
∂

∂
(4.52)

∇∂/∂
∂

∂
= − ( + )

∂

∂
− cotθ

∂

∂

On the other hand, using (2.5), (2.12), (4.35) and (4.51), wehave

( ∂
∂

∂

∂

)
=

cscθ
+

( ∂
∂

)
− cotθ

( + )2
∂

∂
( ∂
∂

∂

∂

)
= (cotθ)

∂

∂
+

cscθ
+

( ∂
∂

)
(4.53)

( ∂
∂

∂

∂

)
= ( + ) cscθ

( ∂
∂

)
− (cotθ)

∂

∂

Let = ( ) denote the immersion of intoC . Then (4.52), (4.53) and
the formula of Gauss imply that satisfies the following system of partial differential
equations:

=
( cscθ

+

)

=
( + cscθ

+

)
(4.54)

= ( cscθ − )( + ) − 2 cotθ
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CASE (β-b-1). 6= 0.
Solving the first equation of (4.54) yields

(4.55) ( ) = ( ) + ( + )1+ −1 cscθ ( )

for some C -valued functions ( ) and ( ). Substituting (4.55) into the second
equation of (4.54) shows that ( ) is a constant vector. Thus, we may choose = 0
by applying a suitable translation onC if necessary. Hence, we get

(4.56) ( ) = ( + )1+ −1 cscθ ( )

Substituting (4.56) into the third equation of (4.54) yields

′′( ) + 2 cotθ ′( ) + ( 2 + csc2 θ) ( ) = 0

By solving this differential equation and using (4.56), we find

(4.57)
( ) = ( + )1+ −1 cscθ − cotθ

×
(

1 cos
(√

1 + 2
)

+ 2 sin
(√

1 + 2
))

where 1 and 2 are constant vectors inC .
If we choose the following initial conditions:

(0 0) =
(

−1 cscθ 0 . . . 0
)

(0 0) = 1+ −1 cscθ( cosθ sinθ 0 . . . 0)

then (4.57) implies

(4.58) 1 =

(
1

+ cscθ
0 . . . 0

)
2 =

1√
1 + 2

(
cosθ

+ cscθ
sinθ 0 . . . 0

)

From (4.57) and (4.58) we obtain (4.2). This gives statement(4) of Theorem 4.1.
CASE (β-b-2). = 0.
In this case, (4.54) becomes

(4.59) =

(
cscθ

)
=

(
cscθ

)
= cscθ − 2 cotθ

Solving the first equation in (4.59) yields

(4.60) ( ) = ( ) + exp
{ −1 cscθ

}
( )

Substituting (4.60) into the second equation of (4.59) shows that is a constant vec-
tor. Without loss of generality, we may choose = 0.



38 B.-Y. CHEN

Substituting (4.60) with = 0 into the third equation of (4.59) yields ′′ +
2 cotθ ′ + csc2 θ = 0 Hence, we obtain

(4.61) ( ) = exp
{ −1 cscθ − cotθ

}
( 1 cos( ) + 2 sin( ))

for some constant vectors1 and 2 in C .
If we choose the following initial conditions:

(0 0) = ( 0 . . . 0) (0 0) = (− cosθ sinθ 0 . . . 0)

then we obtain 1 = ( sinθ 0 . . . 0) 2 = (0 sinθ 0 . . . 0). Thus, we obtain state-
ment (5) of Theorem 4.1 in this case.

CASE (γ). λ 6= 0 andθ = π/2.
In this case, the second fundamental form of takes the form:

(4.62)
( 1 1) = · · · = ( ) = λ 1

( 1 ) = λ ( ) = 0 6= = 2 . . .

with respect to some orthonormal frame1 . . . .
From (4.62) and the equation of Codazzi we find

1(lnλ) = ω1
2( 2) = · · · = ω1( )(4.63)

λ = 0 ω1( 1) = 0 = 2 . . .(4.64)

ω1( ) = 0 1< 6= ≤(4.65)

From (4.63) and Cartan’s structure equations, we have

(4.66) 1 1(lnλ) − ( 1 lnλ)2 =

Using (4.63), (4.64), and (4.65) we get

(4.67) ω1 = 0 ω1 = 1(lnλ)ω = 2 . . .

which implies that the integral curves of1 are geodesics in .
Let D and D⊥ denote the distributions spanned by{ 1} and { 2 . . . },

respectively. From (4.65) we know thatD⊥ is integrable as well asD is triv-
ially integrable, sinceD is of rank one. Thus, there exist local coordinate sys-
tems { 2 . . . } such that D is spanned by∂/∂ and D⊥ is spanned by
∂/∂ 2 . . . ∂/∂ . Moreover, since ω1 = 0, we may choose =1 such thatω1 =
and 1 = ∂/∂ . From (4.64) it follows thatλ is independent of 2 . . . . Thus,
λ = λ( ).

Using (4.62) and the equation of Codazzi we may obtain as in [2, p. 92] that

(4.68) 〈∇ 1〉 = − 1(lnλ) 〈 〉
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for vector fields inD⊥. Thus, the leaves ofD⊥ are totally umbilical hypersur-
faces in with parallel mean curvature vector vector. Hence,D⊥ is a spherical dis-
tribution.

From (4.62), (4.68) and the equation of Gauss, we know that each leaf ofD⊥ is
of constant sectional curvature ( ) given by

(4.69) ( ) = +λ2( ) + (lnλ( ))′2

On the other hand, since the integral curves ofD are geodesics, the distributionD
is auto-parallel. Therefore, by applying a result of Hiepko[8] (see, also [7]), the
equations of Gauss and Codazzi, we conclude that is locally awarped product
× ( )

−1(ǫ), where = 1/
√

1/λ or 1/
√− and (ǫ) is a space of constant

curvatureǫ, ǫ = 1 0 or −1, according to > 0 = 0 or < 0, respectively. When
= 2, the second factor −1(ǫ) in the warped product decomposition shall be re-

placed by a real lineR.
From (4.66) and 1 = ∂/∂ , we get

(4.70) λλ′′ = 2λ′2 + λ2

Solving (4.70) yields

(4.71) λ′( )2 = αλ4( ) − λ2( )

for some constantα. It is easy to verify that the nontrivial solutions of (4.71)are
given by

(4.72) λ =





( + )−1 if = 0

sech
(√ )

if > 0

exp
{√−

}
or sech

(√−
)

if < 0

where 2 + 2 6= 0 when = 0; and 6= 0 when 6= 0.
CASE (γ-a-1). = 0 andλ = ( + )−1 with 6= 0.
In this case, is a warped product ofR and −1(1) with the warped metric

given by

(4.73) =





2 +
( + )2

1 + 2
2
2 if = 2

2 +
( + )2

1 + 2 1 if ≥ 3

where

(4.74) 1 = 2
2 + cos2 2

2
3 + · · · + cos2 2 · · · cos2 −1

2
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is the metric on −1(1) with respect to spherical coordinates{ 2 . . . }.
From (4.62), (4.73) and the formula of Gauss, we know that theimmersion of

in C satisfies

=

(

+

)

∇̃ =

(
+
+

)
(4.75)

∇̃ ∇̃ =

(

+

)
〈 〉 + ∇

for tangent to the second component (ǫ) of the warped decomposition of .
Solving system (4.75) yields

(4.76)

= ( + )1+ −1


 1

∏

=2

cos + 2 sin 2

+ 3 sin 3 cos 2 + · · · · · · + sin
−1∏

=2

cos




for some vectors 1 . . . ∈ C . Hence, if we choose the initial conditions:

(4.77)

(0 . . . 0) =
(

( + )
−1

0 . . . 0
)

2(0 . . . 0) =
(

0 1+ −1
0 . . . 0

)

...

(0 . . . 0) =
(

0 . . . 0 1+ −1
0 . . . 0

)

then we obtain (4.6). This gives statement (6) of Theorem 4.1.
CASE (γ-a-2). = 0 andλ = 1/ .
In this case, system (4.75) reduces to

(4.78)

=

( )
∇̃ =

( )

∇̃ ∇̃ =

( )
〈 〉 + ∇

By applying an argument similar to case (γ-a-1) we obtain statement (7) of Theorem
4.1 in this case.

CASE (γ-b). > 0 andλ = sec
(√ )

.
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In this case, is a warped product ofR and −1(1) with the warped metric
given by

(4.79) =





2 +
cos2

(√ )

2 +
2
2 if = 2

2 +
cos2

(√ )

2 + 1 if ≥ 3

From (4.62), (4.79) and the formula of Gauss, we know that thehorizontal lift φ :
→ 2 +1( ) ⊂ C +1 of : → (4 ) satisfies

φ = sec
(√ )

φ − φ

∇̃ φ =
(

sec
(√ )

−√
tan
(√ ))

(4.80)

∇̃ ∇̃ φ =
{

sec
(√ )

φ − φ
}
〈 〉 + ∇

for tangent to the second component (ǫ) of the warped decomposition of .
Solving the first equation of (4.80) yields

(4.81)
φ = ( 2 . . . )

(
+
√

sin
(√ ))

+ ( 2 . . . ) cos
(√ ) (

sec
(√ )

+ tan
(√ )) /

√

The second equation in (4.80) and (4.81) imply∂ /∂ = 0 for = 2 . . . . Thus,
is a constant vector, say0, in C +1.

By applying (4.81) and the last equation of (4.80) with = =∂/∂ 2, we obtain

(4.82)
φ = 0

(
+
√

sin
(√ ))

+ ( 1( 3 . . . ) sin 2

+ 1( 3 . . . ) cos 2) cos
(√ ) (

sec
(√ )

+ tan
(√ )) /

√

By applying (4.82) and the third equation of (4.80) with =∂/∂ 2 = ∂/∂ =
3 . . . , we conclude that1 is a constant vector. Furthermore, by applying (4.82) and
the third equation of (4.80) with = =∂/∂ 3, we have

(4.83) 1 = (sin 3) 2( 4 . . . ) + (cos 3) 2( 4 . . . )

By applying (4.82), (4.83) and the third equation of (4.80) with = ∂/∂ 3 =
∂/∂ = 4 . . . , we also know that 2 is a constant vector. Continue such pro-
cess − 1 times, we obtain

(4.84)

φ = 0
(

+
√

sin
(√ ))

+

(
1 sin 2 + 2 sin 3 cos 2 + · · · + −1 sin −1

−2∏

=2

cos +
−1∏

=2

cos

)

×
(
sec
(√ )

+ tan
(√ )) /

√
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By choosing the initial conditions:

φ(0 . . . 0) =

(
√

( 2 + )

1√
2 +

0 . . . 0

)

φ (0 . . . 0) =

( √
√

2 +
√

2 +
0 . . . 0

)

φ 2(0 . . . 0) =

(
0 0

1√
2 +

0 . . . 0

)

...

φ (0 . . . 0) =

(
0 . . . 0

1√
2 +

0 . . . 0

)

we obtain (4.9) forφ. Thus, we obtain statement (8) in this case.
CASE (γ-c). < 0 andλ = exp

{√−
}

.
In this case, is a warped product ofR and −1(1) with the warped metric

given by

(4.85) =





2 +
1

2 exp
{

2
√−

} 2
2 if = 2

2 +
1

2 exp
{

2
√−

} 1 if ≥ 3

From (4.62), (4.85) and the formula of Gauss, we know that thehorizontal lift φ :
→ 2 +1

1 ( ) ⊂ C +1
1 of : → (4 ) satisfies

φ = exp
{√

−
}
φ − φ

∇̃ φ =
(

exp
{√

−
}
−
√
−
)

(4.86)

∇̃ ∇̃ φ = { exp
{√

−
}
φ − φ} 〈 〉 + ∇

Solving system (4.86) as in case (γ-b) yields

(4.87)

φ = 0
(

+
√
− exp

{
−
√
−

})

+

(
1 sin 2 + 2 sin 3 cos 2 + · · · + −1 sin −1

−2∏

=2

cos +
−1∏

=2

cos

)

× exp
{
−
√
−

}
exp

{ (
√−

)
exp

{√
−

}}

By choosing the initial conditions:

φ(0 . . . 0) =
1
(

+
√−√− exp

{
√−

}
0 . . . 0

)
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φ (0 . . . 0) =
1
(
−
√
− ( −

√
− ) exp

{
√−

}
0 . . . 0

)

φ 2(0 . . . 0) =
1
(

0 0 exp

{
√−

}
0 . . . 0

)

...

φ (0 . . . 0) =
1
(

0 . . . 0 exp

{
√−

}
0 . . . 0

)

we obtain (4.11) forφ. Thus, we obtain statement (9) in this case.
CASE (γ-d). < 0, λ = sech

(√ )

In this case, we have ( ) = +λ2( ) + (lnλ′( ))2 = ( 2 + ) sech2
(√−

)
. We

divide this case into three subcases.
CASE (γ-d-1). 2 + > 0.
In this case, is the warped product ofR and −1(1) with the warped metric

given by

(4.88) =





2 +
cosh2

(√−
)

2 +
2
2 if = 2

2 +
cosh2

(√−
)

2 + 1 if ≥ 3

From (4.62), (4.88) and the formula of Gauss, we know that thehorizontal lift φ :
→ 2 +1

1 ( ) ⊂ C +1
1 of : → (4 ) satisfies

φ = sech
(√

−
)
φ − φ

∇̃ φ =
(

sech
(√

−
)

+
√
− tanh

(√
−

))
(4.89)

∇̃ ∇̃ φ =
{

sech
(√

−
)
φ − φ

}
〈 〉 + ∇

Solving system (4.89) as in case (γ-b) yields

φ = 0
(

−
√
− sinh

(√
−

))
+

(
1 sin 2 + 2 sin 3 cos 2 + · · ·

+ −1 sin −1

−2∏

=2

cos +
−1∏

=2

cos

)
(4.90)

× cosh
(√

−
)

exp

{
2

(
√−

)
tan−1

(
tanh

(√−
2

))}
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By choosing the initial conditions:

φ(0 . . . 0) =
1√
2 +

(
√− 1 0 . . . 0

)

φ (0 . . . 0) =
1√
2 +

(
−
√
− 0 . . . 0

)

φ 2(0 . . . 0) =
1√
2 +

(0 0 1 0 . . . 0)

...

φ (0 . . . 0) =
1√
2 +

(0 . . . 0 1 0 . . . 0)

we obtain (4.13) forφ. Thus, we obtain statement (10) in this case.
CASE (γ-d-2). 2 + = 0.
In this case, Hiepko’s result implies that is locally a warped product of a real

line and −1 with warped product metric given by

(4.91) = 2 + 2 cosh2
(√

−
) {

2
2 + 2

3 + · · · + 2
}

Without loss of generality, we may choose = 1.
From (4.62), (4.91) with = 1 and the formula of Gauss, we know that the hori-

zontal lift φ : → 2 +1
1 ( ) ⊂ C +1

1 of : → (4 ) satisfies

φ =
√
− sech

(√
−

)
φ − φ

∇̃ φ =
( √

− sech
(√

−
)

+
√
− tanh

(√
−

))
(4.92)

∇̃ ∇̃ φ =
{ √

− sech
(√

−
)
φ − φ

}
〈 〉 + ∇

Solving the first equation of (4.92) yields

(4.93)
φ = ( 2 . . . ) ( )

+ ( 2 . . . ) cosh
(√

−
)

exp

{
2 tan−1

(
tanh

(√−
2

))}

for someC +1-valued vector functions and , where

(4.94)

( ) =
cosh

(√−
)

2
√− exp

{
2 tan−1

(
tanh

(√−
2

))}

×
{

2 tan−1

(
tanh

(√−
2

))
+ sech2

(√
−

) (
+ sinh

(√
−

))}

From (4.94) and the second equation of (4.92), we know that isa constant vector,
say 0.
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By applying (4.93), (4.94), the third equation of (4.92) anda long straightforward
computation, we obtain

(4.95)
∂

∂ ∂
=

√
− δ 0 = 2 . . .

Hence, takes the following form:

(4.96) ( 2 . . . ) = 1 +
∑

=2

+
2 0

√
−
∑

=2

2

for some constant vectors1 . . . . Combining (4.93) and (4.96) we obtain

(4.97)

φ = 0 ( ) +


 1 +

∑

=2

+
2 0

√
−
∑

=2

2




× cosh
(√

−
)

exp

{
2 tan−1

(
tanh

(√−
2

))}

By choosing the initial conditions:

φ(0 . . . 0) =

(
√− 0 . . . 0

)

φ (0 . . . 0) = (0 1 0 . . . 0)

φ 2(0 . . . 0) = (0 0 1 0 . . . 0)
...

φ (0 . . . 0) = (0 . . . 0 1 0 . . . 0)

we obtain statement (11) in this case.
CASE (γ-d-3). 2 + < 0.
In this case, Hiepko’s result implies that is locally a warped product of a real

line and −1(−1) with warped product metric given by

(4.98) = 2 − cosh2
(√−

)

2 + −1

where

(4.99) −1 = 2
2 + sinh2

2

{
2
3 + cos2 3

2
4 + · · · +

−1∏

=3

cos2 2

}

is a metric on −1(−1) with constant negative curvature−1.
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From (4.62), (4.98), and the formula of Gauss, we know that the horizontal lift
φ : → 2 +1

1 ( ) ⊂ C +1
1 of : → (4 ) satisfies

φ = sech
(√

−
)
φ − φ

∇̃ φ =
(

sech
(√

−
)

+
√
− tanh

(√
−

))
(4.100)

∇̃ ∇̃ φ =
{

sech
(√

−
)
φ − φ

}
〈 〉 + ∇

Solving the first and second equations of (4.100) yields

(4.101)

φ = 0
(

−
√
− sinh

(√
−

))
+ ( 2 . . . ) cosh

(√
−

)

× exp

{
2

(
√−

)
tan−1

(
tanh

(√−
2

))}

From (4.101) and the third equation of (4.100) we conclude that satisfies

(4.102)
= 1 cosh 2 + sinh 2

(
2 sin 3 + 3 cos 3 sin 4 + · · ·

· · · + cos 3 · · · cos −1
)

Combining (4.101) and (4.102) we obtain

φ = 0
(

−
√
− sinh

(√
−

))

+
(

1 cosh 2 + sinh 2 ( 2 sin 3 + 3 cos 3 sin 4 + · · ·(4.103)

· · · + cos 3 · · · cos −1
)

× cosh
(√

−
)

exp

{
2

(
√−

)
tan−1

(
tanh

(√−
2

))}

By choosing the initial conditions:

φ(0 . . . 0) =
1√

−( 2 + )

(
1 0 . . . 0 √− 0 . . . 0

)

φ (0 . . . 0) =
1√

−( 2 + )

(
0 . . . 0 −

√
− 0 . . . 0

)

φ 2(0 . . . 0) =
1√

−( 2 + )
(0 1 0 . . . 0)

...

φ (0 . . . 0) =
1√

−( 2 + )
(0 . . . 0 1 0 . . . 0)

we obtain statement (12).
Conversely, by straightforward long computations, we can prove that the subman-

ifolds given in statements (1)–(12) are slumbilical.
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REMARK 4.1. The totally real submanifolds given by (4.6) and (4.7) are complex
extensors in the sense of [3].
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