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1. Introduction

Let k be a number field of finite degree ahkdan algebraic closure of , and let
E/k be an elliptic curve which is given by the Weierstrass equation of the fgrm
f(x), where f )< k[x] is a cubic polynomial. For a subs& & (k) (regarded as
kU {o0}), we denote the sefP € E(k) ; x(P) € E} by x~1(E). That is,

xTHE) = {(x,y) = (€ £V () ; €€ B

if co ¢ B. Let Hp : P1(k) — R be the standard absolute (exponential) height, and let
H, = Hp o x : E(k) — R be the height relative ta . Then we have

) #{Pcx Y PHK) ; Ho(P)< T} =<THU asT — oo

(see e.g., [4, pp. 70-75]).

The class numbers of number fields have been studied for a long time. One stud-
ies the ideal class groups by using certain Diophantine equations, especially the arith-
metic theory of elliptic curves. We quote a classical result due to T. Honda [2], in
which he treats the cade & (see Section 3 for details).

Proposition 1.1 (Honda). Let f(x) = 4x3—2712 (n is a nonzero integdy and let
¢ be an integer satisfying the following three conditions
(CO) V(&) ¢ Q.
(C1) Fe(z) = 28 — €z +n € Z[7] is irreducible overQ.
(C2) ¢, 3n)=1
Then the class number of the quadratic fie@(y/F(€)) is divisible by3.

We note that all but finitely many € Z satisfy the conditions (C0) and (C1):

HeeZ; V) eQl=t{(&.n) €Z*; n*= (&), n>0} <o,
t{¢ € Z ; Fe(z) is reducible overQ} = 4({¢2+n¢~1; (€ Z,#0} NZ) < .

Hence, putting€ the set of sughe Z that satisfy the above three conditions (C0)—
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(C2), we have Bigp) for any P € x~1(E) and
H{Pex YB); H(P)ST}~28{6€Z; (£.3n)=1 [([<T}=T asT — cc.

Consequently, in view of the asymptotic formul),(we might say:For quite a few
points P € x~1(P1(Q)), the class number of)(P) is divisible by3.
We generalize these results into the following form:

Theorem 1.2. Let f(x) = 43 — 2712 (n is a nonzero integer irk), and let E*
be the set of suclj € k that satisfy the following two conditions
(CL)* Fe(z) =22 — &z +n € k[7] is irreducible overk .
(C2)* ord, (&) < 0 for all prime divisorsp in k of 3n.
Then
(i) For any P € x~1(&*), the class number of the fielP) is divisible by3.
(i) Whenk = Q, we have

1y 24
Hpex @) H(p)<1i=5 | []
p prime
pl3n

P

1 T?+0(TlogT) asT — .

We will show the theorem in Sections 4 and 5. Roughly speaking, our method to
prove the former assertion of the theorem is closely related to the proof of the Weak
Mordell-Weil Theorem and is considered as a geometric counterpart of Honda’s.

The above theorem together with

#H{Pex(PHQ)) ; H(P)<T}= Z—j T2+ 0(T logT) asT —
s
(the precise form ofi)) in the case wheré &) imply:

Corollary 1.3. Whenk = Q, the pointsP ¢ x~1(P}(Q)) for which the class
number ofQ(P) is divisible by3 have a positive density in the whole set'(PX(Q)):

4P e x HPHQ)) ; Slhoun, H(P) < T) )
e () E RO S SR V Srst
pl3n

ACKNOWLEDGEMENT.  The author would like to express his thanks to Professor
Shigeki Akiyama for improving the latter assertion of the theorem.

2. Some basic facts

In this section, we recall some facts on the quadratic twists and the field exten-
sions arising from an isogeny, which will play an important role in our theorem and
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its proof. We do not attempt at complete generality and concentrate on what we need
later. See e.g., [5] for details.

2.1. The quadratic twists Let k be a number field of finite degree art)k
an elliptic curve. Ford € k* /k*2, let x, : Gal(k/k) — Aut(E) be the homomorphism
defined by

(0) = 1if vad’=vd
Xa\o) = —lif\/EU:—\/E.

Here, Gal() denotes the Galois group. Then, there exist an elliptic cutygk and
an isomorphisn?, : E; — E defined overk {/d) such that

xa(o) =05 00, for all o € Galk/k).

The elliptic curveE,; and the isomorphiséty are uniquely determined by up to iso-
morphism overk , andZ, is called the quadratic twist/f  with respedt t6d )(k,

if d # 1(modk*?) (E, is isomorphic toE ovek , ifd = 1(modk*?)). Furthermore,
the image ofE, k ) by, is characterized irE k(\(d)) as

04(Eq(k)) = {P € E(k(Vd)) ; P’ =xa(o)P for all o € Gal(k/k)}.

If E is given by the Weierstrass equation of the foyA = f(x) with a cubic
polynomial f ( )€ k[x], we can choose the equation far;  of the foem; = f(x4).
Then the isomorphisrd, : E; — E is given byx =x;, y =V/d ys. Thus,

ba(Ea0) = {(x. 1) = (6. 2VF©) 1 § €k, f(©)=d (modk*D)} U E[2)(K).
Hence we have

NP = | Ga(Eatk)).

dek* [kx?

We note that the above union is almost disjoint in the following sense:
04(Ey(k)) N Oy (Ey (k) = E[2](k) if d£d (modk*?).

2.2. The field extensions arising from an isogenylLet k¥ be a number field
of finite degree,E/k (resp.E’/k) an elliptic curve which is given by the Weierstrass
equation of the formy? = f(x) (resp.v? = g(u)) with a cubic polynomialf X ¥ k[x]
(resp.g (¢ )€ k[u]), and let A : E’ — E be an isogeny defined ovér . We assume that
Ker\ is contained inE’(k) and that! = deg is an odd prime number. Then there ex-
ist rational functions\, (u), Ay (u), Ay(u), A5 (u) € k(u) for which the isogeny\ is given
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by
X = Ae(u) + X5 (w)v, Yy =A5) + Ay ()v.

Since A(u, —v) = (x, —y), we haveAi(u) = A\j(u) =0. ForQ € E'(k), let ordy, denote
the normalized valuation ok E() attached toQ . Then we have

ordg A (1)) <0 <« ordpg(\,(u)v) <0 <<= Q €KerA
For eachQ € Ker ), the equality J}\y(u)v)2 = f(A\c(u)) implies
20rdy (\y(u)) +2o0rdy ) =3o0rg) Ac(u)) <O.
In the case ofQ # O, we have org « ) =0, becauge is odd, and hence
2ordy (1, (u)) = 3ordy @ (u)) <O.

Therefore, we can write\.(x) and A, (u) as

AD(u) AP (w)
Ae(u) = 7)\(2)(:)2, Ay(u) = —A(E)(u)s

with polynomials AP(u), AP(u), A®P(u) € k[u] satisfying
AP, A2w) = AP w), APw)) = 1.
Here, it follows from
ordo (\c () = (deg\P(u) — 2deg\®@(u)) ordy @) < 0
and
[ = [k(u) : k(x)] = max{degA\P(x), 2 degh\®(u)}
that
deg D) =1, deg\@(u) < é
Moreover, it is easy to verify

3(-1)
1 —

deg)\g u) = —
For ¢ € k, we put

Ae() = 2XPu) — EXO(u)? € k[u].
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Then, for P € x1(P(k)) — E[2](k) given by (x, y) = €, n), we have

ey ={wn= (¢ ks ) ek a0 =0}

_n
" A0
(note thatA¢(¢) = 0 implies AN(¢) # 0 andA@(¢) # 0), and hence

#H{C ek ; Ae(Q)=0} = I pP)=1= degA¢(u).

Thus A¢(u) does not have multiplicative roots, ard\~¢(P)) is the splitting field of
Ae(u) overk (P) =k @).
For P € E(k), the map

Galk \1(P))/k(P)) — Ker), oc— 0% — 0,

Q is a point in A71(P), is an injective homomorphism. Sincé is prime,
k(A~Y(P))/k(P) is a cyclic extension of degree 1 ér according ss \(E'(k(P)))

or not, and we havé X1(P)) = k(P, Q) for any Q € A~1(P). Furthermore, one eas-
ily observes:

Lemma 2.1. Let the notation and the assumptions be as above. ,TloenP €
x~Y(PY(k)) — E[2](k) whosex -coordinate ig, the following conditions are equivalent
(@) &€ =M\(¢) for some( € k satisfying\@(¢) # 0.

(b) Ag(u) is reducible overk .
(©) k(AY(P)) = k(P).

3. Honda’s result

In this section, we briefly review the proof of Proposition 1.1 due to Honda. As is
seen in [2], his method is concerned with certain isogenies of elliptic curves. Namely,
let E/Q (resp.E’/Q) be the elliptic curve which is given by the Weierstrass equation
y2 = 4x3 — 27n? (resp.v? = 4nu® + 1), and let) : E' — E be the isogeny defined over
Q which is given by

1 +nu 2 —nud
X =, y=——=—070.
u
Then, degh = 3 and Kern\ = {(u,v) = (0, 1), (0 —1)} U {0} is contained inE’(Q).
Thus we can apply the whole argument in Section 2.2. We may takexd andu as
AD(u) and \@(u), respectively, and then we have

Ae(u) = nu® — u+ 1.

For P € x~1(Q) whosex -coordinate ig, it is clear that the condition (CO) is equiv-
alent to the condition@@(P) : Q] = 2. Moreover, under the assumptiof &) (# O,
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the condition (C1) is equivalent to the conditio@(P~1(P)) : Q(P)] = 3 because of

Lemma 2.1 and
1
Fe(z) = 2°Ag (E) '

We also note that has good reduction at every prime which does not dixide 3 .

Proof of Proposition 1.1 (cf. also, [3]). L&t be an integer which satisfies the
three conditions (C0)—(C2), and l&®  be a pointini({¢}). Putting K =Q(P) =
Q(H/f(©)) and K’ = Q(A\~X(P)), we have K :Q] =2 and [K’ : K] = 3 because of
the assumptions (C0) and (C1). Since the discriminant of the cubic polyndrn{a)
equalsf §), K’ is the splitting field of F¢(z) over Q, and hencek’/Q is a dihedral
extension of degree 6. We shall prove that/K is unramified. LetK” be a cubic
subfield of K’. If a prime divisor inK of a prime numbep were ramified K/, p
must have been fully ramified ik”. Therefore we should have a congruence

Fe(z) = (z—a)® (modp)

with somea € Z. Comparing the both sides of the congruence, we should have either
pl(&, n) or 3¢, which would contradict the assumption (C2). U

Remark 3.1. Honda’s original result [2, Proposition 10] showed not only Propo-
sition 1.1 but also its inverse. Thus, he also provédhe class number of a quadratic
field K is divisible by3, K is of the formQ(/f(€)) for somen and somé ¢ Z
which satisfies the condition€0)—(C2) (note that the polynomigl x ( ) and the three
conditions depend on the choice of ).

4. Proof of the theorem (part 1)

In this section, we give a proof of Theorem 1.2, (i). Our method is concerned
with certain isogenies of elliptic curves as well as Honda’s, and we use the elliptic
curve and the isogeny which are defined by the same manner as in Section 3. Namely,
let E’/k be the elliptic curve which is given by the Weierstrass equatior 4nu®+1,
and let\ : E’ — E be the isogeny defined ovér which is given by

_1+nu® 2 — nu®

X = y= V.
uz u3

Then, deg\ = 3, Ker\ C E’(k), and we can apply the whole argument in Section 2.2.
We have

Ae(u) = nu® — Eu?+1

as well as in Section 3. FoP ¢ x~Y(P(k)) — E[2](k) whose x -coordinate i, the
condition (C1) is equivalent to the conditionk[M\C1(P)) : k(P)] = 3 because of
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Lemma 2.1. Putting

+1
U =nu, V= n(v ),
2
we have another Weierstrass equation £y
(%) V2 —nv =U3,

whose discriminant is-2724, and then,
KerA={(U,V)=(0,0), Qn)}uU{O}.
Now, we fix a pointP inx~Y(E*) given by &, y) =€, n) and put
K =k(P) = k(n), K’ =k(\"Y(P)), G = Gal(K'/K).

Then we have K &k ]< 2 and K’ : K] = 3, for P ¢ E[2](k) follows from the
assumption (C2) Moreover, for anyQ € A\~1(P), we haveKk’ = K(Q) and

0° — Q cKer)\ forall oecgG.

Theorem 1.2, (i) is an immediate consequence of the following proposition and the
class field theory (note that a Galois extension of odd degree is unramified at every
infinite place):

Proposition 4.1. Let the notation and the assumptions be as above. , Tthenex-
tensionK’/K is unramified at every finite place.

For the time being, we use the following notation:

P a prime ideal inK .

P’ a prime divisor inK’ of .

k' the residue field off3’.

D the decomposition group faB’ /.
I the inertia group for’ /.

As the first step to show Proposition 4.1, we shall consider the reductiafi’ of
modulo P’. Namely, let

E'(K") — (E’ mod3’)(x)), 0 — Q mod’

be the reduction map modul’ with respect to the Weierstrass equatief. \We de-
fine two subsets o’(K’) as

EyK";P)={0 € E'(K') ; 0 modP’ € (E' modP')ns(r)},
EY/(K;B)={0Q € E'(K') ; Q mod’ = O modJ3'}.
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Note that the equation«) is not necessarily minimal. Thus the two subsets defined
above are not uniquely determined &/, K’ and byp’, in general. However, we
can verify thatE{(K’; ') is a subgroup of£’(K’), and that the maEj(K’; ') —

(E’ modP3’)ns(x’) is @ homomorphism with its kernel;(K’;3’). We can characterize
Ey(K';p') and E{(K’;93’) in E’'(K’) in terms ofP’-adic valuations ofU -coordinates
as follows:

Lemma 4.2. Being the notation as aboy&e have

{(U, V)= (¢, w) ; ordp/(3+n?) <0}u{0} if P|3n,
E'(K") otherwise

Bk’ ) = {
and

EY(K"; ) ={(U, V) = (¢, w) ; ordy(() <0}u{O}.

Proof. The latter equality is clear. We show the former one.

In the case ofp t 3n, the elliptic curveE’ has good reduction &3’, and hence
we haveEy(K';p') = E'(K").

Suppose thaf3|3n. Then, forQ € E'(K’) — {O} given by U,V ) = (,w), the
condition Q ¢ E((K';P’) is equivalent to

ordy/(¢) > 0, ordy/(3¢?) >0 and ordy (2w —n) > 0.
Here, we may replace the condition g¢@w — n) > 0 by ordy/(¢3 +n?) > 0, for
(2w —n)? = 4¢3 +n? =33 + (% +n?).
Furthermore, the condition ogd(¢2 +12) > 0 implies ordy (¢) > 0 and ordy (3¢?) >
0. Thus Q ¢ E{(K’;9p’) holds if and only if orgy (¢3 +1%) > 0, and hence we obtain
the desired equality. ]

As the second step, we show(P) N Ey(K’; ') # 0.

Lemma 4.3. Let the notation and the assumptions be as above. Taeteast
one point inA~1(P) is contained inEH(K'; P).

Proof. In the case wher§8 t 3n, the assertion is clear.

Suppose thatp|3n. Let A™3(P) = {Q1, Q2 Q3}, and let(; denote theU -
coordinate ofQ; . Then, the cubic polynomial

n?Ag (Q) = U3 - ¢U?+n? € k[U]
n
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is decomposed as
U —€U?+n?= (U ~ Q)(U ~ QU — ().
Comparing the both sides of the equality, we have
Q+Q+GE=¢

Hence org (¢;,) < 0 holds for some € {1, 2, 3} because of the assumption (C2)
and then,

ordyy (G5 +n?) = ordy (€¢7) = ordy (€) + 2 ordy (G,) < 0.
Thus, Q;, € Ey(K';P'). O
RemARK 4.4. In fact, we have\"}(P) C E{(K';B) if P {n.

As the third step, we show th&8 is unramified inK’ (i.e., I = {1}) assuming
that B is not decomposed iK' (i.e., D =G).

Lemma 4.5. With the notation and the assumptions as ahawve also assume
that /B is not decomposed iK’. Then B is unramified inK’.

Proof. Under the assumptio® & , the prime id&3l is the unique prime
divisor in K’ of B, and the subset&)(K’;P’) and E1(K’; ') of E'(K’) are G -stable.
Hence, for anyQ € E{(K’;B’), we have

Q° - Q€ E(K";%) foralloel

Let Q0 be a point inA\~1(P) N EH(K’;P’), which is a nonempty set by Lemma
4.3. Since KeA N E(K';P") = {0}, we have

Q=0 foralloel.
On the other hand, we haw’ = K(Q). Thus,! ={1}. O
SinceD # G implies D ={1} andI ={1}, we obtain Proposition 4.1.

RemArRk 4.6. In the case wher@|n, we can showD ={1} without using the
reduction map.
Finally, we shall mention the condition (C2)Putting

ytn
X=x, Y= ,
* 2




820 A. Sato
we have another Weierstrass equation ffk
Y2 —nY = X3~ n?
Let K be a finite extension of . For a prime idéglin K, let
E(K) — (E mod)(x), P — P modp

be the reduction map modul with respect to the above equation, wheralenotes
the residue field of3. We define a subsety(K;P) of E(K) in the same manner as
before:

Eo(K;B) ={P € E(K) ; P mod € (E modP)ns(x)}.

Then, it is easy to verify

{(X,Y)= (&) ; ordp(§) <0pu{o} if P[3n,

Eo(K;PB) = { E(K) otherwise

Thus, a pointP inE K N x~1(k) is contained inﬂ‘13 Eo(K;*R) if and only if its X -
coordinate (=x -coordinate) satisfies the condition (C2)

5. Proof of the theorem (part 2)

In this section, we give a proof of Theorem 1.2, (ii).
First, we prove asymptotic formulas, due to S. Akiyama [1], for the partial sums
of two arithmetical functions.

Proposition 5.1. Let N be a positive integer. We define two arithmetical func-
tions py and vy by

onm)=8{i €Z ; 0<i <m, (Ni,m)=1},
vym)=t{i €Z; 0<i<m, (i, Nm)=1}.

Then

> onm)=cnT?+0(TlogT). > hn(m)=cyT?+O(T logT) asT — oo,
m<T m<T

where

_3 p
CN—F H p+1.

p prime
pIN
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RemarRk 5.2. (i) WhenN = 1, we havep; = 91 = ¢, wherep is the Euler
totient function. In this case, the asymptotic formulas are well-known (we ragaad
3/7?).

(i) The functionsyy, ¥y and the constanty depend only on the prime divisors of
N.
(iii) One easily observes

enm)=t{&€Q; £>1, ord,€) <O forall peS, Hn()=m},
Yym)=t{€€Q; 0<¢<1, ord,€) <O forall peS, Hn()=m}.

Here, S denotes the set of prime divisors /éf

Corollary 5.3. For any finite setS of prime numberae have
#H{ecQ; ord, ) <O0foral pesS, Hpu() <T}=csT?+0(TlogT) asT — oo,

where
_12 p

— .
s +1
pES p

Cs

We will give a proof of Proposition 5.1 after showing two lemmas. For a positive
integer j , we shall denote the integgf(j, N) by j*. Then we can rewritepy and
1y with the Mdbius function as follows:

Lemma 5.4. We have
on(m) =S w2 ewm) = 3 ) [ﬂ] .
jm jINm /

Here 1 is the Mdbius function.

Proof. We start with the relations

m

ovm=>" 3" u(). enm =3 3 uii)

i=1 j|(Ni,m) i=1 j|(i,Nm)
and obtain
onm) =3 0D 1= 0w ™ e = Y WD 1= Y ul) H .
W o U

i

\
U

The constanty in Proposition 5.1 is related t@iils function in the following
manner:
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Lemma 5.5. We have

fiuo):
=t
Proof. One easily observes that the functjehr )(-, N) is multiplicative:

1(ijNGI' N) = u()G. N) - u()(G' N) - whenever , j') = 1.

Hence the series

u(J) M(J)(J,fv)
LR

which is dominated by Z;ﬁlj—z, has the Euler product and coincides with

1 (2; 1. N)) H(l (p,}N)> H(l—%) -H(l—§> - 2y,

p 14 pIN pIN
Il
Proof of Proposition 5.1. It follows from Lemma 5.4 that
_ 1) _ ~— #0)
Dewm)=d mY Tm=) TE) om
m<T m<T jlm j<T m‘<T
and that
S inm = m Y Mo [ Y om | = T S0 ogr)
m<T m<T  j|Nm m<T JENT J o=

¥ m

Here, oo(m) denotes the number of divisors ef , and we have used

> )

JINm

< 0o(Nm) < oo(N)oo(m)

to obtain the latter equality. Hence we have

> on(m) = —Z M(j) T?+ O(T logT),

m<T J<T

szv( )_ 4 M(J)

m<T J<NT ']

+O(T logT)
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by
i [T T T2
=3 m = S[E([F]+1) = 5 o
- 4 217 J 2j
”’/'F"T m<T/j
i* [T T T2
S 3 m= G L] ([F]41) = 5o
e i 2 1j J 2j*
o m<T/j
and by
i 1 j 1
S ED vy tonogr, |3 HD <5 2 g,
j<r J j<r jenr j<ntJ

On the other hand, one easily observes

p() _ = 1) 1 () = 1G) 1
20 T ofz). T 2 wo(7)

j<r 4/ J<NT

Thus the desired formulas follow from Lemma 5.5. ]
Next, we show the following asymptotic formula:

Proposition 5.6. Let the notation and the assumptions be asSaction 2.2.
Then

#{€ €k ; A(u) is reducible overk, Hp(€) < T} =< 72K/ asT — .

Corollary 5.7. Let the notation and the assumptions be asTiheorem 1.2.
Then

#{€ € k ; Fe(z) is reducible overk, Hp(€) < T} = T?F93 asT — .
Theorem 1.2, (ii) immediately follows from Corollaries 5.3 and 5.7.
Proof of Proposition 5.6. It follows from Lemma 2.1 that
#{{ €k ; Ae(u) is reducible overk, Hp(§) < T} =<#{( €k ; (HpmoA)Q) <T}.
On the other hand, sinck,(«) is a rational function of degree , we have
Hpio )\, < Hby  on P(k).

Hence we obtain the assertion by the asymptotic formilian( Section 1. Ll
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Remark 5.8. If we could show
tH{eck; ord,(§) <Oforallpes, Hpu() <T}=T#U asT - oo
for any finite setS of prime ideals in a number fild , we would obtain
H{Pex Y& ; H(P)<T}=THU asT - 0

and

iming HP € X PHK) 5 3y, H(P) < T}

T P e WBW) ; H(P)<T)

6. Some remarks

Let k¥ be a number field of finite degree ard/k an elliptic curve which is
given by the Weierstrass equation of the foyh = f(x) with a cubic polynomial
f(x) € k[x]. For d € k*/k*?, let E; andf, be as in Section 2.1, and we denote the
Mordell-Weil rank of E; overk byr, . For giverl € k*/k*?, it seems very difficult
to determine whether; is positive without calculating the Mordell-Weil gr@ipk ().
Therefore, we cannot characterize suthe k* /k*? that satisfyr, > 0 in terms of
some arithmetic invariants, such as the class numbers, of the fields) &t present.
However, we have

(P € 04(Ea(k)) ; Hi(P)< T} =< (logT)*/? asT — oo

for eachd € k*/k*? (see e.g., [4, pp. 124-127]), and hence infinitely mahy

k* /k*? satisfy r;, > 0. (One obtains much more precise results by specializing
some sections of an elliptic surface. See e.g., [6] and some other papers referred
in it.) Moreover, sinceUdekX/kﬂed(Ed(k)tO,) is known to be a finite set, we have
04(Eq(k)or) = E[2](k) for all but finitely manyd € k* /k*?. Thus the condition; > 0

is equivalent to the conditiod,(E,(k)) # E[2](k) with finitely many exceptions. In
other words, putting

K={k(P); Pecx Y(PYk)}, K.={k(Vd); deck*/k*? rqy>0},
we have
K+ - IC, WC+ = 0Q, ﬁ(/C — IC+) < 0Q.

Now, let the notation and the assumptions be the same as in Theorem 1.2, and we
define two subsets of as

Ka= {K(P); P ex PR, Blhun)  KED={KP); PexX(E)).
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Then, our results seem to suggest that the &&gh K. has a positive “density” (in
a suitable sense) in the whole s€t. Indeed, the former assertion of Theorem 1.2
means/C(E*) C K3, while the latter one implies

EC(E™) = o0, BIC(E™) — Ky) < o0

and shows that—1(2*) is sufficiently large inx~1(P*(Q)). However, that does not
help us to estimate the largeness/efg*) in K.

(1]
(2]

(3]

(4]
(5]

(6]
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