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1. Introduction

Let be a number field of finite degree andan algebraic closure of , and let
/ be an elliptic curve which is given by the Weierstrass equation of the form2 =
( ), where ( )∈ [ ] is a cubic polynomial. For a subset ofP1( ) (regarded as
∪ {∞}), we denote the set{ ∈ ( ) ; ( ) ∈ } by −1( ). That is,

−1( ) = {( ) = (ξ ±
√

(ξ) ) ; ξ ∈ }

if ∞ 6∈ . Let P1 : P1( ) → R be the standard absolute (exponential) height, and let
= P1 ◦ : ( ) → R be the height relative to . Then we have

♯{ ∈ −1(P1( )) ; ( ) ≤ } ≍ 2[ :Q] as → ∞(‡)

(see e.g., [4, pp. 70–75]).
The class numbers of number fields have been studied for a long time. One stud-

ies the ideal class groups by using certain Diophantine equations, especially the arith-
metic theory of elliptic curves. We quote a classical result due to T. Honda [2], in
which he treats the case =Q (see Section 3 for details).

Proposition 1.1 (Honda). Let ( ) = 4 3−27 2 ( is a nonzero integer), and let
ξ be an integer satisfying the following three conditions:
(C0)

√
(ξ) 6∈ Q.

(C1) ξ( ) = 3 − ξ + ∈ Z[ ] is irreducible overQ.
(C2) (ξ 3 ) = 1.
Then, the class number of the quadratic fieldQ(

√
(ξ) ) is divisible by3.

We note that all but finitely manyξ ∈ Z satisfy the conditions (C0) and (C1):

♯{ξ ∈ Z ;
√

(ξ) ∈ Q} = ♯{(ξ η) ∈ Z2 ; η2 = (ξ) η ≥ 0} <∞
♯{ξ ∈ Z ; ξ( ) is reducible overQ} = ♯({ζ2 + ζ−1 ; ζ ∈ Z 6= 0} ∩ Z) <∞

Hence, putting the set of suchξ ∈ Z that satisfy the above three conditions (C0)–
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(C2), we have 3| Q( ) for any ∈ −1( ) and

♯{ ∈ −1( ) ; ( ) ≤ } ∼ 2♯{ξ ∈ Z ; (ξ 3 ) = 1 |ξ| ≤ } ≍ as → ∞

Consequently, in view of the asymptotic formula (‡), we might say:For quite a few
points ∈ −1(P1(Q)), the class number ofQ( ) is divisible by3.

We generalize these results into the following form:

Theorem 1.2. Let ( ) = 4 3 − 27 2 ( is a nonzero integer in ), and let ∗

be the set of suchξ ∈ that satisfy the following two conditions:
(C1)* ξ( ) = 3 − ξ + ∈ [ ] is irreducible over .
(C2)* ordp(ξ) ≤ 0 for all prime divisorsp in of 3 .
Then:
(i) For any ∈ −1( ∗), the class number of the field( ) is divisible by3.
(ii) When = Q, we have

♯{ ∈ −1( ∗) ; ( ) ≤ } =
24
π2



∏

prime
|3

+ 1


 2 + ( log ) as → ∞

We will show the theorem in Sections 4 and 5. Roughly speaking, our method to
prove the former assertion of the theorem is closely related to the proof of the Weak
Mordell-Weil Theorem and is considered as a geometric counterpart of Honda’s.

The above theorem together with

♯{ ∈ −1(P1(Q)) ; ( ) ≤ } =
24
π2

2 + ( log ) as → ∞

(the precise form of (‡) in the case where =Q) imply:

Corollary 1.3. When = Q, the points ∈ −1(P1(Q)) for which the class
number ofQ( ) is divisible by3 have a positive density in the whole set−1(P1(Q)):

lim inf
→∞

♯{ ∈ −1(P1(Q)) ; 3| Q( ) ( ) ≤ }
♯{ ∈ −1(P1(Q)) ; ( ) ≤ } ≥

∏

prime
|3

+ 1

ACKNOWLEDGEMENT. The author would like to express his thanks to Professor
Shigeki Akiyama for improving the latter assertion of the theorem.

2. Some basic facts

In this section, we recall some facts on the quadratic twists and the field exten-
sions arising from an isogeny, which will play an important role in our theorem and
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its proof. We do not attempt at complete generality and concentrate on what we need
later. See e.g., [5] for details.

2.1. The quadratic twists Let be a number field of finite degree and/
an elliptic curve. For ∈ ×/ ×2, let χ : Gal( / ) → Aut( ) be the homomorphism
defined by

χ (σ) =

{
1 if

√ σ
=
√

−1 if
√ σ

= −
√

Here, Gal(· ) denotes the Galois group. Then, there exist an elliptic curve/ and
an isomorphismθ : → defined over (

√
) such that

χ (σ) = θσ ◦ θ−1 for all σ ∈ Gal( / )

The elliptic curve and the isomorphismθ are uniquely determined by up to iso-
morphism over , and is called the quadratic twist of with respect to (

√
)/ ,

if 6≡ 1(mod ×2) ( is isomorphic to over , if ≡ 1(mod ×2)). Furthermore,
the image of ( ) byθ is characterized in ( (

√
)) as

θ ( ( )) = { ∈ ( (
√

)) ; σ = χ (σ) for all σ ∈ Gal( / )}

If is given by the Weierstrass equation of the form2 = ( ) with a cubic
polynomial ( )∈ [ ], we can choose the equation for of the form2 = ( ).
Then the isomorphismθ : → is given by = =

√
. Thus,

θ ( ( )) =
{

( ) =
(
ξ ±

√
(ξ)
)

; ξ ∈ (ξ) ≡ (mod ×2)
}
∪ [2]( )

Hence we have

−1(P1( )) =
⋃

∈ ×/ ×2

θ ( ( ))

We note that the above union is almost disjoint in the following sense:

θ ( ( )) ∩ θ ′( ′( )) = [2]( ) if 6≡ ′ (mod ×2)

2.2. The field extensions arising from an isogeny Let be a number field
of finite degree, / (resp. ′/ ) an elliptic curve which is given by the Weierstrass
equation of the form 2 = ( ) (resp. 2 = ( )) with a cubic polynomial ( )∈ [ ]
(resp. ( )∈ [ ]), and let λ : ′ → be an isogeny defined over . We assume that
Kerλ is contained in ′( ) and that = degλ is an odd prime number. Then there ex-
ist rational functionsλ ( ) λ∗( ) λ ( ) λ∗( ) ∈ ( ) for which the isogenyλ is given
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by

= λ ( ) + λ∗( ) = λ∗( ) + λ ( )

Sinceλ( − ) = ( − ), we haveλ∗( ) = λ∗( ) = 0. For ∈ ′( ), let ord denote
the normalized valuation on (′) attached to . Then we have

ord (λ ( )) < 0 ⇐⇒ ord (λ ( ) ) < 0 ⇐⇒ ∈ Kerλ

For each ∈ Kerλ, the equality (λ ( ) )2 = (λ ( )) implies

2 ord (λ ( )) + 2 ord ( ) = 3 ord (λ ( )) < 0

In the case of 6= , we have ord ( ) = 0, because is odd, and hence

2 ord (λ ( )) = 3 ord (λ ( )) < 0

Therefore, we can writeλ ( ) and λ ( ) as

λ ( ) =
λ(1)( )
λ(2)( )2

λ ( ) =
λ(1)( )

λ(2)( )3

with polynomialsλ(1)( ) λ(1)( ) λ(2)( ) ∈ [ ] satisfying

(λ(1)( ) λ(2)( )) = (λ(1)( ) λ(2)( )) = 1

Here, it follows from

ord (λ ( )) =
(

degλ(1)( ) − 2 degλ(2)( )
)

ord ( )< 0

and

= [ ( ) : ( )] = max{degλ(1)( ) 2 degλ(2)( )}

that

degλ(1)( ) = degλ(2)( ) <
2

Moreover, it is easy to verify

degλ(1)( ) =
3( − 1)

2

For ξ ∈ , we put

ξ( ) = λ(1)( ) − ξλ(2)( )2 ∈ [ ]
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Then, for ∈ −1(P1( )) − [2]( ) given by ( ) = (ξ η), we have

λ−1( ) =

{
( ) =

(
ζ

η

λ (ζ)

)
; ζ ∈ ξ(ζ) = 0

}

(note that ξ(ζ) = 0 impliesλ(1)(ζ) 6= 0 andλ(2)(ζ) 6= 0), and hence

♯{ζ ∈ ; ξ(ζ) = 0} = ♯λ−1( ) = = deg ξ( )

Thus ξ( ) does not have multiplicative roots, and (λ−1( )) is the splitting field of

ξ( ) over ( ) = (η).
For ∈ ( ), the map

Gal( (λ−1( ))/ ( )) −→ Kerλ σ 7−→ σ −

is a point in λ−1( ), is an injective homomorphism. Since is prime,
(λ−1( ))/ ( ) is a cyclic extension of degree 1 or according as∈ λ( ′( ( )))

or not, and we have (λ−1( )) = ( ) for any ∈ λ−1( ). Furthermore, one eas-
ily observes:

Lemma 2.1. Let the notation and the assumptions be as above. Then, for ∈
−1(P1( ))− [2]( ) whose -coordinate isξ, the following conditions are equivalent:

(a) ξ = λ (ζ) for someζ ∈ satisfyingλ(2)(ζ) 6= 0.
(b) ξ( ) is reducible over .
(c) (λ−1( )) = ( ).

3. Honda’s result

In this section, we briefly review the proof of Proposition 1.1 due to Honda. As is
seen in [2], his method is concerned with certain isogenies of elliptic curves. Namely,
let /Q (resp. ′/Q) be the elliptic curve which is given by the Weierstrass equation

2 = 4 3 − 27 2 (resp. 2 = 4 3 + 1), and letλ : ′ → be the isogeny defined over
Q which is given by

=
1 + 3

2
=

2− 3

3

Then, degλ = 3 and Kerλ = {( ) = (0 1) (0 −1)} ∪ { } is contained in ′(Q).
Thus we can apply the whole argument in Section 2.2. We may take 1 +3 and as
λ(1)( ) andλ(2)( ), respectively, and then we have

ξ( ) = 3 − ξ 2 + 1

For ∈ −1(Q) whose -coordinate isξ, it is clear that the condition (C0) is equiv-
alent to the condition [Q( ) : Q] = 2. Moreover, under the assumption (ξ) 6= 0,
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the condition (C1) is equivalent to the condition [Q(λ−1( )) : Q( )] = 3 because of
Lemma 2.1 and

ξ( ) = 3
ξ

(
1
)

We also note that has good reduction at every prime which does not divide 3 .

Proof of Proposition 1.1 (cf. also, [3]). Letξ be an integer which satisfies the
three conditions (C0)–(C2), and let be a point in−1({ξ}). Putting = Q( ) =
Q(

√
(ξ) ) and ′ = Q(λ−1( )), we have [ :Q] = 2 and [ ′ : ] = 3 because of

the assumptions (C0) and (C1). Since the discriminant of the cubic polynomialξ( )
equals (ξ), ′ is the splitting field of ξ( ) over Q, and hence ′/Q is a dihedral
extension of degree 6. We shall prove that′/ is unramified. Let ′′ be a cubic
subfield of ′. If a prime divisor in of a prime number were ramified in′,
must have been fully ramified in ′′. Therefore we should have a congruence

ξ( ) ≡ ( − α)3 (mod )

with someα ∈ Z. Comparing the both sides of the congruence, we should have either
|(ξ ) or 3|ξ, which would contradict the assumption (C2).

REMARK 3.1. Honda’s original result [2, Proposition 10] showed not only Propo-
sition 1.1 but also its inverse. Thus, he also proved:If the class number of a quadratic
field is divisible by3, is of the formQ(

√
(ξ) ) for some and someξ ∈ Z

which satisfies the conditions(C0)–(C2) (note that the polynomial ( ) and the three
conditions depend on the choice of ).

4. Proof of the theorem (part 1)

In this section, we give a proof of Theorem 1.2, (i). Our method is concerned
with certain isogenies of elliptic curves as well as Honda’s, and we use the elliptic
curve and the isogeny which are defined by the same manner as in Section 3. Namely,
let ′/ be the elliptic curve which is given by the Weierstrass equation2 = 4 3+1,
and letλ : ′ → be the isogeny defined over which is given by

=
1 + 3

2
=

2− 3

3

Then, degλ = 3 Kerλ ⊆ ′( ), and we can apply the whole argument in Section 2.2.
We have

ξ( ) = 3 − ξ 2 + 1

as well as in Section 3. For ∈ −1(P1( )) − [2]( ) whose -coordinate isξ, the
condition (C1)∗ is equivalent to the condition [ (λ−1( )) : ( )] = 3 because of
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Lemma 2.1. Putting

= =
( + 1)

2

we have another Weierstrass equation for′/

2 − = 3(∗)

whose discriminant is−27 4, and then,

Kerλ = {( ) = (0 0) (0 )} ∪ { }

Now, we fix a point in −1( ∗) given by ( ) = (ξ η) and put

= ( ) = (η) ′ = (λ−1( )) = Gal( ′/ )

Then we have [ : ]≤ 2 and [ ′ : ] = 3, for 6∈ [2]( ) follows from the
assumption (C2)∗. Moreover, for any ∈ λ−1( ), we have ′ = ( ) and

σ − ∈ Kerλ for all σ ∈

Theorem 1.2, (i) is an immediate consequence of the following proposition and the
class field theory (note that a Galois extension of odd degree is unramified at every
infinite place):

Proposition 4.1. Let the notation and the assumptions be as above. Then, the ex-
tension ′/ is unramified at every finite place.

For the time being, we use the following notation:

P a prime ideal in .
P′ a prime divisor in ′ of P.
κ′ the residue field ofP′.

the decomposition group forP′/P.
the inertia group forP′/P.

As the first step to show Proposition 4.1, we shall consider the reduction of′

modulo P′. Namely, let

′( ′) −→ ( ′ modP′)(κ′) 7−→ modP′

be the reduction map moduloP′ with respect to the Weierstrass equation (∗). We de-
fine two subsets of ′( ′) as

′
0( ′; P′) = { ∈ ′( ′) ; modP′ ∈ ( ′ modP′)ns(κ′)}
′
1( ′; P′) = { ∈ ′( ′) ; modP′ = modP′}
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Note that the equation (∗) is not necessarily minimal. Thus the two subsets defined
above are not uniquely determined by′ ′ and by P′, in general. However, we
can verify that ′

0( ′; P′) is a subgroup of ′( ′), and that the map ′
0( ′; P′) →

( ′ modP′)ns(κ′) is a homomorphism with its kernel ′1( ′; P′). We can characterize
′
0( ′; P′) and ′

1( ′; P′) in ′( ′) in terms ofP′-adic valuations of -coordinates
as follows:

Lemma 4.2. Being the notation as above, we have

′
0( ′; P′) =

{ {( ) = (ζ ω) ; ordP′(ζ3 + 2) ≤ 0} ∪ { } if P|3
′( ′) otherwise

and

′
1( ′; P′) = {( ) = (ζ ω) ; ordP′(ζ) < 0} ∪ { }

Proof. The latter equality is clear. We show the former one.
In the case ofP ∤ 3 , the elliptic curve ′ has good reduction atP′, and hence

we have ′
0( ′; P′) = ′( ′).

Suppose thatP|3 . Then, for ∈ ′( ′) − { } given by ( ) = (ζ ω), the
condition 6∈ ′

0( ′; P′) is equivalent to

ordP′(ζ) ≥ 0 ordP′(3ζ2) > 0 and ordP′(2ω − ) > 0

Here, we may replace the condition ordP′(2ω − ) > 0 by ordP′ (ζ3 + 2) > 0, for

(2ω − )2 = 4ζ3 + 2 = 3ζ3 + (ζ3 + 2)

Furthermore, the condition ordP′(ζ3 + 2) > 0 implies ordP′ (ζ) ≥ 0 and ordP′(3ζ2) >
0. Thus 6∈ ′

0( ′; P′) holds if and only if ordP′(ζ3 + 2) > 0, and hence we obtain
the desired equality.

As the second step, we showλ−1( ) ∩ ′
0( ′; P′) 6= ∅.

Lemma 4.3. Let the notation and the assumptions be as above. Then, at least
one point inλ−1( ) is contained in ′

0( ′; P′).

Proof. In the case whereP ∤ 3 , the assertion is clear.
Suppose thatP|3 . Let λ−1( ) = { 1 2 3}, and let ζ denote the -

coordinate of . Then, the cubic polynomial

2
ξ

( )
= 3 − ξ 2 + 2 ∈ [ ]
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is decomposed as

3 − ξ 2 + 2 = ( − ζ1)( − ζ2)( − ζ3)

Comparing the both sides of the equality, we have

ζ1 + ζ2 + ζ3 = ξ

Hence ordP′(ζ 0) ≤ 0 holds for some 0 ∈ {1 2 3} because of the assumption (C2)∗,
and then,

ordP′(ζ3
0

+ 2) = ordP′(ξζ2
0
) = ordP′(ξ) + 2 ordP′(ζ 0) ≤ 0

Thus, 0 ∈ ′
0( ′; P′).

REMARK 4.4. In fact, we haveλ−1( ) ⊆ ′
0( ′; P′) if P ∤ .

As the third step, we show thatP is unramified in ′ (i.e., = {1}) assuming
that P is not decomposed in ′ (i.e., = ).

Lemma 4.5. With the notation and the assumptions as above, we also assume
that P is not decomposed in ′. Then, P is unramified in ′.

Proof. Under the assumption = , the prime idealP′ is the unique prime
divisor in ′ of P, and the subsets ′

0( ′; P′) and ′
1( ′; P′) of ′( ′) are -stable.

Hence, for any ∈ ′
0( ′; P′), we have

σ − ∈ ′
1( ′; P′) for all σ ∈

Let be a point inλ−1( ) ∩ ′
0( ′; P′), which is a nonempty set by Lemma

4.3. Since Kerλ ∩ ′
1( ′; P′) = { }, we have

σ = for all σ ∈

On the other hand, we have′ = ( ). Thus, ={1}.

Since 6= implies ={1} and ={1}, we obtain Proposition 4.1.

REMARK 4.6. In the case whereP| , we can show ={1} without using the
reduction map.

Finally, we shall mention the condition (C2)∗. Putting

= =
+
2
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we have another Weierstrass equation for/

2 − = 3 − 7 2

Let be a finite extension of . For a prime idealP in , let

( ) −→ ( modP)(κ) 7−→ modP

be the reduction map moduloP with respect to the above equation, whereκ denotes
the residue field ofP. We define a subset 0( ; P) of ( ) in the same manner as
before:

0( ; P) = { ∈ ( ) ; modP ∈ ( modP)ns(κ)}

Then, it is easy to verify

0( ; P) =

{ {( ) = (ξ η) ; ordP(ξ) ≤ 0} ∪ { } if P|3
( ) otherwise

Thus, a point in ( )∩ −1( ) is contained in
⋂

P 0( ; P) if and only if its -
coordinate (= -coordinate)ξ satisfies the condition (C2)∗.

5. Proof of the theorem (part 2)

In this section, we give a proof of Theorem 1.2, (ii).
First, we prove asymptotic formulas, due to S. Akiyama [1], for the partial sums

of two arithmetical functions.

Proposition 5.1. Let be a positive integer. We define two arithmetical func-
tions ϕ and ψ by

ϕ ( ) = ♯{ ∈ Z ; 0< ≤ ( ) = 1}
ψ ( ) = ♯{ ∈ Z ; 0< ≤ ( ) = 1}

Then,

∑

≤

ϕ ( ) = 2 + ( log )
∑

≤

ψ ( ) = 2 + ( log ) as → ∞

where

=
3
π2

∏

prime
|

+ 1
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REMARK 5.2. (i) When = 1, we haveϕ1 = ψ1 = ϕ, whereϕ is the Euler
totient function. In this case, the asymptotic formulas are well-known (we regard1 as
3/π2).
(ii) The functionsϕ ψ and the constant depend only on the prime divisors of

.
(iii) One easily observes

ϕ ( ) = ♯{ξ ∈ Q ; ξ ≥ 1 ord (ξ) ≤ 0 for all ∈ P1(ξ) = }
ψ ( ) = ♯{ξ ∈ Q ; 0< ξ ≤ 1 ord (ξ) ≤ 0 for all ∈ P1(ξ) = }

Here, denotes the set of prime divisors of .

Corollary 5.3. For any finite set of prime numbers, we have

♯{ξ ∈ Q ; ord (ξ) ≤ 0 for all ∈ P1(ξ) ≤ } = 2 + ( log ) as → ∞

where

=
12
π2

∏

∈
+ 1

We will give a proof of Proposition 5.1 after showing two lemmas. For a positive
integer , we shall denote the integer/( ) by ∗. Then we can rewriteϕ and
ψ with the Möbius function as follows:

Lemma 5.4. We have

ϕ ( ) =
∑

|

µ( )
∗

ψ ( ) =
∑

|

µ( )

[ ]

Here, µ is the M̈obius function.

Proof. We start with the relations

ϕ ( ) =
∑

=1

∑

|( )

µ( ) ψ ( ) =
∑

=1

∑

|( )

µ( )

and obtain

ϕ ( ) =
∑

|

µ( )
∑

≤
∗|

1 =
∑

|

µ( )
∗

ψ ( ) =
∑

|

µ( )
∑

≤
|

1 =
∑

|

µ( )

[ ]

The constant in Proposition 5.1 is related to Möbius function in the following
manner:
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Lemma 5.5. We have

∞∑

=1

µ( )
∗

= 2

Proof. One easily observes that the functionµ( · )( · ) is multiplicative:

µ( ′)( ′ ) = µ( )( ) · µ( ′)( ′ ) whenever ( ′) = 1

Hence the series
∞∑

=1

µ( )
∗

=
∞∑

=1

µ( )( )
2

which is dominated by
∑∞

=1
−2, has the Euler product and coincides with

∏
(

∞∑

=0

µ( )( )
2

)
=
∏(

1− ( )
2

)
=
∏

|

(
1− 1

)
·
∏

∤

(
1− 1

2

)
= 2

Proof of Proposition 5.1. It follows from Lemma 5.4 that

∑

≤

ϕ ( ) =
∑

≤

∑

|

µ( )
∗

=
∑

≤

µ( )
∗

∑

≤
|

and that

∑

≤

ψ ( ) =
∑

≤

∑

|

µ( )
+



∑

≤

σ0( )


 =

∑

≤

µ( ) ∑

≤
∗|

+ ( log )

Here,σ0( ) denotes the number of divisors of , and we have used
∣∣∣∣∣∣

∑

|

µ( )

∣∣∣∣∣∣
≤ σ0( ) ≤ σ0( )σ0( )

to obtain the latter equality. Hence we have

∑

≤

ϕ ( ) =
1
2

∑

≤

µ( )
∗

2 + ( log )

∑

≤

ψ ( ) =
1
2

∑

≤

µ( )
∗

2 + ( log )



CLASS NUMBERS OF CERTAIN NUMBER FIELDS 823

by

∑

≤
|

=
∑

≤ /

=
2

[ ]([ ]
+ 1

)
=

2

2
+ ( )

∑

≤
∗|

=
∑

≤ / ∗

∗ =
∗

2

[
∗

]([
∗

]
+ 1

)
=

2

2 ∗
+ ( )

and by

∣∣∣∣∣∣

∑

≤

µ( )
∗

∣∣∣∣∣∣
≤

∑

≤

1 ∼ log

∣∣∣∣∣∣

∑

≤

µ( )
∣∣∣∣∣∣
≤
∑

≤

1 ∼ log

On the other hand, one easily observes

∑

≤

µ( )
∗

=
∞∑

=1

µ( )
∗

+

(
1
) ∑

≤

µ( )
∗

=
∞∑

=1

µ( )
∗

+

(
1
)

Thus the desired formulas follow from Lemma 5.5.

Next, we show the following asymptotic formula:

Proposition 5.6. Let the notation and the assumptions be as inSection 2.2.
Then,

♯{ξ ∈ ; ξ( ) is reducible over P1(ξ) ≤ } ≍ 2[ :Q]/ as → ∞

Corollary 5.7. Let the notation and the assumptions be as inTheorem 1.2.
Then,

♯{ξ ∈ ; ξ( ) is reducible over P1(ξ) ≤ } ≍ 2[ :Q]/3 as → ∞

Theorem 1.2, (ii) immediately follows from Corollaries 5.3 and 5.7.

Proof of Proposition 5.6. It follows from Lemma 2.1 that

♯{ξ ∈ ; ξ( ) is reducible over P1(ξ) ≤ } ≍ ♯{ζ ∈ ; ( P1 ◦ λ )(ζ) ≤ }

On the other hand, sinceλ ( ) is a rational function of degree , we have

P1 ◦ λ ≍ P1 on P1( )

Hence we obtain the assertion by the asymptotic formula (‡) in Section 1.
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REMARK 5.8. If we could show

♯{ξ ∈ ; ordp(ξ) ≤ 0 for all p ∈ P1(ξ) ≤ } ≍ 2[ :Q] as → ∞

for any finite set of prime ideals in a number field , we would obtain

♯{ ∈ −1( ∗) ; ( ) ≤ } ≍ 2[ :Q] as → ∞

and

lim inf
→∞

♯{ ∈ −1(P1( )) ; 3| ( ) ( ) ≤ }
♯{ ∈ −1(P1( )) ; ( ) ≤ } > 0

6. Some remarks

Let be a number field of finite degree and/ an elliptic curve which is
given by the Weierstrass equation of the form2 = ( ) with a cubic polynomial

( ) ∈ [ ]. For ∈ ×/ ×2, let andθ be as in Section 2.1, and we denote the
Mordell-Weil rank of over by . For given ∈ ×/ ×2, it seems very difficult
to determine whether is positive without calculating the Mordell-Weil group ( ).
Therefore, we cannot characterize such∈ ×/ ×2 that satisfy > 0 in terms of
some arithmetic invariants, such as the class numbers, of the fields (

√
) at present.

However, we have

♯{ ∈ θ ( ( )) ; ( ) ≤ } ≍ (log ) /2 as → ∞

for each ∈ ×/ ×2 (see e.g., [4, pp. 124–127]), and hence infinitely many∈
×/ ×2 satisfy > 0. (One obtains much more precise results by specializing

some sections of an elliptic surface. See e.g., [6] and some other papers referred
in it.) Moreover, since

⋃
∈ ×/ ×2 θ ( ( )tor) is known to be a finite set, we have

θ ( ( )tor) = [2]( ) for all but finitely many ∈ ×/ ×2. Thus the condition > 0
is equivalent to the conditionθ ( ( )) 6= [2]( ) with finitely many exceptions. In
other words, putting

K = { ( ) ; ∈ −1(P1( ))} K+ = { (
√

) ; ∈ ×/ ×2 > 0}

we have

K+ ⊆ K ♯K+ = ∞ ♯(K −K+) <∞

Now, let the notation and the assumptions be the same as in Theorem 1.2, and we
define two subsets ofK as

K3 = { ( ) ; ∈ −1(P1( )) 3| ( )} K( ∗) = { ( ) ; ∈ −1( ∗)}
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Then, our results seem to suggest that the setK3 ∩ K+ has a positive “density” (in
a suitable sense) in the whole setK+. Indeed, the former assertion of Theorem 1.2
meansK( ∗) ⊆ K3, while the latter one implies

♯K( ∗) = ∞ ♯(K( ∗) −K+) <∞

and shows that −1( ∗) is sufficiently large in −1(P1(Q)). However, that does not
help us to estimate the largeness ofK( ∗) in K.
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