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1. Introduction

Let D ⊂ R ( ≥ 2) denote the half space

D = { = ( ′ ) ∈ R −1 × R1 : > 0}

and set

S = ∂D;

we sometimes identify ′ ∈ R −1 with ( ′ 0) ∈ S. We define the hyperplane integral
( ) over S by

( ) =

(∫

S
| ( ′)| ′

)1/

for a measurable function onS and > 0.
Set

( ′) = ( ′ ) −
−1∑

=0
!

[(
∂

∂

) ]
( ′ 0)

for quasicontinuous Sobolev functions onD, where the vertical limits

(
∂

∂

)
( ′ 0) = lim

→0

(
∂

∂

)
( ′ )

exist for almost every ′ = ( ′ 0) ∈ ∂D and 0≤ ≤ − 1 (see [8, Theorem 2.4,
Chapter 8]).

Our main aim in this note is to study the existence of limits of ( ) at = 0.
More precisely, we show (in Theorem 3.1 below) that

lim
→0

−ω ( ) = 0
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for someω > 0.
Consider the Dirichlet problem for polyharmonic equation

( ) = 0

with the boundary conditions

(
∂

∂

)
( ′ 0) = ( ′) ( = 0 1 . . . − 1)

We show (in Corollary 3.1 below) that if 1< ≤ < ∞, / − ( − 1)/ < 1 and
∈ (D) is a solution of the Dirichlet problem with (′) = (∂/∂ ) ( ′ 0) for

0 ≤ ≤ − 1, then

lim
→0

/ −( −1)/ − ( ) = 0

where ( ′) = ( ′ ) −∑ −1
=0 ( / !) ( ′).

To prove our results, we apply the integral representation in [6, 8]. For this pur-
pose, we are concerned with -potentials defined by

( ) =
∫

( − ) ( )

for functions onR satisfying weighted condition:

∫

R
| ( )| | |β <∞

In connection with our integral representation, ( ) is of the formλ| |− for a
multi-index λ with length . Our basic fact is stated as follows (see Theorem 2.1 be-
low):

lim
→0

/ −( −1)/ − ( ) = 0

where ( ′) = ( ′ ) −∑ −1
=0 ( / !)[(∂/∂ ) ]( ′).

In the final section, we give growth estimates of higher differences of Sobolev
functions.

For related results, see Gardiner [2], Stoll [14, 15, 16] and Mizuta [5, 6, 9]. We
also refer the reader to Mizuta-Shimomura [10, 11] concerning monotone functions as
a generalization of harmonic functions.
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2. Hyperplane integrals of potentials

For a multi-indexλ and > 0, set

( ) =
λ

| |

We define the -potential by

( ) =
∫

R
( − ) ( )

for a measurable function onR satisfying

∫

R
(1 + | |)|λ|− | ( )| <∞(2.1)

and
∫

R
| ( )| | |β <∞ = ( 1 . . . )(2.2)

In particular, is the Rieszα-kernel whenλ = 0 and = − α. In this case,
is written as α with α = |λ| − + > 0. Note here that (2.1) is equivalent to

the condition that

α| | 6≡ ∞(2.3)

Throughout this paper, let denote various constants independent of the variables
in question.

For a nonnegative integer , consider

( ) = ( − ) −
∑

=0
!

[(
∂

∂

) ]
( ′ − )

where = ( ′ ) ∈ R −1 × R; we sometimes identify ′ with ( ′ 0).

Lemma 2.1. Let be a nonnegative integer such that|λ| − < + 1.
(1) If | ′ − | ≥ /2> 0 and | − | ≥ /2> 0, then

| ( )| ≤ +1| ′ − ||λ|− − −1

(2) If | − | < /2, then | ( )| ≤ ( |λ|− + | − ||λ|− ).
(3) If | ′ − | < /2, then | ( )| ≤ ( |λ|− + | ′ − ||λ|− − ).
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Proof. If | ′ − | > 2 , then by Taylor’s theorem, we obtain

| ( )| ≤
+1

( + 1)!
|( ′ θ ) − ||λ|− − −1 (0< θ < 1)

≤ +1| ′ − ||λ|− − −1

If /2< | ′ − | < 2 and | − | ≥ /2> 0, then

| ( )| ≤ | ( − )| +
∑

=0

∣∣∣∣∣ !

[(
∂

∂

) ]
( ′ − )

∣∣∣∣∣

≤ |λ|− +
∑

=0
!
| ′ − ||λ|− −

≤ |λ|−

≤ +1| ′ − ||λ|− − −1

so that (1) is proved.
If | ′ − | < /2, then /2< | − | < 3 /2, so that

| ( )| ≤ | ( − )| +
∑

=0

∣∣∣∣∣ !

[(
∂

∂

) ]
( ′ − )

∣∣∣∣∣

≤ |λ|− +
∑

=0
!
| ′ − ||λ|− −

≤ ( |λ|− + | ′ − ||λ|− − )

which proves (3).
Finally, if | − | < /2, then /2< | ′ − | ≤ + | − | < 3 /2, so that

| ( )| ≤ | ( − )| +
∑

=0

∣∣∣∣∣ !

[(
∂

∂

) ]
( ′ − )

∣∣∣∣∣

≤ | − ||λ|− + | ′ − ||λ|−

≤ ( |λ|− + | − ||λ|− )

which proves (2). Thus the present lemma is established.

For a point ∈ R and > 0, we denote by ( ) the open ball with center at
and radius .
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Lemma 2.2 (cf. [9, Lemma 3.2]). Let β > −1, > 0 and |λ| − + / > 0. Let
be a nonnegative integer such that

< |λ| − +
+ β

< + 1

Then

(∫
| ( )| | |β

)1/

≤ |λ|− +( +β)/

for all = ( ′ ) ∈ D.

Proof. For fixed ∈ D, consider the sets

1 =
(

2

)
2 =

(
′

2

)
3 = R − ( 1 ∪ 2)

Since |λ|− + ( +β)/ − −1< 0, applying the polar coordinates about′, we have
by Lemma 2.1(1)

(∫

3

| ( )| | |β
)1/

≤ +1

(∫

3

| ′ − |(|λ|− − −1) | |β
)1/

≤ +1

(∫ ∞

/2

(|λ|− − −1) +β −1

)1/

= |λ|− +( +β)/

Similarly, since|λ| − + / > 0, we have by Lemma 2.1(2)

(∫

1

| ( )| | |β
)1/

≤ β/

(∫

1

( |λ|− + | − ||λ|− )

)1/

= |λ|− +( +β)/

Finally, since|λ| − + ( + β)/ − > 0, we obtain by Lemma 2.1(3)

(∫

2

| ( )| | |β
)1/

≤
(∫

2

( |λ|− + | ′ − ||λ|− − ) | |β
)1/

≤ |λ|− +( +β)/ +

(∫ /2

0

(|λ|− − ) +β −1

)1/

= |λ|− +( +β)/

The required inequality now follows.
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Lemma 2.3 (cf. [9, Lemma 3.4]). Let > 0 and be a nonnegative integer
such that

< |λ| − +
− 1

< + 1

If = ( ′ ) ∈ D and = ( ′ ) ∈ R , then

(∫

R −1

| ( )| ′

)1/

≤ +1( + | |)|λ|− − −1+( −1)/

Proof. Let = ( ′ ) ∈ D and = ( ′ ) ∈ R . If | | ≥ 2 , then, since
|λ| − − − 1 + ( − 1)/ < 0, we have by Lemma 2.1(1)

(∫

R −1

| ( )| ′

)1/

≤ +1

(∫

R −1

| ′ − |(|λ|− − −1) ′

)1/

= +1

(∫ ∞

0
( 2 + 2)(|λ|− − −1) /2 −2

)1/

= +1| ||λ|− − −1+( −1)/

If | | < 2 , then we have as in the proof of Lemma 2.2

(∫

R −1

| ( )| ′

)1/

≤
(∫

{ ′: ∈ 1}

( |λ|− + | − ||λ|− ) ′

)1/

+

(∫

{ ′: ∈ 2}

( |λ|− + | ′ − ||λ|− − ) ′

)1/

+ +1

(∫

{ ′: ∈ 3}

| ′ − |(|λ|− − −1) ′

)1/

≤ |λ|− +( −1)/ +

(∫

( ′ /2)
| ′ − ′|(|λ|− ) ′

)1/

+

(∫

( ′ /2)
| ′ − ′|(|λ|− − ) ′

)1/

+ +1

(∫

R −1

( + | ′ − ′|)(|λ|− − −1) ′

)1/

= |λ|− +( −1)/

Therefore the required inequality now follows.
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Lemma 2.4 (cf. [1, Theorem 13.5], [8, Sections 6.5 and 8.2]).Let α = |λ|− + ,
> 1, α > 1, α > 1 + β and −1 < β < − 1. If is a measurable func-

tion on R satisfying(2.2) and (2.3), then has the(ACL) property; in particular,
( ′ ) is absolutely continuous onR for almost every ′ ∈ R −1. Moreover, in

case is a positive integer such that(α− ) > 1 and (α− ) > 1 +β,
(

∂

∂

)
( ′ ) =

∫ (
∂

∂

)
( − ) ( )

is absolutely continuous onR for almost every ′ ∈ R −1.

Theorem 2.1 (cf. [5, Theorem 2.1] and [9, Theorem 2.1]).Let α = |λ| − +
satisfy + 1/ < α < + . Let 1< ≤ <∞, −1< β < − 1 and

− α

( − α)
<

− 1
( − α + )

when − α > 0.

Further suppose < ω < + 1, whereω = ( − 1)/ − ( − α + β)/ . If is a
nonnegative measurable function onR satisfying(2.2) and (2.3), then

lim
→0

−ω ( ) = 0

where ( ′) = ( ′ ) −∑ =0( / !)[(∂/∂ ) ]( ′ 0).

Proof. Under the assumptions on ,α, β, and in Theorem 2.1, we can take
(δ γ) such that

β < γ < ( − α + + 1)δ + β − ( − 1)
(2.4)

( − α + + 1)δ + (α− − 1) − < γ < ( − α + )δ + (α− ) −(2.5)

β < γ < − 1 0< δ < 1(2.6)

δ ( − α) > − α(2.7)

and

− 1
( − α + + 1)

< δ <
− 1

( − α + )
(2.8)

(if α ≥ , then (2.7) clearly holds). Set = (1− δ) ′ and =−γ ′/ , where ′ =
/( − 1). Then, by (2.6), we have

> −1(2.9)

In caseα ≥ , we clearly find

α− + > 0(2.10)
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and in caseα < , (2.10) also holds by (2.7). Further, (2.5) implies

< α− +
+

< + 1(2.11)

By the fact that + 1/ < α, we have

α > 1(2.12)

Sinceω > , we have

(α− ) > 1 +β(2.13)

By (2.12), (2.13) and Lemma 2.4, we first note that

( ′) = ( ) −
∑

=0
!

[(
∂

∂

) ]
( ′ 0)

=
∫

( ) ( )

Using Hölder’s inequality, we have

| ( ′)| ≤
(∫

| ( )| | |
)(1−δ)/ (∫

| ( )|δ ( ) | |γ
)1/

By (2.9)–(2.11) and Lemma 2.2, we have

| ( ′)| ≤ (α− )(1−δ)+ / ′−γ/

(∫
| ( )|δ ( ) | |γ

)1/

In view of Minkowski’s inequality for integral we have

( ) ≤ (α− )(1−δ)+ / ′−γ/

×
{∫ (∫

−1

| ( )|δ ′

) /

( ) | |γ
}1/

Here, noting (2.8), we have by Lemma 2.3

(∫

R −1

| ( )|δ ′

) /

≤ [ +1( + | |)α− − −1+( −1)/δ ]δ

Consequently
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( ) ≤ (α− )(1−δ)+ / ′−γ/ +( +1)δ

×
{∫

[( + | |)α− − −1+( −1)/δ ]δ | |γ−β ( ) | |β
}1/

Consider the function

( ) = [( −α +β)/ −( −1)/ ] [(α− )(1−δ)+ / ′−γ/ +( +1)δ]

×[( + | |)α− − −1+( −1)/δ ]δ | |γ−β

Then

−ω ( ) ≤
{∫

( ) ( ) | |β
}1/

whereω = ( − 1)/ − ( − α + β)/ . It follows from (2.4) that

−ω (α− )(1−δ)+ / ′−γ/ +( +1)δ = ( −α+ +1)δ+(β−γ)/ −( −1)/ → 0

as → 0. If < | |, then

( ) ≤
(

| |

)( −α+ +1)δ +(β−γ)− ( −1)/

≤ ;

if | | ≤ , then

( ) ≤
( | |)γ−β

≤

Hence Lebesgue’s dominated convergence theorem implies that

lim
→0

−ω ( ) = 0

Now the proof of Theorem 2.1 is completed.

3. Sobolev functions

For an open set ⊂ R , we denote by ( loc( )) the Beppo Levi space

( loc( )) = { ∈ loc( ) : λ ∈ loc( ) (|λ| = )}

(see [8, Chapter 6]). Set λ( ) = λ| |− and

˜
λ ( ) =





λ( − ) ∈ (0 1)

λ( − ) −
∑

|µ|≤ −1

µ

µ!

[(
∂

∂

)µ

λ

]
(− ) ∈ R − (0 1)
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In view of [8, Theorem 7.2, Chapter 6], each∈ ( loc(D)) satisfying

∫

D
|∇ ( )| β <∞(3.1)

has an ( )-quasicontinuous representative˜ , where|∇ ( )| = (
∑

|µ|= | µ ( )|2)1/2,
1< <∞ and−1< β < − 1. Moreover, ˜ is given by

˜( ) =
∑

|λ|=

λ

∫
˜

λ ( ) λ ( ) + ( )

where is an extension of toR , ( ) is a polynomial of degree at most − 1.
Note further from Lemma 2.4 that for each with 0≤ ≤ − 1 and for almost
every ′ ∈ R −1,

(
∂

∂

) ∫
˜

λ ( ) λ ( ) =
∫ (

∂

∂

)
˜

λ ( ) λ ( )

holds for ∈ R, where = ( ′ ).
Since ( )−∑ −1

=0 ( / !)[(∂/∂ ) ]( ′) = 0 for any polynomial of degree
at most − 1, we have

( ) ≡ ˜ ( ) −
−1∑

=0
!

(
∂

∂

)
˜ ( ′)

=
∑

|λ|=

λ

∫
λ ( ) λ ( ) = ˜ ( ) − ( )

for ∈ D, where λ ( ) = λ( − ) −∑ −1
=0 ( / !)[(∂/∂ ) λ]( ′ − ).

Theorem 2.1 now gives the following result.

Theorem 3.1. Let 1< ≤ <∞,

−
( − )

<
1

when − > 0

and

− + β
( − 1)

<
1
<

+ β
( − 1)

If ∈ ( loc(D)) satisfying(3.1) for −1< β < − 1 is ( )-quasicontinuous on
D, then

lim
→0

( − +β)/ −( −1)/ ( ) = 0
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where ( ′) = ( ′ ) −∑ −1
=0 ( / !)[(∂/∂ ) ]( ′ 0).

Consider the Dirichlet problem for polyharmonic equation:

( ) = 0

with the boundary conditions

(
∂

∂

)
( ′ 0) = ( ′) ( = 0 1 . . . − 1)

We denote by ( ) the Sobolev space

( ) = { ∈ ( ) : λ ∈ ( ) (|λ| ≤ )}

(see Stein [13, Chapter 6]). If ∈ (D) is a solution of the Dirichlet problem,
then the vertical limit (∂/∂ ) ( ′ 0) exists for almost every ′ = ( ′ 0) ∈ ∂D and
0 ≤ ≤ − 1 (see [6], [7]).

We also see that every function in (D) can be extended to a function in
(R ) (see Stein [13, Theorem 5, Chapter 6]). Hence Theorem 3.1 gives the fol-

lowing result.

Corollary 3.1. Let 1< ≤ <∞ and

( 0< ) − − 1
< 1

If ∈ (D) is a solution of the Dirichlet problem with ( ′) = (∂/∂ ) ( ′ 0)
for 0 ≤ ≤ − 1, then

lim
→0

/ −( −1)/ − ( ) = 0

where ( ′) = ( ′ ) −∑ −1
=0 ( / !) ( ′).

4. Higher differences

For > 0 and a function , we define the first difference

( ) = 1 ( ) = ( + )− ( )

and the -th difference

( ) = −1 ( (·)) ( )
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It is easy to see that

( ) =
∑

=0

(−1) −

( )
( + )

As in Section 2, we consider

( ) =
λ

| |

and define

( ′) = ( ′ ·)(0) =
∑

=0

(−1) −

( )
( ′ )

Theorem 4.1. Let α = |λ| − + , 1< ≤ <∞, β < − 1 and

− α

( − 1)
<

1
(when − α > 0).

Further suppose0 < ω < , where ω = ( − 1)/ − ( − α + β)/ . If is a
nonnegative measurable function onR satisfying(2.2) and (2.3), then

lim
→0

−ω ( ) = 0

where ( ′) = ( ′ ·)(0).

To prove this, we have only to prepare the following two lemmas instead of Lem-
mas 2.2 and 2.3.

Lemma 4.1. Let β > −1, > 0 and |λ| − + / > 0. Let be a positive
integer such that

0< |λ| − +
+ β

<

Then

(∫
| ∗ ( )| | |β

)1/

≤ |λ|− +( +β)/

for all = ( ′ ) ∈ D, where ∗ ( ) = ( ′ − ′ · − )(0) for = ( ′ ) ∈ D
and = ( ′ ) ∈ R .
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Proof. For = ( ′ ) ∈ D, write

(∫
| ∗ ( )| | |β

)1/

= ′( ) + ′′( )

where

′( ) =

(∫

{ =( ′ ):| ′− |≥( +2) }

| ∗ ( )| | |β
)1/

′′( ) =

(∫

{ =( ′ ):| ′− |≤( +2) }

| ∗ ( )| | |β
)1/

If | ′ − | ≥ ( + 2) , then we obtain by Taylor’s theorem,

| ∗ ( )| ≤ | ′ − ||λ|− −(4.1)

Since |λ| − − + ( + β)/ < 0, applying the polar coordinates about′, we have

| ′( )| ≤
(∫

{ =( ′ ):| ′− |≥( +2) }

| ′ − |(|λ|− − ) | |β
)1/

=

(∫ ∞

( +2)

(|λ|− − ) +β −1

)1/

= |λ|− +( +β)/

On the other hand, since|λ| − + / > 0 and |λ| − + ( + β)/ > 0, we have by
Lemma 2.2

| ′′( )| ≤
∑

=0

(∫

{ =( ′ ):| ′− |≤( +2) }

| ′ − + |(|λ|− ) | |β
)1/

≤ |λ|− +( +β)/

where = (0 . . . 0 1).

Lemma 4.2. Let > 0 and be a positive integer such that

0< |λ| − +
− 1

<

If = ( ′ ) ∈ D and = ( ′ ) ∈ R , then

(∫

R −1

| ∗ ( )| ′

)1/

≤ ( + | |)|λ|− − +( −1)/
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Proof. Let = ( ′ ) ∈ D and = ( ′ ) ∈ R . If | | ≥ ( + 2) , then, since
|λ| − − + ( − 1)/ < 0, we have by (4.1)

(∫

R −1

| ∗ ( )| ′

)1/

≤
(∫

R −1

| ′ − |(|λ|− − ) ′

)1/

= | ||λ|− − +( −1)/

If | | < ( + 2) , then we have by (4.1) and Lemma 2.3

(∫

R −1

| ∗ ( )| ′

)1/

≤
(∫

{ ′:| ′− |≥2( +2) }

| ′ − |(|λ|− − ) ′

)1/

+
∑

=0

(∫

{ ′:| ′− |≤2( +2) }

| ′ − + |(|λ|− ) ′

)1/

≤ |λ|− +( −1)/

Therefore the required inequality now follows.

Theorem 4.2. Let 1< ≤ <∞,

−
( − 1)

<
1

when − > 0

and

− + β
( − 1)

<
1
<

+ β
( − 1)

If ∈ ( loc(D)) satisfying(3.1) for −1< β < − 1 is ( )-quasicontinuous on
D, then

lim
→0

( − +β)/ −( −1)/ ( ) = 0

where ( ′) = ( ′ ·)(0) for > 0.

In fact, since = 0 for any polynomial of degree at most− 1, we have

( ) ≡ ( ′ ·)(0) =
∑

|λ|=

λ

∫
∗
λ ( ) λ ( )

where ∗
λ ( ) = λ( ′− ′ ·− )(0) with λ( ) = λ| |− . Now we can apply

Theorem 4.1 to obtain the present result.
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