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0. Introduction

Let A be the real maximum solution of the polynomial x ( i, k2 € N and
ki > kz (k1 #0)

p(x)=x3 —kx? —kox — 1.

The polynomialp £ ) is given as the characteristic polynomial of the malfix

ky ko 1

M=]1 00|.

010
And for eachkq, ko the real cubic numbei is a Pisot number. A Pisot number is
an algebraic integer whose conjugates other than itself have modulus less than one.
Hence,

N, N < 1,

where ), ) are algebraic conjugates of We denote the column and row eigenvec-

tors of \ by
1 1 1 1
M(a):)\(a) and ‘M (7):)\<’y),
B B ) )

wherer indicates the transpose.
Let 7, : [0, 1) — [0, 1) be the transformation given by

Thx = Xx — [Ax],
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where | ] denotes the integer part of a real number
Then eachx € [0, 1) is represented by

) =32

where b, = [AT{"*x], k = 1,2..., the expansion+) of x is usually calleds-
expansion. In this paper, we call d-expansion.

Let Q(\) be the smallest extension field of rational numbé&rscontaining \.
K. Shmidt showed the following result in [8].

Theorem (Schmidt). A real numberx is inQ(\) N [0, 1) if and only if X-
expansion ofc is eventually periodic.

In [1], Akiyama gives a sufficient condition of purely periodicity.

In this paper, we discuss whextexpansion ofx is purely periodic. For this pur-
pose, we introduce the three dimensional domgimith fractal boundary (see Fig. 1
and the definition in Section 2) and we say a real numberQ (A\)N[0, w) is reduced
if p(x) €Y wherew = 1/(1 +ay + 33), p(x) is given by

() = T, x"+x”, (x" = x") i) if Q()\) is not a totally real cubic field,
PRI (e, x) if Q()\) is a totally real cubic field,

and x’ andx” denote algebraic conjugates of
The main result of this paper is the following:

Main Theorem. Letx be a real number iQ (\) N[0, 1). Then A-expansion of
x is purely periodic if and only ifux is reduced.

The main tool of the proof is a natural extension on the dontaiof the dynamical
system [0, 1), T,), which is discussed in [7] and [9] originally. And the basic idea of
the proof can be found in [4] and [5].

1. Dual transformation of T,

From the property of the eigenvectdr , (1 ¢) such that
kity=X-1 kotd =X~ 1=X.6,
we see the transformatioh, :

Thx =Xx (mod 1)



PisoT NUMBERS AND RAUzY FRACTALS 351

j
Ty |

Fig. 1. Figure ofY.

is the A-transformation with the shift of finite type. The sequem{e{@k},f‘:’l} of \-
expansion satisfies the following admissible condition:
(1) 0< b <k,
(2) if b =k then biv1 < ko,
(3) if (bi, bi+1) = (k1, ko) thenb;., = 0.
In other words, the admissible sequenég, b, ..., by, ...) is given by the labeled
graphG in Fig. 2.

Let W* = U 2 {1, 2 3} be the free monoid of1, 2, 3} and let us define the sub-
stitution oy, x, : W* — W* by

k1

—
1—11...12
ka2
—
2— 11...13
3—1

Okyky -

Then the matrix of the substitutios, x, is given by M and so it is called Pisot sub-
stitution. Moreover, the substitutiony, ,, Satisfies the coincidence condition in [2].
Therefore, we have the following theorem.

Theorem (Arnoux-Ito). Let P be the contractive invariant plane with respect to
the linear transformationM , which is given by

P={xeR®| (x, "(1,7,8) =0},
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Fig. 2. Labeled graplG

Then, there exist the closed domaiks axidi = 1, 2 3 on the planeP satisfying
the following properties
The boundaries o and&; are fractal Jordan curves and

x=[J x; (disjoint)
i=1,2,3
U (X +72) =P (disjoint),
ze{m(m(ez—ey)+n(es—e1)) | m,n€Z}

and moreover

k1—1 ko—1
M7= ) (X1 - jres)U | (X2 — jmes) U X3 (disjoint)
j=0 j=0

M™1X, = Xq — kymes, M~1X3 = X, — kpres,

where (e, &, &) is the canonical basis oR3, 7 : R® — P is the projection along
(1, &, B), and AU B (disjoint) means that the interior oA and the interior & are
disjoint sets.

Remark. By using the notation of [6], we will give a survey how the domains
X, X;,i =1, 2 3 are obtained. From the substitutiep i, , let us give the mag,, i,
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0
»zg =] ™~
0
(0, Ey)
0
\
0, Ep)
o =
O s
(0, E3)

Fig. 3. Figure ofX,1(0, E;), i =1 2 3.

on the family of patches of the stepped surfacePdby

k]_ k2
(0, E1) — (0, Es)+ Y (&1 —kes, E)) + Y (& — kes, Eo)
Ekl.kz . k=1 k=1 s

0, E2) — (0, Ey)
(0, E3) — (0, E2)

2:kl-kz (X, E!) = M_lX + 2:kl.kz (Ov El)

(see Fig. 3). Then, the domaidé angd,i =1 2 3 are given by
X=lim M"r (Zp,)" ( U (e,-,E,-)),
n—oo =123
and

X; = lim M"r (Ekl,kz)" (e,, E,‘)
(see Fig. 4).
The boundaries of the domaié X,;,i =1 2 3 are given by the following manner:
Let 04,4, : G(1,2 3 — G (1,2 3 be the endomorphism of the free group of rank 3
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Fig. 4. Figure ofX =J,_;,3X; on (1, k2 = (1, 1)).

given by

1—3
k1

—_—~
Ophp - 2 — 1371371 371,
k2

—~—
3—23131 31

then the boundaries are given by

oX = lim M"x (fl(">+/c(9" (21*132*113*1))),
aX;, = lim M"rx (fi(")+IC(9” (jkj_lk_l)))’

where (fl("),fz("),fef”)) =M, K is the polygonal realization map of (1,2, 3, and
{i, j,k} ={1, 2, 3} (see [6], [3] in detail).

From the fact in Theorem (Arnoux-Ito) and the propeMire; = TMe; = we;, we
know
k1 kZ

X = JMx, - jre) U J(MX, — jme) UMXs (disjoint).
j=0 j=0
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On the notation

PO = X, - jre j=O0L... k.
P}Z) =MX;— jme, j=0,1... ks,
P53)=MX3,

the sete = {P{Y, ..., P, PP, ..., PP, PP} is a partition ofX . Using the partition
&, let us define the transformatidh¥ on X by

Tix=M x+b*res if xe P for somei and*.
Then, for eachx € X we have the following sequend@;, b3, ...) by
T 'x e P for somei,

and we have the expansion: for eacks X,
o0
x==Y biM* e
k=1

We see that the sequen¢®;, b3, ...) is obtained from the labeled grapt*, which
is dual of the graptG (see Fig. 5). Therefore, we say the transform@fjois a dual
transformaiton ofT),.

Let us define the three dimensional domalis= |J,_, , 3 X; as follows: fori =
1,23

1
Xi={itw|a|+x| 0<r<OxeX; },

g

where (12,12,19) = (1,7,6) andw = 1/(1 + ay + 35) (see Fig. 6). Let us define the
transformationTy : X — R3 by

1 1 1
Taltw| o] +x] = xw| o | =[Mw]| a|+Mx—[\re
B B B

Then we have the proposition.

Proposition 1.1. The transformationT), is surjective and a.e. injective transfor-
mation onX.
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O

A\ kil

Fig. 5. Dual graphG*.

Proof. By the Theorem (Arnoux-1to), the domaixs,i =1 2 3 are decomposed
in the following way:

kl_l k2—l
Xy = |J X1 - jre)u | (MX2 — jrer) U MXs,
Jj=0 Jj=0

X = MX, — kymey,
X3 = MX5, — komey.

On the other hand, the sefs-,i =1, 2 3 are transformed by

1
M)A(,-:{)\tw(a +Mx | 0<tr<td,xeX;p.
B

By using the fact that\ - 1 =k; ++, A-v =k, +4, and A - =1, we cut the cylin-
der MX; to ky pieces of the lengthv and one piece of lengthw. Analogously, we
cut the cyIinderM)A(z to k, pieces of the lengthy and one piece of lengthw. Then,
applying 7, shows that7 is surjective and injective except the boundary Xn(see
Fig. 6). O
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Fig. 6. Figure ofX.

2. Preliminaries from algebra

We know the vector(1, «, ) is the basis ofQ()\), that is, for anyx € Q()\)
there exist rational numbexks), c; and ¢, such that

X = co+ i+ caf3,
and we denote’ andx” which are algebraic conjugates of |, that is,

x' =gt +ef €Q(N),

x" = ot + 8" € Q(N).

First, let us assume that the cubic field is not totally real. We will begin with in-
troducing two maps;: Q(\) — R x C? andp: Q(\) — RS by

X X
n(x) = (x') and p(x) = ( x'+x" )
X" (x/ _ x//) i

We get a few primitive lemmas and corollaries.

Lemma 2.1. Let

111
P=|ad and Q :=[up, U, uz],
/B ﬂ/ 6//
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where

or (et () ()2 () ()

Then we have
(1) for anyx € Q())

P(nx)=0@(k),

(2) the inverse matrix of? is given by

w @ v
P -1 _ W' /4/ v ,
"o

o' v
where
1]a o 1
o= el w=t o).
1
1/=—(o/’—o/), D = detP
D

(In Corollary 2.3 we seew = 1/(1 +ary + 39)).

Proof. (1) is easily obtained.
(2) By Cramer’s rule, we have

(P_l)ll:w’ (P_l)lZZM’ and (P_l)lSZV'

In Corollary 2.3, we can see that, ¢, andv are elements ofQ()\). Consider the ma-
trix P-'P:

11 1][1a B 3 Tr(a) Tr(p)
P.'P= [a o a”] 1o ﬂ’] = [Tr(a) Tr(a?) Tr(aﬂ)] ,
gp B ] LLa" B Tr(B) Tr(aB) Tr(5%)

where
Tr(0) = 0+0 +0",

for any algebraic numbef. SinceTr @) is rational, each element @ -’ P is a ratio-
nal number. Then there exists a right elementary transformdfion  whose elements are
rational numbers such that

(P-'P)-U =1,
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where I indicates the identity matrix. So that,

P-("P-U) =1
Therefore we know
w o uov
Pl=p.U=|w vV |. 0
(JJ” Iu// l///

Lemma 2.2. The inverse matrix of) is given by

Q—l - o' :-Uw// M/ fﬂ/, 4 _}V_V//
i (w/ _ w//) i (/J/ _ lf//> i (V/ _ V”)

Therefore the canonical basigey, &, e3) of R® is given by

e = wup+ (W +w)ur+i (W —w”) Uy,
= puo+ (4 +p")ur+i (' — p") Uz,
€ = vug+ (1/ + u”) Up +i (1/ — V”) Us.

P
[

Corollary 2.3. The projections of;,i =1, 2 3by 7 are given by

mer = (W +w)ur+i (W —w”) Uy,
T8 = (,LL/ + M”) Up+i (Nl . N”) Uy,
mes = (V+V Y ur+i (v —v") ua.

Moreover we have

0 0
Q*17re1 - W+ , Qflﬂ_e2 - Iu/ +ﬂH ,
i (w/ _ w//) i (M/ _ MH)
0 1
-1 — / 1" = @@
0 lne; = v+ v , and(w,u,u)—1+a7+65(1,%5)-

i (V’ _ I/”)

Proof. Recall thatr is the projection on the plan® along ug. The planeP
which is orthogonal (lv, d) is spanned by; and u,. Hence, we can get the above
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from Lemma 2.2. The second assertion is obtaineddoyu; = &, O~ 'u, = e;. Put
€ = me +¢;Ug, i=123

Then from the relation
1 1 1
o (1)) (on (3) )i (3
0 0 )

1
(Cl, Cc2, C3) = m (1, Y, 5)-

we have

On the other hand, we know from Lemma 2.2 that

(c1,c2,¢3) = (w, 1, V).
Therefore, we arrive at the conclusion. 0

Lemma 2.4. The following relation holds

A 0 0
MQ = Q0|0 (N+X)/2 —i(N-N)/2|.
0 i(N=N)/2  (N+N)/2

Proof. The proof is easily obtained from the equations

)\I )\I/
Mup = Aug, Mug = E(Ul"'iuz)*‘?(ul—iuz),

! "

A A
Muy = — (Up +iuz) — -~ (Ug —iuz),
2i 2i

and the definitions ofi; and us. O

Secondly, let us assume that the cubic field is totally real. We use the same nota-
tion p as the map fronQ (\) to R® by

x
p(x) = (x’ ) .
x//
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Lemma 2.5. Let

11 1
Q0= |aad o | =[ugug,Uuy].

BB B

Then the inverse matrix af is given by

S
<

Q—l - / u’ /

1 " 11
I

€
S

&
N

wherew, u, v is given as(2) in Lemma 2.1.
In stead of Lemma 2.2, Corollary 2.3, and Lemma 2.4, we have

Lemma 2.6. The following formula hold

e = w/U]_ +wHU2,
mey = p'up+ Uy,
w3 = v'ug + " Us.
Therefore we have
0 0
O'rer=| o |0 re=|y |, 0 res=| v |,
1 /1/” 1
and
(0, 1) = (1,7,0)
w V) - ———— .
9 /‘L7 1+af}/+/86 bl 77
Moreover we know trivially
A0 0
MQ=Q|0XN O
00N

We have the following corollary in the both cases:
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Corollary 2.7. Let us definer, by

L W +XD/2 =i (X=X f2] Q()) is not totally real

(N =X")/2 W+X))2

XN 0
0 )\//

then we have

Ry =

if Q()) is totally real

200
MO =010 .
0|
Let us define the domaing and¥;,i = 1, 2, 3 as follows:
Yy =01 ()A() and v, =0t ()A(,)

Then the domaing and ¥; have explicit forms (see Fig. 1). From now on, remark
thatY andY; are written as domains iR x R2.

Lemma 2.8. The domains and Y;,i = 1, 2 3are given by

o0
Y = {(rw, —Zb,}*R’;‘N) ’ 0<t <t
k=1
(b7, b3, ...) is an admissible sequence startingiat G }

where

/ "
<l w,+w ) if  Q()) is not totally real

'(w fw”)

<w//) if Q) is totally real.

Proof. From the definitions of(; and 17, 17, is given by
Y = {twQ Mo+ 07 | 0<r <1l xeX;}.

Using the formula ofX; and2'up = e;, we have
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o0
Y, = {twel - Zb,ﬁQ‘lM"‘lwel 0<r<t
k=1

(b7, b3, ...) is an admissible sequence starting; at dh }

From the fact that

A¥10 0
o*Mt=1|0[ |0 and Q lre=v,
0 R
we have the conclusion. O

Now, let us define the transformatich, on ¥ by
:S:,\ = QilO ?)\ o Q.
Proposition 2.9. The transformationS, on Y is given explicitly by
N oo (oo}
Sx (m, — Zb;R§—1v> = <(/\tw —[M]w), —[M]v— szR§v>
k=1 k=1

and S, on Y is surjective.
Proof. The proof is obtained from Proposition 1.1. U

3. Reduction theorem

Let Z := [0, w) x R? and let us define the transformatidiy on Z by

5 (= (1)) = (e [Z]) - [E]wem (1))

Then, the restriction of the ma@ on the setY coincides with§A.
In stead of the transformatiofi, : [0, 1) — [0, 1)

Thx = Xx — [Ax],

let us introduce the following transformatidfy : [0, w) — [0, w) by

A
T;\x:)\xw[—x}.
w
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Then dynamical systemq(( 1), 7,) and ([O, w), TA’) are isomorphic by the map :
x — wx and for anyx € [0, w) can be expressed by

x:wi%,
k=1

where 61, by, ...) is the admissible sequence ofw € [0, 1) by the transformation
Ty. And we can say that the transformatiSy is the natural extension df; and 7).
Hereafter, we denotg(x) by the map fromQ()\) to R x R?, that is,

x/ + x/l
(x, <(x/ —x")i )> if Q()) is not a totally real cubic field,

px) = )
(x, (;~>) if Q()) is a totally real cubic field.

Lemma 3.1. For any real numberx € Q (A\) N[0, w), we have
S @) =),
wherey = T} x.
Proof. From the definitions of y x, §A and p, we know

N [Ax] [Ax ] W +w” ‘R x'+x"
* w_w_’ w (W —w")i A (x' = x")i

if Q(\) is not to_tally real,

EAP (x) =
r 1 B b ! /
(oo 5] [2] () roe(20))
L w ] L w ] w X
if Q()\) is totally real.
On the other hand, by #x —w [Ax/w], we seep(y) = Sxp(x). O

Let us introduce the concept oéduced

DeriniTioN 3.2, A real number € Q (M) N[0, w) is said to be reduced i (x) €
Y.

Lemma 3.3. Letx € Q(A\) N0, w) be reduced. Then
(1) Tyx is reduced
(2) there existsx* such thatx* is reduced andl’yx* = x.
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Proof. (1) is easily obtained from Lemma 3.1.
(2) From Proposition 2.9, the transformatisR|Y = S is surjective. Hence, there ex-
ists x* € Y such that

Sx(X) = p(x).

We put
e (e (2))
X3
Then
T{x* = x.
Thus it suffice to show that
X* = p(x™).

Here we only show this in the cagg()\) is not totally real field. In the case of totally
real, it is easy to show this relation. Froff(x*) = p(x), we have

A*
)\x*w{ al }:x,

w

and

Ax* X2 x +x"
_ + =
e ()= (@)
In the two equations above, we take algebraic conjugates of the former one and sub-
stitute it to — [(Ax*/w)(v)] of the latter one. From the fact that # \”, we have

xo=x* +x*" and x3=(x*" —x*")i.
We can get the result. ]

Lemma 3.4. For x € Q(\) N[0, w) we put

1 1 1
ng u+vx+wv , q,u,v,w e,

and

1 N 1+ 1 cz
w=— |ug+vo~ +wo— |, , UQ, Vo, W .
% 0+ Voy + Woys 4o, U0, Vo, Wo
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Let T)/\ky = x, then there exist integers,, v, and, such that

I SR S
y_qCIo kT Uy SR

Proof. FromT,*y =x, y is represented by

k
y=w (Z bl-)\i) +x A7k,
i=1

Therefore, using the equationy X2 = 1 — k3 /A — kp/)\?, we can get the above. [

We call ggo the quotientof TA/" (x). We claim that the quotient is independent of

Proposition 3.5. Letx € Q(A\) N[0, w) be reduced. Then-expansion ofx/w is
purely periodic that is there exists an integet  such thﬁ}:kx =x.

Proof. We put

1 1 1
X =- u+vX+wF , q,u,v,we”Z.
q

Lemma 3.3 shows that there exists a sequenrgex{, ...) such thatr;* is reduced and
T{x; =x;_, for i € N wherexg :=x. We know the finiteness of the cardinarity of the
set{x; | x; is reduced and’jx; = x; , for i e N} sinceY is a bounded set and the
quotient of T{x is invariant. Hence, there exist integets  and —(k > 0) such that

X: =X

J j—k
Then we have
xX; = x4
Consequently, we get
T/( X =x. U

Proposition 3.6. Let x € Q(A)N[0, w). Then there exist®/; > 0 such thatT)/\Nx
is reduced for anyN > Nj.

Proof. For anyx € Q(X) N [0,w), the point (x,(0, 0)) is in Y. We consider
the Euclidean distancé betweé¥p (x) and S% (x,(0,0)) for all k € N. The first
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coordinates are equal to each other forkalt N. Hence, we have
4 (.5 (+./0.0) <utd (o), (x.'© 0))
where
u=max(|X], [X]).
On the other hand, from the fact(x, (0, 0)) € Y and S,|Y = S, we know
Sk (x,'0,0) € ¥

for all k. Therefore§§p(x) must exponentially comes near the et Since the quo-
tient of 7)x is also invariant, using Lemma 3.1, we have

givp(x) Ip(T)/\Nx) €Y

for sufficiently largenN . TheriTA'Nx is reduced. And, from Lemma 3.3 (1) we can get
the above. ]

We can get the following result:

Theorem 3.7. Letx €[0,w), then
(1) x € Q (V) if and only if \-expansion ofx/w is eventually periodic
(2) x € Q()) is reduced if and only if\-expansion ofc/w is purely periodic.

Proof. (1) Assume that € Q (\)N[0, w). By Proposition 3.6, there exist§ > 0
such thatT,"x is reduced. Proposition 3.5 says tHgf'x /w = T¥ (x/w) has a purely
periodic A-expansion. Hence)-expansion ofx /w is eventually periodic. The opposite
direction is trivial.

(2) Necessity is obtained by Proposition 3.5. Conversely, assume\tbgpansion of
x/w is purely periodic. From (1), we see € Q()\) N[0, w). According to Proposi-
tion 3.6, there existsvV > 0 such that7,Vx is reduced. Therefore, we know that is
reduced by Lemma 3.3 (1) because of purely periodicity. [l
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