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1. Introduction

The purpose of this paper is to discuss moduli spaces of certain minimal surfaces
and their geometric properties.

A complete conformal minimal immersiok  from an open Riemann surfdce to
Euclidean spac®” of finite total curvature is an immersion such thgt  can be com-
pactified conformally. Moduli spaces of these minimal immersions have been studied
from several viewpoints (cf. J.&ez and A. Ros [8, 9], A. Ros [12], K. Yang [13],

R. Kusner and N. Schmitt [4], G. P. Pirola [10, 11], and K. Moriya [5]).

The Riemann surfacd/ can also be compactified conformally in the case where
X: M — R3/T(v) is a branched complete conformal minimal immersion of finite total
curvature, wherel’ i ) is the discrete group of isometries generated by a translation
by v € R® (Lemma 2.1). The Euclidean spa is considered a®3/T((0, 0, 0)).

We will call a branched complete conformal minimal immersi&n M:— R3/T(v)
of finite total curvature aminimal surface of algebraic typeor simply, analgebraic
minimal surface

Xiaokang Mo studied a moduli space of Weierstrass data for algebraic minimal
surfaces inR® in terms ofdivisor spacesand Kichoon Yang introduced it in his book
[13]. When we consider Weierstrass data, it is natural for us to consider branched min-
imal immersions.

Mo and Yang obtained a lower bound of the dimension of a complex analytic va-
riety contained in the moduli space. Unfortunately, this is negative in some cases, for
example when the genus of the Riemann surface is high. Therefore, we should exam-
ine concrete examples of moduli spaces.

We will call an algebraic minimal surface of genus 0 with two puncture points
an algebraic minimal annulusin K. Moriya [6], an example of a moduli space of
Weierstrass data for algebraic minimal annuli is investigated in terms of divisor spaces
and the defining equations of the moduli space are obtained.

In this paper, we will discuss concrete examples of moduli spaces of Weierstrass
data for algebraic minimal annuli in terms bifiear systems

Let us denote byP a pair of integer®y( P.) which belongs to the set :=
{(3,3,(23) (32 (13) (22 (31 We will denote byW(P, v) the set of Weier-
strass data for algebraic minimal annuli frath— {0} to R3/7(v) satisfying the fol-
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lowing conditions:

1. The Gauss map z( )= .

2. The order of the puncture point O and that of the puncture psindre equal to
Py and P, respectively.

We will define the sets of Weierstrass dat&(v) and W by

W) = [JwW(p.v), w={]J |J WP, v).

pPel Pel veR3

Our main result is thadV has a structure of a 6-dimensional smooth manifold
with a Hermitian metric satisfying the following conditions:
1. The scalar curvature is a positive constant.
2. EachW(v) (v € R®) is a 3-dimensional totally real submanifold .
3. A point in W is a helicoid if and only if it is a point inV((0, 0, v3)) (v3 # 0)
which attains the maximal value of the scalar curvaturéAf(0, O, vs)) with respect
to the metric induced from the Hermitian metric o¥.
4. The curve inWW which corresponds to an associated family of a minimal annulus
in W is a geodesic.

The author would like to express his gratitude to Y. Ohnita for calling my atten-
tion to the study of geometric structures on moduli spaces.

2. A classification of Weierstrass data

In this section, we will overview the minimal surface theory briefly and classify
Weierstrass data for algebraic minimal annuli by the orders of the branch points and
those of the puncture points. For more details, see D. Hoffman and H. Karcher [3],
K. Moriya [5, 6], and K. Yang [13].

Let X: M — R3/T(v) be a branched complete conformal minimal immersion.
Whenv # (0, 0, 0), we will assume that there exists a branched complete conformal
minimal immersionX: M — R3 such thatllo X = X o7, wherer: M — M is a
holomorphic covering connected, andl R3 — R3/T (v) the natural covering. We
will identify X with X. In the case wher& is unbranched, the assumption of the ex-
istence ofX is not necessary since there exists an immersioby the half space the-
orem for minimal surfaces (D. Hoffman and W. H. Meeks, Il [2]). In the case where
v =(0, 0, 0), we can assume that= X.

Next, we will modify the Chern-Osserman theorem (S. Chern and R. Osserman
[1D).

Let X: M — R3/T(v) be a branched complete conformal minimal immersion. We
will denote by ® = @4, &5, ®3) the triplet of holomorphic functions oM  such that
d; =90X,;/0z (i =1, 2 3). The generalized Gauss map [ }: — Q; is the holomor-
phic map defined by

[®](p) = [P1(p), P2(p), Pa(p)],
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wherez is a local holomorphic coordinate @ z3,[z2, z3] is the homogeneous co-
ordinates ofCP?, and Q- is the complex hyperquadric i P2

01 = {[z1, 22, 23 € CP?|(z2)* + (z2)* + (z3)* = 0} .

For a triplet¢ = (1, (2, (3) of meromorphic one-forms on a compact Riemann
surfaceM, we will define the divisor () of ¢ by

©:=> <igg’igsordp Q) - p,

PEM

where org (; is the order of¢; atp ( =1 2 3).
For a divisorD onM, we will denote by mulf D the multiplicity o0 ap and
by suppD the support ob

suppD ={p e M | mult, D # 0}.
Let us define two nonnegative divisof$. and D_ on M by

D, = Z max{mult, D, O} - p,
17€M

D_ = Z max{ — mult, D, 0} - p.
PEM

Then, we can see thd® B, — D_.

We will denote by ¥; the holomorphic one-form o defined Ky =
(0X;/0z)dz (i = 1,2 3), wherez is a holomorphic coordinate 8f . We will mod-
ify the Chern-Osserman theorem as follows:

Lemma 2.1. Let X: M — R3/T(v) be a branched conformal minimal immer-
sion. Then the following conditions are equivalent
(i) The Riemann surfacd/ is a certain compact Riemann surfdcevith finitely
many points{ps, ..., p,} removed,M is complete, anl is of finite total curvature.
(i) There exist a compact Riemann surfake and a triplet v = (\51, Wy, \53) of
meromorphic one-forms oM such thatsupp@)_ = {pa, ..., p,} and that ;| = ¥;
(=123

Proof. Assume (i). Then, we can show that (ii) is satisfied in a similar fashion
to the proof of the Chern-Osserman theorem and its generalization (cf. [5]) since the
generalized Gauss map af is well-defined.

Conversely, assume (ii). Lef be a local holomorphic coordinate centered at a
puncture point and/s? the induced metric. Then,
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wherem is a positive integer aridz ( ) a nonnegative smooth function suct thag (0)
0. Hence, (i) is satisfied. ]

We will call a point p; apuncture pointof X (i = 1,...,r). Assume that \?) =
SV Bj by — Y P p; (B > 0P > 0). We can see that the set of points
{b1, ..., b/} coincides with the set dbranch pointsof X.

Derinimion 2.2, We will call B; theorder of a branch poinb; ( =1..,1) and
P; the order of a puncture pointy; i( =1..,r).

Derinmion 2.3. We will call B := Z’Fl B; the total order of branch points ofX
and P :=%"/_, P; the total order of puncture points ofX .

For an immersionx M — R3/T(v), let us denote by-(X) the total curvature of
X.

Lemma 2.4. If X: M — R3/T(v) is an algebraic minimal surface, then
(2.1) 7(X) = 2n(x(M) + B — P),

Whe_rel\7l is the compactified Riemann surface fram ar(aVI) is the Euler number
of M.

Proof. In the case where =,0, 0 0), Lemma 2.4 was proved by the author ([5,
Corollary 2.2]).

SinceX(A7I), B, and P are independent of , the relation (2.1) holds in the case
wherev # (0, 0, 0). O

Since X is conformal, the relation
(2.2) (W1 ® W) + (P2 ® W) + (P53 @ U3) = 0
holds onM except at the puncture points. We will call this condition twnformality
condition of W.

Assume thatM = CP! = CU{oo} and the set of puncture points {8, co}. Then,
we may assume that

1
(2.3) (U)=) Bj-bj— Py-0— Py - o0,
j=1
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whereB; ( =1...,1), Po and P, > 0. We will call the condition (2.3) thelivisor
condition of W.

Since W corresponds to an algebraic minimal annulisC - {0} — R3/T(v), we
may assume that the relation

(2.4) —2rImRes(¥;; 0) = v;

holds ¢ =1 2 3), where Re§(;0) is the residue ofy; at 0. We will call the condi-
tion (2.4) theperiod conditionof v,

Conversely, if there exists a triplef = (\51, \52, \53) of meromorphic one-forms
on CP? satisfying the conformality condition (2.2), the divisor condition (2.3), and the
period condition (2.4), then we can obtain an algebraic minimal anmxilu€ — {0} —
R3/T (v) by integration

X(z) :=Re / W,
Z0
where zo € C — {0}. If we choose another base point in the integral, the image of the
map shifts by a translation iRS.

We can see that a tripleb = (Wq, U, W3) of meromorphic one-forms oft P!
satisfying the conformality condition (2.2) and the divisor condition (2.3) is equivalent
to a pair g,n) consisting of a meromorphic functiop  dBP® and a meromorphic
one-formyn on CP? satisfying the following condition:

I
(2.5) —(@)+ —(@)-*+ (N =) _Bj-bj— Po-0— Po - o0,

j=1
where g ) is the divisor o . The following relations hold betwe&nand g, 7):
Wy —
bl = ﬁ’ \IJ 9
(&) <‘Ifl — V-1V, 3)
- - = 1 1
(W, W2, W3) = <— -8 V-1 <— +8) ,2) 1.
8 8 2

Hence, the following relation holds among_lx (g), and @):

(W) = —(g)+ — (g)— + ().

Thus, a pair ¢, n) corresponds to an algebraic minimal annuli if and onlygif+{) sat-
isfies the condition (2.5) and the triplé_t of meromorphic one-forms o P! equiva-
lent to (g, ) satisfies the period condition (2.4). We will call the pait §) associated
to an algebraic minimal annulug§ C — {0} — R3/T(v) Weierstrass dataf X.
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Let N: C—{0} — S? be the normal Gauss map &f and S?—{(0, 0, 1)} — R2
the stereographic projection, whef is a 2-dimensional sphere. Then, we can see
thatg|c,{0} =moN.

Let us assume that the total curvature of a minimal annulus corresponding to
(g, n) is equal to—4x. Then, we can obtain the following relation by (2.1):

(2.6) B—P=—4

Sincen is a meromorphic one-form ofi P!, the degree of+) is equal to—2. Hence,
we can see that the relation

(2.7) B—P=—-2degg —2

holds by (2.5). Thus, we can see that geg =1 by the relation (2.7).

Let us denote by a holomorphic coordinate ©fcentered at the origin. If we
take another coordinate =/4, the point 0 and>xo are exchanged each other in the
divisor condition (2.5). Hence, the following three cases are sufficient for us to inves-
tigate minimal annuli:

e (¢g0=1-0-1-o00c.

e (g)=1l-a—1-00,a#0.

e (g9=1-a—1-b,a#0,b #c0.

In the following, we will consider only the first case. Then, we can see ghataz =
(a € C*) and hence

k
(2.8) = Bj bj—(Po—1)-0— (Ps — 1),
Jj=1

from the divisor condition (2.5).
By (2.8), we can see thatP§, P.,) € I if and only if

_ coz? + (c1/V2)z +c2
n= 2 dz,

where I is the set of pairs of integers defined in Section 1 apd{, c;) € C>— {0}.
By (2.6), we can see that9 B < 2 if (P, Ps) € I.
The Weierstrass data

(az, aco’ (Cl/;/z)z +cz/a dzr>

Z

and

(Z’ coz? + (c1/V2)z +¢2 dz)

z2
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Py | Py B co Cc1 C2
3 3 2 || #0 * Z0
2 3 1| #0|#0]| O
3 2 1 0 Z0| #0
1 3 Ol #0] O 0
2 2 0 0 Z01| O
3 1 0 0 0 Z0

Table 1. the relation amongP{, P..), B, and €o, €1, C2)

produce the same algebraic minimal annulus since these data are obtained by rescaling
the holomorphic coordinate o6 each other. Hence, we will consider only the latter
case in the following.

Let W(P, v), W(v), and W be the sets of Weierstrass data defined in Section 1.
We will denote by A(P, v) the set of algebraic minimal annuli whose Weierstrass data
belong toW(P, v). The notationX ~ Y for X andY in A(P,v) means thatX + =
Y for somex € R3. Summarizing the above discussion, we can prove the following
lemmas:

Lemma 2.5. There exists a bijective correspondence between thel&@tv)/ ~
and the setV(P, v).

Lemma 2.6. The setW is equal to the set

{ (Z’ coz? + (61/2\/5)2 +cp dz)

Z

(co, c1, cp) € C3 — {0}} .

Lemma 2.7. The setW(v) consists of each elemeft, n) of W satisfying the

following conditions
1
—271Im Res((— - z) Q;O) =y,
Z 2

2.9) ~27Im Res<\/—_1 (3 + z> g; o) = vy,

e
—27 Im Res(; 0) = vs.

Lemma 2.8. The relations among the total order of branch poirts the order
of each puncture poinPy and P.,, and the values ofy, ¢1, and ¢, become as Table
1, wherex means any complex number.

We will consider the ses! := {exp[y/—1t] |t € R} as a Lie group. Lef: W x
S — W be the map defined by
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1((z, m), explv'—1t]) = (z, (explv/—1t])n).

Then, 1 is an action ofS* on W. This action is transitive and effective. The orbit of
an element{,n) € W is the set of Weierstrass data for the associated family of a
minimal annulus produced by.

Derinimion 2.9. We will call the orbit of {, ) € W by p the associated orbitof
(z.n).

We will recall that an unbranched complete minimal annulu®with total cur-
vature —4r is a catenoid (Osserman [7]). The Weierstrass data for a catenoid is given
by (z,rdz/z) (r € R,r # 0). Hence, the order of each puncture point is equal to 2.
Since a helicoid is the conjugate surface of a catenoid, the Weierstrass data for a he-
licoid is given by ¢, v/—1sdz/z) (s € R,s # 0). Hence, the order of each puncture
point is equal to 2, too. Since we obtain

—27Im Res((l — z) _hdz;o) =0,
z 2z

—27 Im Res(\/—l <} + z> # 0> =0,
Z Z

—27Im Res( _hdz;0> = —s,
Z

we can see that the Weierstrass datav(~1sdz/z) (s € R,s # 0) belongs to
W((2, 2), (0 Q —s)) by (2.9). Thus, the Weierstrass datasf) of the catenoid and of
the helicoid belong taV((2, 2), (0. Q 0)) andV((2, 2), (0, Q v3)) (vs # 0) respectively.
We can see that the Weierstrass datar +Ls)dz/z) (rs # 0) produces a minimal
annulus which is neither a catenoid nor a helicoid.

By the above discussion, we have proved the following lemmas:

Lemma 2.10. A point(z,n) € W((0, O, 0)) corresponds to a catenoid if and only
if n=rdz/z (r e R,r £0).

Lemma 2.11. A point(z,n) € W((O, O, v3)) (vs # 0) corresponds to a helicoid if
and only ifp = —/—1vsdz/z.

3. A submanifold of Weierstrass data

In this section, we will show two kinds of moduli spaces denoted)bfw) and
W(P) become smooth submanifolds hv.

We can conside?V as C3 — {0} with holomorphic coordinatescq, c1, c5). Let us
denote byJy the complex structure. We will define real coordinates, (. ., ug) on W
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by u; := Reco, uz ;= Imcg, uz := Reci, ug :=IMcy, us := Recy, andug ;= Imc,.

Theorem 3.1. The setWW(v) is a 3-dimensional connected real algebraic smooth
submanifold ofV defined by

(3.1) W) = {(u1, uz, uz, —2vs, —us — 2z, uz + 2v1) € W}.

Proof. The sedV(v) consists of each elemeniy( ..., ug) € R® — {0} satisfying
the following equations:

1 1 1
(3.2) —E(Mz — ug) = vy, _E(ul +Us) = V2, ——=U4 = V3.

V2

Simplifying the equations (3.2), we can obtain the following equations:
Ug = —V 203, Us=—uy — 2v3, ug=us+2v;1.
Thus, the setV(v) is obtained by (3.1). O

Let W(P) be the subset oV defined byW(P) = J,cps W(P,v), Where P =
(Po, P) € 1.

Theorem 3.2. The setW(P) is a (B+1)-dimensional algebraic complex subman-
ifold of (W, Jo) where B is the total order of branch points corresponding ®  as in
Lemma 2.8.

Proof. We will prove this theorem in the case whare 5 (2 2). In the other
cases, we can prove the theorem in a similar fashion.

The setW(P) is the set of solutions of the equations + v/—1u, = 0 andus +
V—=1ug =0 on W — {uz++/—1us # 0}. The total order of branch points of a minimal
annulus which corresponds to an element¥fP) is equal to 0 by Table 1. Since+
v/—1u, andus++/—1ug are holomorphic, we can see that(P) is a one-dimensional
algebraic complex submanifold o\, Jo). ]

4. Geometry of moduli spaces

In this section, we will investigate geometric properties of moduli spadés
W(v), and W(P). We will show that each moduli spadéd/(v) (v € R3) becomes a
3-dimensional totally real submanifold of the 6-dimensional manifald

Firstly, we will investigate the geometry of\.

Let p=(p1,...,p7): W — R’ be an immersion such that

u
pa(ul,...,ue):f (e=1,...,6), pr(u,-.-,ue) =logu,
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whereu = (22:1 u?)Y2. Then, p(W) is a high-dimensional cylinder, that jgWV) =
$° x R, where $° is a 5-dimensional sphere.

Let go be the metric oW induced from the standard Riemannian metric ®h
by p. Then,

1 6
g = > <Z dui) .
a=1
Proposition 4.1. The scalar curvature ofW, go) is equal t020.

Proof. Let us denote bydt, ..., 0% an orthonormal coframe of{, go), where
0% :=duy/u (¢ =1,...,6). Then,go = 22:1 0~ ® 0>. Let us denote the first and the
second structure equations of the Levi-Civita connection by

6 6
do” :—Zwﬁa/\gﬁ, an :dw§a+zw7a/\wﬁy,
B=1 =1

where wg® is the connection form anf@g® is the curvature formd, 5 = 1,..., 6).
We can see that a connection fotm“ becomes

Ua

u
ws® = —7590* +-260,

u

and a curvature fornf23* := (1/2) Ziﬁzl R3,507 A\ 6° becomes

2 2
o — Uo +uﬁ feY 16]

6 6
Uy pa \ py Ually 08 A g7
— E 0 N7+ E 79 N7

Y=Lv#B Y=Ly #a
Hence, the Ricci curvature Ric :}:Zﬁzl R3,0° ® 67 becomes
° Uo? o dugu
ic = N — B B
RIC—Z4<1 uz)ea@@ea Y., —FPee.
a=l BA=LB#y

Thus, the scalar curvatufg’_; Ru, is 20. O

Proposition 4.2. An associated orbit of an element &% is a geodesic in
(W, go)-

Proof. The image of an associated orbit pyis clearly a geodesic op(W).
Thus, an associated orbit is a geodesic. Ll
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Secondly, we will investigate the geometry 3f(v).
We will denote byg; the metric onWW(v) induced fromgg by the inclusion map.
Then, we obtain

Proposition 4.3. The scalar curvaturer; of W(v), g1) is 2 if and only ifv =
(0, 0, 0)

Proof. Let us take another orthonormal cofrandé, (.., %) of (W, go) defined
by the following:

1_91_05 ~2_92+06

0 0 03 =63
\/z 9 \/z 9 9
R S

Then, g, = Zf’zlﬁi ® 9 wheredi = 5"|W(v) (i=12 3). Letws* (o, =1,...,6) be
the connection form of the Levi-Civita connection with respectd, (.., 6%). Then,
we obtain

~ \/EU,‘ 3

B lwey = —L0 + L, @2 iy = =07, @34y = O,

where

U = \/2u1? + 2u2? + uz? + 2052 + dugvy + 4v22 + duovy + 4v;2,

_V2(ui +vy) _ V2(uz +v1) _u3
- ) L2 - ) L3 —
U U U

Ly

(G,j=1,2 3). The componenté,-,j of the Ricci curvature of Y/ (v), g1) with respect
to (91, 92, 9¥3) are as follows:

Ri1 = (2uz+ v1)® +us® + 8(us® + vp? +v39) /U,

Ri2 = —(2@uy +v2)(uz + v1))/U?,

Rz = —(V2(uy + vp)us) /U2,

Ro2 = (21 +v2)® +us® +8(ua” +v;” + v3%) /U2,

Rys = —(V2(uz + vi)us) /U,

Rag = 2((us + ) + (uz + v2)* + 4(va” + v5” + v3)) /U,

Hence, the scalar curvaturg of WW(v), g1) becomes

2402402
2(110U7)
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Thus, oy is 2 if and only ifv =(Q Q 0). Il
The moduli spacéV((0, O, 0)) is characterized as follows:

Proposition 4.4. The submanifoldV(v) of (W, go) is totally geodesic if and
only if v=(0, 0, 0)

Proof. The second fundamental forsy of W(v) becomes

3 3 \/—
20 ~ o~
A== V@V @Eualww,

i=1 j=1
where &1, ..., ¢eg) is the dual frame of6~(1, . ..,56). Hence, the submanifolV(v) of
(W, go) is totally geodesic if and only it = (0,0 0). O

A helicoid is characterized as follows:

Theorem 4.5. A point in W((0, O, v3)) (v3 # 0) corresponds to a helicoid
if and only if the point attains the maximum value of the scalar curvatyeof

(W((0, 0, v3)), g1)-

Proof. By Lemma 2.11,u, ..., ug) € W corresponds to a helicoid if and only
if (ug,...,ue)=1(0,0 Qug,0,0) (s #0).

If ug = —/2v3, thenU? = 2u;? + 2uy? + us® + 2v32. Thus, a point inV((0, 0, v3))
(v3 # 0) corresponds to a helicoid if and only if the point attains the maximum value
of the scalar curvature; of (W((0, O, v3)), g1)- ]

Let us denote byV,((0, O, 0)) ¢ # 0) the set{(u1, uz, t, 0, —u1, uz) € W((0, 0, 0))}.
We can consider the sét;((0, 0, 0)) as the set of Weierstrass data for elements of
Upcu A(P. (0, 0, 0)) except the sefuz =0} CW, where H ={(2, 2), (2 3) (3 2) (3 3).
We will denote bygs the metric onW,((0, O, 0)) induced from }V, go) by the inclu-
sion map.

Theorem 4.6. A point in W,((0, 0, 0)) ¢ # 0) corresponds to a catenoid if and
only if the point attains the maximum value of the Gauss curvature of

(W.((0. 0, 0)). g3).

Proof. We can see thak = (2du1? + 2du,?)/(2u1? + 2u,? + t?). Hence, the scalar
curvature of W,((0, 0, 0)), g3) is equal tov/2r2/(2u1? + 2u5? +12)?/3. By Lemma 2.10,
a point @1, ust,0, —uy,us) € Wi((0,0,0) ¢ # 0) corresponds to a catenoid if
and only if u3 = up = 0. Hence, a point inV,((0, 0, 0)) ¢ # 0) corresponds to a
catenoid if and only if the point attains the maximum value of the Gauss curvature of
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W ((0, 0, 0)), g3). U

Next, we will define another complex structure §W.
Let J be the tensor field oV which is an endomorphism of the tangent space
T, W at every pointu of)¥ such that

Jer=es, Jex=es, Jez=eés,
Jés=—ep, Jes=—e1, Jeg=—és,
where ¢y, ..., &) is the dual frame of, ..., 6% as in the proof of Proposition 4.3.

Lemma 4.7. The tensor field/ is an orthogonal integrable complex structure of
W.

Proof. LetJ Q/0u,) = Zgzl JB,(0/0ug). Then, all nonzero components df
become as follows:

I =J =08 =yl =—J%=—J% =1

Then, we may sed? = —I, wherel denotes the identity transformation7g?V. The
torsion tensor fieldv of/ is defined by X(Y )IFK,JY J[X,Y] - J[X,JY] —
J[JX, Y] for vector fieldsX andY onW. The componeniv®gs, of N is as follows:

6

Ny =Y (a5 = J05050%5 = J5050° + T %50,0° ),

6=1
where 95 is the partial differentiatiord/dus («, 8,v,0 = 1,...,6). Hence,N = 0
clearly. Thus,J is an integral orthogonal complex structure/gn U

Remark 4.8. The metricgg is a Hermitian metric on}, J). On the other hand,
go is not a Kahler metric. Indeed, the fundamental 2-fopg of go is

Do =L N5+ 02 A G%+ 53 N 68

Hence, the exterior differential oby becomes

ddg = —226: (5267) A 0.
a=1

Thus the 2-form®, is not closed.

By Theorem 3.1 and Lemma 4.7, we can see gw) is a 3-dimensional real
submanifold of a 6-dimensional Hermitian manifol/( go, J). Moreover, we can see
the following theorem holds:
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Theorem 4.9. The submanifoldV(v) is a totally real submanifold ofW, go, J).

Proof. We can see tha§t1’|w(v) =0 (p = 45 6). Hence®o|yyw) = 0. Thus,
W(v) is a totally real smooth submanifold of\{, go, J). O

A real submanifold in a Ehler manifold is called_agrangianif it satisfies the
following conditions:
1. The real dimension of the submanifold is equal to half of the real dimension of
the ambient Khler manifold.
2. The submanifold is a totally real submanifold of the ambieahli€r manifold.
It is an interesting problem to find a&kler metric onWW which makesW(v) La-
grangian. Finally, we will mention a sufficient condition for aler metric on\W
to makeW(v) Lagrangian.

Theorem 4.10. Let g’ be a Kahler metric on(W, J) = R® — {0} conformal to
the standard metrig  oRS. If (W, g’, J) makesW(v) Lagrangian, theng’ is homo-
thetic to g, that isg’ = cg wherec is a positive constant.

Proof. Letg’ = fg where f is a positive function. Then the fundamental 2-form
@' of g’ is equal tof® , whered is the fundamental 2-form gof . Sinkeand ®
are closed, the relatiodf A ® = 0 holds. Hencelf = 0. Thug is constant bw.
Thereforg’ is homothetic tog . O

Remark 4.11. The metriccg gives a good geometric property¥gv). However,
this metric does not distinguish moduli spadé4’/(v)} by their curvature. Hence, it is
impossible to characterize a helicoid and a catenoid by the curvature of the moduli
space. Thus, we can find that this metric is not so useful to obtain geometric proper-
ties of each individual minimal annulus.

Finally, we will investigate the geometry o#/(P). We will denote byg, the met-
rics on W(P) induced fromgg by the inclusion map.

Proposition 4.12. The submanifoldV(P) is a totally geodesic submanifold of
W, go).

Proof. We will prove this theorem in the case whete = (2 2). We can prove
the other cases in a similar fashion.
The induced metrig, becomes

g2 =P @93+ @94,

where 9" = 0| ypy (i =3, 4). Hencew;”|wepy=0 (G =34 p =1 2 5 6). Thus, the
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second fundamental forrd  ofV(P) vanishes:A = 0. ThereforeWW(P) is a totally
geodesic submanifold ofy. ]
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