
Moriya, K.
Osaka J. Math.
38 (2001), 271–285

ON A MODULI SPACE OF MINIMAL ANNULI

KATSUHIRO MORIYA

(Received May 12, 1999)

1. Introduction

The purpose of this paper is to discuss moduli spaces of certain minimal surfaces
and their geometric properties.

A complete conformal minimal immersion from an open Riemann surface to
Euclidean spaceR of finite total curvature is an immersion such that can be com-
pactified conformally. Moduli spaces of these minimal immersions have been studied
from several viewpoints (cf. J. Pérez and A. Ros [8, 9], A. Ros [12], K. Yang [13],
R. Kusner and N. Schmitt [4], G. P. Pirola [10, 11], and K. Moriya [5]).

The Riemann surface can also be compactified conformally in the case where
: → R3/ ( ) is a branched complete conformal minimal immersion of finite total

curvature, where ( ) is the discrete group of isometries generated by a translation
by ∈ R3 (Lemma 2.1). The Euclidean spaceR3 is considered asR3/ ((0 0 0)).
We will call a branched complete conformal minimal immersion :→ R3/ ( )
of finite total curvature aminimal surface of algebraic type, or simply, analgebraic
minimal surface.

Xiaokang Mo studied a moduli space of Weierstrass data for algebraic minimal
surfaces inR3 in terms ofdivisor spacesand Kichoon Yang introduced it in his book
[13]. When we consider Weierstrass data, it is natural for us to consider branched min-
imal immersions.

Mo and Yang obtained a lower bound of the dimension of a complex analytic va-
riety contained in the moduli space. Unfortunately, this is negative in some cases, for
example when the genus of the Riemann surface is high. Therefore, we should exam-
ine concrete examples of moduli spaces.

We will call an algebraic minimal surface of genus 0 with two puncture points
an algebraic minimal annulus. In K. Moriya [6], an example of a moduli space of
Weierstrass data for algebraic minimal annuli is investigated in terms of divisor spaces
and the defining equations of the moduli space are obtained.

In this paper, we will discuss concrete examples of moduli spaces of Weierstrass
data for algebraic minimal annuli in terms oflinear systems.

Let us denote by a pair of integers (0 ∞) which belongs to the set :=
{(3 3) (2 3) (3 2) (1 3) (2 2) (3 1)}. We will denote byW( ) the set of Weier-
strass data for algebraic minimal annuli fromC − {0} to R3/ ( ) satisfying the fol-
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lowing conditions:
1. The Gauss map ( ) = .
2. The order of the puncture point 0 and that of the puncture point∞ are equal to

0 and ∞ respectively.
We will define the sets of Weierstrass dataW( ) andW by

W( ) :=
⋃

∈

W( ) W :=
⋃

∈

⋃

∈R3

W( )

Our main result is thatW has a structure of a 6-dimensional smooth manifold
with a Hermitian metric satisfying the following conditions:
1. The scalar curvature is a positive constant.
2. EachW( ) ( ∈ R3) is a 3-dimensional totally real submanifold inW .
3. A point in W is a helicoid if and only if it is a point inW((0 0 3)) ( 3 6= 0)
which attains the maximal value of the scalar curvature ofW((0 0 3)) with respect
to the metric induced from the Hermitian metric onW .
4. The curve inW which corresponds to an associated family of a minimal annulus
in W is a geodesic.

The author would like to express his gratitude to Y. Ohnita for calling my atten-
tion to the study of geometric structures on moduli spaces.

2. A classification of Weierstrass data

In this section, we will overview the minimal surface theory briefly and classify
Weierstrass data for algebraic minimal annuli by the orders of the branch points and
those of the puncture points. For more details, see D. Hoffman and H. Karcher [3],
K. Moriya [5, 6], and K. Yang [13].

Let : → R3/ ( ) be a branched complete conformal minimal immersion.
When 6= (0 0 0), we will assume that there exists a branched complete conformal
minimal immersion ˜ : ˜ → R3 such that ◦ ˜ = ◦ π, whereπ : ˜ → is a
holomorphic covering,˜ connected, and :R3 → R3/ ( ) the natural covering. We
will identify with ˜ . In the case where is unbranched, the assumption of the ex-
istence of ˜ is not necessary since there exists an immersion˜ by the half space the-
orem for minimal surfaces (D. Hoffman and W. H. Meeks, III [2]). In the case where

= (0 0 0), we can assume that˜ = .
Next, we will modify the Chern-Osserman theorem (S. Chern and R. Osserman

[1]).
Let : → R3/ ( ) be a branched complete conformal minimal immersion. We

will denote by = ( 1 2 3) the triplet of holomorphic functions on such that
= ∂ /∂ ( = 1 2 3). The generalized Gauss map [ ] :→ 1 is the holomor-

phic map defined by

[ ]( ) = [ 1( ) 2( ) 3( )]
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where is a local holomorphic coordinate on , [1 2 3] is the homogeneous co-
ordinates ofC 2, and 1 is the complex hyperquadric inC 2:

1 =
{

[ 1 2 3] ∈ C 2 | ( 1)2 + ( 2)2 + ( 3)2 = 0
}

For a triplet ζ = (ζ1 ζ2 ζ3) of meromorphic one-forms on a compact Riemann
surface ¯, we will define the divisor (ζ) of ζ by

(ζ) :=
∑

∈ ¯

(
min
=1 2 3

ord ζ

)
·

where ord ζ is the order ofζ at ( = 1 2 3).
For a divisor on ¯, we will denote by mult the multiplicity of at and

by supp the support of :

supp :={ ∈ ¯ | mult 6= 0}

Let us define two nonnegative divisors+ and − on ¯ by

+ :=
∑

∈ ¯

max{mult 0} ·

− :=
∑

∈ ¯

max{−mult 0} ·

Then, we can see that =+ − −.
We will denote by the holomorphic one-form on defined by :=

(∂ /∂ ) ( = 1 2 3), where is a holomorphic coordinate on . We will mod-
ify the Chern-Osserman theorem as follows:

Lemma 2.1. Let : → R3/ ( ) be a branched conformal minimal immer-
sion. Then the following conditions are equivalent:
(i) The Riemann surface is a certain compact Riemann surface¯ with finitely
many points{ 1 . . . } removed, is complete, and is of finite total curvature.
(ii) There exist a compact Riemann surfacē and a triplet ¯ = ( ¯1 ¯2 ¯3) of
meromorphic one-forms on̄ such thatsupp(¯)− = { 1 . . . } and that ¯ | =
( = 1 2 3).

Proof. Assume (i). Then, we can show that (ii) is satisfied in a similar fashion
to the proof of the Chern-Osserman theorem and its generalization (cf. [5]) since the
generalized Gauss map of is well-defined.

Conversely, assume (ii). Let be a local holomorphic coordinate centered at a
puncture point and 2 the induced metric. Then,



274 K. MORIYA

2 =

(
( )
| |2

)
| |2

where is a positive integer and ( ) a nonnegative smooth function such that (0)6=
0. Hence, (i) is satisfied.

We will call a point apuncture pointof ( = 1 . . . ). Assume that (̄ ) =∑
=1 · − ∑ =1 · ( > 0 > 0). We can see that the set of points

{ 1 . . . } coincides with the set ofbranch pointsof .

DEFINITION 2.2. We will call theorder of a branch point ( = 1. . . ) and
the order of a puncture point ( = 1. . . ).

DEFINITION 2.3. We will call ˜ :=
∑

=1 the total order of branch points of
and ˜ :=

∑
=1 the total order of puncture points of .

For an immersion : → R3/ ( ), let us denote byτ ( ) the total curvature of
.

Lemma 2.4. If : → R3/ ( ) is an algebraic minimal surface, then

τ ( ) = 2π(χ( ¯) + ˜ − ˜ )(2.1)

where ¯ is the compactified Riemann surface from andχ( ¯) is the Euler number
of ¯ .

Proof. In the case where = (0 0 0), Lemma 2.4 was proved by the author ([5,
Corollary 2.2]).

Sinceχ( ¯), ˜ , and ˜ are independent of , the relation (2.1) holds in the case
where 6= (0 0 0).

Since is conformal, the relation

( ¯1⊗ ¯1) + ( ¯2⊗ ¯2) + ( ¯3⊗ ¯3) = 0(2.2)

holds on ¯ except at the puncture points. We will call this condition theconformality
condition of ¯.

Assume that¯ = C 1 = C∪{∞} and the set of puncture points is{0 ∞}. Then,
we may assume that

( ¯) =
∑

=1

· − 0 · 0− ∞ · ∞(2.3)
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where ( = 1 . . . ), 0 and ∞ > 0. We will call the condition (2.3) thedivisor
condition of ¯.

Since ¯ corresponds to an algebraic minimal annulus :C−{0} → R3/ ( ), we
may assume that the relation

−2π Im Res(¯ ; 0) =(2.4)

holds ( = 1 2 3), where Res(̄; 0) is the residue of¯ at 0. We will call the condi-
tion (2.4) theperiod conditionof ¯.

Conversely, if there exists a triplet̄ = ( ¯1 ¯2 ¯3) of meromorphic one-forms
on C 1 satisfying the conformality condition (2.2), the divisor condition (2.3), and the
period condition (2.4), then we can obtain an algebraic minimal annulus :C−{0} →
R3/ ( ) by integration

( ) := Re
∫

0

¯

where 0 ∈ C− {0}. If we choose another base point in the integral, the image of the
map shifts by a translation inR3.

We can see that a triplet̄ = ( ¯1 ¯2 ¯3) of meromorphic one-forms onC 1

satisfying the conformality condition (2.2) and the divisor condition (2.3) is equivalent
to a pair ( η) consisting of a meromorphic function onC 1 and a meromorphic
one-formη on C 1 satisfying the following condition:

−( )+ − ( )− + (η) =
∑

=1

· − 0 · 0− ∞ · ∞(2.5)

where ( ) is the divisor of . The following relations hold between¯ and ( η):

( η) =

( ¯3

¯1−
√
−1 ¯2

¯3

)

( ¯1 ¯2 ¯3) =

(
1 −

√
−1

(
1

+

)
2

)
η

2

Hence, the following relation holds among (¯), ( ), and (η):

( ¯) = −( )+ − ( )− + (η)

Thus, a pair ( η) corresponds to an algebraic minimal annuli if and only if (η) sat-
isfies the condition (2.5) and the triplet̄ of meromorphic one-forms onC 1 equiva-
lent to ( η) satisfies the period condition (2.4). We will call the pair (η) associated
to an algebraic minimal annulus :C− {0} → R3/ ( ) Weierstrass dataof .
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Let : C−{0} → 2 be the normal Gauss map of andπ : 2−{(0 0 1)} → R2

the stereographic projection, where2 is a 2-dimensional sphere. Then, we can see
that |C−{0} = π ◦ .

Let us assume that the total curvature of a minimal annulus corresponding to
( η) is equal to−4π. Then, we can obtain the following relation by (2.1):

˜ − ˜ = −4(2.6)

Sinceη is a meromorphic one-form onC 1, the degree of (η) is equal to−2. Hence,
we can see that the relation

˜ − ˜ = −2 deg − 2(2.7)

holds by (2.5). Thus, we can see that deg = 1 by the relation (2.7).
Let us denote by a holomorphic coordinate ofC centered at the origin. If we

take another coordinate = 1/ , the point 0 and∞ are exchanged each other in the
divisor condition (2.5). Hence, the following three cases are sufficient for us to inves-
tigate minimal annuli:
• ( ) = 1 · 0− 1 · ∞.
• ( ) = 1 · − 1 · ∞, 6= 0.
• ( ) = 1 · − 1 · , 6= 0, 6=∞.
In the following, we will consider only the first case. Then, we can see that =
( ∈ C∗) and hence

(η) =
∑

=1

· − ( 0− 1) · 0− ( ∞ − 1) · ∞(2.8)

from the divisor condition (2.5).
By (2.8), we can see that (0 ∞) ∈ if and only if

η = 0
2 + ( 1/

√
2) + 2

2

where is the set of pairs of integers defined in Section 1 and (0 1 2) ∈ C3−{0}.
By (2.6), we can see that 0≤ ˜ ≤ 2 if ( 0 ∞) ∈ .

The Weierstrass data
(

0
2 + ( 1/

√
2) + 2/

2

)

and
(

0
2 + ( 1/

√
2) + 2

2

)
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0 ∞
˜ 0 1 2

3 3 2 6= 0 ∗ 6= 0
2 3 1 6= 0 6= 0 0
3 2 1 0 6= 0 6= 0
1 3 0 6= 0 0 0
2 2 0 0 6= 0 0
3 1 0 0 0 6= 0

Table 1. the relation among (0 ∞), ˜ , and ( 0 1 2)

produce the same algebraic minimal annulus since these data are obtained by rescaling
the holomorphic coordinate onC each other. Hence, we will consider only the latter
case in the following.

Let W( ), W( ), andW be the sets of Weierstrass data defined in Section 1.
We will denote byA( ) the set of algebraic minimal annuli whose Weierstrass data
belong toW( ). The notation ∼ for and inA( ) means that + =

for some ∈ R3. Summarizing the above discussion, we can prove the following
lemmas:

Lemma 2.5. There exists a bijective correspondence between the setA( )/ ∼
and the setW( ).

Lemma 2.6. The setW is equal to the set

{(
0

2 + ( 1/
√

2) + 2
2

) ∣∣∣∣∣ ( 0 1 2) ∈ C3 − {0}
}

Lemma 2.7. The setW( ) consists of each element( η) of W satisfying the
following conditions:

−2π Im Res

((
1 −

)
η

2
; 0

)
= 1

−2π Im Res

(√
−1

(
1

+

)
η

2
; 0

)
= 2(2.9)

−2π Im Res(η; 0) = 3

Lemma 2.8. The relations among the total order of branch points˜ , the order
of each puncture point 0 and ∞, and the values of0, 1, and 2 become as Table
1, where∗ means any complex number.

We will consider the set 1 := {exp[
√
−1 ] | ∈ R} as a Lie group. Letµ : W ×

1→W be the map defined by
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µ(( η) exp[
√
−1 ]) = ( (exp[

√
−1 ])η)

Then,µ is an action of 1 on W . This action is transitive and effective. The orbit of
an element ( η) ∈ W is the set of Weierstrass data for the associated family of a
minimal annulus produced byη.

DEFINITION 2.9. We will call the orbit of ( η) ∈ W by µ the associated orbitof
( η).

We will recall that an unbranched complete minimal annulus inR3 with total cur-
vature−4π is a catenoid (Osserman [7]). The Weierstrass data for a catenoid is given
by ( / ) ( ∈ R 6= 0). Hence, the order of each puncture point is equal to 2.
Since a helicoid is the conjugate surface of a catenoid, the Weierstrass data for a he-
licoid is given by (

√
−1 / ) ( ∈ R 6= 0). Hence, the order of each puncture

point is equal to 2, too. Since we obtain

−2π Im Res

((
1 −

) √−1
2

; 0

)
= 0

−2π Im Res

(√
−1

(
1

+

) √−1
2

; 0

)
= 0

−2π Im Res

(√−1
; 0

)
= −

we can see that the Weierstrass data (
√
−1 / ) ( ∈ R 6= 0) belongs to

W((2 2) (0 0 − )) by (2.9). Thus, the Weierstrass data (η) of the catenoid and of
the helicoid belong toW((2 2) (0 0 0)) andW((2 2) (0 0 3)) ( 3 6= 0) respectively.
We can see that the Weierstrass data ( ( +

√
−1 ) / ) ( 6= 0) produces a minimal

annulus which is neither a catenoid nor a helicoid.
By the above discussion, we have proved the following lemmas:

Lemma 2.10. A point ( η) ∈ W((0 0 0)) corresponds to a catenoid if and only
if η = / ( ∈ R 6= 0).

Lemma 2.11. A point ( η) ∈ W((0 0 3)) ( 3 6= 0) corresponds to a helicoid if
and only if η = −

√
−1 3 / .

3. A submanifold of Weierstrass data

In this section, we will show two kinds of moduli spaces denoted byW( ) and
W( ) become smooth submanifolds inW .

We can considerW as C3− {0} with holomorphic coordinates (0 1 2). Let us
denote by 0 the complex structure. We will define real coordinates (1 . . . 6) onW
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by 1 := Re 0 2 := Im 0, 3 := Re 1, 4 := Im 1, 5 := Re 2, and 6 := Im 2.

Theorem 3.1. The setW( ) is a 3-dimensional connected real algebraic smooth
submanifold ofW defined by

W( ) = {( 1 2 3 −
√

2 3 − 1− 2 2 2 + 2 1) ∈ W}(3.1)

Proof. The setW( ) consists of each element (1 . . . 6) ∈ R6−{0} satisfying
the following equations:

−1
2

( 2 − 6) = 1 −
1
2

( 1 + 5) = 2 −
1√
2

4 = 3(3.2)

Simplifying the equations (3.2), we can obtain the following equations:

4 = −
√

2 3 5 = − 1− 2 2 6 = 2 + 2 1

Thus, the setW( ) is obtained by (3.1).

Let W( ) be the subset ofW defined byW( ) :=
⋃

∈R3W( ), where =
( 0 ∞) ∈ .

Theorem 3.2. The setW( ) is a ( ˜ +1)-dimensional algebraic complex subman-
ifold of (W 0) where ˜ is the total order of branch points corresponding to as in
Lemma 2.8.

Proof. We will prove this theorem in the case where = (2 2). In the other
cases, we can prove the theorem in a similar fashion.

The setW( ) is the set of solutions of the equations1 +
√
−1 2 = 0 and 5 +√

−1 6 = 0 onW−{ 3 +
√
−1 4 6= 0}. The total order of branch points of a minimal

annulus which corresponds to an element ofW( ) is equal to 0 by Table 1. Since1+√
−1 2 and 5 +

√
−1 6 are holomorphic, we can see thatW( ) is a one-dimensional

algebraic complex submanifold of (W 0).

4. Geometry of moduli spaces

In this section, we will investigate geometric properties of moduli spacesW ,
W( ), andW( ). We will show that each moduli spaceW( ) ( ∈ R3) becomes a
3-dimensional totally real submanifold of the 6-dimensional manifoldW .

Firstly, we will investigate the geometry ofW .
Let ρ = (ρ1 . . . ρ7) : W → R7 be an immersion such that

ρα( 1 . . . 6) = α (α = 1 . . . 6) ρ7( 1 . . . 6) = log
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where = (
∑6
α=1

2
α)1/2. Then, ρ(W) is a high-dimensional cylinder, that isρ(W) =

5× R, where 5 is a 5-dimensional sphere.
Let 0 be the metric onW induced from the standard Riemannian metric onR7

by ρ. Then,

0 =
1
2

(
6∑

α=1

2
α

)

Proposition 4.1. The scalar curvature of(W 0) is equal to20.

Proof. Let us denote by (θ1 . . . θ6) an orthonormal coframe of (W 0), where
θα := α/ (α = 1 . . . 6). Then, 0 =

∑6
α=1 θ

α ⊗ θα. Let us denote the first and the
second structure equations of the Levi-Civita connection by

θα = −
6∑

β=1

ωβ
α ∧ θβ β

α = ωβ
α +

6∑

γ=1

ωγ
α ∧ ωβγ

whereωβα is the connection form and β
α is the curvature form (α β = 1 . . . 6).

We can see that a connection formωβα becomes

ωβ
α = − β

θα + α
θβ

and a curvature form β
α := (1/2)

∑6
γ δ=1

α
βγδθ

γ ∧ θδ becomes

β
α =

(
1− α

2 + β
2

2

)
θα ∧ θβ

−
6∑

γ=1 γ 6=β

β γ

2
θα ∧ θγ +

6∑

γ=1 γ 6=α

α γ

2
θβ ∧ θγ

Hence, the Ricci curvature Ric :=
∑6
β γ=1 βγθ

β ⊗ θγ becomes

Ric =
6∑

α=1

4

(
1− α

2

2

)
θα ⊗ θα −

6∑

β γ=1 β 6=γ

4 β γ

2
θβ ⊗ θγ

Thus, the scalar curvature
∑6
α=1 αα is 20.

Proposition 4.2. An associated orbit of an element ofW is a geodesic in
(W 0).

Proof. The image of an associated orbit byρ is clearly a geodesic ofρ(W).
Thus, an associated orbit is a geodesic.
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Secondly, we will investigate the geometry ofW( ).
We will denote by 1 the metric onW( ) induced from 0 by the inclusion map.

Then, we obtain

Proposition 4.3. The scalar curvatureσ1 of (W( ) 1) is 2 if and only if =
(0 0 0).

Proof. Let us take another orthonormal coframe (θ̃1 . . . θ̃6) of (W 0) defined
by the following:

θ̃1 =
θ1− θ5

√
2

θ̃2 =
θ2 + θ6

√
2

θ̃3 = θ3

θ̃4 =
θ2− θ6

√
2

θ̃5 =
θ1 + θ5

√
2

θ̃6 = θ4

Then, 1 =
∑3

=1 ϑ̃ ⊗ ϑ̃ where ϑ̃ = θ̃ |W( ) ( = 1 2 3). Let ω̃βα (α β = 1 . . . 6) be
the connection form of the Levi-Civita connection with respect to (θ̃1 . . . θ̃6). Then,
we obtain

ω̃ |W( ) = − ϑ̃ + ϑ̃ ω̃ 3+ |W( ) = −
√

2
ϑ̃ ω̃3+

3+ |W( ) = 0

where

=
√

2 1
2 + 2 2

2 + 3
2 + 2 3

2 + 4 1 2 + 4 2
2 + 4 2 1 + 4 1

2

1 =

√
2( 1 + 2)

2 =

√
2( 2 + 1)

3 = 3

( = 1 2 3). The components̃ of the Ricci curvature of (W( ) 1) with respect
to (ϑ̃1 ϑ̃2 ϑ̃3) are as follows:

˜ 1 1 = (2( 2 + 1)2 + 3
2 + 8( 1

2 + 2
2 + 3

2))/ 2

˜ 1 2 = −(2( 1 + 2)( 2 + 1))/
2

˜ 1 3 = −(
√

2( 1 + 2) 3)/ 2

˜ 2 2 = (2( 1 + 2)2 + 3
2 + 8( 1

2 + 2
2 + 3

2))/ 2

˜ 2 3 = −(
√

2( 2 + 1) 3)/ 2

˜ 3 3 = 2(( 1 + 2)2 + ( 2 + 1)2 + 4( 1
2 + 2

2 + 3
2))/ 2

Hence, the scalar curvatureσ1 of (W( ) 1) becomes

σ1 = 2

(
1 + 10 1

2 + 2
2 + 3

2

2

)
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Thus,σ1 is 2 if and only if = (0 0 0).

The moduli spaceW((0 0 0)) is characterized as follows:

Proposition 4.4. The submanifoldW( ) of (W 0) is totally geodesic if and
only if = (0 0 0).

Proof. The second fundamental form1 of W( ) becomes

1 = −
3∑

=1

3∑

=1

√
2

ϑ̃ ⊗ ϑ̃ ⊗ ˜ +3|W( )

where (̃ 1 . . . ˜6) is the dual frame of (̃θ1 . . . θ̃6). Hence, the submanifoldW( ) of
(W 0) is totally geodesic if and only if = (0 0 0).

A helicoid is characterized as follows:

Theorem 4.5. A point in W((0 0 3)) ( 3 6= 0) corresponds to a helicoid
if and only if the point attains the maximum value of the scalar curvatureσ1 of
(W((0 0 3)) 1).

Proof. By Lemma 2.11, (1 . . . 6) ∈ W corresponds to a helicoid if and only
if ( 1 . . . 6) = (0 0 0 4 0 0) ( 4 6= 0).

If 4 = −
√

2 3, then 2 = 2 1
2 + 2 2

2 + 3
2 + 2 3

2. Thus, a point inW((0 0 3))
( 3 6= 0) corresponds to a helicoid if and only if the point attains the maximum value
of the scalar curvatureσ1 of (W((0 0 3)) 1).

Let us denote byW ((0 0 0)) ( 6= 0) the set{( 1 2 0 − 1 2)∈W((0 0 0))}.
We can consider the setW ((0 0 0)) as the set of Weierstrass data for elements of⋃

∈ A( (0 0 0)) except the set{ 3 = 0}⊂W , where ={(2 2) (2 3) (3 2) (3 3)}.
We will denote by 3 the metric onW ((0 0 0)) induced from (W 0) by the inclu-
sion map.

Theorem 4.6. A point inW ((0 0 0)) ( 6= 0) corresponds to a catenoid if and
only if the point attains the maximum value of the Gauss curvature of
(W ((0 0 0)) 3).

Proof. We can see that3 = (2 1
2 + 2 2

2)/(2 1
2 + 2 2

2 + 2). Hence, the scalar
curvature of (W ((0 0 0)) 3) is equal to

√
2 2/(2 1

2 + 2 2
2 + 2)2/3. By Lemma 2.10,

a point ( 1 2 0 − 1 2) ∈ W ((0 0 0)) ( 6= 0) corresponds to a catenoid if
and only if 1 = 2 = 0. Hence, a point inW ((0 0 0)) ( 6= 0) corresponds to a
catenoid if and only if the point attains the maximum value of the Gauss curvature of
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(W ((0 0 0)) 3).

Next, we will define another complex structure onW .
Let be the tensor field onW which is an endomorphism of the tangent space
W at every point ofW such that

˜1 = ˜5 ˜2 = ˜4 ˜3 = ˜6

˜4 = −˜2 ˜5 = −˜1 ˜6 = −˜3

where (̃ 1 . . . ˜6) is the dual frame of (̃θ1 . . . θ̃6) as in the proof of Proposition 4.3.

Lemma 4.7. The tensor field is an orthogonal integrable complex structure of
W .

Proof. Let (∂/∂ α) =
∑6
β=1

β
α(∂/∂ β). Then, all nonzero components of

become as follows:

5
1 = 4

2 = 6
3 = − 1

5 = − 2
4 = − 3

6 = 1

Then, we may see 2 = − , where denotes the identity transformation ofW . The
torsion tensor field of is defined by ( ) = [ ]− [ ] − [ ] −

[ ] for vector fields and onW . The component α
βγ of is as follows:

α
βγ =

6∑

δ=1

( δ
α∂δ

α
γ − δ

γ∂δ
α
β − α

δ∂β
δ
γ + α

δ∂γ
δ
β)

where ∂δ is the partial differentiation∂/∂ δ (α β γ δ = 1 . . . 6). Hence, ≡ 0
clearly. Thus, is an integral orthogonal complex structure onW .

REMARK 4.8. The metric 0 is a Hermitian metric on (W ). On the other hand,

0 is not a K̈ahler metric. Indeed, the fundamental 2-form0 of 0 is

0 = θ̃1 ∧ θ̃5 + θ̃2 ∧ θ̃4 + θ̃3 ∧ θ̃6

Hence, the exterior differential of 0 becomes

0 = −2
6∑

α=1

(
α
θα
)
∧ 0

Thus the 2-form 0 is not closed.

By Theorem 3.1 and Lemma 4.7, we can see thatW( ) is a 3-dimensional real
submanifold of a 6-dimensional Hermitian manifold (W 0 ). Moreover, we can see
the following theorem holds:
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Theorem 4.9. The submanifoldW( ) is a totally real submanifold of(W 0 ).

Proof. We can see that̃θ |W( ) = 0 ( = 4 5 6). Hence, 0|W( ) = 0. Thus,
W( ) is a totally real smooth submanifold of (W 0 ).

A real submanifold in a K̈ahler manifold is calledLagrangian if it satisfies the
following conditions:
1. The real dimension of the submanifold is equal to half of the real dimension of
the ambient K̈ahler manifold.
2. The submanifold is a totally real submanifold of the ambient Kähler manifold.
It is an interesting problem to find a Kähler metric onW which makesW( ) La-
grangian. Finally, we will mention a sufficient condition for a Kähler metric onW
to makeW( ) Lagrangian.

Theorem 4.10. Let ′ be a K̈ahler metric on(W ) ∼= R6 − {0} conformal to
the standard metric ofR6. If (W ′ ) makesW( ) Lagrangian, then ′ is homo-
thetic to , that is ′ = where is a positive constant.

Proof. Let ′ = where is a positive function. Then the fundamental 2-form
′ of ′ is equal to , where is the fundamental 2-form of . Since′ and

are closed, the relation ∧ = 0 holds. Hence = 0. Thus is constant onW .
Therefor ′ is homothetic to .

REMARK 4.11. The metric gives a good geometric property toW( ). However,
this metric does not distinguish moduli spaces{W( )} by their curvature. Hence, it is
impossible to characterize a helicoid and a catenoid by the curvature of the moduli
space. Thus, we can find that this metric is not so useful to obtain geometric proper-
ties of each individual minimal annulus.

Finally, we will investigate the geometry ofW( ). We will denote by 2 the met-
rics onW( ) induced from 0 by the inclusion map.

Proposition 4.12. The submanifoldW( ) is a totally geodesic submanifold of
(W 0).

Proof. We will prove this theorem in the case where = (2 2). We can prove
the other cases in a similar fashion.

The induced metric 2 becomes

2 = ϑ3⊗ ϑ3 + ϑ4⊗ ϑ4

whereϑ = θ |W( ) ( = 3 4). Hence,ω |W( ) = 0 ( = 3 4 = 1 2 5 6). Thus, the
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second fundamental form ofW( ) vanishes: ≡ 0. ThereforeW( ) is a totally
geodesic submanifold ofW .
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