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Abstract
For a ribbon knot we define the notion of its ribbon number. In this paper we

estimate the ribbon number for a ribbon knot by using the Jones polynomial. As a
corollary we determine the ribbon number of the Kinoshita-Terasaka knot.

1. Introduction

To investigate the complexity of a ribbon knot, we define the notion of the ribbon
number. This obvious measure of a ribbon knot’s complexity is often hard to deter-
mine. In fact, even in a simple case of the Kinoshita-Terasaka knot, its ribbon number
is hard to determine. In this paper, we estimate the ribbon number by using a formula
for the first derivative at�1 of the Jones polynomial of a ribbon knot of 1-fusion in
[6]. As a corollary we determine the ribbon number of the Kinoshita-Terasaka knot.

1.1. Definitions and theorems.

DEFINITION 1.1. A ribbon disk is an immersed 2-disk ofD2 into S3 with only
transverse double points such that the singular set consists of ribbon singularities, that
is, the preimage of each ribbon singularity consists of a properly embedded arc inD2

and an embedded arc interior toD2 (see Fig. 1). A knot is aribbon knot if it bounds
a ribbon disk inS3 (cf. [3], [4]).

For a ribbon knot we define its ribbon number as follows.

DEFINITION 1.2. Theribbon numberof a ribbon knot is defined as the minimal
number of ribbon singularities needed for a ribbon disk bounded by the ribbon knot.

Here we have some remarks of Definition 1.2.
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Fig. 1. A ribbon disk with two ribbon sigularities

REMARK 1.3. A ribbon knot whose ribbon number is zero is a trivial knot and
there does not exist a ribbon knot whose ribbon number is one.

REMARK 1.4. The ribbon number of a ribbon knotK is greater than or equal
to the genus ofK ([1]).

Now we can state the following theorem.

Theorem 1.5. Let K be a ribbon knot satisfying1K (t) = 1 and J 0K (�1) 6= 0,
where1K (t) is the Alexander polynomial ofK and J 0K (�1) is the first derivative at�1 of the Jones polynomial ofK. Then the ribbon number ofK is greater than or
equal to three.

To state the next theorem we review a ribbon knot of 1-fusion as follows.

DEFINITION 1.6. We call a knotK in S3 a ribbon knot of 1-fusion, if it has a
knot diagram described in Fig. 2, wheren is even and each small rectangle namedCi
is determined by
i 2 f�1;0;1g (i = 1;2; : : : ; n) and there are disjointly embedded
(n + 1) bands in the big rectangle, being knotted, twisted and mutually linked (cf. [6],
[5]). The diagram is called 1-fusion diagramof K and gives a ribbon disk bounded
by K.

REMARK 1.7. A ribbon knot of 1-fusion is a band sum of 2-component trivial
link and vice versa.

Here we can state the following theorem.
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Fig. 2. A 1-fusion diagram

Fig. 3. (1;1;0;�1)
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Fig. 4. The Kinoshita-Terasaka knot

Theorem 1.8. If K has a 1-fusion diagram with(
1; 
2; 
3; 
4) = (1;1;0;�1) as
shown inFig. 3, whereJ 0K (�1) 6= 0, then the ribbon number ofK is three.

1.2. An application of theorems. Now we consider the ribbon number of the
Kinoshita-Terasaka knot, which has a 1-fusion diagram as inFig. 4 and1(t) = 1 andJ 0(�1) = 48. Hence we obtain the following theorem from Theorem 1.8.

Theorem 1.9. The ribbon number of the Kinoshita-Terasaka knot is three.

Note that the genus of the Kinoshita-Terasaka knot is two ([2]).

2. Proof

Now we start to prove theorems.

Proof of Theorem 1.5. LetK be a ribbon knot satisfying1K (t) = 1 andJ 0K (�1) 6= 0. K is not a trivial knot, so the ribbon number ofK is greater than or
equal to two. Note that a ribbon disk with two ribbon singularities bounded by a non-
trivial knot is bounded by a ribbon knot which has one of eight1-fusion diagrams as
shown in Fig. 5, whereCi is determined by
i 2 f�1;1g (i = 1;2;3). By using a
formula for the Alexander polynomial of a ribbon knot of 1-fusion in [5], 1(t) 6= 1
for each knot in the left side of Fig. 5 and1(t) = 1 for each knot in the right side
of Fig. 5. By using a formula for the first derivative at�1 of the Jones polynomial
of a ribbon knot of 1-fusion,J 0(�1) = 0 for each knot in the right side of Fig. 5
(Example 1.12 in [6]). Hence the ribbon number ofK is not two. This completes
the proof.

Proof of Theorem 1.8. By using a formula for the Alexander polynomial of a
ribbon knot of 1-fusion in [5], a knotK which has a 1-fusion diagram as shown in
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Fig. 5. (
1; 
2) and (0; 
2; 
3;0)

Fig. 3 satisfies1K (t) = 1. By Theorem 1.5, the ribbon number ofK is greater than
or equal to three. The diagram in Fig. 3 gives a ribbon disk bounded byK which has
three ribbon singularities, hence the ribbon number ofK is three.
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