THE RECURRENCE TIME FOR IRRATIONAL ROTATIONS

Dong Han KIM

(Received November 1, 2004, revised March 17, 2005)

Abstract

Let T be a measure preserving transformation on $X \subset \mathbb{R}^{d}$ with a Borel measure μ and R_{E} be the first return time to a subset E. If (X, μ) has positive pointwise dimension for almost every x, then for almost every x $$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r)}(x)}{-\log \mu(B(x, r))} \leq 1
$$ where $B(x, r)$ the the ball centered at x with radius r. But the above property does not hold for the neighborhood of the 'skewed' ball. Let $B(x, r ; s)=\left(x-r^{s}, x+r\right)$ be an interval for $s>0$. For arbitrary $\alpha \geq 1$ and $\beta \geq 1$, there are uncountably many irrational numbers whose rotation satisfy that $$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))}=\alpha \quad \text { and } \quad \liminf _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))}=\frac{1}{\beta}
$$

for some s.

1. Introduction

Let μ be a probability measure on X and $T: X \rightarrow X$ be a μ-preserving transformation. For a measurable subset $E \subset X$ with $\mu(E)>0$ and a point $x \in E$ which returns to E under iteration by T, we define the first return time R_{E} on E by

$$
R_{E}(x)=\min \left\{j \geq 1: T^{j} x \in E\right\}
$$

Kac's lemma [5] states that

$$
\int_{E} R_{E}(x) d \mu \leq 1
$$

If T is ergodic, then the equality holds.
For a decreasing sequence of subsets $\left\{E_{n}\right\}$ containing $x, R_{E_{n}}$ is an increasing sequence. The asymptotic behavior between $R_{E_{n}}$ and the measure of E_{n} has been studied after Wyner and Ziv's work [13] for ergodic processes. Let \mathcal{P} be a partition of X and $\left\{\mathcal{P}_{n}\right\}$ be a sequence of partitions of X obtained by $\mathcal{P}_{n}=\mathcal{P} \vee T^{-1} \mathcal{P} \vee \cdots \vee T^{-n+1} \mathcal{P}$,

[^0]where $\mathcal{P} \vee \mathcal{Q}=\{P \cap Q: P \in \mathcal{P}, Q \in \mathcal{Q}\}$. Ornstein and Weiss [9] showed that if T is ergodic, then
$$
\lim _{n \rightarrow \infty} \frac{\log R_{P_{n}(x)}(x)}{n}=h(T, \mathcal{P}) \quad \text { a.e., }
$$
where $P_{n}(x)$ is the element in \mathcal{P}_{n} containing x. Therefore, by the Shannon-McMillanBrieman theorem, if the entropy with respect to a partition $\mathcal{P}, h(T, \mathcal{P})$ is positive, then we have
$$
\lim _{n \rightarrow \infty} \frac{\log R_{P_{n}(x)}(x)}{-\log \mu\left(P_{n}(x)\right)}=1 \quad \text { a.e. }
$$

Let (X, d) be a metric space and $B(x, r)=\{y: d(x, y)<r\}$. Define the upper and lower pointwise dimension of μ at x by

$$
\bar{d}_{\mu}(x)=\limsup _{r \rightarrow 0^{+}} \frac{\log \mu(B(x, r))}{\log r}, \quad \underline{d}_{\mu}(x)=\liminf _{r \rightarrow 0^{+}} \frac{\log \mu(B(x, r))}{\log r} .
$$

Now we have another recurrence theorem for the decreasing sequence of balls.
Theorem 1.1. Let $T: X \rightarrow X$ be a Borel measurable transformation on a measurable set $X \subset \mathbb{R}^{d}$ for some $d \in \mathbb{N}$ and μ be a T-invariant probability measure on X. If $\underline{d}_{\mu}(x)>0$ for μ-almost every x, then we have

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r)}(x)}{-\log \mu(B(x, r))} \leq 1
$$

for μ-almost every x.
This theorem is a modified version of Barreira and Saussol's result [1] which states that

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r)}(x)}{-\log r} \leq \bar{d}_{\mu}(x), \quad \liminf _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r)}(x)}{-\log r} \leq \underline{d}_{\mu}(x) .
$$

See also [2], [3], [7], and [11] for the transformations which satisfy that

$$
\lim _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r)}(x)}{-\log r}=\text { dimension of } \mu \text {. }
$$

Note that for some irrational rotations the limit does not exist [4].
So one might expect that if we choose a decreasing sequence of sets E_{n} as 'good' neighborhoods of x

$$
\limsup _{n} \frac{\log R_{E_{n}}(x)}{-\log \mu\left(E_{n}\right)} \leq 1
$$

However, we show that even for interval E_{n} 's on X the limsup can be larger than 1 for some irrational rotations.

For $t \in \mathbb{R}$ we define $\|\cdot\|$ and $\{\cdot\}$ by

$$
\|t\|=\min _{n \in \mathbb{Z}}|t-n|, \quad\{t\}=t-\lfloor t\rfloor,
$$

i.e., the distance to the nearest integer and the nearest integer which is less than or equal to t, respectively.

An irrational number $\theta, 0<\theta<1$, is said to be of type η if

$$
\eta=\sup \left\{t>0: \liminf _{j \rightarrow \infty} j^{t}\|j \theta\|=0\right\}
$$

Every irrational number is of type $\eta \geq 1$. The set of irrational numbers of type 1 has measure 1 and includes the set of irrational numbers with bounded partial quotients, which is of measure 0 . There exist numbers of type ∞, called Liouville numbers. Here we introduce a new definition on type of irrational numbers:

Definition 1.2. An irrational number $\theta, 0<\theta<1$, is said to be of type (α, β) if

$$
\begin{aligned}
& \alpha=\sup \left\{t>0: \liminf _{j \rightarrow \infty} j^{t}\{-j \theta\}=0\right\}, \\
& \beta=\sup \left\{t>0: \liminf _{j \rightarrow \infty} j^{t}\{j \theta\}=0\right\} .
\end{aligned}
$$

For example, if the partial quotients of an irrational number θ is $a_{2 k}=2^{2^{k}}$ for $k \geq 1$ and $a_{2 k+1}=1$ for $k \geq 0$, then θ is of type $(2,1)$. Note that $\alpha, \beta \geq 1$ and $\eta=\max \{\alpha, \beta\}$. For each $\alpha, \beta>1$ there are uncountably many (but measure zero) θ 's which are of type (α, β).

Let $0<\theta<1$ be an irrational number and $T:[0,1) \rightarrow[0,1)$ an irrational rotation, i.e.,

$$
T x=x+\theta \quad(\bmod 1) .
$$

Then T preserves the Lebesgue measure μ on $X=[0,1)$.
Let $B(x, r ; s)$ be an interval $\left(x-r^{s}, x+r\right), s>0$ and put $B(x, r ; \infty)=[x, x+r)$.
Theorem 1.3. If θ is of type (α, β), then for $1 \leq s \leq \infty$ and any $x \in[0,1)$, we have

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))}=\min \{\alpha, s\}, \quad \liminf _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))}=\min \left\{\frac{1}{\beta}, \frac{s}{\alpha}\right\}
$$

and for $0<s<1$ and any $x \in[0,1)$, we have
$\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))}=\min \left\{\beta, \frac{1}{s}\right\}, \quad \liminf _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))}=\min \left\{\frac{1}{\alpha}, \frac{1}{s \beta}\right\}$.

By the symmetry, we have

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{(x-r, x]}(x)}{-\log r}=\beta, \quad \liminf _{r \rightarrow 0^{+}} \frac{\log R_{(x-r, x]}(x)}{-\log r}=\frac{1}{\alpha} .
$$

Note that if $s=1$ the theorem is reduced to

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r)}(x)}{-\log \mu(B(x, r))}=1, \quad \liminf _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r)}(x)}{-\log \mu(B(x, r))}=\frac{1}{\eta},
$$

which was shown in [4].

2. Return time for measure space

In this section we prove Theorem 1.1. Let $X \subset \mathbb{R}^{d}$ for some $d \in \mathbb{N}$. Define

$$
\overline{\mathcal{Q}}_{n}=\left\{\left[i_{1} 2^{-n},\left(i_{1}+1\right) 2^{-n}\right) \times \cdots \times\left[i_{d} 2^{-n},\left(i_{d}+1\right) 2^{-n}\right):\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d}\right\}
$$

to be the dyadic partition of \mathbb{R}^{d} and $\mathcal{Q}_{n}=\left\{X \cap A: A \in \overline{\mathcal{Q}}_{n}\right\}$. Let $Q_{n}(x)$ as the element of \mathcal{Q}_{n} containing x.

In order to prove Theorem 1.1 we need a lemma, which is a slight modification of the weakly diametrically regularity in [1].

Lemma 2.1. Let μ be a Borel probability measure on \mathbb{R}^{d}. For μ-almost every x we have

$$
\mu\left(B\left(x, 2^{-n}\right)\right) \leq n^{2} \mu\left(Q_{n}(x)\right)
$$

for sufficiently large n.
Proof. Let

$$
E_{n}=\left\{x: \mu\left(B\left(x, 2^{-n}\right)\right)>n^{2} \mu\left(Q_{n}(x)\right)\right\} .
$$

For each $A \in \mathcal{Q}_{n}$ with $A \cap E_{n} \neq \emptyset$ choose one $x \in A \cap E_{n}$ and let F be a set of
such x 's. Then we have

$$
E_{n} \subset \bigcup_{x \in F} Q_{n}(x)
$$

and

$$
\mu\left(E_{n}\right) \leq \sum_{x \in F} \mu\left(Q_{n}(x)\right)<\sum_{x \in F} n^{-2} \mu\left(B\left(x, 2^{-n}\right)\right) .
$$

There is a constant D depending on d such that for each $y \in \mathbb{R}^{d}$, there are at most D x 's in F such that $x \in B\left(y, 2^{-n}\right)$. Therefore, we have

$$
\sum_{x \in F} \mu\left(B\left(x, 2^{-n}\right)\right) \leq D \cdot \mu\left(\mathbb{R}^{d}\right)=D
$$

and

$$
\mu\left(E_{n}\right)<\sum_{x \in F} n^{-2} \mu\left(B\left(x, 2^{-n}\right)\right) \leq D n^{-2} .
$$

Since

$$
\sum_{n} \mu\left(E_{n}\right)<D \sum_{n} n^{-2}<\infty,
$$

the first Borel-Cantelli lemma completes the proof.
Proposition 2.2. Let $T: X \rightarrow X$ be a Borel measurable transformation on a measurable set $X \subset \mathbb{R}^{d}$ and μ be a T-invariant probability measure on X. If $\underline{d}_{\mu}(x)>$ 0 for μ-almost every x, then

$$
\limsup _{n \rightarrow \infty} \frac{\log R_{Q_{n}(x)}(x)}{-\log \mu\left(Q_{n}(x)\right)} \leq 1
$$

for μ-almost every x.

Proof. Choose an arbitrary $\epsilon>0$. For an $A \in \mathcal{Q}_{n}$, we have by Markov's inequality

$$
\mu\left(\left\{x \in A: R_{A}(x) \geq \frac{2^{n \epsilon}}{\mu(A)}\right\}\right) \leq \mu(A) 2^{-n \epsilon} \int_{A} R_{A}(x) d \mu
$$

By Kac's lemma we have

$$
\mu\left(\left\{x \in A: R_{A}(x) \geq \frac{2^{n \epsilon}}{\mu(A)}\right\}\right) \leq \mu(A) 2^{-n \epsilon}
$$

Hence we have

$$
\mu\left(\left\{x \in X: R_{Q_{n}(x)}(x) \geq \frac{2^{n \epsilon}}{\mu\left(Q_{n}(x)\right)}\right\}\right) \leq \sum_{A \in \mathcal{Q}_{n}} \mu(A) 2^{-n \epsilon} \leq 2^{-n \epsilon}
$$

and

$$
\sum_{n=1}^{\infty} \mu\left(\left\{x \in X: R_{Q_{n}(x)}(x) \geq \mu\left(Q_{n}(x)\right)^{-1} 2^{-n \epsilon}\right\}\right)<\infty
$$

By the first Borel-Cantelli lemma, for almost every x we have

$$
R_{Q_{n}(x)}(x)<\frac{2^{n \epsilon}}{\mu\left(Q_{n}(x)\right)}
$$

eventually. Thus for almost every x

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{\log R_{Q_{n}(x)}(x)}{-\log \mu\left(Q_{n}(x)\right)} & \leq 1+\epsilon \cdot \limsup _{n \rightarrow \infty} \frac{-n \log 2}{\log \mu\left(Q_{n}(x)\right)} \\
& \leq 1+\epsilon \cdot \limsup _{n \rightarrow \infty} \frac{-n \log 2}{\log \mu\left(B\left(x, 2^{-n}\right)\right)} \\
& \leq 1+\epsilon \cdot \limsup _{r \rightarrow 0} \frac{\log r}{\log \mu(B(x, r))}
\end{aligned}
$$

since $Q_{n}(x) \subset B\left(x, 2^{-n}\right)$. Hence we have

$$
\limsup _{n \rightarrow \infty} \frac{\log R_{Q_{n}(x)}(x)}{-\log \mu\left(Q_{n}(x)\right)} \leq 1+\frac{\epsilon}{\underline{d}_{\mu}(x)} .
$$

By the assumption of $\underline{d}_{\mu}(x)>0$ for almost every x, we have

$$
\limsup _{n \rightarrow \infty} \frac{\log R_{Q_{n}(x)}(x)}{-\log \mu\left(Q_{n}(x)\right)} \leq 1
$$

for almost every x.
Proof of Theorem 1.1. By Lemma 2.1 we have $\log \mu\left(B\left(x, 2^{-n}\right)\right) \leq \log \mu\left(Q_{n}(x)\right)+$ $2 \log n$ and $\log R_{B\left(x, 2^{-n}\right)}(x) \leq \log R_{Q_{n}(x)}(x)$ from $Q_{n}(x) \subset B\left(x, 2^{-n}\right)$. Therefore,

$$
\frac{\log R_{B\left(x, 2^{-n}\right)}(x)}{-\log \mu\left(B\left(x, 2^{-n}\right)\right)} \leq \frac{\log R_{Q_{n}(x)}(x)}{-\log \mu\left(Q_{n}(x)\right)-2 \log n}
$$

for sufficiently large n. By Proposition 2.2

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{\log R_{B\left(x, 2^{-n}\right)}(x)}{-\log \mu\left(B\left(x, 2^{-n}\right)\right)} & \leq \limsup _{n \rightarrow \infty}\left(\frac{\log R_{Q_{n}(x)}(x)}{-\log \mu\left(Q_{n}(x)\right)} \cdot \frac{\log \mu\left(Q_{n}(x)\right)}{\log \mu\left(Q_{n}(x)\right)+2 \log n}\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{1+2 \log n / \log \mu\left(Q_{n}(x)\right)} .
\end{aligned}
$$

Since

$$
\underline{d}_{\mu}(x)=\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \leq \liminf _{n \rightarrow \infty} \frac{\log \mu\left(B\left(x, 2^{-n}\right)\right)}{-n \log 2} \leq \liminf _{n \rightarrow \infty} \frac{\log \mu\left(Q_{n}(x)\right)}{-n \log 2},
$$

for large n we see

$$
\log \mu\left(Q_{n}(x)\right)<-\frac{n}{2} \underline{d}_{\mu}(x) \log 2 .
$$

Hence we have

$$
\limsup _{n \rightarrow \infty} \frac{\log R_{B\left(x, 2^{-n}\right)}(x)}{-\log \mu\left(B\left(x, 2^{-n}\right)\right)} \leq \limsup _{n \rightarrow \infty}\left(1-\frac{4 \log n}{n \underline{d}_{\mu}(x) \log 2}\right)^{-1}=1
$$

3. Return time for irrational rotations

In this section we prove Theorem 1.3.
We need some properties on diophantine approximations. For more details, consult [6] and [10]. For an irrational number $0<\theta<1$, we have a unique continued fraction expansion;

$$
\theta=\left[a_{1}, a_{2}, \ldots\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}
$$

if $a_{i} \geq 1$ for all $i \geq 1$. Put $p_{0}=0$ and $q_{0}=1$. Choose p_{i} and q_{i} for $i \geq 1$ such that $\left(p_{i}, q_{i}\right)=1$ and

$$
\frac{p_{i}}{q_{i}}=\left[a_{1}, a_{2}, \ldots, a_{i}\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{i}}}}} .
$$

We call each a_{i} the i-th partial quotient and p_{i} / q_{i} the i-th convergent. Then the denominator q_{i} and the numerator p_{i} of the i-th convergent satisfy the following properties: $q_{i+2}=a_{i+2} q_{i+1}+q_{i}, p_{i+2}=a_{i+2} p_{i+1}+p_{i}$ and

$$
\frac{1}{2 q_{i+1}}<\frac{1}{q_{i+1}+q_{i}}<\left\|q_{i} \theta\right\|<\frac{1}{q_{i+1}}
$$

for $i \geq 1$.

It is well known [6] that $\|j \theta\| \geq\left\|q_{i} \theta\right\|$ for $0<j<q_{i+1}$ and $\theta-p_{i} / q_{i}$ is positive if and only if i is even. Thus, by the definition of type (α, β) in Definition 1.2, we have

$$
\begin{aligned}
& \eta=\sup \left\{t>0: \liminf _{i \rightarrow \infty}^{t} q_{i}^{t}\left\|q_{i} \theta\right\|=0\right\}, \\
& \alpha=\sup \left\{t>0: \liminf _{i \rightarrow \infty}^{t} q_{2 i+1}^{t}\left\|q_{2 i+1} \theta\right\|=0\right\}, \\
& \beta=\sup \left\{t>0: \liminf _{i \rightarrow \infty}^{t} q_{2 i}\left\|q_{2 i} \theta\right\|=0\right\} .
\end{aligned}
$$

And we have the following lemma:
Lemma 3.1. For any $\epsilon>0$ and $C>0$, we have (i)

$$
q_{2 i+1}^{\alpha+\epsilon}\left\|q_{2 i+1} \theta\right\|>C \quad \text { and } \quad q_{2 i}^{\beta+\epsilon}\left\|q_{2 i} \theta\right\|>C .
$$

for sufficiently large integer i, and (ii) there are infinitely many odd i's such that $q_{i}^{\alpha-\epsilon}\left\|q_{i} \theta\right\|<C$ and even i 's such that $q_{i}^{\beta-\epsilon}\left\|q_{i} \theta\right\|<C$.

It is known that the first return time R_{E} of an irrational rotation T has at most three values if E is an interval [12]. For the proof consult [8].

FACT 3.2. Let T be an irrational rotation and $b \in(0,\|\theta\|]$ a fixed real number. Moreover let $i \geq 0$ be an integer such that $\left\|q_{i} \theta\right\|<b \leq\left\|q_{i-1} \theta\right\|$ and put

$$
K=\max \left\{k \geq 0: k\left\|q_{i} \theta\right\|+\left\|q_{i+1} \theta\right\|<b\right\} .
$$

If i is even, then

$$
R_{(0, b)}(x)= \begin{cases}q_{i}, & 0<x<b-\left\|q_{i} \theta\right\|, \\ q_{i+1}-(K-1) q_{i}, & b-\left\|q_{i} \theta\right\| \leq x \leq K\left\|q_{i} \theta\right\|+\left\|q_{i+1} \theta\right\|, \\ q_{i+1}-K q_{i}, & K\left\|q_{i} \theta\right\|+\left\|q_{i+1} \theta\right\|<x<b .\end{cases}
$$

If i is odd, then

$$
R_{(0, b)}(x)= \begin{cases}q_{i+1}-K q_{i}, & 0<x<b-K\left\|q_{i} \theta\right\|-\left\|q_{i+1} \theta\right\|, \\ q_{i+1}-(K-1) q_{i}, & b-K\left\|q_{i} \theta\right\|-\left\|q_{i+1} \theta\right\| \leq x \leq\left\|q_{i} \theta\right\|, \\ q_{i}, & \left\|q_{i} \theta\right\|<x<b .\end{cases}
$$

And we have $R_{[0, b)}(0)=q_{i}$ for even i and $R_{[0, b)}(0)=q_{i+1}-K q_{i}$ for odd i.
Note that the value at the middle interval is the sum of the other two values and $0 \leq K \leq a_{i+1}-1$ since $\left\|q_{i-1} \theta\right\|=a_{i+1}\left\|q_{i} \theta\right\|+\left\|q_{i+1} \theta\right\|$.

REMARK 3.3. (i) For all $i, q_{i+1}-K q_{i}>q_{i}$. (ii) By Kac's lemma $q_{i+1}-$ $(K-1) q_{i}>1 / b$.

Lemma 3.4. Let i be an integer such that $\left\|q_{i} \theta\right\|<\mu(B(x, r ; s)) \leq\left\|q_{i-1} \theta\right\|$. Put $K=\max \left\{k \geq 0: k\left\|q_{i} \theta\right\|+\left\|q_{i+1} \theta\right\|<\mu(B(x, r ; s))\right\}$ as in Fact 3.2. Then
(i) if i is even, then $R_{B(x, r ; s)}(x)=q_{i}$ for $r>\left\|q_{i} \theta\right\|$ and $R_{B(x, r ; s)}(x) \geq q_{i+1}-K q_{i}$ for $r \leq\left\|q_{i} \theta\right\|$,
(ii) if i is odd, then $R_{B(x, r ; s)}(x)=q_{i}$ for $r^{s}>\left\|q_{i} \theta\right\|$ and $R_{B(x, r ; s)}(x) \geq q_{i+1}-K q_{i}$ for $r^{s} \leq\left\|q_{i} \theta\right\|$.

Proof. Put $b=\mu(B(x, r ; s))=r^{s}+r$ and apply Fact 3.2. Then $R_{\mu(B(x, r ; s))}(x)=$ $R_{(0, b)}\left(r^{s}\right)$ for $s<\infty$ and $R_{\mu(B(x, r ; s))}(x)=R_{[0, b)}(0)$ for $s=\infty$.

By the symmetry, we only consider the case $s \geq 1$.

Proposition 3.5.

$$
\liminf _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))} \geq \min \left\{\frac{1}{\beta}, \frac{s}{\alpha}\right\} .
$$

Proof. If $\left\|q_{2 i} \theta\right\|<\mu(B(x, r ; s)) \leq\left\|q_{2 i-1} \theta\right\|$, then for any $C>0$ and $\epsilon>0$ by Lemma 3.4 (i) and Lemma 3.1 (i) we have

$$
R_{B(x, r ; s)}(x) \geq q_{2 i}>\frac{C^{1 /(\beta+\epsilon)}}{\left\|q_{2 i} \theta\right\|^{1 /(\beta+\epsilon)}}>\frac{C^{1 /(\beta+\epsilon)}}{\mu(B(x, r ; s))^{1 /(\beta+\epsilon)}} .
$$

If $\left\|q_{2 i+1} \theta\right\|<\mu(B(x, r ; s)) \leq\left\|q_{2 i} \theta\right\|$ and $r^{s}>\left\|q_{2 i+1} \theta\right\|$, then

$$
R_{B(x, r ; s)}(x)=q_{2 i+1}>\frac{C^{1 /(\alpha+\epsilon)}}{\left\|q_{2 i+1} \theta\right\|^{1 /(\alpha+\epsilon)}}>\frac{C^{1 /(\alpha+\epsilon)}}{\mu(B(x, r ; s))^{s /(\alpha+\epsilon)}} .
$$

If $\left\|q_{2 i+1} \theta\right\|<\mu(B(x, r ; s)) \leq\left\|q_{2 i} \theta\right\|$ and $r^{s} \leq\left\|q_{2 i+1} \theta\right\|$, then by Remark 3.3

$$
R_{B(x, r ; s)}(x) \geq q_{2 i+2}-K q_{2 i+1}>\frac{1}{2}\left(q_{2 i+2}-(K-1) q_{2 i+1}\right)>\frac{1}{2 \mu(B(x, r ; s))} .
$$

Proposition 3.6.

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))} \leq \min \{\alpha, s\} .
$$

Proof. Suppose $\left\|q_{2 i+1} \theta\right\|<\mu(B(x, r ; s)) \leq\left\|q_{2 i} \theta\right\|$. If $r^{s}>\left\|q_{2 i+1} \theta\right\|$, then

$$
R_{B(x, r ; s)}(x)=q_{2 i+1}<\frac{1}{\left\|q_{2 i} \theta\right\|} \leq \frac{1}{\mu(B(x, r ; s))} .
$$

If $r^{s} \leq\left\|q_{2 i+1} \theta\right\|$, then

$$
\mu(B(x, r ; s)) \leq\left\|q_{2 i+1} \theta\right\|+\left\|q_{2 i+1} \theta\right\|^{1 / s} \leq 2\left\|q_{2 i+1} \theta\right\|^{1 / s}
$$

so we have

$$
\begin{equation*}
R_{B(x, r ; s)}(x) \leq q_{2 i+2}+q_{2 i+1}<2 q_{2 i+2}<\frac{2}{\left\|q_{2 i+1} \theta\right\|} \leq \frac{2 \cdot 2^{s}}{\mu(B(x, r ; s))^{s}} \tag{1}
\end{equation*}
$$

Also by Lemma 3.1 (i) for any $C>0$ and $\epsilon>0$ we have
(2)

$$
R_{B(x, r ; s)}(x)<\frac{2}{\left\|q_{2 i+1} \theta\right\|}<\frac{2 q_{2 i+1}^{\alpha+\epsilon}}{C}<\frac{2}{C\left\|q_{2 i} \theta\right\|^{\alpha+\epsilon}} \leq \frac{2}{C \mu(B(x, r ; s))^{\alpha+\epsilon}} .
$$

Suppose $\left\|q_{2 i} \theta\right\|<\mu(B(x, r ; s)) \leq\left\|q_{2 i-1} \theta\right\|$. If $r>\left\|q_{2 i} \theta\right\|$, then

$$
R_{B(x, r ; s)}(x)=q_{2 i}<\frac{1}{\left\|q_{2 i-1} \theta\right\|} \leq \frac{1}{\mu(B(x, r ; s))}
$$

If $r \leq\left\|q_{2 i} \theta\right\|$, then

$$
R_{B(x, r ; s)}(x) \leq q_{2 i+1}+q_{2 i}<2 q_{2 i+1}<\frac{2}{\left\|q_{2 i} \theta\right\|} \leq \frac{2}{r} \leq \frac{4}{\mu(B(x, r ; s))}
$$

Since $\alpha \geq 1$ and $s \geq 1$, by (1) and (2), we have

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))} \leq \min \{\alpha, s\}
$$

Proposition 3.7.

$$
\liminf _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))} \leq \min \left\{\frac{1}{\beta}, \frac{s}{\alpha}\right\}
$$

Proof. From Lemma 3.1 (ii) for any $C>0$ and $\epsilon>0$ we have infinitely many even i 's such that

$$
q_{i}^{\beta-\epsilon}\left\|q_{i} \theta\right\|<C
$$

Put $r=\left\|q_{i} \theta\right\|+\left\|q_{i+1} \theta\right\| / 2$ for such i. Then

$$
\left\|q_{i-1} \theta\right\|<\mu(B(x, r ; s)) \leq 2 r \leq 2\left\|q_{i} \theta\right\|+\left\|q_{i+1} \theta\right\| \leq\left\|q_{i-2} \theta\right\|
$$

If $\mu(B(x, r ; s)) \leq\left\|q_{i-1} \theta\right\|$, then by Lemma 3.4 (i), we have

$$
R_{B(x, r ; s)}(x)=q_{i}<\frac{C^{1 /(\beta-\epsilon)}}{\left\|q_{i} \theta\right\|^{1 /(\beta-\epsilon)}}<\frac{C^{1 /(\beta-\epsilon)}}{r^{1 /(\beta-\epsilon)}}
$$

If $\left\|q_{i-1} \theta\right\|<\mu(B(x, r ; s)) \leq\left\|q_{i-2} \theta\right\|$, then

$$
R_{B(x, r ; s)}(x) \leq q_{i}+q_{i-1} \leq 2 q_{i}<\frac{2 C^{1 /(\beta-\epsilon)}}{\left\|q_{i} \theta\right\|^{1 /(\beta-\epsilon)}}<\frac{2 C^{1 /(\beta-\epsilon)}}{r^{1 /(\beta-\epsilon)}} .
$$

Hence

$$
\begin{equation*}
\liminf _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log r} \leq \frac{1}{\beta} . \tag{3}
\end{equation*}
$$

Since $\beta \geq 1$, we only consider the case where $1 \leq s<\alpha$. By Lemma 3.1 (ii) there are infinitely many odd i 's such that $q_{i}^{\alpha-\epsilon}\left\|q_{i} \theta\right\|<C$ with $0<s<\alpha-\epsilon$ for any $C>0$. Put $r^{s}=2\left\|q_{i} \theta\right\|$ for such i. Then

$$
\mu(B(x, r ; s))=r+r^{s} \leq 4\left\|q_{i} \theta\right\|^{1 / s}<\frac{4 C^{1 / s}}{q_{i}^{(\alpha-\epsilon) / s}}<4 C^{1 / s} 2^{(\alpha-\epsilon) / s}\left\|q_{i-1} \theta\right\|^{(\alpha-\epsilon) / s} .
$$

For large i so that $2^{\alpha-\epsilon+2} C\left\|q_{i-1} \theta\right\|^{\alpha-\epsilon-s}<1$, we have

$$
\mu(B(x, r ; s))<\left\|q_{i-1} \theta\right\| .
$$

Thus by Lemma 3.4 (ii), we have

$$
R_{B(x, r ; s)}(x)=q_{i}<\frac{C^{1 /(\alpha-\epsilon)}}{\left\|q_{i} \theta\right\|^{1 /(\alpha-\epsilon)}}<\frac{2^{s /(\alpha-\epsilon)} C^{1 /(\alpha-\epsilon)}}{r^{s /(\alpha-\epsilon)}}
$$

for large i. Hence

$$
\begin{equation*}
\liminf _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log r} \leq \frac{s}{\alpha} . \tag{4}
\end{equation*}
$$

By (3) and (4), we complete the proof.
Proposition 3.8.

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))} \geq \min \{\alpha, s\} .
$$

Proof. If we choose r as $\mu(B(x, r ; s))=\left\|q_{i-1} \theta\right\|$, then

$$
R_{B(x, r ; s)}(x) \geq q_{i}>\frac{1}{2\left\|q_{i-1} \theta\right\|}=\frac{1}{\mu(B(x, r ; s))}
$$

so we have

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log \mu(B(x, r ; s))} \geq 1
$$

Thus we only consider the case that $s>1$ and $\alpha>1$:
(i) Suppose that there are only finitely many i 's such that

$$
2^{s} q_{2 i+1}^{s}\left\|q_{2 i+1} \theta\right\|<1 .
$$

In this case, $s \geq \alpha>1$.
Choose ϵ as $0<\epsilon<\alpha-1$. By Lemma 3.1 (ii), there are infinitely many i 's such that

$$
q_{2 i+1}^{\alpha-\epsilon}\left\|q_{2 i+1} \theta\right\|<\frac{1}{4}
$$

Put $r=(1 / 2)\left\|q_{2 i} \theta\right\|$ for such i. Then we have

$$
\mu(B(x, r ; s))=r^{s}+r \leq 2 r=\left\|q_{2 i} \theta\right\|
$$

and

$$
\mu(B(x, r ; s))=r^{s}+r \geq \frac{1}{2}\left\|q_{2 i} \theta\right\|>\frac{1}{4 q_{2 i+1}}>\frac{1}{4 q_{2 i+1}^{\alpha-\epsilon}}>\left\|q_{2 i+1} \theta\right\| .
$$

And for large i so as to $2^{s} q_{2 i+1}^{s}\left\|q_{2 i+1} \theta\right\| \geq 1$, we have

$$
\begin{equation*}
r^{s}=\frac{1}{2^{s}}\left\|q_{2 i} \theta\right\|^{s}<\frac{1}{2^{s} q_{2 i+1}^{s}} \leq\left\|q_{2 i+1} \theta\right\| . \tag{5}
\end{equation*}
$$

By the definition of K

$$
K\left\|q_{2 i+1} \theta\right\|+\left\|q_{2 i+2} \theta\right\|<r^{s}+r=\left\|q_{2 i+1} \theta\right\|+\frac{1}{2}\left\|q_{2 i} \theta\right\|,
$$

we have

$$
(K-1)\left\|q_{2 i+1} \theta\right\|+\frac{\left\|q_{2 i+2} \theta\right\|}{2}<\frac{a_{2 i+2}}{2}\left\|q_{2 i+1} \theta\right\|
$$

since $\left\|q_{2 i} \theta\right\|=a_{2 i+2}\left\|q_{2 i+1} \theta\right\|+\left\|q_{2 i+2} \theta\right\|$. Therefore $K<1+a_{2 i+2} / 2$. Since $q_{2 i+2}=$ $a_{2 i+2} q_{2 i+1}+q_{2 i}$, we have

$$
\begin{aligned}
q_{2 i+2}-K q_{2 i+1} & >q_{2 i+2}-\frac{a_{2 i+2}}{2} q_{2 i+1}-q_{2 i+1}=\frac{1}{2} q_{2 i+2}+\frac{1}{2} q_{2 i}-q_{2 i+1} \\
& >\frac{1}{2} q_{2 i+2}-q_{2 i+1}>\frac{1}{4\left\|q_{2 i+1} \theta\right\|}-q_{2 i+1} \\
& >q_{2 i+1}^{\alpha-\epsilon}-q_{2 i+1}=q_{2 i+1}^{\alpha-\epsilon}\left(1-q_{2 i+1}^{1+\epsilon-\alpha}\right)>\frac{1-q_{2 i+1}^{1+\epsilon-\alpha}}{\left\|q_{2 i} \theta\right\|^{\alpha-\epsilon}} .
\end{aligned}
$$

From $\alpha>1+\epsilon$, we have $q_{2 i+1}^{\alpha-1-\epsilon}>2$ for large i. Hence by Lemma 3.4 (ii) and (5) for large i, we have

$$
\begin{equation*}
R_{B(x, r ; s)}(x) \geq q_{2 i+2}-K q_{2 i+1}>\frac{1-q_{2 i+1}^{1+\epsilon-\alpha}}{\left\|q_{2 i} \theta\right\|^{\alpha-\epsilon}}>\frac{1}{2\left\|q_{2 i} \theta\right\|^{\alpha-\epsilon}}>\frac{2^{\alpha-\epsilon}}{2 r^{\alpha-\epsilon}} . \tag{6}
\end{equation*}
$$

(ii) Suppose that there are infinitely many i 's such that

$$
2^{s} q_{2 i+1}^{s}\left\|q_{2 i+1} \theta\right\|<1
$$

In this case, $1<s \leq \alpha$.
Choose $r^{s}=\left\|q_{2 i+1} \theta\right\| / 2$ for such i. Then we have

$$
r=\frac{\left\|q_{2 i+1} \theta\right\|^{1 / s}}{2^{1 / s}}<\frac{1}{2^{1 / s} 2 q_{2 i+1}}<\frac{\left\|q_{2 i} \theta\right\|}{2^{1 / s}}
$$

and

$$
\mu(B(x, r ; s))=r+r^{s}<\frac{\left\|q_{2 i} \theta\right\|}{2^{1 / s}}+\frac{\left\|q_{2 i} \theta\right\|^{s}}{2}=\left\|q_{2 i} \theta\right\|\left(2^{-1 / s}+\frac{\left\|q_{2 i} \theta\right\|^{s-1}}{2}\right) .
$$

Therefore for large i so as to $\left\|q_{2 i} i\right\|^{s-1}<2\left(1-2^{-1 / s}\right)$, we have

$$
\mu(B(x, r ; s))<\left\|q_{2 i} \theta\right\| .
$$

Also we see

$$
\mu(B(x, r ; s))=r^{s}+r>2 r^{s}=\left\|q_{2 i+1} \theta\right\| .
$$

Since

$$
K\left\|q_{2 i+1} \theta\right\|+\left\|q_{2 i+2} \theta\right\|<r^{s}+r=\frac{\left\|q_{2 i+1} \theta\right\|}{2}+\frac{\left\|q_{2 i+1} \theta\right\|^{1 / s}}{2^{1 / s}}
$$

we have

$$
K \leq \frac{1}{2}+\frac{\left\|q_{2 i+1} \theta\right\|^{1 / s-1}}{2^{1 / s}}<\frac{1}{2}+\frac{2 q_{2 i+2}\left\|q_{2 i+1} \theta\right\|^{1 / s}}{2^{1 / s}}<\frac{1}{2}+\frac{2 q_{2 i+2}}{2^{1 / s}} \frac{1}{2 q_{2 i+1}} .
$$

Hence by Lemma 3.4 (ii)

$$
\begin{align*}
R_{B(x, r ; s)}(x) & \geq q_{2 i+2}-K q_{2 i+1}>q_{2 i+2}-\frac{q_{2 i+2}}{2^{1 / s}}-\frac{q_{2 i+1}}{2} \\
& >\left(1-2^{-1 / s}\right) q_{2 i+2}-\frac{q_{2 i+1}}{2}>\frac{1-2^{-1 / s}}{2\left\|q_{2 i+1} \theta\right\|}-\frac{1}{4\left\|q_{2 i+1} \theta\right\|^{1 / s}} \tag{7}\\
& >\frac{1-2^{-1 / s}}{4\left\|q_{2 i+1} \theta\right\|}=\left(1-2^{-1 / s}\right) \frac{1}{8 r^{s}}
\end{align*}
$$

for large i so that

$$
\left\|q_{2 i+1} \theta\right\|^{1-1 / s}<1-2^{-1 / s} .
$$

Hence by (6) and (7)

$$
\limsup _{r \rightarrow 0^{+}} \frac{\log R_{B(x, r ; s)}(x)}{-\log r} \geq \min \{\alpha, s\}
$$

which completes the proof.
By Proposition 3.5, 3.6, 3.7 and 3.8, we have the proof of Theorem 1.3.

References

[1] L. Barreira and B. Saussol: Hausdorff dimension of measures via Poincaré recurrence, Commun. Math. Phys. 219 (2001), 443-463.
[2] L. Barreira and B. Saussol: Product structure of Poincaré recurrence, Ergodic Theory Dynam. Systems 22 (2002), 33-61.
[3] G.H. Choe: A universal law of logarithm of the recurrence time, Nonlinearity 16 (2003), 883-896.
[4] G.H. Choe and B.K. Seo: Recurrence speed of multiples of an irrational number, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), 134-137.
[5] M. Kac: On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002-1010.
[6] A.Ya. Khinchin: Continued Fractions, Univ. Chicago Press, Chicago, 1964.
[7] C. Kim and D.H. Kim: On the law of logarithim of the recurrence time, Discrete Contin. Dynam. Syst. 10 (2004), 581-587.
[8] D.H. Kim and B.K. Seo: The waiting time for irrational rotations, Nonlinearity 16 (2003), 1861-1868.
[9] D. Ornstein and B. Weiss: Entropy and data compression schemes, IEEE Trans. Inform. Theory 39 (1993), 78-83.
[10] A. Rockett and P. Szüsz: Continued Fractions, World Scientific Publishing Co., Inc., River Edge, NJ, 1992.
[11] B. Saussol, S. Troubetzkoy, and S. Vaienti: Recurrence, dimensions and Lyapunov exponents, J. Statist. Phys. 106 (2002), 623-634.
[12] N.B. Slater: Gaps and steps for the sequence $n \theta(\bmod 1)$, Proc. Camb. Phil. Soc. 63 (1967), 1115-1123.
[13] A.D. Wyner and J. Ziv: Some asymptotic properties of the entropy of stationary ergodic data source with applications to data compression, IEEE Trans. Inform. Theory 35 (1989), 1250-1258.

School of Mathematics
Korea Institute for Advanced Study
Seoul 130-722, Korea
e-mail: kimdh@kias.re.kr
Current address:
Department of Mathematics
University of Suwon
San 2-2 Wau-ri, Bongdam-eup, Hwaseong-si Gyeonggi-do 445-743 Korea
e-mail: kimdh@suwon.ac.kr

[^0]: 2000 Mathematics Subject Classification. 37E10, 11K50.

