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THE RECURRENCE TIME FOR IRRATIONAL ROTATIONS
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Abstract
Let T be a measure preserving transformation onX � Rd with a Borel measure� and RE be the first return time to a subsetE. If (X;�) has positive pointwise

dimension for almost everyx, then for almost everyx
lim supr!0+

logRB(x;r)(x)� log�(B(x; r)) � 1;
whereB(x; r) the the ball centered atx with radius r. But the above property does
not hold for the neighborhood of the ‘skewed’ ball. LetB(x; r; s) = (x� r s; x + r) be
an interval fors > 0. For arbitrary� � 1 and � � 1, there are uncountably many
irrational numbers whose rotation satisfy that

lim supr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) = � and lim infr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) =
1�

for somes.
1. Introduction

Let � be a probability measure onX and T : X ! X be a�-preserving trans-
formation. For a measurable subsetE � X with �(E) > 0 and a pointx 2 E which
returns toE under iteration byT , we define the first return timeRE on E by

RE(x) = min
�j � 1: T jx 2 E	 :

Kac’s lemma [5] states that Z
E RE(x) d� � 1:

If T is ergodic, then the equality holds.
For a decreasing sequence of subsetsfEng containingx, REn is an increasing se-

quence. The asymptotic behavior betweenREn and the measure ofEn has been studied
after Wyner and Ziv’s work [13] for ergodic processes. LetP be a partition ofX andfPng be a sequence of partitions ofX obtained byPn = P _ T �1P _ � � � _ T �n+1P,
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whereP _Q = fP \Q : P 2 P; Q 2 Qg: Ornstein and Weiss [9] showed that ifT is
ergodic, then

limn!1 logRPn(x)(x)n = h(T ;P) a.e.;
wherePn(x) is the element inPn containingx. Therefore, by the Shannon-McMillan-
Brieman theorem, if the entropy with respect to a partitionP, h(T ;P) is positive, then
we have

limn!1 logRPn(x)(x)� log�(Pn(x))
= 1 a.e.

Let (X; d) be a metric space andB(x; r) = fy : d(x; y) < rg. Define the upper and
lower pointwise dimension of� at x by

d�(x) = lim supr!0+

log�(B(x; r))
logr ; d�(x) = lim infr!0+

log�(B(x; r))
logr :

Now we have another recurrence theorem for the decreasing sequence of balls.

Theorem 1.1. Let T : X ! X be a Borel measurable transformation on a mea-
surable setX � Rd for somed 2 N and � be a T -invariant probability measure onX. If d�(x) > 0 for �-almost everyx, then we have

lim supr!0+

logRB(x;r)(x)� log�(B(x; r)) � 1

for �-almost everyx.

This theorem is a modified version of Barreira and Saussol’s result [1] which
states that

lim supr!0+

logRB(x;r)(x)� logr � d�(x); lim infr!0+

logRB(x;r)(x)� logr � d�(x):
See also [2], [3], [7], and [11] for the transformations which satisfy that

limr!0+

logRB(x;r)(x)� logr = dimension of�:
Note that for some irrational rotations the limit does not exist [4].

So one might expect that if we choose a decreasing sequence ofsetsEn as ‘good’
neighborhoods ofx

lim supn
logREn (x)� log�(En) � 1:
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However, we show that even for intervalEn’s on X the limsup can be larger than 1
for some irrational rotations.

For t 2 R we definek � k and f � g by

ktk = minn2Z
jt � nj; ftg = t � bt;

i.e., the distance to the nearest integer and the nearest integer which is less than or
equal tot , respectively.

An irrational number� , 0< � < 1, is said to be of type� if

� = sup

�t > 0: lim infj!1 j tkj�k = 0

� :
Every irrational number is of type� � 1. The set of irrational numbers of type 1 has
measure 1 and includes the set of irrational numbers with bounded partial quotients,
which is of measure 0. There exist numbers of type1, called Liouville numbers. Here
we introduce a new definition on type of irrational numbers:

DEFINITION 1.2. An irrational number� , 0< � < 1, is said to be oftype
(�; �) if

� = sup

�t > 0: lim infj!1 j t f�j�g = 0

� ;
� = sup

�t > 0: lim infj!1 j t fj�g = 0

� :
For example, if the partial quotients of an irrational number � is a2k = 22k fork � 1 and a2k+1 = 1 for k � 0, then � is of type (2;1). Note that�; � � 1 and� = maxf�; �g. For each�; � > 1 there are uncountably many (but measure zero)� ’s

which are of type (�; �).
Let 0< � < 1 be an irrational number andT : [0;1)! [0;1) an irrational

rotation, i.e.,

T x = x + � (mod 1):
Then T preserves the Lebesgue measure� on X = [0;1).

Let B(x; r; s) be an interval (x � rs; x + r), s > 0 and putB(x; r;1) = [x; x + r).
Theorem 1.3. If � is of type (�; �), then for 1 � s � 1 and anyx 2 [0;1),

we have

lim supr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) = minf�; sg; lim infr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) = min

�
1� ; s�

�
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and for 0< s < 1 and anyx 2 [0;1), we have

lim supr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) = min

��; 1s
� ; lim infr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) = min

�
1� ; 1s�

� :

By the symmetry, we have

lim supr!0+

logR(x�r;x](x)� logr = �; lim infr!0+

logR(x�r;x](x)� logr =
1� :

Note that if s = 1 the theorem is reduced to

lim supr!0+

logRB(x;r)(x)� log�(B(x; r)) = 1; lim infr!0+

logRB(x;r)(x)� log�(B(x; r)) =
1� ;

which was shown in [4].

2. Return time for measure space

In this section we prove Theorem 1.1. LetX � Rd for somed 2 N. Define

Qn =
��i12�n; (i1 + 1)2�n�� � � � � �id2�n; (id + 1)2�n� : (i1; : : : ; id ) 2 Zd	

to be the dyadic partition ofRd andQn = fX\A : A 2 Qng. Let Qn(x) as the element
of Qn containingx.

In order to prove Theorem 1.1 we need a lemma, which is a slightmodification
of the weakly diametrically regularity in [1].

Lemma 2.1. Let � be a Borel probability measure onRd . For �-almost everyx we have

� �B �x;2�n�� � n2�(Qn(x))

for sufficiently largen.

Proof. Let

En =
�x : � �B �x;2�n�� > n2�(Qn(x))

	 :
For eachA 2 Qn with A \ En 6= ; choose onex 2 A \ En and letF be a set of
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suchx’s. Then we have

En � [
x2F Qn(x)

and

�(En) �Xx2F �(Qn(x)) <X
x2F n

�2� �B �x;2�n�� :
There is a constantD depending ond such that for eachy 2 Rd , there are at mostDx’s in F such thatx 2 B(y;2�n). Therefore, we have

X
x2F �

�B �x;2�n�� � D � � �Rd� = D
and

�(En) <X
x2F n

�2� �B �x;2�n�� � Dn�2:
Since X

n �(En) < DXn n�2 <1;
the first Borel-Cantelli lemma completes the proof.

Proposition 2.2. Let T : X! X be a Borel measurable transformation on a
measurable setX � Rd and � be aT -invariant probability measure onX. If d�(x) >
0 for �-almost everyx, then

lim supn!1
logRQn(x)(x)� log�(Qn(x))

� 1

for �-almost everyx.

Proof. Choose an arbitrary� > 0. For anA 2 Qn, we have by Markov’s inequality

���x 2 A : RA(x) � 2n��(A)

�� � �(A)2�n� ZA RA(x) d�:
By Kac’s lemma we have

���x 2 A : RA(x) � 2n��(A)

�� � �(A)2�n� :
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Hence we have

���x 2 X : RQn(x)(x) � 2n��(Qn(x))

�� � X
A2Qn �(A)2�n� � 2�n�

and

1X
n=1

� ��x 2 X : RQn(x)(x) � �(Qn(x))�12�n�	� <1:
By the first Borel-Cantelli lemma, for almost everyx we have

RQn(x)(x) < 2n��(Qn(x))

eventually. Thus for almost everyx
lim supn!1

logRQn(x)(x)� log�(Qn(x))
� 1 + � � lim supn!1

�n log 2

log�(Qn(x))

� 1 + � � lim supn!1
�n log 2

log�(B(x;2�n))
� 1 + � � lim supr!0

logr
log�(B(x; r))

sinceQn(x) � B(x;2�n). Hence we have

lim supn!1
logRQn(x)(x)� log�(Qn(x))

� 1 +
�d�(x)

:
By the assumption ofd�(x) > 0 for almost everyx, we have

lim supn!1
logRQn(x)(x)� log�(Qn(x))

� 1

for almost everyx.

Proof of Theorem 1.1. By Lemma 2.1 we have log�(B(x;2�n)) � log�(Qn(x))+
2 logn and logRB(x;2�n)(x) � logRQn(x)(x) from Qn(x) � B(x;2�n). Therefore,

logRB(x;2�n)(x)� log�(B(x;2�n)) � logRQn(x)(x)� log�(Qn(x))� 2 logn



THE RECURRENCETIME FOR IRRATIONAL ROTATIONS 357

for sufficiently largen. By Proposition 2.2

lim supn!1
logRB(x;2�n)(x)� log�(B(x;2�n)) � lim supn!1

�
logRQn(x)(x)� log�(Qn(x))

� log�(Qn(x))

log�(Qn(x)) + 2 logn
�

� lim supn!1
1

1 + 2 logn= log�(Qn(x))
:

Since

d�(x) = lim infr!0

log�(B(x; r))
logr � lim infn!1 log�(B(x;2�n))�n log 2

� lim infn!1 log�(Qn(x))�n log 2
;

for large n we see

log�(Qn(x)) < �n
2
d�(x) log 2:

Hence we have

lim supn!1
logRB(x;2�n)(x)� log�(B(x;2�n)) � lim supn!1

 
1� 4 lognnd�(x) log 2

!�1

= 1:
3. Return time for irrational rotations

In this section we prove Theorem 1.3.
We need some properties on diophantine approximations. Formore details, con-

sult [6] and [10]. For an irrational number 0< � < 1, we have a unique continued
fraction expansion;

� = [a1; a2; : : : ] =
1

a1 +
1a2 + � � �

if ai � 1 for all i � 1. Putp0 = 0 andq0 = 1. Choosepi and qi for i � 1 such that
(pi; qi) = 1 and

piqi = [a1; a2; : : : ; ai ] =
1

a1 +
1

a2 +
1

� � � + 1ai

:

We call eachai the i-th partial quotient andpi=qi the i-th convergent. Then the de-
nominatorqi and the numeratorpi of the i-th convergent satisfy the following proper-
ties: qi+2 = ai+2qi+1 + qi , pi+2 = ai+2pi+1 + pi and

1

2qi+1
< 1qi+1 + qi < kqi�k < 1qi+1

for i � 1.
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It is well known [6] that kj�k � kqi�k for 0 < j < qi+1 and � � pi=qi is pos-
itive if and only if i is even. Thus, by the definition of type (�; �) in Definition 1.2,
we have

� = sup

�t > 0: lim infi!1 q ti kqi�k = 0

� ;
� = sup

�t > 0: lim infi!1 q t2i+1kq2i+1�k = 0

� ;
� = sup

�t > 0: lim infi!1 q t2ikq2i�k = 0

� :
And we have the following lemma:

Lemma 3.1. For any � > 0 and C > 0, we have(i)

q�+�
2i+1kq2i+1�k > C and q�+�

2i kq2i�k > C:
for sufficiently large integeri, and (ii) there are infinitely many oddi’s such thatq���i kqi�k < C and eveni’s such thatq���i kqi�k < C.

It is known that the first return timeRE of an irrational rotationT has at most
three values ifE is an interval [12]. For the proof consult [8].

FACT 3.2. Let T be an irrational rotation andb 2 (0; k�k] a fixed real number.
Moreover leti � 0 be an integer such thatkqi�k < b � kqi�1�k and put

K = maxfk � 0: kkqi�k + kqi+1�k < bg:
If i is even, then

R(0;b)(x) =

8>><
>>:
qi; 0< x < b � kqi�k;qi+1� (K � 1)qi; b � kqi�k � x � Kkqi�k + kqi+1�k;qi+1�Kqi; Kkqi�k + kqi+1�k < x < b:

If i is odd, then

R(0;b)(x) =

8>><
>>:
qi+1 �Kqi; 0< x < b �Kkqi�k � kqi+1�k;qi+1 � (K � 1)qi; b �Kkqi�k � kqi+1�k � x � kqi�k;qi; kqi�k < x < b:

And we haveR[0;b)(0) = qi for even i andR[0;b)(0) = qi+1�Kqi for odd i.
Note that the value at the middle interval is the sum of the other two values and

0� K � ai+1� 1 sincekqi�1�k = ai+1kqi�k + kqi+1�k.



THE RECURRENCETIME FOR IRRATIONAL ROTATIONS 359

REMARK 3.3. (i) For all i, qi+1�Kqi > qi . (ii) By Kac’s lemma qi+1 �
(K � 1)qi > 1=b.

Lemma 3.4. Let i be an integer such thatkqi�k < �(B(x; r; s)) � kqi�1�k. PutK = maxfk � 0: kkqi�k + kqi+1�k < �(B(x; r; s))g as in Fact 3.2.Then
(i) if i is even, then RB(x;r;s)(x) = qi for r > kqi�k and RB(x;r;s)(x) � qi+1 � Kqi
for r � kqi�k,
(ii) if i is odd, then RB(x;r;s)(x) = qi for rs > kqi�k and RB(x;r;s)(x) � qi+1 � Kqi
for rs � kqi�k.

Proof. Putb = �(B(x; r; s)) = rs + r and apply Fact 3.2. ThenR�(B(x;r;s))(x) =R(0;b)(rs) for s <1 andR�(B(x;r;s))(x) = R[0;b)(0) for s = 1.

By the symmetry, we only consider the cases � 1.

Proposition 3.5.

lim infr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) � min

�
1� ; s�

� :
Proof. If kq2i�k < �(B(x; r; s)) � kq2i�1�k, then for anyC > 0 and � > 0 by

Lemma 3.4 (i) and Lemma 3.1 (i) we have

RB(x;r;s)(x) � q2i > C1=(�+�)
kq2i�k1=(�+�) > C1=(�+�)

�(B(x; r; s))1=(�+�) :
If kq2i+1�k < �(B(x; r; s)) � kq2i�k and rs > kq2i+1�k, then

RB(x;r;s)(x) = q2i+1 > C1=(�+�)
kq2i+1�k1=(�+�) > C1=(�+�)

�(B(x; r; s))s=(�+�) :
If kq2i+1�k < �(B(x; r; s)) � kq2i�k and rs � kq2i+1�k, then by Remark 3.3

RB(x;r;s)(x) � q2i+2�Kq2i+1 > 1

2
(q2i+2� (K � 1)q2i+1) > 1

2�(B(x; r; s)) :
Proposition 3.6.

lim supr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) � minf�; sg:
Proof. Supposekq2i+1�k < �(B(x; r; s)) � kq2i�k. If rs > kq2i+1�k, then

RB(x;r;s)(x) = q2i+1 < 1kq2i�k �
1�(B(x; r; s)) :
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If rs � kq2i+1�k, then

�(B(x; r; s)) � kq2i+1�k + kq2i+1�k1=s � 2kq2i+1�k1=s;
so we have

(1) RB(x;r;s)(x) � q2i+2 + q2i+1 < 2q2i+2 < 2kq2i+1�k �
2 � 2s�(B(x; r; s))s :

Also by Lemma 3.1 (i) for anyC > 0 and� > 0 we have

(2) RB(x;r;s)(x) < 2kq2i+1�k <
2q�+�

2i+1C < 2Ckq2i�k�+� � 2C�(B(x; r; s))�+� :
Supposekq2i�k < �(B(x; r; s)) � kq2i�1�k. If r > kq2i�k, then

RB(x;r;s)(x) = q2i < 1kq2i�1�k �
1�(B(x; r; s)) :

If r � kq2i�k, then

RB(x;r;s)(x) � q2i+1 + q2i < 2q2i+1 < 2kq2i�k �
2r � 4�(B(x; r; s)) :

Since� � 1 and s � 1, by (1) and (2), we have

lim supr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) � minf�; sg:
Proposition 3.7.

lim infr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) � min

�
1� ; s�

� :
Proof. From Lemma 3.1 (ii) for anyC > 0 and � > 0 we have infinitely many

even i’s such that

q���i kqi�k < C:
Put r = kqi�k + kqi+1�k=2 for suchi. Then

kqi�1�k < �(B(x; r; s)) � 2r � 2kqi�k + kqi+1�k � kqi�2�k:
If �(B(x; r; s)) � kqi�1�k, then by Lemma 3.4 (i), we have

RB(x;r;s)(x) = qi < C1=(���)
kqi�k1=(���) < C1=(���)

r1=(���) :
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If kqi�1�k < �(B(x; r; s)) � kqi�2�k, then

RB(x;r;s)(x) � qi + qi�1 � 2qi < 2C1=(���)
kqi�k1=(���) < 2C1=(���)

r1=(���) :
Hence

(3) lim infr!0+

logRB(x;r;s)(x)� logr � 1� :
Since � � 1, we only consider the case where 1� s < �. By Lemma 3.1 (ii)

there are infinitely many oddi’s such thatq���i kqi�k < C with 0< s < �� � for anyC > 0. Put rs = 2kqi�k for such i. Then

�(B(x; r; s)) = r + rs � 4kqi�k1=s < 4C1=s
q(���)=si < 4C1=s2(���)=skqi�1�k(���)=s :

For largei so that 2���+2Ckqi�1�k����s < 1, we have

�(B(x; r; s)) < kqi�1�k:
Thus by Lemma 3.4 (ii), we have

RB(x;r;s)(x) = qi < C1=(���)
kqi�k1=(���) < 2s=(���)C1=(���)

rs=(���)
for large i. Hence

(4) lim infr!0+

logRB(x;r;s)(x)� logr � s� :
By (3) and (4), we complete the proof.

Proposition 3.8.

lim supr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) � minf�; sg:
Proof. If we chooser as�(B(x; r; s)) = kqi�1�k, then

RB(x;r;s)(x) � qi > 1

2kqi�1�k =
1�(B(x; r; s))

so we have

lim supr!0+

logRB(x;r;s)(x)� log�(B(x; r; s)) � 1:
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Thus we only consider the case thats > 1 and� > 1:
(i) Suppose that there are only finitely manyi’s such that

2sqs2i+1kq2i+1�k < 1:
In this case,s � � > 1.

Choose� as 0< � < � � 1. By Lemma 3.1 (ii), there are infinitely manyi’s
such that

q���2i+1kq2i+1�k < 1

4
:

Put r = (1=2)kq2i�k for such i. Then we have

�(B(x; r; s)) = rs + r � 2r = kq2i�k
and

�(B(x; r; s)) = rs + r � 1

2
kq2i�k > 1

4q2i+1
> 1

4q���2i+1

> kq2i+1�k:
And for large i so as to 2sqs2i+1kq2i+1�k � 1, we have

(5) rs =
1

2s kq2i�ks < 1

2sqs2i+1

� kq2i+1�k:
By the definition ofK

Kkq2i+1�k + kq2i+2�k < rs + r = kq2i+1�k +
1

2
kq2i�k;

we have

(K � 1)kq2i+1�k +
kq2i+2�k

2
< a2i+2

2
kq2i+1�k

since kq2i�k = a2i+2kq2i+1�k + kq2i+2�k. ThereforeK < 1 + a2i+2=2. Sinceq2i+2 =a2i+2q2i+1 + q2i , we have

q2i+2 �Kq2i+1 > q2i+2 � a2i+2

2
q2i+1 � q2i+1 =

1

2
q2i+2 +

1

2
q2i � q2i+1

> 1

2
q2i+2 � q2i+1 > 1

4kq2i+1�k � q2i+1

> q���2i+1 � q2i+1 = q���2i+1

�
1� q1+���

2i+1

� > 1� q1+���
2i+1kq2i�k��� :

From � > 1 + �, we haveq��1��
2i+1 > 2 for large i. Hence by Lemma 3.4 (ii) and (5)

for large i, we have

(6) RB(x;r;s)(x) � q2i+2 �Kq2i+1 > 1� q1+���
2i+1kq2i�k��� >

1

2kq2i�k��� >
2���
2r��� :
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(ii) Suppose that there are infinitely manyi’s such that

2sqs2i+1kq2i+1�k < 1:
In this case, 1< s � �.

Choosers = kq2i+1�k=2 for suchi. Then we have

r =
kq2i+1�k1=s

21=s < 1

21=s2q2i+1
< kq2i�k

21=s
and

�(B(x; r; s)) = r + rs < kq2i�k
21=s +

kq2i�ks
2

= kq2i�k
�

2�1=s +
kq2i�ks�1

2

� :
Therefore for largei so as tokq2i�ks�1 < 2(1� 2�1=s), we have

�(B(x; r; s)) < kq2i�k:
Also we see

�(B(x; r; s)) = rs + r > 2rs = kq2i+1�k:
Since

Kkq2i+1�k + kq2i+2�k < rs + r =
kq2i+1�k

2
+
kq2i+1�k1=s

21=s ;
we have

K � 1

2
+
kq2i+1�k1=s�1

21=s < 1

2
+

2q2i+2kq2i+1�k1=s
21=s < 1

2
+

2q2i+2

21=s 1

2q2i+1
:

Hence by Lemma 3.4 (ii)

RB(x;r;s)(x) � q2i+2�Kq2i+1 > q2i+2 � q2i+2

21=s � q2i+1

2

> �
1� 2�1=s� q2i+2 � q2i+1

2
> 1� 2�1=s

2kq2i+1�k �
1

4kq2i+1�k1=s
> 1� 2�1=s

4kq2i+1�k =
�
1� 2�1=s� 1

8rs
(7)

for large i so that

kq2i+1�k1�1=s < 1� 2�1=s :
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Hence by (6) and (7)

lim supr!0+

logRB(x;r;s)(x)� logr � minf�; sg;
which completes the proof.

By Proposition 3.5, 3.6, 3.7 and 3.8, we have the proof of Theorem 1.3.
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