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Abstract
In this paper, we study the degree of equivariant maps bet@tiefel manifolds
by using cohomological index theory. As applications, weehaome Borsuk-Ulam
type theorems on Stiefel manifolds.

1. Introduction

We are concerned with the following classical version of Basuk-Ulam theo-
rem:
(i) If n > k then there is no mayf: §" — S* such thatf(—x) = —f(x) for all x.
This easily follows from the next proposition:
(i) Let f: 8" — S" be a map of the sphere such th&t—x) = — f(x) for all x. Then
degf =1 (mod 2).
Now let " denote the standard-dimensional sphere with antipoddh-action, then
the proposition (ii) implies that for any,-map f: S" — S”, the degree off is odd.

Many authors have been contributing to generalizing andnelitg the Borsuk-
Ulam theorem in various ways. E. Fadell-S. Husseini and @otawski introduced
an ideal-valued cohomological index theory, and genezdlithe Borsuk-Ulam theorem
(see [2], [3] and [5]). LetVi(R™) denote the space of orthonormedframes in R”
and O(k) the orthogonal group. If we represent an elementVpfR™) as a column
vector 1 ---v]7, and if O(k) is the orthogonal group of x k matrices, therV,(R™)
is a free O(k)-space under the action induced by matrix multiplicatig, - - - v;]7,
g € O(k). In [4], Yasuhiro Hara considered the degree @fk)-maps f: Vi (R") —
Vi(R™).

In this paper, we will consider the degree a)‘-maps f: Vi(R") — Vi(R")
where @) = Z; x --- x Zy (k times) is the subgroup 06 (k) which is diagonally
imbedded. We will show

Theorem 3.3. Let f: Vi(R") = Vi (R") be a(Z,)*-map Then the degree of
is odd
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By a similar way, U (k) acts freely on the complex Stiefel manifolg,(C™). We
restrict theU (k)-action onV,(C™) to the subgroupZ,)* where p is a prime number.
Then we will show

Theorem 3.5. Let f: Vi(C™) = Vi(C™) be a(Z,)*-map Then the degree of
is not congruent to zero modulp.

The author wishes to express his gratitude to Professor itkunNagasaki and
Professor Yasuhiro Hara for their advice.

2. Index theory

In this section we will recall the definition and basic prdfesr of index theory
which was first introduced by Fadell and Husseini and inddpatly by Jaworowski.

Let G be a compact Lie group anf a G-CW complex. We denote the univer-
sal principalG-bundle by EG — BG. Then G acts freely onEG x X by g(e, x) =
(ge, gx). We denote the quotient space of this action®b¢ x s X. Note that the orbit
mapp: EG x X - EG xg X is a fiber bundle of the fibe6;. The Borel cohomol-
ogy of X with coefficients in a fieldK is defined byHj:(X;K) = H*(EG x¢ X;K),
where H*( ) is singular cohomology theory. Lety: X — % be a constant map to
one-point space. Thé-indexof X, denoted by Inf(X; K), is an ideal inH*(BG;K).
Ind°(X;K) is defined to be the kernel of the homomorphigtp = (id xgcx)* :
H*(BG;K) = H(*;K) - HA(X;K). If X is a free G-space, then Ifé(X) coin-
cides with the kernel of the homomorphishi*(BG) — H*(X/G) induced from a
classifying mapX/G — BG for the free G-action onX. Furthermore for an integer
k we set

Indf (X; K) = Ind’(X;K) N H*(BG; K) = ker(ck : H(BG;K) — HE(X;K)).
The following proposition is a basic property of tligindex.

Proposition 2.1 ([2], [5]). If there exists aG-map f: X — Y, then for any
keZ

Ind? (X) o IndS (¥).

We now consider a basic computation which is important to gplieation which
we give later on.

Vi(R™) denotes the space of orthonorniaframes inR"™ and O(k) denotes the
orthogonal group. Ther@ (k) acts freely onV,(R™) by the usual actiorgv, g € O(k)
andv is a column vector representingframe. We restrict this action to the subgroup
(Z2)* of diagonal matrices with entries1. Then Vi (R™") is also a free Z)*-space.
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Recall thatB(Z,)* = BZ, x --- x BZ, (k times) and
H* (B(Z2)%,2Z,) = H*(BZ)) ® - -+ ® H*(BZp) = Z[ta, . .., ],

where diny; = 1. Fadell proved the following in [3].

Proposition 22. The monomial #' 1y =2...4"*

Ind@" (V,(R™); Z,).
In particular, sincedim V;(R") = mk — k(k + 1)/2, we can assert

does not belong to

k H mn
NS\, @ (Ve(R"): Z2) # HO™Y®) (B(Z,)":Z,) .

We have an analogous proposition for complex Stiefel médsfov,(C™) denotes
the space of orthonormdl-frames inC™ and U (k) denotes the unitary group. Then
U (k) acts freely onV,(C™) by the usual actiorgv, g € U(k) andv is a column vector
representing-frame. We restrict this action to the subgrouf), X of diagonal matrices
with entries p-th root of one and consider Iﬁd)k(vk(C’");Zp), where p is a prime
number.

In case p = 2 we show that (2"~ D* =2t 2=k s ot in
Ind(ZZ)k(Vk(C’");ZZ) by induction onk. The computation will be based on the fibration

(1) §2 R V(€M) S Viea(CM),
wherer is the projection on the first — 1 coordinates. Consider the sequence
(2 Z, > (22" - (221,

whereZ, injects on the last coordinate aiid,)* projects on the firsk—1 coordinates.
Dividing out the action of (2) on (1), we obtain

RP2=R*L 5 Vi(C™)/(Za)* — Viea(C™)/(Z2) L

We then have an induced diagram of fibrations

RPZ(m_k)+l m—k+1,1 BZQ

.| |

Vi(CM/(Z2)f  —  B(Zy)

| e |

Viea(C™)/(Zo)F T 2225 B(Zp) L

where thew; ; are classifying maps. Recall that our coefficients Asg and sincei’,
and o,_,.,, are surjective,iy 1 H*(Vi(C")/(Z2)") — H*(RP?™-b*1) s surjective.

m
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Thus, the Leray-Hirsch theorem applies and we have a diagram

H* (Viea(C)/(Z2) ) @ HHRPPOD) 2y e (v(C™)/(22)1)

X X x
am.k—1®am—k+1.11\ am.kT

H* (B(Z2)"Y) ® H*(RP™) 5 H*(BZ))
with ¢,, and ¢, isomorphisms. Then

2(m—1)+1, 2(m 2+ t2(m—k)+1:|
k

Uy i [’1
- Olm L 0 0o [ ’12(m D+, 2(m 2+ k2(m —k+1)+1 ® tZ(m k)+l]

_ 2(m—1)+1 2(111—2)+l 2(m—k+1)+1 2(m—k)+1
= Pm [“;1./(—1 (tl ) “heea ) ® 0y ka1 (tk )] .

2(m—k)+1

But o}, .14 (% ) # 0 and assuming by induction that

at 2 l+12 2)+1 2 k+1)+1
O k— l(tl(m ) =2 ’ k(W]l. ) )?Ov

we have

2(m—1 12 -2 l 2(m—k)+1
mk[tl(m * =2y : tk(m )+] #0

2(m—1)+1,2(m—2)+1 2(m—k)+1 . :
Thus 1] 15 et is not in kero,; .

When p is an odd prime H*(B(Z,)*;Z,) = Z,[x1, X2, . .., Xk] ® E(y1, Y2, - - - » Y1),
where Z,[x1, x2, ..., x;] denotes theZ,-polynomial algebra on 2-dimensional genera-
tors x; and E(y1, y2, ..., yx) denotes theZ,-exterior algebra on 1-dimensional gener-
ators y;. The ring is graded-commutative, i.ey = (- 1)degt)dedd) v We next show
that x" =y x2' "2y, ... x" ¥y, is not in Ind?) (v,(C™);Z,) by induction onk. Con-
sider the sequence

3 Z, > (Zp)k - (Zp)k_l*

where Z,, injects on the last coordinate ar(é[,,)k projects on the firsk — 1 coordi-
nates. Dividing out the action of (3) on (1), we obtain

52(”’_k)+1/zp N Vk(cm)/(zp)k N Vk—1(C’")/(ZI,)"—1
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We then have an induced diagram of fibrations

L]Z)(m—k)+l Um—k+1,1 BZF
zl iml
ViCm/(z,)" 5 B(Z,)

| |

Vk—l(cm)/(zp)k_l e B(Zp)k_l

where the orbit spacé2~0*t = §2m=K*1,7 is the lens space and the ; are clas-
sifying maps. Recall that our coefficients afg, and sinceiy, and«;,_;,,, are sur-

jective, i* : H*(Vk(C’”)/(Z,,)k) — H*(L3"-H*1) is surjective. Thus, the Leray-Hirsch
theorem applies and we have a diagram

H* (Vk_l(cm)/(zp)k_l) R H* (Li(m—k)ﬂ) L) H* (Vk(C’")/(Z,,)k)

N N B
& (1B, —k+1‘1/l\ Dk T

H* (B (Zp)k_l) ® H*(sz) —= H* (B (ZI’)k)

with ¢, and ¢, isomorphisms. Then

* m—1 m—2 m—k
% ke [xl YiXo Y2 X )’k]
— % m—1 m—2 m—k+1 m—k
=0k © Poo [xl Yaxy “y2-c-Xp_q V-1 @ X yk]

= @m [a;.k—l (XT_l)’lxlzn_ZYZ o 'xzrfn—_lkHYk—l) A (x,’f‘kyk)] .

But o}, ;.1 (x7"*y) #0 and assuming by induction that

* m—1 m—2 m—k+1
O‘m.k—l(xl Yixy Y2 X g Yk—l);éo’

we have

* m—1 m—2 m—k
Olm,k ['xl Y1Xy Y2+ X, yk] _T/ 0.

Thereforex' ™ y1xy =2y, - - xJ" ¥y, is not in ker, .. Thus we have the following re-

sult.

Proposition 2.3. (1) The monomiat2("~D*2m=21*1 . 2m=k*1 qoes not belong
to Ind@) (V(C™); Zo).
In particular, sincedim V;(C™) = 2mk — k?, we can assert

k H m
INd$2\, o (Vi(C™): Z2) # HO™YC (B(Z2); Z2) .
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(2) Whenp is an odd primethe monomial " y;xy =2y, - - - x}" *y, does not belong
to Ind? (V,(C™); Z,,).

In particular, sincedimV,(C™) = 2mk — k2, dimx; = 2 and dimy;, = 1, we can
assert

th my. i (C™ .
I, o (Vi(C™): Z,) # HI™ED (B(Z,);2,).

3. Borsuk-Ulam type theorems on Stiefel manifolds

Let G be a compact Lie group an® be a freeG-CW complex. We denote by
X/G the orbit space ofX. Note that the orbit map: X —» X/G is a fiber bundle
with fiber G. Following [4], we define the transfem : H"(X;I') - H"9m%(X/G;T)
whereI' is a commutative group. Then we have the following.

Lemma 3.1 ([4]). Let X,Y be G-CW complexes ang': X — Y a G-map Let
px: EGxX —» EGxgX and py: EG xY — EG xgY denote the orbit mapsThen
the commutativity holds in the diagram

Hy:T) —% HEXT)

(PY)!l l(l’x)z

wheref_ = idxg f: EG xg X —» EG xg Y is the induced map from &-map
idxf: EGx X —> EGxY.

Let M be a smooth closed connected orientéenanifold of dimension:. Sup-
pose that th&s-action onM is free. Note that the orbit spadd /G is also a manifold
of dimensionn — dimG in this case. Letp: M — M /G be the orbit map. Suppose
that M /G is orientable overK. Then the transfep, of the p is described agp, =
D;ﬁGop*oDM where D is the Poinca& duality isomorphism. Thep,: H"(M;K) —
H"-9mG(A1/G;K) is an isomorphism.

The following theorem has been essentially proved in [4].

Theorem 3.2 ([4]). Let G be a compact Lie group and lé# and N be smooth
closed connected;-free manifolds of dimension which are orientable oveK. As-
sume that the orbit spac& /G and N/G are also orientable Then we have the fol-
lowing.

(1) Supposend® ,...(M;K) is not equal toH"~9MG(BG;K). Then for anyG-map
f:M— N, f*: H'(N;K) —» H"(M;K) is non-trivial.
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(2) Suppose thatnd® ...(N;K) is not equal toInd® 4.;(M;K). Then for any
G-map f: M — N, f*: H'(N;K) - H"(M;K) is not injective

Proof. (1) Assume that there exists &-map f: M — N such that
f*i H'(N;K) > H"(M;K) is trivial. By Lemma 3.1, py)io f* = f*o(py).

Therefore f*: HA™9MO(N;K) — HA~9MO(M;K) is trivial, because /) and
(pn)r are isomorphism ang™ is the trivial homomorphism. Sincey, =cy o f,

INd?_am (M3 K) = (@) 7 @) = @) 7 (7)™ @) = B~ (41 K).

(2) Assume that there exists@-map f: M — N such thatf*: H"(N;K) —
H"(M;K) is injective. Thenf*: HL MG (N;K) — HL 9M%(M;K) is injective, using
Lemma 3.1 again. Hence

I (V3 K) = kerdy, = @) ) = (@) ((7) ) = @) ©
= Id_gimg (M K) U

As a consequence of Proposition 2.2 and Theorem 3.2 (1) wehgefollowing
theorem.

Theorem 3.3. Let f: Vi(R") —» Vi(R") be a(Z,)*-map Then the degree of
is odd

Proof. Setn = dimV,(R"). By Proposition 2.2, Ind (V,(R"); Z,) is not equal
to H"(B(Z»)*;Z,). Hence f*: H*(N;Z,) — H"(M;Z5) is non-trivial from assertion
() of Theorem 3.2. ]

This theorem implies the following.
Corollary 3.4. If there exists &Zy)*-map f: Vi(R™) = Vi(R"), thenm < n.

Proof. Letf: Vi(R") — Vi(R") be a Z,)*-map. Assume that: > n. The canon-
ical inclusioni: Vi(R") — Vi(R") is a @Z)*-map. Sincei o f: Vi(R™) = Vi(R™) is
a ([Z2)*-map, the degree of o f is not even. Otherwise, becauseo(f)* = f* o i*
and HIMV RV (R');Z2) = 0, (o f)*: HIMMEI(V(R™) —» HIMHEI(V(R™))
is trivial. This is a contradiction. ]
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Next if / < k, then we regardZ,) as any subgroup ofZ(,)*. We get a commu-
tative diagram

E(Z2)* Xy ViR") —— B(Zo)
g d
E(Zo)* xz, Vi(R") —— B(Zo)".

Then we have

1y (GRY) < 1 (B(Z2))

He (GRY) ——— H* (BZa)).

Theorem 3.5. If dimV,(R") = dimV,(R"), then for any(Z,)'-map f: Vi(R") —
Vi(R") the degree off is even

Proof. We setd = dimV,(R") = dimV,(R"). Thenz*: H(dzz)k(vk(Rm);ZZ) -
Iféz)z(Vk(R’");Zz) is trivial. Since p*: H*(B(Z2)*;Z2) — H*(B(Z»)'; Z,) is surjective,
¢ HY(B(Z)) ;Z)) — H(‘éz)l(vk(R’”);Zz) is also trivial. Therefore we have
Ind? (Vi(R"); Z2) = HY(B(Z2)': Z2).

Otherwise In§z2)’(v,(R”);Zz) # HY(B(Z,)'; Z,) from Proposition 2.2. Therefore it

follows from Theorem 3.2 (2) that for anyZ{)'-map f: Vi(R") — V;(R") the degree
of f is even. O

Still continuing our complex analogue of the propositiomwe, we get the fol-
lowing.

Theorem 3.6. Let f: Vi(C™) = Vi(C™) be a(Z,)*-map Then the degree of
is not congruent to zero modulp.

From this theorem, the following corollary is proved in tharse way as Corol-
lary 3.4.

Corollary 3.7. If there exists aZ,)"-map f: Vi(C™) — Vi(C"), thenm < n.

Next if I < k, then we regardZ,)’ as any subgroup ofZ(,)*. HenceV,(C™) is a
free ,)'-manifold. Then we get the following in the same way as TheoBe5.
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Theorem 3.8. If dimV,(C™) = dimV,(C"), then for any(Z,)'-map f: V;(C") —
V;(C") the degree off is congruent to zero modulp.

REMARK. If k is even, then din¥,(C™) is even. Hence there does not exist a
free Z,-action on §9mV(C"),

Corollary 3.9. If dimV,(C™) = dimV,(C"), then for any(S')/-map f: Vi(C") -
V,(C") the degree off is zera
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