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Abstract
Another proof of Greenberg’s theorem on automorphism gsoop compact
Riemann surfaces is given. Using the idea of the proof, thevatgnce problem for
finite Galois coverings of the compact projective line isveamed affirmatively, ex-
cept special type of coverings.

1. Introduction

Greenberg [5] showed the following theorem on automorphignoups of
connected compact Riemann surfaces in 1963:

Theorem 1.1 ([5], Theorem 4). Let G be a non-trivial finite group. Then there
exists a connected compact Riemann surfScehose automorphism groufut(S) is
isomorphic toG.

By using Fenchel-Nielsen’s theory, Greenberg showed awlisth states that for
some Fuchsian group there exists a Fuchsian grouip containingl” as a proper sub-
group with finite index. Using the list, he proved the aboveotem. But he didn't
give enough explanation for his list, nor for the proof of theove theorem.

In this paper, we give a proof of the above theorem, using efdynentary knowl-
edge on branched Galois coverings and hyperbolic geomettizput using Fenchel-
Nielsen’s theory.

As an application of our proof of Greenberg’s theorem, weegin answer to the
equivalence problem (seg for detail and terminology):

Theorem 1.2 (c.f. Theorem 5.8). Let f ={f,}uen: X = {Xu}luenw — Y be a non-
degenerate family of finite Galois coverings of the complejeptive line P! with a
Pl-bundlep: Y — N. Assumeg > 2, whereg is the genus ofX, (u € N). Assume
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that the number of the branch points and the séti, eo, ..., e;} of ramification in-
dices of f, (u € N) are either

Q) s #4,0r

(2) s =4 and {es, ez, e3, e4} does not satisfy; = e; < e3 = ey.

Then for any two pointsu and «’ in N, X,, and X, are biholomorphic if and only if
f«. and f,, are holomorphically equivalent

We also have

Theorem 1.3 (c.f. Theorem 5.7). Under the same conditions fbheorem 1.20n
g,s and {e1, ez, ..., e}, the canonical holomorphic map of the moduli space of holo-
morphic equivalence classes of finite Galois covering®oto the moduli spacéV,
of compact Riemann surfaces of genuss injective

2. General Klein tiles

Let s be an integer withs > 3 andey, ez, ..., ¢, integers withe; > 2 (j =
1,2,...,s) which satisfy the inequality

(2.1) Zs:iq—z.

e
j=1 J

We call a hyperbolic 2(— 1)-gonal polygonT in the upper half plané/ a general
Klein tile if T satisfies the following conditions (see Fig. 1 for the case4):
(1) If we label vertices ofl as

Vi, Vo, ..., Vaso

counterclockwisely, then we have(V;, V;+1) = p(Vas—j, Vae—j—1) With the hyperbolic
metric p for eachj =1,2,...,s — 1, whereVy,_1 = V3.

(2) Let £V; be the inner angle a¥; for eachj =1,2,...,s. Forj=23,...,5s -1,
the equalityZV; + ZLVa_; = 2 /e; holds.

(3) £V1=2r1/eqs and LV, = 21 /ey.

A general Klein tileT is called aKlein tile if the s-polygon V1V, --- V; (a half of
T) is congruent toV,,_1 Vo, 5 -+ - Vi (another-half ofT) by the reflection with respect
to the hyperbolic lineV,V;. (If s = 3, then a general Klein tile is necessarily a Klein
tile.) Klein tiles and tessellation by them appeared in KIE].

Now let T be a general Klein tile. Lel" be the subgroup oPSL(2, R) gener-
ated by the hyperbolic rotationg; with the centerV; and the angle 2/e; for j =
1,2,...,2s —2. (We putey_; =¢; for j =1,2,...,s.) ThenT is a Fuchsian group
of the first kind and hag" as a fundamental domaii is, in fact, generated by;
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Fig. 1. A general Klein tileT for s =4

(j=1,2,...,s5) and is presented as follows:
r :<¢1’¢2’“_’¢_Y |(pi1 :(pgz =... :(pf»\‘ =@y = ]_)
I is said to have the sighature @Q; ey, ..., e;).

For eachj =1,2,...,25 — 2, let (x;, y;) be the coordinates oV; in U, a; the
Euclidean center of the hyperbolic lin€; through V; and V;.; which is a circle in
Euclidean geometry, and; the radius ofCj.

Note thata; (a point on the real axis) and can be determined algebraically by
xjandy; for j=1,2,...,2s — 2. In fact, for example, by easy calculations, we have

xf—x5+yE— 3
2001 —x2)
2= {1 = x2)2 + (1 — y2)?} {(x1 — x2)% + (01 + y2)?}
! 4(x1y — x2)? '

al =
2.2)

Conversely,x; and y; can be determined algebraically lay andr; for j = 1,
2,...,2s — 2. In fact, for example, we have

ddrr} =
202 —a)
2 {lar —a2)® — (r1 — r2)?} {(r1 + r2)* — (a1 — a2)?}
2T 4ay — a)? ‘

X2 =
(2.3)

Consider the fields attaching these numerical data on thenektnumber fieldQ:

K(T) = Q(x1, y1, X2, 2, . . -, X202, Y25-2),
(2.4) K'(T) = Q(ax, r1, a2, ra, . . ., Gzs—2, r25-2),
K"(T)=K(T)K'(T) (the composite field)
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Then, by the above consideratiok,”(T)/K(T) and K”(T)/K’(T) are finite algebraic
extensions. In particular, the transcendence degree @vef these fields are the same:

(2.5) Tr.deg) K(T) = Tr.deg, K'(T) = Tr.deg, K"(T).

The numerical data

-xla yla x2, y27 R ] x25—27 yZS‘—Z’

ai, r1,az, r2, ..., 232,122

determine the general Klein til&.
We show that the 2— 3 data

X2, Y2, oy X2, Ys—2, X25-2, Y2—2 and as_

determineT and can be chosen algebraically independent, and the o#ttarcdn be
determined algebraically by these data.
We use the following formula (see Jones and Singerman [@h)zfw € U

) 1 _lz—wl?
(2.6) sini (E’O(Z’ w)) = TmE ()’

The triangleAV1V,V,_5 is a hyperbolic isosceles triangle such that the top angle
/Vy is equal to Z/e;. Hence, by the sine rule, the cosine rule for hyperbolic geom
etry (see Beardon [1]) and (2.6), the poivit can be determined algebraically 3%
and Vo, _o.

If s > 5, thenV,,_3 can be determined algebraically %, V3 and V5. In fact,
since

2
LV o= o ZLVa,
e

the directionVo,_»V,,_3 can be determined. Since
p(Va, V3) = p(Vas_2, Vs _3),

the vertexV,,_3 can be determined algebraically by (2.6).

In a similar way, Va,_4, ..., Vi+2 can be determined algebraically b, Vs, ...,
Vi_o if s > 6.

Since a,_, is given, r,_, can be determined algebraically. Heng®/;_, can be
determined. cogV,_, can be determined algebraically. Since

2
4Vs+2 =

- AVS—Za
€52
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N Vx+2
Vs—Z Vx—l V5+1

Fig. 2. The pentagoiV, >V, 1V Vi1 Vis2

cos/V,., can be determined algebraically. Hence the direclion V.1 can be deter-
mined. In particularg,., andrg.; can be determined algebraically.

Finally, we show that the pentagdn_,V,_1V, V.1V« (see Fig. 2) can be deter-
mined algebraically.

By the elementary geometry, we have the following 6 equatifam the pentagon:

2 2 — 2
Fg_o + rg_q1— 2rs—2rs—1 COSV_\'—l - (a.\'—Z - as—l) P

2 2 —_ 2
Teq tre — 2rg1rs COSVirq = (Gge1 — ay)°,

2

2 2 _ 2

réqtre — 2rs_1rs Cos_e =(a; — as_1)%,
s

2

cos

= €0S/V,_1€05/ Vi1 — /(L — co £LV,_1)(1 — co2 LV,41),

€51
p(Vi—z, Vi1) = p(Vs+2, Vi),
p(Vs—l’ Vs) = IO(VS+1’ Vs)

By (2.6), the last two equations give algebraic relation@gny,_1, y,_1, xg, ys,
Xs+1, Ys+1. BY (2.2), we can express them as algebraic relations amgng, r;_1, ay, r;.
Then these 6 equations with the 6 unknowns

ds—1, Ts—1, dg, Ty, COSZ‘/x—lv COSlVH’l
are algebraically independent. (In fact, for example, fribiese equations except the 4-
th equation, we have a family of pentagoWis ,V,_1V, Vi+1V,+2 such that cos(V,_; +

/ V1) is not constant.) Hence, from these 6 equations, the abawek6owns can be
determined algebraically. Hence, by (2.3),

‘/S—l = (xs—lv ys—l)’ Va = (x_s'ﬂ yé‘), ‘/.Y+1 = (x3'+lﬂ )’s+1)

can be determined algebraically.
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In the above discussion, it is noted that the given data

X2, Y2, -y X2, Ys—2, X25—2, Yos—2 and as_

can be chosen algebraically independent.
Thus we conclude, by (2.2) and (2.3),

Proposition 2.1. Suppose that > 3 and integerses, ..., e, withe; > 2 (j =
1,2,...,s) satisfy the inequality2.1). Let T be a general Klein tile with these data
defined as aboveThen
(1) some2s — 3 coordinates amongks — 4 coordinates of the2s — 2 vertices of T
can be taken algebraically independent and other coor@dimatan be determined alge-
braically from these2s — 3 coordinates
(2) Tr.deg, K(T) < 25 — 3. Here equality holds for a generd.

3. Proof of Greenberg's theorem

We first explain our terminology (c.f., Namba [14]). L¢t: X — Y be a surjec-
tive holomorphic map between connected compact RiemarfacesX and Y. Then
f can be regarded aslaanched coveringFor any pointp of X, there are local co-
ordinate systemg and w aroundp and g = f(p), respectively, withz(p) = w(g) =0
such thatf is locally expressed as

fiz— w=2z%

The positive integee is called theramification index of f at p. If e > 2, thenp and
q are called aramification pointand abranch point of f, respectively. We denote
by R, (resp. By) the set of all ramification points (resp. branch points) aadl it
the ramification locus(resp. branch locu$ of f. They are finite sets. Note th&, C
f7X(B,) and

fiX—fYBs)— Y —-B;

is a usual finite covering map (i.e., finite unbranched conemap). Its mapping de-
gree is called thelegree of f and is denoted by degj. f is called aGalois covering
if the automorphism group

Aut(f) ={y € Aut(X) | fo ¥ = f}

of f acts transitively on each fiber of. In this case, deg{) is equal to the order of
Aut(f) andY is canonically biholomorphic to the quotient spakg¢ Aut(f). A Galois

covering is called arabelian (resp.cyclic) coveringif Aut( f) is abelian (resp. cyclic).
If f: X — Y is a Galois covering, then for any poigte B/, the ramification index
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Fig. 3. The meridians

of f at a pointp € f(q) is independent ofp and depends only og. Hence we
may call it theramification index of f at ¢, which is a divisor of deg(). Let f be
Galois, By = {q1.492,....qs} ande; (> 2) the ramification index off atgq; (j =
1,2,...,5). Then the positive divisor

eiq1texqat - t+esqs

on Y is called thebranch divisor of f.

Now let G be any non-trivial finite groupG can be presented as follows:
(3.1) G=(g1.82,--.8 | 87" =82 = =g =g182-- g =1 * ....%),
where eachg; is not the identity 1 and; (> 2) is the order ofg;. (+ are other re-
lations.) We allowg, g2, ..., g to overlap a number of times; for example, we can
select such ag; =g, =--- = g, if G is a cyclic group. So we can enlarge the value
of s even if the order & of G is much smaller.

We assume that > 3 ande,eo,...,e, satisfy the inequality (2.1). (Note that
(2.1) is automatically satisfied i > 5.)

Take distincts points

q1, 42, ..., (s

in P! = PY(C), the complex projective line. PuB = {g1, g2, ...,q,}. Take a point
go € P! as a base point which is not contained 1 Then the fundamental group
m1(P* — B, qo) has the presentation as follows:

1 (PY =B, q0) = (1. v2. ... v | vava- s = 1),

wherey; (j =1,2,...,s) are (the homotopy classes of) the meridians aroginds in
Fig. 3. Consider an epimorphism

(3.2) E:m(P=B,g0) —> G, yj—g (j=12....5)
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and a finite unbranched Galois covering
fliX — P —-B

which corresponds to the kernel Kernof £&. f' can be extended to a finite branched
covering

fix — P

where X is a compact Riemann surface. (The extension is unique ugotadrphisms.
See Theorem 4.3.f is a finite Galois covering whose automorphism group Atis
isomorphic toG. The branch divisor off is

e1q1 texqa + - -+ e5q;.
The genusg of X can be calculated by the Riemann-Hurwitz formula:
. 1
(3.3) 2g—2=d[2(1——)—2],
e
j=1 J

whered is the order of the groug;. Hence, by the assumption of the inequality (2.1),
we haveg > 2. In particular Autf) is a finite group.

Aut(f) is a subgroup of Au) and is isomorphic toG. The quotient space
X/ Aut(X) is also biholomorphic t@* and the projection map

fi X — X/Aut(X) ~ P*
is a finite Galois covering with the Galois group AKX} Let
e1qr t ezt -+ &G;

be its branch divisor. There exists a surjective holomarphap (i.e., a rational func-
tion)

h: X/ Aut(f) ~ P! — X/Aut(X) ~ P!

such thatho f = f. Let m be the degree of the map m is then the index of Autf)
in Aut(X) andmd is the order of AutX). Comparing (3.3) with the Riemann-Hurwitz
formula with respect tof, we have

3.4 [z(_)z]z(_)z

The following lemma is obvious from the definition of the rdication index.
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Lemma 3.1. For a point p € X, let ¢ and ¢’ be the ramification indices of at
p and ofh at f(p), respectively Then the ramification index of =ho f at p is cc'.

The following lemma is also obvious from Lemma 3.1 and thenitidn of Galois
coverings.

Lemma 32. Let f,h and f = ho f be as aboveThen the following(i) to (v)
hold:
(i) By c h™%(B;) and B, C Bj;.
(i) For r € By, the ramification index off at r can be divisible by, where! is the
least common multiple of the ramification indicesioft points of2=(r).
(iii) Letr e B;. If the ramification index of: at a pointg in h=Y(r) is less thanl
in (i), theng € By.
(v) Letre Bj. If g e h=%(r) is not a ramification point of:, theng € B;.
(v) Letr € Bj,. Assume that

(1) there isq € h~(r) such thatg is not a ramification point of:, and

(2 =) ¢ By.
Then the following(@) and (b) hold:

(@ h~X(r) — By ={q’ € h™(r) | the ramification index of at ¢’ is [ in (ii)},

(b) the ramification index off at g is [ in (ii).

Now we prove the following key proposition for the proof of &nberg’s
theorem.

Proposition 33. Let f,h, f =ho f,5,5 andm be as aboveAssumen > 2, i.e,
Aut(f) # Aut(X). If either
(1) s >5,or
(2) s =4 and {e1, e, e3, es} does not satisfy; = e, < e3 = e,
thens < s.

Proof. We divide the proof into several steps.

(i) Assume first thatn = 2. Thenh is a double covering with 2 branch points.
If ¢ € By andq’ € h=Y(h(q)), theng’ € B; by (iv) of Lemma 3.2. This implies easily
that

(i-1) if s > 5, thens > 5, and

(i-2) if s =4, thens =3 or 4.
In (i-2), § = 4 holds if and only if{q1, g2, g3, qa} and {g1, >, g3, 44} are as in Fig. 4.
In this case,

ep=ex(=¢e2) and es = e4(= es3)

by Lemma 3.1. (Since the genysof X satisfiesg > 2, ¢; and ez must satisfy (le;)+
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a1 s
>< % X/AUt(f)
h ¢ éCIZ 5614
: 5 5 X /AUt(X)
q1 42 g3 qa

Fig.4m=2,5s=4,5=4

(1/e3) < 1)

(i) In the following, we assume that: > 3.

The left hand side of the equality in (3.4) is greater than quag tom((s/2)— 2).
Hence

5 > 1 °1

- § 1-=)—-2=s—A—-2, wh A:E =,

m(2 )S 4 ( ej) s whnere oy
j=1 Jj=1

Hence

3
3
3

Hences > § holds if

25 2A 4
—————+4<sy.
m m m

This inequality holds if and only if

dnm — 2A — 4 < (m — 2)s.

Sincem > 3, this inequality holds if and only if

4—2A
4+ p— <s.
If m > 6, then
4 —2A
4+ <4+ < 5.
m—2 m—2
Hence ifm > 6 ands > 5, thens < s.
If m =5, then
4—2A 4 16
+ + = —
4 m—2<4 57 3<6

Hence ifm =5 ands > 6, thens < s.
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RIS TR om o m oo

N R

Fig. 5.m =3
If m =4, then
4—2A 4
+ + =6.
Ato—2 “4tg3°°
Hence ifm =4 ands > 6, thens < s.
If m =3, then
4—2A 4
4+ <4 =8.

+
m—2 3-2

Hence ifm =3 ands > 8, then§ < s.

(i) Hence if m > 3 ands > 5, then it is enough to check the cases (iiiml)= 3
ands =5,6,7 and (iii-2)m =4 or 5 ands = 5:

(ii-1) Assumem = 3. The picture of ramifications fok with deg¢) = 3 are 3
pictures in Fig. 5.

Using Lemma 3.2, we can check that the casg 5 < § can not occur for each
picture in Fig. 5. For example, in the last picture in Fig. Be ¥ unramified points of
h in h=Y(B;) must be points inB,; by (iii) of Lemma 3.2. If§ > 5, then there is a
point r € (P* — B,) N B;. Then the 3 points ik~*(r) must be points inB, by (iv) of
Lemma 3.2. Hence

s> 4+3G—4)> 5.

Thus if m =3 ands > 5, thens < s.

(iii-2) Assumem = 4 orm = 5. We draw all possible pictures of ramifications
for h with m = 4 andm = 5. (There are 14 pictures forn = 4 and 36 pictures for
m =5.) Using Lemma 3.2, we can check as in the case (ii-1) thatdases > s =5
can not occur for each picture fat = 4 andm = 5.

Thus if m =4 or 5 ands =5, then§ < s.

Hence we conclude that i > 5, then§ < s.

(iv) Finally we consider the case > 3 ands = 4. We look for the casé >
s =4.

(iv-1) If m =3, then by Lemma 3.2, the ca8e> s =4 occurs only ifs =s =4
and the picture of ramifications is as in Fig. 6.
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h¢ q1 §q2 EQS 44

q1 42 43 q4
Fig.6.m=3,s=4,5=4

Q1

> > A . L
o ; % % hlo | | A
& G G i G G &

Fig.7.m=4,s=4,5=4

But in this case, every ramification index ¢gfatg; (j = 1,2,3,4) is 2 by (v)
of Lemma 3.2. Hence the genus #&fis 1, a contradiction. Hence this case does not
occur.

(iv-2) If m = 4, then by Lemma 3.2, the ca8e> s =4 occurs only ifs =s =4
and the picture of ramifications is one of 2 pictures in Fig. 7.

In the left picture in Fig. 7, every ramification index ¢gf at¢; (j = 1,2, 3,4)
must be 2 by (v) of Lemma 3.2. Hence the genusXois 1, a contradiction. Hence
this case does not occur.

The right picture in Fig. 7 may occur. In this case, by (v) ofrma 3.2,

e1=ex = e3 = ey (= ey).

(Sinceg > 2, e; must satisfye; > 3.)

(iv-3) Finally we assumen > 5 ands > s = 4. We show that this case does not
occur.

If #B, < 3, then there is a point € B;—B,. By (iv) of Lemma 3.2,h7Y(r) C By.
Hence

S5<m=#h"r)<s=4,

a contradiction. Hence By, > 4.
Moreover by a similar reason, we must haBse = By,. Hences = #B;, (> 4). Put

By =Bj ={ri,ra2,...,r5}
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and
h_l(rj)={q},q_,2,...,q;j} (G=12....3).
Let m" be the ramification index of at ¢%. Then

1 2 -
my+my+..-+tmy=m,

1 2 o _
my+ms+ - +mg =m,

1 2 5 —
mi;+mi+---+tmg =m.

Adding them, we have

On the other hand,
(3.5) (mf —1)=2m -2

by the Riemann-Hurwitz formula with respect ko Hence
Sm—(ty+t+---+6)=2m—2.

Hence

(3.6) httr+- - +t=(G—2)m+2

Assume that

(a; =0 if m’j‘ > 2 for all k.) Now (3.5) can be rewritten as
5
D> mh-1=2m-2
Jj=1 111522
Every term in the left hand side satisfies

m’;—lzl.

149
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Hence

(h—a)+(@2—ax)+---+ (1 —a;) <2m — 2.
By (3.6),

G=2m+2—(ag+tag+---+a;) <2m—2
Hence

(ar+az+---+as) > (5 —4)m+4.
By (iv) of Lemma 3.2,

d=s>a1+tax+---+a;.

Hence
d=s>ay+tar+---+a; > —4m +4.
Hence
$=4, ar+ar+az+as=24, m[;j+l=--~:mtjj =2

Moreover, if m is odd, then

If m is even, then either

or

Sincem > 5, by (v) of Lemma 3.2, we have
61262263264:2.

Hence the genus X is 1, a contradiction. Hence this case does not occur.
We conclude that if > s = 4, then either
Q) m=2,5=s=4 ande; = e, < ez =e¢4 ((1/e1) + (1/e3) < 1), or
(2) m=4,5=s=4 ande; =ex =e3=e4 (> 3) Il

There exist examples which satisfy the conditions statethatend of the proof
of Proposition 3.3:
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ExAMPLE 3.4. (1) LetXx be a complex number withh # 0,1 and X, be the
Riemann surface of the algebraic function

Xy —(x = 1%(x —21)%x =0.
The mapping
fii(x,y) e X; —> x e Pt

is a cyclic covering of degree 4, branchingxat 1, », co and 0 with the ramification
indices 22,4 and 4, respectively. Hence, in this case,

s=4, e1=e;=2, e3=eys=4 and g=2
The mappings
a:(x,y) e X; —> (x,\/—_ly) € X;,
B:i(x,y)e X, — (A/x,k3/4(x —1)(x —k)/xy) € X,

are automorphisms of;,. « generates Autf;).

The subgroupD; of Aut(X;) generated by and 8 is isomorphic to the dihedral
group of order 8.

D, coincides with Autd;) for generali. In fact, if we set

y2

o Da -
then
u’>=x on X;.
HenceX; is expressed by the equation
X, v2 = (u? = 1)W? — Nu.
This is an equation of hyperelliptic Riemann surfaces aradrttapping
(u,y) € X, —> u Pt

is a double covering. The linear pencil of degree 2 on a hyjggie Riemann surface
is unique. Using this fact, we can determine the group Aux(of automorphisms of
X,. The result can be stated as follows:
() If A #0,1,-1,9,1/9, then Aut;,) = D;, which is isomorphic to the dihe-
dral group of degree 8. Every element Df, gives a holomorphic equivalence of
f» to itself. Hence, in this case,

m =[Aut(X;): Aut(f;)]1=2, s=s=4
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(2-ii) If A =—1, then the order of AuK_;) is 48 and there is the following exact
sequence:

1— (Z/2Z) — Aut(X_;) — S4 — 1.

(2-iii) If A =9 or 1/9, then the order of Auk;) is 24 and there is the following
exact sequence:

1— (Z/22) — Aut(X;) — D(12) — 1,

where D(12) is the dihedral group of order 12.
(2) Let A is a complex number with. # 0,1 and X; be the Riemann surface of the
algebraic function

Xy =@ =1 -1)x=0.
The mapping
fii(x,y)e X, —> x e P!

is a cyclic covering of degree 4, branchingxat 1, A, co and 0 with the ramification
index 4 equally. Hence, in this case,

s=4, e1=ex=e3=es=4 and g=3.
The mappings
o (x,y) € X, —> (x, J—_ly) € X,,
B:(x,y) € X5 —> (A/x,1y/x?) € X,
y:(69) € Xar— (0o = 0)/(x = ) AVA = Tx( = D/(xy = 1Y) € Xa

are automorphisms oX;. o« generates Auif,).
The subgroupE; of Aut(X;) generated by, 8 andy is isomorphic to

D(8) x (Z/2Z),

where D(8) is the dihedral group of order 8.
If we put

F=y/x and $=2x —1—xr—(y/x)*
then X, can be expressed by the equation
32 =38+ 200+ 1R+ (0 — 1),

which is an equation of hyperelliptic Riemann surfaces.nithis, we can determine
the group Autk,) of automorphisms of\;. The result can be stated as follows:
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U
T
H O
# \]
X f
S
Y h
X /AUt(X)

Fig. 8. Commutative diagram (i)

(2-) If A #0,1,-1,3/4,4/3, then Aut(X;) = E;, which is isomorphic toD(8) x
(z/27Z). Every element ofE;, gives a holomorphic equivalence ¢f, to itself.
Hence, in this case,

m =[Aut(X;): Aut(f;)]=4, s=s=4

(2-ii) If A =-1, then Aut(_;) is isomorphic toD(16)x (Z/27). The order is 32.
(2-iii) If A =3/4 or 43, then the order of Auk;) is 48 and there is the follow-
ing exact sequence:

1— (Z/2Z) — Aut(X;) — S4 — 1.
Now let
wid — X

be the universal covering map of. Put

7=fou and 7= fopu.

Thenu, m and 7 are infinite Galois branched coverings. We have the comiwvatai-
agram in Fig. 8.
Put

A =Aut(n), T =Aut(xr) and T =Aut(®).

Then they are Fuchsian groups of the first kind and= I' c I". A is a normal sub-
group of finite index of both" and I". Note thatA has no elliptic element andl is
the normalizer ofA in PSL(2, R) (see Jones and Singerman [7]).

The Galois correspondence of the commutative diagram in &igsserts that

Aut(f) ~T/A and Aut(X) ~T/A.
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4

qil qiz qig Qi\.
Fig. 9. A pointo and geodesics

Moreover we have

X ~UJA,
P! ~ X/Aut(f) ~ U/T,
X/ Aut(X) ~U/T (= PY.

Let F and F be the sets of fixed points ¥ of ' and T, respectively. TherF c F,
F =n"Y(B) and F = #7Y(B), where B = {41, g, ..., ¢}, the branch locus off.

Lemma 35. (1) There exists a finite subsét (resp V) in F (resp F) such
that V (resp V) forms the set of vertices of a general Klein tife(resp 7), a 2(s —
1)-gonal (resp 2(5 — 1)-gona) polygon and such thal’ (resp 7T) is a fundamental
domain ofl" (resp I).

(2) A fundamental domain oh can be obtained as a union of finite nhumber of con-
secutiveT’s (resp T7's).

Proof. (2) is an easy consequence of (1), foris a normal subgroup of finite
index of bothI" and I".
We prove the assertion (1) with respectlto The assertion (1) with respect o
can be proved in a similar way.
First, note thatPSL(2, R) is the group of all orientation preserving isometries of
U with the standard Riemannian metric. Hericds a group of orientation preserving
isometries. We introduce a metric @t ~ ¢//T" from that ofZ/ throughz. ThenP! ~
U/r is a 2-dimensional Riemannian manifold with the thoensgs,, ..., q,. Take a
pointo € P — B, B ={q1, g2, ..., qs}, and a positive numbei such that
(1) B is contained in a non-Euclidean ball(o, §) with the centero and the ra-
dius 8, and
(2) every thorn can be jointed in(o, 8) to o by a unique, mutually distinct, geo-
desic (see Fig. 9).
In Fig. 9, i1i2--- i, is a permutation of 12 -5. (Note that even if (2) is not satisfied
for o, (2) will be satisfied foro’ very near fromo. In fact, we can find’ from where
we can watch every thorn.)
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We pull back the graph in Fig. 9 t&¥ over the mapr. Then we get a tiling of
U by a tile S of 25-polygon with vertices

017P1’02’P27"-7055PS

ordered counterclockwisely such that
1) =(0,)=0 (v=1,2,...,s), and
2) #(P)=q;, v=1,2,...,5).
We draw new geodesics

P1Py, PoP3, ..., P Py
at every tileS so that we get new-polygons
T =PP,--- P,

with the vertices ordered counterclockwisely.

Now we throw away (i.e., forget) old sides 6t Then we get a new tiling o/
with a tile T which consists of the union &f” and 7” which is also ans-polygon and
adjoins T’ with a side in common, and the vertices of which are orderedkelisely.

The tile T is a general Klein tile which is a 2 1)-polygon. U

REMARK 3.6. The tiling oftf by T is a kind of dual to the tiling bysS.

Let D and D be fundamental domains ok in (2) of Lemma 3.5, which are
unions of finite numbers of consecuti®s and 7’s, respectively. TherD and D can
be taken so that they are almost same. This meanshatn be obtained by cut-
ting off from D some small polygons, some sidésof which are on the boundary of
D, and pasting them to other parts of the boundaryDofvhich are equivalent td
underT".

We express this thab is equal toD with its boundary modified.

Lemma 3.7. Let D and D be fundamental domains @f which can be obtained
as unions of finite numbers of consecutiWs and T's, respectivelyas in (2) of Lem-
ma 3.5.Then D can be taken to be equal tb with its boundary modified

Proof. As in the proof of Lemma 3.5, we obtain a tilig of X by pulling back
the graph in Fig. 9 overf. We also obtain a tilingz of X by pulling-back overf a
similar graph inX/Aut(X) to that in Fig. 9. We then consider the dual tilingf and
* of = and &, respectively (see Remark 3.6).

Note that

(1) the union of all tiles in=* (resp.$*) is X itself, and
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(2) the vertices of the tiles oE* are contained in those dt*.

Now we pull back overx both tilings of £* and £* of X to ¢/ and obtain two
tilings of & by general Klein tilesT and 7, respectively. Then by (1) and (2) above,
we conclude thaiD can be taken to be equal #© with its boundary modified. [

The Fuchsian group is generated by the rotations &f with the angle 2 /e with
the center the vertice® of the general Klein tileT in Lemma 3.5. ¢ is the ramifica-
tion index ofr at P.)

Now, conversely we start from a general Klein tifein /. If we are given a gen-
eral Klein tile

T=ViVo- Vo o

of 2(s — 1)-polygon ini{, then we get a Fuchsian group of the first kind which is
generated by rotations @f at the centers the vertices @&f and a fundamental domain
of which is T. We also get a normal subgroup of I such that

(1) T/A =G, and

(2) A has no elliptic element.
This is becausd™ has the following presentation as an abstract group:

er _

T = (0@ o0 | @1 = = =00 =1 = 1)
X =U/A is a compact Riemann surface and
fiX=U/A— U/T =P

is a finite Galois branched covering with Aul( isomorphic toG. Let I be the nor-
malizer of A in PSL(2, R). ThenT is a Fuchsian group of the first kind ant/ A is
isomorphic to Aut§). Moreover we get a commutative diagram as in Fig. 8.
Let
T= ‘71‘72 S ‘726—2

be a general Klein tile of 2(— 1)-polygon in Lemma 3.5.
Let (xj,y;) (j =1,2,...,25 — 2) (resp. &. yx) (k = 1,2,...,25 — 2)) be the
coordinate ofV; (resp.V;) in U. As in §1, consider the field

K(T) = Q(x1, y1, X2, Y2, . . ., X25-2, Y25-2)
(resp. K(T) = Q(R1, $1, X2, ¥2, - . ., Xzv—2, Iz-2))-

By Proposition 2.1, we may choose the Klein tifesuch that Trdeg, K(T) = 25 — 3.
By Proposition 2.1 again, we have

Tr.deg, K(T) < 25 — 3.
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By Lemma 3.5, a fundamental domaid of A is a union of finite consecutive
tiles of 7's.

By Lemma 3.7, a fundamental domai of A, which is equal toD with its
boundary modified, is a union of finite consecutive tilesT7os.

Now let K (resp.K) be the field overQ attaching coordinates of all vertices in
D U D of the tiles of the tiling byT (resp.T). Every tile of the tiling by7 is con-
gruent to the adjoining tile. Hence the coordinates of ewastex of the tiles of the
tiling by T in U depend algebraically on the coordinates of thos& oHenceK is a
finite extension ofK(T). In particular

Tr.deg, K = Tr.deg, K(T).
In a similar way,
Tr.deg, K = Tr.deg, K (T).
On the other hand, as noted above,
F=n"(q1q2---.q}) C F =27 (G 42. . ... &s)).
HenceK c K. Hence

2s — 3 =Tr.deg, K(T) = Tr.deg, K
< Tr.deg, K = Tr.deg, K (T) < 25 — 3.

Hence
s<§

By Proposition 3.3, if either

(1) s >5, or

(2) s =4 and{ey, ez, e3, e4} does not satisfye; = e, < e3 = ey,
then

Aut(X) = Aut(f) =~ G.

Thus Greenberg’s theorem is proved. ]

4. Moduli spaces of Galois coverings

In this section, we discuss moduli spaces of Galois covsriMge first prepare
some terminologies (c.f., Namba [14]).

Let Y be a connected complex manifold. fiite branched covering': X — Y of
Y is by definition a finite proper holomorphic map of an irrediei normal complex
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X 4 X'

J\\O /‘ '
Y
Fig. 10. Commutative diagram (ii)

w X/

b'¢
fl O lf’
Y

Y/
%

Fig. 11. Commutative diagram (iii)

spaceX onto Y. As in the case of Riemann surfaces,
Ry ={p e X | f is not biholomorphic aroung}

and By = f(Ry) are called theamification locusand thebranch locus of f, respec-
tively. They are hypersurfaces &f and Y, respectively. Two such coveringé: X —
Y and f': X’ — Y are said to basomorphic(denoted byf ~ f’) if there is a bi-
holomorphic mapy: X — X’ such that the diagram in Fig. 10 is commutative.
Two finite branched coveringg: X — Y and f': X’ — Y’ are said to béiolo-
morphically equivalen{resp.topologically equivalentif there are biholomorphic maps
(resp. orientation preserving homeomorphisnis)X — X’ and¢: Y — Y’ such that
the diagram in Fig. 11 is commutative.
A finite branched coveringf: X — Y is called aGalois coveringif the automor-
phism group

Aut(f) ={y e Au(X) | fo ¥ = f}

of f acts transitively on each fiber of. (Moreover if Aut(f) is abelian or cyclic,
then f is said to beabelian or cyclic, respectively.) In this cas& is canonically bi-
holomorphic to the quotient space/ Aut(f).

For a non-trivial finite groupG, a finite branched Galois covering: X — Y
of Y is called aG-coveringif Aut( f) is isomorphic toG. A finite (not necessarily
Galois) branched covering: X — Y is called afamily of G-coverings of P* if

(1) p: Y — N is a holomorphicP!-bundle over a connected complex mani-

fold N,
(2) p~(r) is not contained inB, for everyt e N,
(3) there is an open coverind/,}, of N such that the restriction

fa=f X = [THYa) — Yo = p7H(Uy)



GREENBERGS THEOREM AND EQUIVALENCE PROBLEM 159

is a G-covering for everyx, and
(4) the restriction

L= X =) —> Y=o (=P

is a G-covering of P! for every pointr € N.
In this case,f and X are written asf = {f;};en and X = {X,},cn, respectively. A
family {f,};en Of G-coverings ofP! is said to benon-degeneratéf the numbers of
the branch points off, is constant forr € N.
In the rest of this paper, we assume- 3.

Theorem 4.1. Members of a non-degenerate family @fcoverings ofP* are mu-
tually topologically equivalent Conversely any two topologically equivalentG-
coverings ofP! belong (up to isomorphismsto the same non-degenerate family @f
coverings ofP’.

In order to prove the first half of the theorem, we need someagvegions. Let
p.Y — N be a holomorphidP!-bundle andf = {filien: X = {X;}ien — Y be a
non-degenerate family ofi-coverings ofP!. It suffices to show the first half of The-
orem 4.1 locally. That is, it suffices to show that, for an ey pointo € N, there
exists a connected open neighborhd@dof o in N such thatf; is topologically equiv-
alent to f, for all r € W.

Let {g1(0), g2(0), ..., ¢g;(0)} be the branch locus of,. LetU; (j =1,2,...,s) be
mutually disjoint small balls with the center; (o) with respect to a Riemannian metric
on PL. Let W be a small ball inN with the centero with respect to a Riemannian
metric on N. For a pointr € W, let {q1(¢), q2(¢), ..., g;(t)} be the branch locus of;.
By the assumptions is independent of € W. Eachg;(r) (j = 1,2,...,s) depends
holomorphically onr € W. Taking W small enough, we may assume that eggcfr)
(j=12,...,s) belongs toU;. Note that

Z= U{qj(t) |t e W}

j=1

is a non-singular hypersurface pf(W).
Now we recall the following known lemma whose proof can benfibun e.g.,
Matsuno [10]:

Lemma 4.2. There exists an orientation preserving homeomorphjsnv xP! —
p~Y(W) such that

(1) p(@(t,q)) =1 for (1,q) € W x P,
(2 ¢ =¢:t x P p~1(r) mapsg;(o) to q;(t) forr e W and j =1,2,...,s, and
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Wx (X, — £74B) — Y o x
id x f, o r

Wx(P'—B) — > p'(W)-Z
@

Fig. 12. Commutative diagram (iv)

(3) ¢ mapsU; to U; fort e W and j =1,2,...,s, and ¢, is equal to the identity
map onP! — U U U, U --- U U,.

Lemma 4.2 implies thap~1(W) — Z is homeomorphic toW x (P! — B), where
B ={q1(0), q2(0), . .., gs(0)}. SinceW is a ball, 71(p~*(W) — Z, (0, ¢,)) is isomorphic
through¢ to =1 (P! — B, ¢,):

(4.1) Gy (Pt =B, q,) = (07 (W) — Z, (0, 9,)) ,

whereg, is a point inP* — U, U U, U --- U UL.
Let & be a homomorphism of (P! — B, g,) onto G whose kernel Keg) corre-
sponds tof,: X, — P! (see (3.2)). Let

X — p (W) -2

be a finite unbranched-covering corresponding to Ker( under the isomorphismp,
in (4.1). We extendf” to a finite brancheds-covering f': X’ — p~%(W) by the fol-
lowing theorem of Grauert and Remmert:

Theorem 4.3 (Grauert and Remmert [4]).Let M and S be a connected complex
manifold and its hypersurfaceespectivelyLet f: X — M — S be a finite unbranched
covering Then there exists a uniqu@p to isomorphisnjsfinite (branched covering
f: X —> M which extendsf.

The extendedX’ in our case is non-singular, faf is non-singular (see Namba
[14]). Note that

(4.2) =1 hew: X' = {X\}ew — 02 (W)

is a non-degeneraté-covering.

By the isomorphism in (4.1), the homeomorphigmnduces the topological equiv-
alence in Fig. 12. In Fig. 12id is the identity map. Since the extension in Theo-
rem 4.3 is topologically equivalent to the Fox completiomgsFox [3]), the above
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v

WxX, ——>X
id x f, l O lf’

@Y
Fig. 13. Commutative diagram (v)

topological equivalence can be naturally extended to theoltgical equivalence
in Fig. 13.

Now, by (4.1) again,mi(p~X(W) — Z, (0, ¢,)) is isomorphic tori(P* — B, g,).
Hence the unbranched covering

frfH(e7 W) = 2) — p7H W)~ Z
and its extension by Theorem 4.3
fiw ={fikew: Xyw = 1 (07 H(W)) — p7H(W)

also corresponds to Kerl. (In particular, they ares-coverings.)
Hence fiw = {fi}iew and f' = {f/}iew in (4.2) are isomorphic.
Thus the trivial family of G-coverings

W x X, — W x P!

and

Siw = {Sidiew

are topologically equivalent. In particulaf; is topologically equivalent tgf, for every
t € W. This completes the proof of the first half of Theorem 4.1.

The second half of Theorem 4.1 follows from the assertion the set of all (iso-
morphism classes offy-coverings ofP, which are topologically equivalent to a given
G-covering f,: X, — P!, forms a non-degenerate family

(43) fA: {ﬁﬂ}HlEM: X = {XITI}”TEM _% M X Pl

of G-coverings ofP!. (The projectionM x P* — M is the productP!-bundle over a
connected complex manifold M.)

We call this family acomplete non-degenerate family with respectfto Such a
family was constructed in ®klein [18]. Thus the proof of Theorem 4.1 has com-
pleted. (In Appendix, we give a sketch of a construction & tamily in (4.3), which
is apparently different from that in &klein [18].) ]
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We need, however, some informations about the completedagenerate family
with respect tof, in (4.3).

First of all, note that two topological equivalegt-coverings ofP! have the same
numbers of branch points and the same set of ramification indiggse,, ..., e}
Hences and {e1, es, ..., ¢,} are constant foiG-coverings f,,: X,, — P, m € M, of
the family in (4.3).

Next, we need to observe how a neighborhdd&dof a given G-covering f, in
the family with respect tof, in (4.3) can be constructed. In fact, it can be constructed
in a similar way to the proof of the first part of Theorem 4.1 alofvs: Thes-times
symmetric products*P? of P! can be naturally identified with the-dimensional com-
plex projective spac®’: S*°P! = P*. By the projection

v: (PY) — S*Pr =1,

the diagonal is mapped to the discriminant loctis which is an irreducible hyper-
surface of degrees2— 2 in P*. Let

B° = {qi’, q3, ...,q;’} (c IPl)

be the branch locus of,. LetU; (j =1, 2,...,s) be small open balls with the center
g with respect to a Riemannian metric @ which are disjoint each other. Put

W =v(Uy x Uy x --- x Uy).
Then W is a simply connected open neighborhood of the divisor Bén
m,=qi+qy+---+q

in S*P =P and is disjoint fromA.
Put

Z={(m.q)e W xP' [m=qi+qa+ - +gj,
qj=q forsome j=12...s}.
Then Z is a non-singular hypersurface ¥ x PL.

Lemma 4.2 can be applied to this case. Thus there exists antation preserving
homeomorphism

(4.4) ¢:WxP— wxP!

such that
(1) p(@(m, q)) =m for (m,q) € W xPL, wherep: W xP! — W is the projection,
(2) ¢ = ¢:m x Pt — p~(m) mapsqy to g; form € W andj =1,2,...,s,
whereg; +go +--- +¢g, =m, and
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(3) ¢m for m € W mapsU; to U; form e W andj = 1,2,...,s, and g, is
equal to the identity map oR* — U; U U, U --- U U,.
In particular,

QW x (Pl—{qi’,qé’,...,q;})——) (WxIPl)—Z

is an orientation preserving homeomorphism. Hence (as énptioof of the first part
of Theorem 4.1) there exists a non-degenerate family

(45) fW = {fm}mEW: XW = {Xm}mEW — W x ]Pl

of G-coverings (withXy a connected complex manifold) and an orientation presgrvin
homeomorphism

(4.6) Ui W x X, — Xy
which, together withy; gives a topological equivalence between the trivial fgmil
idx f,: Wx X, — WxP!

(id is the identity map) andy .

We thus obtained a local chafyy in (4.5). Patching up these local charts, we get
the complete non-degenerate famify= { f,,}men Of G-coverings in (4.3). (In Appen-
dix, we give a global construction of the family.)

The family f = { f}menm in (4.3) consists of the set of all (isomorphism classes
of) G-coverings which are topologically equivalent to a given X, — P (see (4.6)).

By the construction (see Appendix), there exists a finiteranthed covering

4.7) n: M — P — A.

HenceM is a quasi-projective manifold.
Aut(PY) acts onM. The action is defined by

@ o ﬁn = f(p(m)

for ¢ € Aut(PY) andm e M.

Note that f,, and f,.) are holomorphically equivalent. Conversely, fif and f,,
for m,m’ € M, are holomorphically equivalent, then there exigts Aut(P') such that
m’ = @(m).

Aut(P) also acts o — A. The actions are equivariant with respectitoEvery
point of P* — A is stable under the action of AlRt) (see Mumford [11]). Hence every
point of M is also stable, fom is a finite unbranched covering. Hence the quotient
space

(4.8) M/ Aut(PY)
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13

W xU —»iw

id x i, M

C

>

Wx X, —— Xy

id x f, o) Sfw

WxPl — > WwWxP!
%

Fig. 14. Commutative diagram (vi)

is an irreducible normal quasi-projective variety of dirsiem s — 3, which we callthe
moduli space ofG-coverings(for a given G-covering f,: X, — P?).

We now assume the inequality (2.1) for a givegn X, — P! which branches at
e191(0) + e2q2(0) + - - - + e5q5(0). We return back to discussions on the homeomorphism
¥ in (4.6).

Let

/»L:)?W_>XW

be the universal covering oky. Then v induces an orientation preserving homeo-
morphism

Ui W xU — Xy (U: the upper half plane)

which, together withyy, makes the diagram in Fig. 14 commutative, (U — X, is
the universal covering oX,.)

Note that every fibep=%(X,,), m € W, is biholomorphic tol/, so can be identi-
fied with 4. p, = p: U = p~1(X,,) = X, is the universal covering oX,,. Note also
that ¢, ¥ and ¢ induce orientation preserving homeomorphisms

Om o x P! — m x P!,
I//m: Xo — Xm, and
&111: us= M_l(xo) — U= /J“_l(Xm),

respectively.

Let T(m), for m € W, be the general Klein tile constructed in the proof of Lem-
ma 3.5 with the respect to th@é-covering f,,: X,, — P!. Then the commutative dia-
gram in Fig. 14 implies that

(1) T(m) is an image ofT'(0) by the orientation preserving homeomorphisim

which is in a small neighborhood of the identity map of the ugro
Homeol/, U) of all homeomorphisms aoff onto itself, and
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(2) T(m) is a small deformation off'(0), that is, the coordinates of vertices of
T (m) are near from those of vertices @f(0).

Note that the real dimension of the moduli spaldg Aut(P!) is 25 — 6. On the
other hand, Proposition 2.1 implies that the coordinatewvesfices of general Klein
tiles, modulo congruences of tiles, depend {23) — 3 = 2 — 6 real parameters, for
dimPSL2, R) = 3.

Hence we conclude that every small deformation7d@b) is 7 (m) for somem e
W. Thus, by the proof of Greenberg’s theorem§®, we have

Proposition 4.4. Let f = {fulmem: X = {Xmlmem — M x P be the complete
non-degenerate family af-coverings with respect t¢f,: X, — P! in (4.3). Suppose
that either
(1) s >5,0r
(2) s =4 and {ey, e2, e3, 4} does not satisfy; = e; < e3 = ey.

Then there exists a dense détin M such thatAut(f,) = Aut(X,,) for all m e U.

In the next section, we show that can be taken so thdf is a Zariski open set
in M.

5. Equivalence problem

In the section, let be an integer withs > 3 andey, e, ..., e, integers withe; >
2(j=12,...,s) which satisfy the inequality (2.1). Let

(51) f = {fu}ueN: X = {Xu}ueN — Y

be a non-degenerate family @f-coverings ofP! with a P'-bundle p: ¥ — N such
that eachf,: X, — P! branches at the divisor

(5.2) e1q1(u) + exqo(u) + - - - + egqs(u).
Theorem 5.1. Under the above notationshe set
S={ueN|Aut(f,) #Aut(X,)}

is a closed complex subset Hf.

In order to prove Theorem 5.1, we need some preparations.diEj@nt union

A= Aut(x,)

ueN

forms a complex space such that the projection

K. A— N
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Xy h

X,
pof[ O Jfg
U p T,

Fig. 15. Commutative diagram (Vvii)

is holomorphic (see Schuster [17] and Namba [13]). This i®lative Douady space
(see Pourcin [15]).
In the present case, every fiber

") = Aut(X,)

is a finite group of orderx 84(g — 1), whereg is the genus ofX, (u € N). We first
prove

Lemma 5.2. « is a proper map

Proof. Let{u;};=1, . be a sequence of points iN which converges to a point
o € N. Let {y;};=1o.. be a sequence of points iA such that«(y;) = u; (j =
1,2,...). It suffices to show that we can choose a subsequence {ffgin-1, . which
converges to an element of Axt().

Let T, and X, = {X,},cr, be the Teichréiller space and the Teictiiter family of
compact Rlemann surfaces of gengswhereg is defined by (3.3).

Let fg X — T, be the projection. By the completeness of the farr{liky},eT,
there are a connected open neighborhébdf o in N and a holomorphic map

h:U—>T,

such that the familyXy; = {X,}.cv of compact Riemann surfaces is isomorphic to
the family induced over of the Teichniller family {X,};cz,. Thus there is a holo-
morphic map

h:XU——)Xg

such that
(1) i makes the diagram in Fig. 15 commutative and
(2) the rgstrictionfz,,: X, — Xuu of h on X, is a biholomorphic map ofX,
onto X,(,).
Let I'y, be the Teichriller modular group.I', acts properly discontinuously on both
T, and X ¢» and equivariantly with respect tﬁg. The quotient space

M, =T,/T;
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is the moduli space of compact Riemann surfaces of ggnuRecall that, for every
point ¢ € T,, the isotropy subgroup

L) ={y ey ly() =1}
is a finite subgroup of", which can be identified with Auk,) by the action of the
group I, (#) on X, : T',(?) = Aut(X,). (See, e.g., Imayoshi and Taniguchi [6].)
Now we may assume that every poimi (j = 1,2,...) belongs toU. The se-
quence{h(u;)} =12, of points in 7, converges tdi(0). Note that
Aj = /:l,,j oY o/;;jl
is an element of Aut{(.)) = [, (h(x;)). Hence

Ajh@)=h(;) (G=12...).

Since the action of", on T, is properly discontinuous, (taking a subsequence if nec-
essary) we may assume that

A1=Xy=---=1 (a constant element df,).
Then A(h(0)) = h(0), SO A € T'y(h(0)). Moreover
Y =htoroh, (j=12...).
Hence the sequendg/;};=1. .. converges to
Y, =h7toioh, € Aut(X,). O
Next we must observe the local structure of the complex spasd J, .y Aut(X,).
Take a pointo € N and an automorphisng, in Aut(X,). Then an open neighborhood
W of ¥, in A can be identified with the analytic subset
{(u,v) e U x V| a(u, v) =0}

of U x V, whereU is a connected open neighborhood win N, V is a connected
open neighborhood of 0 in %iX,, O(¥TX,)) and« is a holomorphic map

a: U xV — HY(X,, O TX,))

such that
(1) «a(o,0)=0 and
(2) (da)e.0) =(z,0)
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(see Namba [13]§3.2). HereTX, is the tangent bundle ok,, H*(X,, OV TX,))
are the cohomology groups of the sheaf of sections of theowdmindley;7X, and

T =Y, 00 = YouPo-
Here
po: T,N — HY(X,, O(T X,))
is the Kodaira-Spencer map for the familx,},.y and
v, HY(X,, O(TX,)) — HY(X,, O, TX,)).
Vout HY(X,, O(TX,)) — HY(X,, O(¥; TX,))

are the linear map induced hy,.
In the present case/ T X, is a line bundle such that

degy,TX,=degl' X, =2—2¢g <O.
Hence
HO(X,, O(W; T X,)) = 0.
This means that there are a closed complex subspace
R={uelU|a(u,0)=0
of U and a holomorphic section
(:R— A

of k: A — N on R such that the imagéV = ¢(R) is a connected open neighborhood
of ¥, in A. Hencex(W) = R.

If ¥, is in Aut(f,), thenx(W) =U. In fact, take a poinyg € P — B, where B,
is the branch locus off,. We may assume that € P* — B, for all u € U. Consider
the finite subset

fu_l(CI) = {Pl(“)v pZ(”)’ e pd(u)}

of X,. Each py(u) (k = 1,2,...,d) depends holomorphically on € U. Let ¥ (u)
(k=1,2,...,d) be the automorphism aoX, such that

Vi(u): pa(u) — pi(u).
Then

GiuelUr— Yr(u) e A
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gives a holomorphic section af such thatW, = ¢, (U) is an open set ofA.
Thus we conclude that

A= Aut(f,)
ueN
is an open subset ol such thatk(A") = N.
Note thatA’ is also closed inA. In fact, if {1;};=12.. iS a sequence of points in
A’ which converges taj, € A, then

foovi=fi, (=12...),

whereu; = k(y;). Hencef, o ¥, = f,, whereo = «(y,). Hencey, e Aut(f,).

Thus A’ is open and closed im. HenceA” = A — A’ is also open and closed
in A.

Thus, by Lemma 5.2,

S =k(A”) = (u e N | Aut(f,) # Aut(X,))

is a closed complex subspace 8t This proves Theorem 5.1.
By Theorem 5.1 and Proposition 4.4, we have

Theorem 5.3. Let f = {fulmen: X = {Xm}mew — M x P! be the complete non-
degenerate family o6-coverings with respect t¢f,: X, — P! in (4.3). Suppose that
either

(1) s =5, o0r
(2) s =4 and {es, ez, e3, ¢4} does not satisfy; = e, < e3 = e4.
Then

S = {m eM | Aut(fm) ? AUt(Xm)}

is a closed complex subspace Mf such thatS # M.

Now, an equivalence problenasks the following problem: For twd;-coverings
fi: X1 — PYand fo: Xo — P, is it true thatX; and X, are biholomorphic if and
only if f; and f> are holomorphically equivalent (under suitable condaan

The ‘if’ part of the problem is trivial. The difficult part ishe ‘only if’ part. As
for cyclic coverings or Kummer coverings, answers (underiows conditions) are
known (see Namba [12], Kato [8] and Sakurai-Suzuki [16]).

Theorem 54. Let f = {fuluen: X = {X,}uen — Y be a non-degenerate fam-
ily of G-coverings ofP! in (5.1) with a P'-bundle p: ¥ — N and with the branch
divisors (5.2) which satisfy the inequality2.1). Assume that there is a point € N
such thatAut(f,) = Aut(X,). Then for any two pointsy and«’ in N, X, and X, are
biholomorphic if and only iff, and f,, are holomorphically equivalent
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In order to prove Theorem 5.4, we need some preparations.hByassumption
and Theorem 5.1,

S={ueN| Aut(ﬁ,) ? AUt(Xu)}

is a closed complex subspace 8f such thatS # N. HenceN — S is a Zariski open
subset ofN.

Lemma 5.5. If u and v belong toN — S and if X, and X, are biholomorphi¢
then f, and f, are holomorphically equivalentMore precisely every biholomorphic
map v : X, — X, induces an automorphism: P* — P! such thatys and ¢ give the
holomorphic equivalence of, and f,, that is f,o¢¥ =¢o f,.

Proof. The quotient spaces
X, /Aut(f,) = X,/Aut(X,) and X,/Aut(f,) = X,/Aut(X,)
can be identified witiPl. Note that
¥ o Aut(X,) o 1 = Aut(X,).

Hence s induces a biholomorphic map of the quotient spaces such thfto v =
o fy. O

Forue N—S andv € S, X, and X, cannot be biholomorphic, for
deg Aut(X,) =d < deg Aut(X,).

For u,v € S, suppose tha, and X, are biholomorphic. We will show thaf,
and f, are holomorphically equivalent.

As in the proof of Lemma 5.2, there are a connected open neigbbd U
(resp.V) of u (resp.v) and holomorphic maps

h:U — T, (resp. h':V — T,)
and
h: Xy — X, (resp. h': Xy — X,)

such thatf,oh = hopo f (resp. fyoh’ = h'opo f) and the restrictiorh,, (resp.4,,) on
X, (resp.X,,) of h (resp./’) is a biholomorphic map of,, (resp.X,,) onto X,
(resp. Xw(uy))-

By the assumption,

g (h(u)) = 7 (h'(v)),
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where
Tg: Ty — T, /T, =M,

is the projection.

Hence there are sequencis} =1, .. of points inU N (N —S) and {v;} =12 . of
points inV N (N — S) such that

(1) f{uj}j=12.. (resp.{v;};=12.) converges ta: (resp.v) and

@) me(h(u) = me(h'(uy)) (G =1.2....).

(2) implies that there is a sequeng®;};=1, . in the Teichnilller modular group
I, such that

h)) =1 @) (G=12...).

Sincel’, acts properly discontinuously dfy, (taking a subsequence if necessarily) we
may assume that

A1 =Xi2=---=1 (a constant element df,).

Put

yi=htoroh, (j=12...).

vj

Theny; is a biholomorphic map ok, onto X,,. The sequencéy/;} ;=12 . converges
toy = ;l;j_loko;ll,, a biholomorphic map o, onto X,, in the relative Douady space

J Holx,, x,)
(p.q)eNxN

of holomorphic maps.
By Lemma 5.5, eachy; (j = 1,2,...) induces an automorphism; of P! such
that

9o fu = fo,ov (j=12...)

Let p* and p? be distinct points inX, such thatf,(p*) = f.(p?). Let {pj};=12.. and
{pjz.}jzl,z_,,, be sequences of points Xy such that

Q) pjl., pjz. eX, (=12...)

(2) (PHj=12... (resp.(p?);=12..) converges top* (resp. p?) and

@3) fu,(p}) = fu,(PD) ((=1,2,...).
The sequence$1//j(p_})}jzl,g,___ and {wj(pf)}jzl_z____ of points in Xy converges to the
points v (pt) and ¥ (p?) in Xy, respectively.

Now we have

Fo, W3 (P7) = 05 (fu, (P))) = 0 (£, (P) = £, (w5 (PF)) G =12...0)
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Hence

Fo (0 (P1) = fo (v (P7)) -

This shows that) induces a holomorphic map
¢: P! — P!

such that

(1) {@;};=12... converges tap in Hol(P*, P!) and

() ¢ofu=fioy.

A similar argument can be applied 1%, and so we conclude that is an au-
tomorphism ofP!. This completes the proof of Theorem 5.4.

REMARK 5.6. We have given a proof of Theorem 5.4 without using spexiap-
erties of PL. So it will work for G-coverings of a higher dimensional projective man-
ifold, under suitable conditions.

By Theorem 5.4 and Theorem 5.3, we have
Theorem 5.7. Let f = {foulmerm: X = {Xm}mew — M x P! be the complete non-

degenerate family of5-coverings with respect t¢f,: X, — P! in (4.3) with g > 2,
where g is the genus ofX,. Assume that the number of the branch points and the

set{ey, es, ..., e;} Of ramification indices off, are either

(1) s #4, or

(2) s =4 and {ey, ez, e3, e4} does not satisfy; = e, < e3 = e4.
Then

(1) for any two pointsn andm’ in M, X,, and X,,, are biholomorphic if and only if
f» and f,, are holomorphically equivaleptand
(2) the holomorphic map

i M/Aut(PY) — M,, m (modAut(P')) — [X,]

is injective where M, is the moduli space of compact Riemann surfaces of genus

Note that (1) and (2) of Theorem 5.7 is trivial fer= 3, because the moduli space
M/ Aut(PY) is one point in the case.

QUESTION. Is the map: in (2) of Theorem 5.7 a holomorphic injection?

Any two G-coverings ofP! in a non-degenerate family are topologically equiva-
lent by Theorem 4.1. Hence they belongs (up to isomorphigmshe complete non-
degenerate family in (4.3) as members. Hence, by Theoreimwe finally have as an
answer to the equivalence problem:
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Theorem 5.8. Let f ={f,luen: X = {Xu}uey — Y be a non-degenerate family
of G-coverings ofP! with a P*-bundle p: ¥ — N. Assumeg > 2, where g is the
genus ofX, (u € N). Assume that the number of the branch points and the set
{e1, ez, ..., e;} Of ramification indices off, (u € N) are either
Q) s #4,0r
(2) s =4 and {ey, ez, e3, e4} does not satisfy; = e, < e3 = ey.

Then for any two pointsu and ' in N, X, and X,, are biholomorphic if and
only if f, and f,, are holomorphically equivalent

REMARK 5.9. We do not know if, in the exceptional cases 4 ande; = ¢; <
e3 = e4, the affirmative answer to the equivalence problem stilldeobr not. The af-
firmative answer to the equivalence problem still holds fog tyclic coverings in Ex-
ample 3.4. In fact, in both (1) and (2) of Example 3.4, using timiqueness of linear
pencils of degree 2 on hyperelliptic Riemann surfaces, we stoow thatX, and X,
are biholomorphic if and only ifx = A or © = 1/A. When u = 1/, a biholomorphic
mapping ofX; onto Xy, is given by

(X, y) € Xl — (X/)\., y/()\S/4)) € Xl/)u

which gives clearly a holomorphic equivalence £fto fi;.

Appendex: Construction of complete non-degenerate families

We give a sketch of a construction of the complete non-degémdamily of G-
coverings ofP! with respect to a givery, in (4.3). Our construction is apparently dif-
ferent from that in \6lklein [18].

We identify the symmetric produc*P! of P! with P*: SP! = P¢. The set of di-
visors which contain the pointo is then identified with the hyperpland,, at infinity.
HencelP’ — A — H,, = C°* — A, where A is the discriminant locus. Lefyy, g5, ..., ¢}
be the branch locus of,. We assume that

g oo (j=12,...,5).

The divisor D° = ¢{+¢5+- - -+q¢ can be regarded as a point Gf —A. The fundamental
group 71(C* — A, D°) can be identified with the Artin braid group, of s-strings:
11(C* — A, D°) = B,.

Note also thatr;(P* — A, D°) can be identified withB(P') the braid group of
s-strings inP!: my(P* — A, D°) = B,(PY).

There are natural surjective homomorphisms

a: By — B, (PY),
B: B, (P') — Map(P*, D°),



174 S. MzZUTA AND M. NAMBA
where MapP?!, D°) is the mapping class group. (M&@3( D°) = M(0, s) by the nota-

tion in Birman [2].) It is known (see Birman [2]) that
(1) Ker(@) is the smallest normal subgroup B which contains

0102051051 " 0201,

whereoy, 07, ...,0,_1 are the standard generators Bf and
(2) Ker(g) is the center ofB,(P'), which is the smallest normal subgroup Bf(P!)
which contains ¢;0, - - - 05_1)°.

Consider the subgroup

H ={o € B, =m(C’ — A, D°) | (Ba)(0).(Ker(§)) = Ker(§)}

of m1(C* — A, D?), where¢ is the homomorphism in (3.2) witl® = B® = {¢7, 45, ...,
q?} andg, = oo, and

(Ba)(0),: m1 (Pl — B?, oo) — m (]P’l — B, oo)

is the isomorphism induced by the mapping clags)(o).
We can rewriteH as follows:

H={o € B, =m(C° — A, D°) |
there is anA e Aut(G) such thaté o (Ba)(o), = Ao &}

Let
n':(M,0) — (C°' = A, D%

(0 € M") be the finite unbranched covering of the p&¥ ¢ A, D) which corresponds
to H. Thenn’' induces an isomorphism

n.:m(M',0) — H.

By the theorem of Grauert and Remmert (Theorem 4i3)can be uniquely (up to
isomorphisms) extended to a finite covering

n:M— P — A,

n is again a finite unbranched covering, for the meridian adofiy, is (a conjugate
Of) 0102+ 041051 "+ 0201 and belongs toH.
Next put

Z={(m,q) e M x P* | g is contained in the divison(m)}.
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Then Z is a non-singular hypersurface of x P1. The map
himeM —> (m,00)e M xP'—Z
is a holomorphic section of the projection
pM xP—7Z — M.

Lemma 4.2 can be applied to, so p is a topological fiber bundle. Hence there are
the following exact sequence:

L o (M x PY = Z) 25 7, (M)
—> m (PL = D%, 00) =5 7y (M’ x PY = Z, (0, 00)) 2> 71 (M, 0) —> 1
and the homomorphisms

h*:nz(M’) — (M xIPl—Z),
he:my (M, 0) — 71 (M' x P' = Z, (0, 00))

such thatp,h, = 1. Hencen, is injective andp, is surjective. Hence
1— nl(IP’l—D",oo) Ly 71 (M x P = Z, (0, 0)) LN (M 0) — 1
is exact and
T (M’ x P —Z, (o, oo)) ~ (M’, 0) X 71 (Pl — D°, oo)
(semi-direct product). We identify, (r1(M’, 0)) with 7y(M’, 0). Then
m (M x Pt —Z, (o, o)) =71 (M, 0) e 11 (IP’l - D’, )

(the product set).

Ker(£) is not only a normal subgroup of;(P* — D°, co), but also a normal sub-
group of ry(M’ x P! — Z, (0, 00)). Hence the product set;(M’, o) e Ker(£) is a sub-
group of my(M’ x Pt — Z, (0, 0)).

Let

X — M xP—2Z

be the unbranched covering which correspondg i@’ o) e Ker(g).
By Theorem 4.3, can be uniquely (up to isomorphisms) extended to

fliX— M xP' - Z.



176 S. MzuTA AND M. NAMBA

In a similar reason toy’, f” is an unbranched covering.
By Theorem 4.3 againf” can be uniquely (up to isomorphisms) extended to a
branched covering
fiX — M xP.
X is non-singular, forZ is non-singular. The mag gives a non-degenerate family of
G-coverings ofP':

fA = {ﬁn}meM: }? = {Xm}meM — M x Pl~

This is the complete non-degenerate family@fcoverings ofP* in (4.3). (f, is equal
to the givenf,.) M is the set of all (isomorphism classes @f}coverings ofP* which
are topologically equivalent tg,.

EXAMPLE A.1. Let G be the 3rd symmetric groufz ande; =e; =---=¢;, =2
with evens (> 4). ThenM is independent of the choice gfand the mapping degree
of

nM—P —-A

is (372 — 1)/2. In fact, the number of the orderings of— 1 iterated elements from
the transpositions (12), (23), (13) i$~3. We must delete 3 orderings
12),(12),...,(12),
(23),(23),...,(23),
(13),(13)....,(13)

from them, because they do not generate Hence there are*3! — 3 surjective ho-
momorphisms fromr1 (P! — D?, 00) to S3. Aut(S3) is isomorphic to the 3rd symmetric
group acting on{(12), (23), (13)} as the permutation group. Hence the number of sur-
jective homomorphisms from (P! — D?, 0o) to S3 up to Aut(Ss) is

33—1_3_35—2_1
6 2

Moreover we can directly check that for any two such homomismké andé&’, there
is o € B, such that

§'=£0(Ba)(0)s.

We can also know the degree gfby another argument: Every sudii-covering
f of P! can be decomposed as

xSy 2 opt
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whereh: Y — P! is a double covering oP! with s branch points an¢g: X — Y
is an unbranched covering of degree 3. The set of isomorphlasses of suclg’s is
in one-to-one correspondence to the set of subgroups of Graé the Jacobi variety
J(Y) of Y (see, e.g., Namba [14]). There aré B3— 1)/2 such subgroups.
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