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Abstract
We investigate closed Riemannian 3-manifolds which satésf extremal condi-
tion. Using monopole equations and considering the actibthe covering trans-
formations, we decide the geometric structure of such 3Himlds. As a result,
we characterize the geometry of 3-manifolds with monopdisses whose dual
Thurston norm is equal to one.

1. Introduction

In low dimensional topology, there are a large number of wadik find sharp es-
timates for the genus of embedded surfaces. The most famuissahe proof of the
Thom conjecture given by Kronheimer and Mrowka ([9]). Aucldgplied their method
to the 3-dimensional case ([1]). On the other hand, Kronkeiand Mrowka refined
Auckly’s result and described the relationship between dhal Thurston norm and
scalar curvature ([8], [10]). Moreover, McMullen ([13]), Ozl and Szal ([14]) and
Vidussi ([17]) related the Thurston norm and Alexander polyial, Heegaard Floer
homology. However, the study of geometric aspects of thd dharston norm still
remains open.

In this article, we investigate the Riemannian metrics Whsatisfy some equality
for the L?-norms of the scalar curvature and a monopole class, anduatethe geo-
metric structure of such closed Riemannian 3-manifoldsorfsric characterization of
3-manifolds has recently drawn a great attention. Our suelyls with the geometric
structure of 3-manifolds by applying the 3-dimensionalb®ej-Witten theory to the
dual Thurston norm.

Let M be a closed, oriented 3-manifold withy(M) > 0, and suppose tha¥/
contains neither non-separating 2-spheres nor tori. Thesamptions make one to be
easy to deal with the 3-dimensional Seiberg-Witten thebst o € H?(M;R). The
dual Thurston norm ofr is defined by

ey [ZD)
lal. 3= sup5 =,
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the supremum being taken over all connected, oriented cegfa embedded inM
whose genug(X) > 2.

We call « a monopole class, when is the first Chern class; of the complex
line bundle L associated with a principa$pin(3)° bundle P over a closed, oriented
3-manifold M, such that the corresponding monopole equations have #dosofor all
Riemannian metrics on M. Kronheimer and Mrowka obtained the following theo-
rems with respect to the dual Thurston norm of a monopolesclas

Theorem 1.1 ([10]). If M is a closed oriented irreducible 3-manifold then the
convex hull of the monopole classes is precisely the unit foalthe dual Thurston
norm on H3(M;R).

Theorem 1.2 ([10]). Let M be a closed oriented irreducible 3-manifold Then
the dual Thurston norm of € H?(M;R) is given by

aflp
|oz|,g:4yrsup|| I ,
no skl

the supremum being taken over all Riemannian metricsvon

In Theorem 1.2,||«||, is the L?-norm of the harmonic representative ef and
lsxll» is the L2-norm of the scalar curvaturg, for the given metrich. These theorems
have been proved by using the following key lemma:

Lemma 1.3 ([10]). If « € H3(M;R) is a monopole classhen

1
lleelln < . Il

for all metrics A.

We consider the metrick which are extremal, namely, these for which

1
el = —lsulln

holds for a monopole class. In this case, from Theorem 1.2 and Lemma 1.3, we
have then|a|, = 1. Our aim of this article is to investigate this case and ¢tedmine
completely the geometric structure of as follows:

Main Theorem. LetM be a connectedclosed oriented3-manifold withb, (M) >
0 and @ € H?(M;R) be a monopole class o¥. If there exists a Riemannian metric
h on M with |«|l, = |Isulln/4m, then (1) the universal covering space ¢M, k) is
isometric to the Riemannian produ(R, d1?) x (H?, gn) (gn is a hyperbolic metrip
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so thatM = (R x H?)/T', whereT is a group of orientation preserving isometries of
R x H?, and (2) if, in addition, the image of the projectiop: I' — IsomR) is dis-
crete in IsomR), then (M, h) is either a fiber bundle oves! with closed Riemann
surfaces as fibers or is @,-quotient of this fiber bundle so thdiM, k) is a fiber
space overl = [0, 1] with singular fibers at the end points

Main Theorem shows that the universal covering spacetbfh is E' x H?. This
is one of “the eight model geometries” introduced by Thursffi6]). From the result
of Scott ([15]), M admits a Seifert manifold structure.

We haveb (M) = 2g(£) + 1 from the Leray-Hirsch theorem ([2]) for Riemann
surfaceX appearing in the fibers a#f. Therefore we obtaib;(M) > 5, because we
assumeg(X) > 2 to define the dual Thurston norm.

The monopole clasa can be described as

i dx Ndy
o= Z |:C1 yz j| = [ngvgz] s

where Cq, C, are some constants amll,, is the area form ofx.

One of significant invariants is the Yamabe invariari{M). For the closed
3-manifold M carrying the geometric structure in Main Theorem, we obtai& fol-
lowing corollary:

Corollary. Let M be a connectedclosed oriented 3-manifold with b1(M) > 0
and ¢ € H*(M;R) be a monopole class aff. If there exists a Riemannian metric
on M with |la|l, = |Isklln/47, thenY (M) = 0.

Next, in Section 2, we review the 3-dimensional Seibergtéfditheory and finally,
in Section 3, we give the proof of Main Theorem and Corollary.

2. The 3-dimensional Seiberg-Witten theory

Let M be a closed, oriented 3-manifold. Then there existSpan(3)° structure
which defines the principabpin3)° bundle P associated to the tangent bundie/
of M. Let L be the complex line bundle an& be the spinor bundle associated with
P. We consider the monopole equations, namely, equationa famitary connectiom
on L and a sectiond of W.

1
c(xF)) = ® @ ®* — §|<1>|2|dw
D,® =0

In the first equationc is the Clifford multiplication7*M — End(W), = is the
Hodge star operator anfl, is the curvature form ofd. In the secondp, is the Dirac
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operator
(W) X I(T*M @ W) - T(W).

Suppose that there are no reducible solutions, and for evetyic /4, the equa-
tions have an irreducible solution, that is, a solution with# 0. (In Main Theorem,
b1(M) > 0 assures the irreducibility of solutions. See [3], for epé)

If there exists a Riemannian metricon M with ||«|, = |lsxllx/47 for a mono-
pole classe € H?(M;R), then we haveV,® = 0.

To see this, we review the proof of Lemma 1.3 (or for a similayuanent, refer to
[5]). Let (A, @) be an irreducible solution to the monopole equations. Tiwgrusing
the Bochner-Weitzerizk formula, one obtains

1
0=D'Ds® = ViV, + SZ’“cb +2C(+FA)O.

Therefore one gets

Sh

(VaVad, @)+ 7 0+ (Io)2®, ®)=0

1
4

and integrating

1
/|VA<I>|2dvh+/ s—”|<1>|2dvh+—/ % dvy = 0

or

1
(*) / s—*‘|<1>|2dvh+—/ |®[* dvy, :—/ [Va®|?dvy, < 0.
M 4 4 M M

Hence by using the Cauchy-Schwarz inequality, one sees

[ 1ettau < [ sepau, s\// s,fdvh// @1 du;.
M M M M

Since the solution is irreducible, one obtains

/Ifl>l4dvh S/ sZ dvy,.
M M

Again by using the first monopole equation, one h&$ = 2|F,|. Therefore one

gets
/4|FA|2dv/, 5/ sZdvy,
M M
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and hence
Sh 2
il <3,
I Eally, < o1,

To see|lalln < lsulln/4r for all Riemannian metrics on M, recall thata is
a monopole class and henee= ci(L) = i[F4]/27. Considering theL?-norm of the
harmonic representative of, we get desired result.

By following the argument above, we can easily observe thttere exists a Rie-
mannian metrich on M which satisfy ||«|l, = |ls.ll»/47, then the equality holds on
the inequality £). Hence we obtairvV,® = 0, from which we get detailed information

about M.

3. The geometry of closed 3-manifolds with the extremal metrics

We investigate in this section the structure #f with V,® = 0. First, it is
clear that|®| is constant. Second, from the first monopole equatiBp,is parallel,
i.e. VxF4 = 0, whereV is the Levi-Civita connection of M, ). Moreover, by using
the Bochner-Weitzeriitk formula, we obtairs, = —|®|4, i.e. the scalar curvature of
(M, h) is negative constant. Especially frofy F, = 0, we can prove the following
proposition:

Proposition 3.1 ([6]). Letx: L — M be aU(1)-principal bundle over an ori-
ented Riemanniam-manifold (M, k) and F, is the curvature form of a unitary con-
nection A on L. Let D be the null distribution defined by

D= {Dx}xeMs Dx = {XETleiXFA:O}v

and D+ be the orthogonal complement ®f defined byD+ := {D1},cy, where Dt is
the orthogonal complement db,. If VxF, = 0 for the Levi-Civita connectiorV of
(M, h), thenD and D+ are integrable and invariant under the parallel translatio

Proof. To begin with, we will show thaD and D+ are invariant under the paral-
lel translation. Letc: [0, 1] — M be a piecewise smooth curve witfi0) = x, ¢(1) = y.
Let X € D, andY € T.M and take parallel vector fieldX(¢), Y (¢t) along c such that
X(0)=X, Y(0) =Y. Since F, is parallel, we have

SO 0 = Fa (0. 70) + 4 (x0. 5 0) =0
Hence we obtain
Fa(X(1), Y(t)) = Fa(X(0), Y(0)) =0

because ofX(0) € D.q). Therefore we obtainX(r) € D). Similarly, if we have
X(0) € Dy, then we can easily checK(r) € Dy, becauseV is compatible with
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h. Therefore for the parallel translation: 7,M — T,M alongc, we obtaint.(D,) =
Dy, t.(D{) = Dy.

Now we will show thatD and Dt are integrable. FoX,Y e I'(U; D) where U
is an open subset a¥# we haveVyX e I'(U; D), because for any smooth vector field
Z we have

0 =Y(Fu(X, Z)) = Fa(Vy X, Z) + Fu(X, Vy Z) = FA(Vy X, Z).

Hence if we haveX,Y e I'(U; D), then [X,Y] = VxY — VyX € I'(U; D). This
means thatD is integrable. Similarly, we can easily checK,[Y] = VxY — VyX €
LU; DY) for X, Y e I'(U; DF) so thatD+ is integrable. O

Proof of Main Theorem. We first derive the conclusion (1). 8Sime consider ir-
reducible solutions to the monopole equatioRy, is not identically zero and we have
dimD+ # 0. Moreover, F, is a parallel 2-form orD*, therefore we have di* =
2 because of dil¥ = 3. Since the scalar curvature o#/(h) is negative constant,
the integral manifold ofD+ is a Riemann surfaceH?, gy) with negative curvature.
On the other hand, the integral manifold of is the 1-dimensional Euclidean space
(R, dt?) because of dir® = 1. Hence by the de Rham decomposition theorem of
Riemannian manifold, the universal covering space Mf £) is the Riemannian prod-
uct R, dt?) x (H?, gx).

To obtain the conclusion (2), let IsdifR x H?) be the group of orientation pre-
serving isometries oR x H2. I is the subgroup of IsoffR x H?). The connected
component Isof(R x H?) which includes the identity of IsoifR x H?) has the fol-
lowing decomposition by the de Rham decomposition theor@i: (

Isonf(R x H?) = Isonf(R) x Ison?(H?).
It is clear that

Isonf(R) = Isonmi’(R), Isonf(H?) = Isoni (H?),

Isom"(R) = {a | a: x = x +1,}, Isomi (R)=610lsom'(R), 6.(t) = —t.

On the other hand, one can easily check the following ([12]):

+b
Isontt (H?) = ’f ‘ f@=2"2 a4 bcdeR, ad—bc=1},
cz+d
Isom™(H?) = 6, 0 Isomi" (H?),  64(z) == —7.

Hence Isoi(R x H?) has the following decomposition:

Isom’(R x H?) = (Isoni(R) x Isont (H?)) u (Isom™ (R) x Isont (H?)).
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Similarly, I' has the decompositioh = I'o L I'; such that
o = N (Isom'(R) x Isom'(H?)), TIy:=TN(Isom (R) x Ison (H?)).

REMARK. (i) T is fixed point free, i.e. if there exists a point,(p) € R x H?
with y(x, p) = (x, p) for y € T, then we havey = (Idg, Id2).
(i) T is properly discontinuous, i.e. for any compact s&ts K> on R x H?, there
are only a finite number of elemenfse I' such thaty(K;) N K, # 4.

We consider two cases. One is (&) = @, and the other is (b); # @.

CASE (a). In this case, we havE = I'y c Isom’(R) x Isom"(H?) and we can
define the action ofy € ' on R x H? by y(x, p) := (x +1,, ¢,(p)), where the map
t:T' - R, y » t, is a homomorphism. We consider the normal subgrbup= {y €
I' | 1, = 0} and the exact sequence

1}->TI">T— ¢)— {1}

Hencel /T” = ¢(I') and from the discreteness ¢{I") c Isom'(R), we obtainI' /T =
Z. Therefore we get the following diagram:

r

R x H? R x (H?/T")
lr lr/r'éz
(R x H?)/T == (R x (H?/T"))/Z =R x(z,5) (H?*/T").

Thus we can determine the structure Mf as
M = (R x (H?/T"))/Z =R x@z.p (H*/T).

From this diagramM is regarded as a fiber bundle ov&t = R/Z with Riemann
surfaces as fibers. Since each fiber is an inverse image ofna ipob?, it is compact.

Cask (b). Denote R x H?)/Tg by My. By the same argument as Case (&)
can be written asVp = (R x (H?/T))/Z. Recall that we hav& =TTy, and by the
definition of 'y and 'y, we seel’ /Ty = Z, so that there existg € I'; such that §] e
I'/Ty is a generator of'/To. Therefore we obtain thatZ = (R x H?)/T" is written as
M = Mo/(I'/T'o) = Mo/~, where [, p] ~ [y, pa] if and only if (y, p1) = y'y(x, p)
for somey’ e I'y. By the result of Case (a)lp is a fiber bundle ovess® with closed
Riemann surfaces as fibers. Since

y = (01,602) 00, o € Isoni’(R) x Isom' (H?),

we have €1 o ¢(y0))? = Idgr so that the action oZ, descends to an action on the base
spaceS* which has two fixed points. In fact; o ¢(yo) : R — R mapsx to —x —,,
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so that the pointsx], [x2] in S* = R/Z are exactly fixed points of th&,-action,
X1 = —t,/2, x2 = —(t, + 1)/2. Consequently, the fibers are singular over these two
fixed points and regular over the other points. ]

Proof of Corollary. We first takd -invariant metricsg; := 8dt? @ gi on M with
parameters > 0, and define metricg; on M = M/T" such thatgs; = n*gs where
m: M — M. For gs, we can easily check

. 3/2
mf/ |52 % dvg, = 0.
>0 far

ThereforeY (M) > 0 by Proposition 5 in [11].
SupposeY (M) > 0. Then there exists a metric such that the Yamabe constant
V(M) > 0, because by definition

~ dUN
Y(M) = supYiq (M) = sup_inf Mf/s,
ls] [s] &€lel ([, dvz)

the supremum being taken over all conformal classesorHence from the Yamabe
problem, we have a metric of positive scalar curvature. Hewefrom the strongly
maximum principle|®|? < max0, —s;}, ® vanishes. This implies that the solution of
monopole equations is reducible and contradicts the igibdity of solutions. Hence
we obtainY (M) = 0. O
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