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Abstract
We are interested in the microlocal smoothing effect forrapms of real princi-

pal type. On the initial value problem for a dispersive etiolu equation, we study
the fact that the sufficient decay of the initial data gives #moothness of the solu-
tion. We develop the theory of the FBI transform in order @nsform our operator
of real principal type into a simple operator of first ordencg the smoothing effect
is of global nature, our transformation is realized glopalong the bicharacteristics
defined from the principal symbol of the operator.

1. Introduction and the main results

Dispersive evolution equations are known to have the snimugtproperties. We
call these properties the smoothing effects. There are reapyessions for them. We
study the smoothing effects from the point of view that theosthness of a solution
to the initial value problem for a dispersive evolution etipra depends on the decay
of the initial data. This problem was refined and generalizednany aspects. In [4]
Craig-Kappeler-Strauss studied Satlinger evolution equations oR” with asymptot-
ically flat coefficients of the short range perturbation. Thé&rolocal regularity of a
solution increases at a poimh = (yo, 70) € T*R" \ 0 when the bicharacteristics of the
principal symbol throughpy is not trapped backwards in a compact set and the initial
data decays along the base projection of this bicharatitsridn [7] Doi studied the
relations between the global behavior of a Hamilton flow ahe $moothing effects
in general situations (see also [8] and [9]). In [21] Robbiatuily gave the results in
the analytic category similar to those given by Craig-Kdep8&trauss [4] inC* one.
Robbiano-Zuily’s approach is based on the theory of the F&tdform. Our aim is to
generalize these results to a wider class of dispersivaugonl equations following the
idea given by Robbiano and Zuily.

Let m be an integer greater than or equal to 2. [Pk, D,) be a linear differen-
tial operator of ordern in R" given by

(1.1) P(x,Dy)= > au(x)DS,

lee|<m
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wherei = /-1, D,, = —id/dx; and the coefficients,(x) (la| < m) are analytic in
R". Let P = P(x, D,) = P(D,) be a differential operator with real constant coefficients
given by

(1.2) P(Dy)= > @D, G, eR.

la|=m

In order to simplify the notation, we defing, = 0 when|«| < m — 1.

We assume thaP(x, D) is a perturbation ofP(D;) in the following sense. We
can find constant€y > 1, Ko > 1, Rg > 1 andog € (0,1) such that for allx € R”
with |x|] > Rg and 8 € (NU {0})" we have

~ Cok{ B!
(L.3) S D8 a) = @)| = <l

le|<m

Let pu.(x,&) = Z|a|:"1 ay(x)é* be the principal symbol forP(x, D,) and
Pm(x, &) = pm(§) = 2.1, 1=m Ga§® bE the one forP(D,). The second main assumption
is that P(x, D,) and P(D,) are operators of real principal type in the strong sense,
that is,

(1.4) pm(x,&) and p,(&) are real valued
(1.5) Vepm(x,§) 70, when p,(x,§) =0, (x,§) e T'R"\ 0,
(1.6) Verm(§) 70, when p,(§)=0, § eR"\0.

Let po = (yo, m0) € T*R" \ 0, and let ¥ (s; yo, n0), ®(s; yo, no)) be the solution to
the equation

aplﬂ

d
—Y(s) =
(1.7) ds 95

Lo ==L (v(5), 0)), ©0) =no.
Ky 0x

(Y(s), ©(s)),  Y(0) = yo,

This is the bicharacteristic o, (x, &) passing throughpg. The third assumption is so-
called “non-trapping forward” in the following:

(1.8) The solution (Y (s; yo, o), ©(s; yo, n0))  exists for Vs € R,
and
(1.9) lim [Y(s; yo, n0)| = co.

§—>00

If a,(x) (Je| = m) are constant, then (1.8) and (1.9) are satisfied. (lYé(ts;yo, 10),
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O(s; yo, 10)) be the solution to the equation

d v aﬁm ~ jad
—Y(s)= (©()) , Y (0) = yo,
(1.10) ‘;S 9%
g(@(s) =— o (@(s)) =0, ©(0)=no.
We can easily compute
o aNm ~
(1.11) T6) = o+ s (o). 66) =0

Let us define a class of the initial data. L;ep”t0 be the bicharacteristics in the pos-
itive direction:

(1.12) Voo = 1Y (53 Y0, 10), ©(s; Y0, m0)) € T*R"; 0 < 5 < 00}.

For gg > 0 we set

1/(m—-1)

(1.13) X; = {v € LA(R"); Jgo > 0, 369 > 0, Pl v(x) € L? (F:o-/)o)} ,

where

(1.14) Iy o= Jlr e R 1x = Y (55 yo. no)l < eo(1 +[s])}.

s>0

Let ug € L2(R") and u(t, -) € C((—o0, 0]; L3(R")) be a solution to the initial
value problem

(1.15) 4Df”+P(vax)u =0, r<0, xeR",

ult:O = uo('x)s

where D, = —id/9t. The next theorem is our main result in this paper.

Theorem 1.1. Let p = (yo. 70) € T*R" \ 0. Let P(x, D,) and P(D,) be differen-
tial operators defined ir(1.1) and (1.2), respectively Assume fron(1.3) to (1.6), (1.8)
and (1.9). Moreover ifm > 3, we assume that there exists a positive consfdnsuch
that the coefficients of the principal part @f(x, D,) are constant forjx| > M and
there exists a constant > 0 such that fors > so the matrix

02,
1.16 O(s; yo, ’
( ) (8513%'/( ( (S Yo 770))) 1<j.k<n

is invertible If u(z, -) is a solution of (1.15)and r < 0, thenug € X;O implies pg ¢
WFy[u(t, -)]
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Theorem 1.1 is the direct extension of the results given bighigmo and Zuily in
[21], who considered Schdinger operators with variable coefficients under the lgimi
assumptions as ours. They proposed the method based on theaR&orm (Fourier-
Bros-lagolnitzer transform), which had been introducedtayatically in Spstrand
[26]. The microlocal regularity of a distribution can be te$ by its FBI transform.
Another aspect of the FBI transform is the Fourier Integrgleftor with a complex
phase function. Thanks to Egorov principle we can transfthm first order operator
P(x, D.) = Pi(x, D,) of real principal type intoD,, by using a Fourier Integral Oper-
ator. Robbiano and Zuily proposed the analogy of Egorovcple via the FBI trans-
form for the LaplacianP(x, D,) = Ps(x, D) = |D,|? This analogy in a microlocal
sense had already been known in [26], however, Robbiano ailg groved it glob-
ally.

In the preceding paper [23], the author attempted to extbed method to par-
ticular operators of higher order namely when the spatialegision was equal to one
and their principal symbol had constant coefficients. Evethis simple case of higher
order there were some difficulties that came from estimatimg derivatives of the
phase function globally in the FBI transform. In fact, thetrenr showed the key es-
timate which was valid only in a restricted region in compan with that of [21]. In
the present paper we follow the argument [23]. We generdlize out-going point”
for operators of real principal type which was introduced fioe Laplacian in [21].
The out-going point plays an important role in estimating thicharacteristics defined
from the principal symbol of operators of real principal éypVe also study the resol-
vent G = (id —iz,,Vgi)',,z(S))_l for the Hessian matriw?p,,(§) when Rey, > —ey,
[Imz,| < 1. The careful observations for the Hessian matV@@”m(s) and its resol-
vent G1, which did not appear explicitly in [21] and [23], enable s dbtain the
estimates of the derivatives of the phase function (see LM and 4.3). We note
that, in the second order cases, the condition of real mahdype implies that the
Hessian matrix szgﬁg(s) is invertible.

In this paper we consider the class of the initial data whieltrdases outside.
In [19] Morimoto, Robbiano and Zuily considered the class lué initial data based
on some Gevrey class. In [22] another class based on thdatiegjl data was stud-
ied. Other approaches by integral transformations can be se[16] and [20], where
different classes of operators from ours are discussed. é¢ée reote the two results
concerning our assumptions from (1.4) to (1.6). Chiharaffjved the estimate ex-
pressing the smoothing effects for the operators of realcppal type. In [15] Hoshiro
showed the counter parts of Chihara’s results. These twatseshow sufficiency and
necessity between the estimate expressing the smoothiectsefind the real principal
type conditions.

The plan of this paper is as follows: In Section 2 we define tBé tFansform and
the analytic wave front sets and recall the relation betwbem. We construct the out-
going point. The results of this section show that our theofellows from the special
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case thatop is an out-going point. Our main idea is to transform the owdjiopera-
tor P(x, D,) into D,,. This idea is known as Egorov principle in the theory of the
Fourier Integral Operators. However the orderof our operatorP(x, D,) is different
from D, . We realize this transformation by using the FBI transforfnich has a large
parameter.. The parametei is used in order to balance the difference of orders of
operators. We construct the phase function in Section 4 laadmplitude functions in
Section 5. Since the phenomena of the smoothing effectsfagtloal nature, we have
to do this transformation globally. So we study the globahdxéors of the Hamilton
flows in Section 3 and the global properties of the phase fmetin Section 4. In
Section 6 we show the main theorem (Theorem 1.1) by using ébelts obtained in
previous sections. We note that the additional assumpfiong: > 3 in Theorem 1.1
are used only when we estimate the second derivatives of hasepfunction. Except
for Lemma 4.3 and Section 6, we can consider the general caglesut assuming
that the coefficientsi,(x) of the principal part of the operataP(x, D,) are constant
whenm > 3.

The author expresses his gratitude to Professors YujiroaCGind Shigeo Tarama
for their encouragements. The author deeply thanks Prafégsshinori Morimoto for
his precious advice and many discussions in preparing thigemp The author also
thanks the referee for his careful readings of this paper\ahgable suggestions.

2. The locally uniform analytic wave front set and the FBI transform

There are many characterizations of the analytic wave figett In [1] Bony
showed that they coincide. In the present paper we use thraatbezation by the FBI
transform. Let us recall the definition of the locally uniforanalytic wave front set in-
troduced in [21].

Let po = (yo,m0) € T*R"\ 0, z0 € C", and lety = ¢(z,x) be a holomorphic
function in a neighborhood¥ of (zo, yo) in C" x C" satisfying the properties from
(2.1) to (23)

a
(2.1) a—w(zo, Yo) = —1o,
X
8% . e - .
(2.2) Im F(ZO’ yo) is a positive definite matrix
X
82
(2.3) det( ——~(z0, y0) ) #O.
0z0x

From (2.1) we have Indp/dx)(zo0, yo) = 0. So we can set the function defined in a
neighborhoodU,, of zo in C" by

(2.4) ®(z) = sup[— Imog(z, x)],

xeVy,

where V,, is a neighborhood ofyq in R".
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Let @ = a(z,x,A) = >, qax(z, x)A7* be an analytic symbol of order O, elliptic
in a neighborhood ofzf, yo). Namely, ax(z, x) are holomorphic in a neighborhood of
(zo, yo) in C" x C", and there exists a consta@t> 0 such that for allk € (N U {0})
we have

(2.5) la(z, x)| < C*%1,

and ao(zo, yo) # 0.

Let x = x(x) € Cg°(R") be a cutoff function with support in a neighborhood of
yo satisfying 0< x < 1, andx =1 nearyy.

Assume thatu(z, -) is a family of distributions depending on a real parameter
(time) . The FBI transform ofu(z, -) (with respect to the space variables) is defined
through

Tu(t,z,4) = {u(t, -), x(-)e**alz, -, 2)) pgyep@

(2.6) Bo(es)
= e Ma(z, x, M) x (x)u(t, x) dx,
for A > 1.

We define the analytic wave front set which has the local umfeess with respect
to ¢ by using the FBI transform (see Definition 1.1 in [21]).

DEFINITION 2.1. Letryg € R, po = (yo,n0) € T*R" \ 0. We say thatpy ¢
V/VE[u(to, -)] if and only if there exist a phase functiop satisfying the properties
from (2.1) to (2.3), an analytic symbal = a(z, x, A) of order O, elliptic in a neigh-
borhood of o, yo), a cutoff function x, a neighborhood/,,, and positive constants
C, 1o, Ao, &g Such that

(2.7) |Tu(t, z, )| < Ce*®@—Hot,
for Vz € U, VA > Ag, andVr € (fp — &, 1o + ).

This definition is independent of the choice of a, x which satisfy the conditions
above.

When we consider the initial value problems for dispersiperators, the usual
analytic wave front set does not nicely propagate, so wedlntre the locally uniform
analytic wave front sevaﬁ[u(to, -)]. Thanks to the uniformness, we know the prop-
agation theorem for the locally uniform analytic wave fraet. Letu € C(R; L?(R"))
be the solution of the equatioP,u + P(x, D,)u = 0. The next lemma means the prop-
agation of the locally uniform analytic wave front set.

Lemma 2.1. Letp = (y,n) € T*R"\ 0, and lety, = {(Y(s; y.n), O(s; y, 1)) €
T*R",s € R} be the bicharacteristics op,,(x, §) passing throughp. Let 1o € R. If



MICROLOCAL ANALYTIC SMOOTHING EFFECTS 19
p ¢ WFalu(to, - )], then WF4[u(to, -)] Ny, = ¢.

This lemma is essentially of local nature. We can arrangeptbef given by Robbiano
and Zuily in [21] (see Theorem 6.1 and its proof in [21]).

On account of Lemma 2.1, it suffices to prove Theorem 1.1 with= (yo, no) €
T*R" \ O replaced by the special point ¢f,, called “out-going point” in [21]. The
next lemma shows how to construct the out-going point:

Lemma 2.2. Let pg = (yo, n0) € T*R"\ 0 and let
(2.8) Voo = {(Y (55 Y0, n0), O(s; yo, 10)) € T'R"; 0 < 5 < 00}
be the forward bicharacteristics g,,(x, £) passing throughog = (yo, 70). Assume
Jim [ (53 yo, m0)| = oo.

Then for anyR > 0 large enoughthere exists arfout-going point p1 = (y1, m1) € ¥,
such that

[y1l > 2R,

2.9 _ ! Dom
@9 (y1. Ve Pm(na)) = Z)’uaL&(’?l) > 0.
=1

When P(x, D,) = P(Dy) = > -1IDj|? (flat Laplacian), the poinfy = (y1,71)
satisfiesy; - n1 > 0. Before giving the proof of Lemma 2.2, we remark on the next
fundamental property for operators of principal type. lidas from (1.5) that

(2.10) Vepm(x, &) #0, for (x,&) e T*R"\O0.

Indeed, sincep,,(x, &) is homogeneous of degree with respect to&, we have the
Euler identity Z'j’.zl £;(Opm/9&;)(x, E) = mpy(x, &), which shows thatp,,(x, &) = O if
Vepm(x, £) = 0. In the same way we havé: p,,(§) #Z0 for all £ # 0 by (1.6). Hence
there exists a positive constahit- 0 such that

(2.11) Ve (€)? > 81E17"Y,  for V& e R".
Proof of Lemma 2.2. Let R > 2Ry (Ro is introduced in (1.3)). Since
lim;_ o0 |Y(s; yo, no)] = co, we can finds; > 0 such that|Y (s; yo, no)| > 2R, if s1 <

s < 0o. Moreover we have

(2.12) O(s; yo, no) Z0 for s; <s < 0.

We check this fact. Assum®(s;; yo, n0) = 0 with s; < s, < oo. Since |Y(s)| =
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|Y (s; y0, n0)| > 2R > 4Ry, the coefficientsV,a, (Y (s))| are uniformly bounded func-
tions fors; < s < oo, the equation

£06) = ~Vepn(1(), 06)).  O() =0,

has a unique solution®(s) = O(s;yo,m0) = 0 for s; < s < oco. This shows
(d/ds)Y (s; yo, no) = 0, which contradicts lin, | Y (s; yo, n0)| = 00
For Y(s) = Y(s; Yo, no), ©(s) = O(s; yo, n0), we have

@. 13)

{ZY,() Pr (s ))]

-Z[% )%(Y(s)) ms)zfé’;’g( (»@]

Z—(Y( ), ©(s ))—(®(S)) YI(S)Z

A Pm
e (_a_yk ). ®(s)))

=1L+ 1

Since I, I are homogeneous of degreen2¢ 1) with respect to®(s), we may first
assumeO(s)| = 1. We have

n n

= =1
= [Vepn (@ + Y D fa (V(6)) ~ ) & aais“ .
=T laom 1" gze(s) jamm 51 le=o()

By (1.3) and (2.11) we have

Co 8
Ih>6— Cm NN 2w
L= MY (s)[E = 2

if R is large enough. We also obtain

e i ;;’;E (©(s))| 1%(s)] %ﬂ%(m»@w
2 Pon o) 3 )15y
—~ | 9895 &= IY( )I =
CoKp )

< —_— < -
Y () T 4
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if R is large enough. Combining the estimates above, we have
8
L+ > 7 when |B(s)| =

On the other hand,

m—1
d d .
® 2(m-1) — O 2
SIS PITIE

j=1

m—2
=(m—1) lZ(a,(s)zl Zze)j(s)%@,(s)
= 2(m — 1)|O(s)[*"~ 2)Z® (s ) (Y(s) O(s))-

Since

d | {Y(s), Ve P (O(5)))
ds |©(s) 2=
1 d ~
= BE)ETD ds (Y (5), Ve P (O(5))
1

B W <Y(S) Vépm (@(S))) |®(S)|2(’" 1)

is homogeneous of degree 0 with respectity), and we have, ag, is estimated, on
1O(s)| =

(Y(5), Ve P (@(s))) |@( )21

<Y ()] |Ve Pu(O(s))] ClO(s)| 2"~ O(s )'W Os)|"
¢
T Y (s)| e

we obtain

(2.14) 75 [(Y(Sl)(:)(vj)ﬁz;(_?)(s»)] > g, for s1 <s < o0.

Therefore there exists a positive constagtwith s3 > s; such that fors; < s < oo

(Y(5). VePu O6)) _ 8 (¥(s0). VeP (OG) _ 8
|O(s)[2-1) ~ 8 OG)2r D 16"
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We can take
(2.15) p1 = (Y (s3), ©(s3)) = (Y (s3; yo, 10), O(s3; yo, 10)) -
The proof of Lemma 2.2 is completed. O

In the case thaf(x, D,) is an elliptic operator, we have
C1lO)™ < |pm (Y (s), ©())] = |pwm (Y(0), ®(0)] < C2|O(s)™.

It follows from (1.7) that (Y (s; yo, no), @(s; yo, no)) exists globally ins € R. In Sec-
tion 3 we will prove the estimates for bicharacteristicarrthe outgoing point for op-
erators of real principal type precisely. Writing

n

pa(x, &) = D aj(x)E& = (A%, €),

jk=1

where A :(aj,((x))l<j_k<n, we haveV p(x, £) = 2A¢. If A=1 = Z(ngpz)_l does not
exist, there existgy # 0 such that & = 0, which contradicts the fac¥; po(x,&) # 0
for all & # 0. In the second order cases, the condition of real prihdiygge implies
that the Hessian matrix 2A ¥Zp; is invertible.

3. Global estimates for bicharacteristics

In order to construct the phase function and the amplitudestion globally, we
study the global behavior of the bicharacteristics. If wagider the operators whose
principal parts are independent @f we know well about them from (1.11). In the
variable coefficients cases we can also get the precise astinfor the bicharacteris-
tics starting from the generalized outgoing pojt= (yo, 7o) € T*R" \ 0 with |yo| >
2R, (yo, Ve Pm(no)) > 0. By the condition (1.3) the coefficients,(x) of P(x, D,) can
be extended as holomorphic functions in the set,

1
(3.1 Q= Ix e C"; |Rex| > Ry, Ko|lmx]| < §|Rex|],

and they satisfy

3Co(2K0)"*! B!
|Rex|1+ao+|ﬁ| ’

(3-2) > Df (@) — )| <

le|<m

in Q1.

We take the constant§; = 3Coy, K1 = 2Kp in (3.2) and we writeCp, Kq instead of
C,, K1 respectively. As in [21] we study the bicharacteristics gf(x, £) by compar-
ing with those ofp,,(§).
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Lemma 3.1. We assume the hypothesis givenTimeorem 1.1.Then we can find
e* > 0, R* > 1 such that for all0 < ¢ < &*, R > R*, (yo,m0) € T*R" \ 0 with
Iyol > 2R, Inol = 1, (yo, V& Pm(m0)) > 0 and (y,n) € C" x C" with |y — yo| < &,
|n — no| < &, the system

d 3 Pm
—Y(s) = ——=(¥(s). 0(s)),  Y(0)=y,
(3.3) ds Bip

0x

d
a@(s) = —(¥(s), O(s)), ©(0)=n,

has a unigue solution which is a global one with respect te R and holomorphic
in (v, n). Moreover if we defindZ(s), ¢(s), H(s)) as

Z(s) = Y (s) = Y (s),
(3.4) £(s) = O(s) — O(s),
H6) = 26) = [ {Vemn(e(e) +1) = VePa}ar.

then we have
CoKp

(3.5) 1Z()] < Avgrosinl™
CoK
(3.6) £ < Biggl.
CoK
(37) () < D122,

where A1, B; and D; are the constants depending only enn and og.

The assumptiorjng| = 1 is not essential. For simplicity we assume this propenty i
Lemma 3.1.

Proof of Lemma 3.1. We tak® so large anct > 0 so small thaty| > 2R and
(1/2)Inol < Inl < (3/2)Inol. From (1.7), (1.10) and (3.4)

d d d ~

L 726)=Lys)- 27

Is 1(s) Is 1(s) s 1(5)

aﬁl"
08

- % (Y (s), O(s)) — 2 (B(s))
d

%—Sa

= 4, (Y(s)

|a|=m aé:[ £=0(s) lee|=m agl £=p
0 0 P
= be(Y(s))—&“ + a, (_sa 9 . )’
|a|z=»;1 1 le=o(s) %:71 0" le=owy 081 le=y
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where b, (x) = ay(x) — a, (lo] =m). In the same way

o= Lo - Los)

- 3" (1), 00)
= Z O
le|=m £=0(s)

9
=y 081

o

Then (Z(s), ¢(s)) satisfies the differential equations,
—z,(s) =>" b, (Y(s»

(3.8)
+ £
lee]=m §=L(s)tn |(%1 (35[

ga(s) == T;(Y(s))(;(s) +n)",

lae|=m

E=n)

Z/(O) =0, {[(0) =0, 1<1<n,

whereY(s) = Z(s) + (y + s Ve p(n))-
(i) Step 1. (3.8) is well defined for smalk: If ¢ > 0,s > 0,]|Z(s)|] are small
enough, then the coefficients (Y (s)), (0b,/9x;)(Y (s)) are well defined. For & s < 1

ReY(s) = Rey + s ReVe py,(n) + ReZ(s)
= yo + (Rey — yo) + s Ve pu(no) +5 (ReVe p(n) — Ve pn(n0)) + ReZ(s).

We have
IReY (s)| > |yo+5VePm(no)| — IRey — yol — s |ReVe 5w (n) = Ve Pu(no)| — 1Z(s)I.

Since po is a outgoing point, that is{yo, Ve pm(n0)) = > /=1 yoa(3Pm/0&) (o) > 0
[yol > 2R, then

|yo + 5 Ve P ( 770)| 1ol + 52 | Ve B ( ﬂo)| + 25 (yo, Ve P (n0))
(39) > 4R2+S |me(770)|

1 ~
> E (2R +s |Vgpm(’70)|)2

Since we have

[Rey — yo| < ¢,

|Revc§ﬁm(n) - VEﬁm('?O)} < Cpnln — nol |n0|’"—2’
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and
ImY(s) =Imy+sImVep,(n) +ImZ(s),
[Imyl=]Imy—Imyo| <e¢,
1M Ve Bu(m)] < [VePu(n) = Ve u(m0)| < Cnln — 0l 1m0l 2,
we obtain

IReY (s)| — 3Ko [Im Y (s)]
> /2R — (1 + 3Ko) (£ + Cpuulnn — 10l In0l™ 2 +1Z(s)]) -

We takee > 0 so small enough that we can get

(3.10) IReY (s)| — 3K |lm ¥ (s)| > O.

From this fact there exists a positive constant- 0 such that the initial value prob-
lem (3.8) has a unique local solutioZ (), ¢(s)) on [0, s4].

(i) STEP 2. There exists a positive constafit such that on [0s3] (Z(s), ¢(s)) sat-
isfies the estimates from (3.5) to (3.7): and the continufty @nd ¢(0) = 0 mean that
we can find a constant = s2(Co, Ko, m, n, no, R) with s; > s, > 0 such that

)l < S

K
R‘iﬂ,flnl, for 0<s <so.

From (3.2) and (3.8)

) 3
20 £ | 3 hal) 56

|a|=m

Co e
< Wcl(’”, n)n"

Co

m—1
il U] M

< C2 R+

where C, = Cy(m, n, 0p) is a constant which depends only enn and oy. It follows
from Z,(0) = 0 and the continuity ofZ(s) that

Co
Rl+o‘o

1Zi(5)] s/o |2(0)| dr < 20— |1,

If we take A;, B; as A; > 2C», B; > C, respectively, we get the local estimates for
Z(s) and ¢ (s).

(i) STEP 3. global behavior; Let us define an intenvalWe calls € I when the so-
lution (Z(s), ¢(s)) exists on [05] and the estimates (3.5), (3.6) and (3.7) are satisfied
on [0,5]. If supl = oo, this shows that the proof of Lemma 3.1 is completed. Step 1



26 H. TAKUWA

and Step 2 deduce; € 1. Assume sup = s* < co. We show that this is the contra-
diction. For anysg < s* the system (3.8) has a solutioZ ((), ¢ (s)) which satisfies the
estimates from (3.5) to (3.7) on [&]. As in Step 1 we have

[|ReY(s)| > % (2R + 5 [VePu(no)|) — € = Cuvnsln = nol 110" 72 = 1Z(s)1,
IM Y (s)| < &+ Cpusln = nol [0l 2 +1Z(s)l.
It follows from (3.5) that

IReY (s)]

> (V2R — &) +s (% Ve Pol10)| = ol = 0l ol = m%mr"*) .
If we takee small andR large, then we get
(3.11) |IReY(s)| > R+ %s |Ve D (n0) | -

From (3.8) and (3.11) we have

@l < [ a@)]dr
0
0P (y +n)*|d
> SN )| dr

s
S /
0 |ae|=m

s CoK,
<[ oy €1+ i de

o |ReY(s)
CoKo [* 1
"drt.
= R2+00 /0 (1 +T/(2R) |Vé:5m(770)|)2+{70 (lé‘(f)l ' |n|) !
Let us set
(312)  a(r)= . 0= / Ca(@(E @)+ nl)" dr
(l +T/(2R) |V§Pm(770)|) 0

By the definition we haved(s) = 0, and

(3.13) L) =)+ )", 1) < S50,

We can write

1/2
1£(s)l = (Z |¢/(s)|) <Jn i%ﬁf@(s) = N(R)®(s).
j=1
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We shall solve the differential inequality

%@(s) < a(s) (N(R)D(s) + In])"
(3.14) In]
=a(s)N(R)" (<I>( )+ N R))

Integrating (3.14), we get

(Nl?lle))_(m_l) ( (s)+ N|(71|?)) (m_l)f(’"—l)N(RW /0 “a(r)dr.

We setL = |n|/N(R) and M(s) = (m — L)N(R)" [, a(r)dz. From (3.14)

1 - 1—M(s)L™ 1
(q)(s) + L)m—l - Lm—l

Here we can show

/Osa(r)dr

/x 1 — T dt
0 (1+T/(2R)|Vépm(770)|)

d
. Wsﬁm(no){/o (1 +1)%to0 T
2CR

) |VePm(no)|

We obtain

M(s)L""Y = (m — ))N(R)" / Ca(r)dr (lezle))

CoK,
= (m — 1)V R‘;;’mr" [ ayar

2CR
< bm = 1)[ |Ve B (n0)|

1
R2+o_0 | 7 |m

where M is the positive constant defined by

|n|m 1 m—1 1
M =supr———— < (—) Sup ——————.
|Vépm(770)’ 2 gesn-1 |Vépm(é)’

We note thatM is independent of)p and M(s)L™~1 is sufficiently small becaus® is
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large enough. Since 4 M(s)L™ ! > 0, we have

Lm_l 1/(m-1)
O(s) < | ———————— —L
(5) = (1 — M(s)Lm—l)

< {@-mer™ P —a}
2
< ——M(s)L" L.
m-—1
Therefore we can show the estimate
16(s)] < N(R)D(s)
2 CoKo Inl
< N(R)——2CM(m -1 —_—
= N )m -1 (m )ﬁleo N(R)
CoKo
< Bapr 1l

where B, = 4,/nCM. Next we give the estimate far(s),

1Zi(s)] < /(: |Zi(z)| dx

by (Y(f))—é““ dr
/ g;n 1 le=¢(oymn

S - d
+/° |o;1 {3“35 £=¢(r)n 3515 :n} i

s C B
5/0 Ry (s Cnn1E + e

[ReY ()
m—2
+/ SUP (@l Con D (@)™ Inl'dT
0 |al=m =0

CO s C m—1
< Wcm.n B> R1oo |77| 71 dt
0

C KO m—1-1 L
+ Cm n SUp |aa| z (BZ R1+0'0) |77|m_ N

|a|=m 1=0
CoKo

m—1
< Az g, InTs

where A, is a constant, and’oKo/R** < 1 if R is large enough. If our constants
A1, B; are taken asA; = 2A,, B; = By, then the system (3.8) can be solved again and
there existss > 0 such thats* +§ € I. This fact contradicts sup=s* < co. Thus we
obtained Lemma 3.1 except the estimate (3.7). The detaithexfe arguments can be
seen in Section 2 in [21].
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Let us show (3.7). Since we have
d

d
TH(5) = - 2(5) = (VePn(s(5) * ) = VeBu(n)}

= Ve D ba (Y(5) (£(s) + )"

|le|=m
using (3.5) and (3.6), we get
Kolnol™™*
R +S(1/2) |V$ﬁm(r’0)|

Since H(0) = 0, we have the desired estimates (3.7). This ends thef moLem-
ma 3.1. Ul

‘%H(s)

=C Ttog *
( )

We can extend the variablein s € C with Res > —p and |Ims| < p:

Lemma 3.2. We can finds* > 0, R* > 1 p > 0 such that for all0 < ¢ < ¢&*,
R > R*, (yo.m0) € T*R"\ 0 with |yo| > 2R, |nol = 1, (Yo, V& Pm(n0)) = 0 and (y, n) €
C" x C" with |y — yo| < &, In — no| < &, the system

d 0Pm
—Y(s) = —(Y(s),0(s)), Y(OQ)=y,
(3.15) ds 05

Lo =-"L1(v(5), 00). OO =n
S X

a
has a unique solution which is holomorphic in the set
Q={(s,y,nN) e CxC"xC";

(310 {I(y i yl)l <é&,|n—mnol <& —p <Res < +oo, |Ims| < p},
and if we defingZ(s), ¢(s), H(s)) as

Z(s) = Y(s) = Y (),
(3.17) £(s) = ©(s) = B(s).

HO) = 26) = [ {VePale(e) +1) = Vefn(a)) dr.

then we have

1

|Z(s)I < A1(Co, Ko, MODW

max (1 |s|),
1
(3.18) 1£()] = B1(Co, Ko, Inol) e+

1
|H(s)| < Di(Co, Ko, |7)0|)ﬁ-
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Proof of Lemma 3.2. We can apply the following well known rdésabout the
unique existence of the holomorphic solution on the initialue problem for the ordi-
nary differential equation. Letz§, wo) = (z0, wo1, - - - » wog) € CxCY and D = {(z, w) €
CxC;lz—z0l < A, |lwj—wo,;| < B, (1< j<d)}. Let f: D— C? be a holomorphic
function onD and sup | fj| < M < oco. Let p = A{1 —exp(B/((1 +d)MA))}. Then
the Cauchy problem

il—lj = f(z, w(z)),
w(zo) = wo,

has a unique solution which is holomorphic = {z € C; |z —z0| < p} and|w;(z) —
wo;j| < B for z € A. In our case we choosg and B as

B

A= G DMIog2

B=1,

where M is defined later. Lekg be in {0 < s < oo}, and ¥ (s), 6(s)) be the solution
defined in Lemma 3.1. For¥(0) € D = {(Y,®) e C" x C"; |Y — Y(s0)| +|® — O(s0)| <
B}, we have

CoKop
1 Rl+00

1Yl = |’7(s0)| —1Z(s0)l = B > |y +s0Ve pu(n)| — A soln™t =1,

101 < 18(so)l + B < [0(s)] + 15 (s0)l + B < Inl + orlnl +1
< C(Co)lmol + 1.

This implies that the coefficientg,(x) are holomorphic inD. Since

Z ay(Y)

la|=m

[Ve pm (Y, 0)] <

|Ve&% =0

’

and

|=Vepn(Y,0)l < [ D (Veaa) (V)| 167,

la|=m

it follows from (3.2) and the estimates above that theretexdspositive constan¥/ =
M(n, Co, Ko, |1n0l), independent ofg € [0, c0) and R, such that

|Vepm(Y,0)| < M, |=Vipu(Y,0)| < M,

for (Y,®) € D. For sg € [0,00), (Y(s),®(s)) can be extended as holomorphic func-
tions in{s € C; |s — so| < p}, wherep has been defined by, B, M as above, that
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is, independent ofy and R. Therefore (3.17) has a unique holomorphic solution in

1 1
J= C; Re ——A, [Im —A
s € s > 10 [Ims| < 10

Once the existence of solution to (3.15) is proved, the sargen@ent to get the es-
timates (3.16) works well. Here we show the estimate |fd¥; y, n)|. As used in the
proof of Lemma 3.1, the differential inequality

d
/O =cOfO+p" fO0)=0 >0
implies
f(r) <28™ rC(r)dr, for small 7 > 0.
0

Since ¢(s; v, n) is holomorphic with respect to € J, the equation forz(s) in (3.8)
gives

[5i(s; v, m) — ¢i(Res; y, )| < Z

lae|=m

e @@ i ar|.
y O0X

wherey = {r € C; r = Res +irsgns, 0 <t < Ims}, Ims = s/|s|. Since (3.2) and
(3.11) show

we obtain

[¢(Res +ilms;y, n) —¢(Res; y, n)l

CoKo (Ml :
< C(n, m, 09) 2+ao/ (I¢(Res +it; y, n)| +[nl)" dt.
0 0

By (3.6), we havel¢(Res; y, n)| < B1CoKo|n|/R**. Since the differential inequality
t
80— 51 = D [ (0 + FY"de = DF),

implies

af

YU = (et py < 0 (500 + EOLLY,
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we have

18] < 1g(0) + Df(r)

o)+ F m t
< 12(0)] + 2D (lg( ) ) / D" dt
D 0

= 1g(0)l +2D(|g(0) + F)"t

for smallr > 0. Hence

, CoKo
[¢(Res +ilms;y, n)| < |¢(Res;y, n)| +2C R20 (IZ(Res; y, m)l +Inl)" [ Ims]

< Bi(n,m, Co, Ko, 00, |770|)W-

For Z(s) it follows from (3.5) and (3.8) that we obtain

dzZ
/ —l(r) dt
y dat

<1Z(Res)+ | S b v Res iy

lae|=m

lims|
+/o |ﬂ;n { fls

|Zi(s)| < |Zi(Res)| +

dt
&=¢(Res+it)+n

} dt
&=n

I

— D g
g=t(Res+ityn 081

Ims| Co
< |Z/(Res +/ Con (IC(Res +it)| +|n))" Ldt
ZReNN* [ e Coa ((Res )+
[Ims| m—2
o[ SUplIC, 3 le(Res +inf" it ds
0 |a|=m 1=0

CO |Ims| 1 m—1
< IZI(Res)I + Wcm,n/(; (B:/Lm + |77|) dt

m—2 m—1-1
-1
Conn Supla(le( 1R1+00) |77|m [Ims|

|ae|=m

< Aj(n, m, Co, Ko, 00, Inol) 515

R 1+o9

The estimate forH (s) is also proved as Lemma 3.1. Some details can be seen in [21].
O

We use the estimate fal (s) only whenm = 2. In this case we have

(319) ‘Z(S) — s (Vgpm(no» ;(S)‘ < D?I. R];O
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We use (3.19) in estimating the imaginary part of the secosrivative of the phase
function in Section 4.

4. Construction of the phase function

Thanks to Lemma 2.1 and Lemma 2.2 it suffices to prove Theoremirl the
special casepo = (yo,1m0) € T*R"\ 0 with |yo| > 2R, (yo. V&pm(n0)) > 0 and
detvgﬁm(no) # 0. Since P(x, D,) is the operator of real principal type, we may as-
sumed, p(yo, no) # 0. We setz = (2, z,) € C" x C, z0 = (2, 0) = (v — inp, 0).

As we explained in the introduction, one reason to use the tFBisform is to
transform the original operatoP(x, D,) into D.,. To realize this transformation, we
define a kind of FBI transform

(4.1) Su(r,z, ) = / e £z x, M xalz, x)u(r, x)dx,
]Rn

where the phase functiop = ¢(z, x), the amplitude functionf = f(z,x, ) and the
cutoff function 1 = x1(z, x) will be given later. In this section the phase functigpn
will be determined. The amplitude function and the cutoffidtion will be determined
in other sections.
Let us define
1 1
I(t,z, M) = =D, Su — —SP(x, Dy)u
A Am
4.2) 1 1 4
=/ (_Dz,, - —’P(x,Dx)) (€™ fxa)u(t, x) dx,
R )\‘ )\‘m
where’P(x, D,) is the transposed operator &f(x, D,). The coefficients of P(x, D,)
also satisfy the condition (3.2). Singg is a cutoff function, we first pay attention to
the term F(z, x, A):

(4.3) F(z,x,1) = (%DZ” - A—%ﬂ’P(x, DX)) ™ f).
We have

e F(z,x, 1)

= % (Dz” +,\§Z) f- Aith(x, Dy +V.0) f
@) = [57(/7 — "Pulx, wa)] f

1] 9 2L 9'p 9
+ = —2 — M (x, Vop)— —d (z, x, Vi@, V2
“‘IBZH =1 0§ x X(p)(r‘)xl (Zx ¥ Xw)]f

1 1
+ﬁ ...)f+--~+ﬁrP(X,Dx)f'
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The next theorem and its proof show the existence and theepiep of the phase
function which is the solution of the eikonal equation.

Theorem 4.1. There exist positive constantg and e, with 0 < g1 < g, and a
holomorphic functiony = ¢(z, x) in the set

(4.5)
E = {(Z/, Zns x/, xn) € Cn_l x C x (C"_l X C,

|z — zgl < €1, Rez, > —e1, |Imz,| < &1, |x — Y (245 Yo, n0)| < €2(1 + |z, )},

such that
0 0 .
(46) (p(Z,x):pm x’__‘ﬂ(z’x) n E’
0z, ox
ad
4.7) a—w(zo, Yo0) = —To,
X
8% , iy . . .
(4.8) Im ﬁ(zo, yo) is a positive definite symmetric matrix
X
82
(4.9) det_—"(z0. yo) #0.
0z0x

Proof of Theorem 4.1. Let us introduce the holomorphic fiomctpy = @o(z/, y):
C"1xC"— C by

/ l / / 2 l

(4.10) @o(z', y) = 2 (Z - Y) = Nonyn + E(YH - )’On)z~
We note

dpo _ .., ., 9o o 0o .

= —_ = — — = — + — .

97’ ( )’ ay, I(Z y )’ ayn 10on l(y,, YOn)
We set the symbol
(411) q(Lxs;vé) :§I1 _fpm(x75)v

where'p,,(x, &) = pn(x, —&), and set the submanifold

Ao ={(2(0), X(0), G(0), F(0)) e C*'}

3900 3(/)0
= /70 9 /’ njls /’ ’r 9 /7 ’
(4.12) [((Z ), (¥ yn) ( 5 &) P (y 5y (z y)))
9 0/ 9 0 n /
(ai, @, y), %(z/,y))) eC¥; |7 —z| <er, ly—yol < 53} ,

whereg; and e3 are small positive constants determined later. We intredihe sub-
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manifold of C*,

A= {(Z(s), X(s), G(s), F(s)) € (C4"}
= U exp(is H,) Ao,

Res>—e¢q,[Ims|<er

by the solution of the differential equations

[ d d

—-2(s) = SHZ(). X(6). G(s). F(s)),
s ag

d 0

X (5) = SLZ(5). X(5). G(s). F(5).
s 0&

(4.13) p :
d_G(s) = ——q(Z(s), X(s), G(s), F(s)),
s 0z

L Fs) = 2L (2(), X(). 66), FO5),
L ds 0x

with the initial data £(0), X(0), G(0), F(0)) given in (4.12). Since the symbol is given
in (4.11), we have

4.14) [Z(s)-Z(O)—z, Z,(s) =s.
G(s) = GO)
and
X0 = =222 x9). Fo). x(0)=
(4.15) p )
TF(s) = ”"'(X()F(s» F(0)= 222 y).
y

Since’p,,(x, &) = pu(x, —€), we have

aplﬂ

dix(s) = Sp X6 =F6). X0 =y,
(4.16)

d _ 0Pm _ 90,
gF(S) = W(X(s), —F(s)), F()= W(Z . Y)-

If we set X(s) = Y(s;y,n), and F(s) = —O(s; y, n) with n = —(dgo/3y)(z’, y), then
(Y (s), ©(s)) satisfies the differential equations (3.15) given in #ecB. For ¢, y) €
C'=1 x C" with |2/ — 25| < €1, |y — yol < €3,

/_ / /_ /
i(Z ZO)—i( Y o )‘<81+83.
0 Yn — Yon

dpo , ,
[n—nol = —a—(Z,y)—??o =
y
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We can apply the Lemma 3.2 by takirg and e3 small enough. We set = z, and
define

O0={(z,y)eC"xC";

(4.17)
|Z/ _26| < 817 |y - yol < 837 ReZ” > _817 |Imzl‘l| < 81}’

and
(4.18)

a /
A =1z, Y20, 1), G(0), —O(z,; y, m)) € C*; 1y = _aiyo(z ,y), (2,y)e O¢.

We also set

(4.19)
E={(, 20, x',x,) e C" ' x Cx C" ' x C;

|Z/ - ZE)| < &1, Rezn > —é&1, “m Zn| < &1, |x - Y(Zn; Yo, 770)' < 82(1 + |Zn|)} 5
For the two forme =d¢ A dz +d& A dx, we have
(4.20) ola, =0.

The dimension of the submanifoldly in C*' is equal to 2—1. SinceH, is transverse
to Ao, the dimension of the submanifoldl of C* is equal to 2, and we obtain

(4.21) ola=0.
This shows that the submanifoldl of C* is a Lagrangean submanifold.

Lemma 4.1. If the constantsz which satisfied < g1 < g2 < €3 is small enough
then there exists a holomorphic functign= ¢(z, x) in E such that

(4.22) A= I(z,x, ?)—f(z,x), g—t(z, x)) eC¥: (z,x) € E] .

Proof of Lemma 4.1. Letr: A — C" x C" be the projection map ofA on the
base, that isg(A) = (z, Y(z,; v, n)) for A € A, wheren = n(z/, y) = —(8¢0/3y)(7, y).
Since A is a Lagrangean submanifold &, it suffices to prove thatr is bijective
and thatdr () is surjective. Let us prove that for fixed e C" with |2/ — zp| < €1,
Rez, > —e&y1, [Imz,| < & andx e C" with |x — Y(z,; yo0, no)| < €2(1 + |z,]), there
exists a uniquey € C" with |y — yo| < €3 such thatx = Y(z,,; y, —(8¢0/0y)(Z, y)). By
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following [21] and [23], we prove this fact. We have

(4.23)

Ao, ,
Y (zn; v, _W(Z , y)) — Y (zn; Yo, n0)

e a(po / jad 8(;00 ’

=Yz y, ——— @ ») ) = Y@ yo. m0) + Z \ zny y, —— (2, ¥) ) — Z(zn; yo, n0)

dy dy
8ﬁm aﬁm 1 0

= + n - + n +Z2°—-Z )

(>+222) - (30222 0)

where Z1 = Z(z,; y, n), Z° = Z(zx; yo, 10). From (4.10) we have
d¢o
n—no= —B—(Z/, y) =10
y
:( i@ =) )_( Mo )
nNon — i(yn - yOn) Non
:i( 7 -z )—i( Y = )
0 Yn — Yon ’
where zg = yj — ing. Since thel th element is written as

890 / v a(p agﬂ /
Yl Zn;y,——o(z,y) :Yl Zn;y,——o(l/,)’) +Z/ Z";yv__o(zvy)
dy dy dy
dPm 1
=yit+za——m+Z,
0&; :
we get from (4.23)
d¢o
Y, (Zn;y’ _a_yo(z ,y)) - Yl(Zn;yOs 7]0)

0Dm ODm
= (5 = yo) * 2 (a%(n) - ai&(no)) v Zi o 20

Applying the Taylor's expansion

aﬁlﬂ 8 iim
() —

55, 3, (n0)

37
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n Bzﬁm
= > (M — nox) == (10)
kZ:J; k Ok 3%'/(851 0

23 Zo-n [a-0(5) () tos 00— nonas

lyl=2 ©°

aplﬂ
= <n — 1o, Ve ('7o)>

+2>° y_ll(” — n0)” /01(1 —6) (%)V (83%['") (o +6(n — o)) db,

lyl=2 """

it follows from (4.23) that we obtain

dgo, ,
Y (Zn; ) _a_(z ) )’)) - Y(Zn; Yo, 770)
y
= (y - )’O) + 2, (Véﬁm(n) - VEﬁm(ﬂO)) + Zl - ZO

= (y — y0) + 2u VZPm (0) (i ( ¢ 62’6 ) —i(y —yo))

1o e (i ey _
+2zn|;:2y!(n 10) /0(1 0) ag) VePm(no +60(n — no)) dé

+7t— 70

1 ! 3\ o ~
+25, ) F(n - no)y/o (1-96) (%) Ve (n0 +6(n — n0)) d6

lyl=2 " "
+7t— 70

where A = ngﬁ,,,(no) is the Hessian matrix op,,(&) at &€ = ng and Id is then x n
identity matrix. The equationr = Y (z,, y, —(d¢o/dy)(z’, y)) is equivalent to the equa-
tion

x — Y(2a; Yo, 10)

. ~ . ~ 7 =z
= (Id —1Zy ngpm(nO)) (y - )’0) +iz, ngpm(nO) ( 0 0 )

(4.24) 1 14
+2, % 2= [[@=0) () Ve 04000~ ) do

lyI=2 " "

+ Z(2u; ¥, 1) — Z(2a’ Yo, M0)-
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Let us define the map/ as

. ~ -1
H(y) =Yot (Id —1Zn V?pm(”O))
. ~ 7 —zg
X — Y(Zn; Yo, 7)0) — 12y ngpm(no) ( 0 0 )

(4.25) B 1o 1 B (i)y - 3
ZZnI;:Z !(n 10) /0(1 0) P Ve Pm (1o +6(n — no)) do

— Z(zn; ¥, 1) + Z(2n; Yos M0)

Let us prove that ife3 > 0 is small enough, the®# maps the ballB(yo, €3) into itself
and is a contraction map, which means the bijectivity of theiqetion maps. Since
the matrix A = Vgiim(no) is real symmetric|imz,| < ¢; and detA# 0, the matrix
G =ld—iz,A has the inverse matrix @ and we have

1

(4.26) o) S
(1+|Rez,2)"?

2 1/2 '

where ||G‘1||L(@1;Cn) is the operator norm of &. The last inequality comes from
detA # 0. From (4.25) and (4.26) we have

|H(y) —)’0| < (82(1+|Z)1|)+C81|Zn|

14z,

1

+Celza| + C(Ko, ﬂo)m(l +zn |))

(4.27)

<e3 (O<ep<er<ey).
Since Z(z,; y, n(z’, y)) is holomorphic in y, we also obtain

(4.28)

[H(y1) — H(y2)| < C

1
Ceslzul Iy1 — y2l + C(Ko, Uo)w(l +zal)lyr — 2l

1+]z,]

<klyp—yal, O<k<1

It follows from (4.27) and (4.28) that/ is a contraction map omB(yg, £3).
We shall show the surjectivity of the differential map(1): ) A = T,p)E. We
write (4.24) as

x — Y (zn; ¥0, N0)

(4.29) ,_
=G(y — yo) +iz,A ( ¢ 0

Z/
0 ) + 20, W) + Z (a2 1) = Z(zni you 10),



40 H. TAKUWA

where
o 1 s [t I\ o ~
W(n)—lylzzzﬁ(n—no) /0(1—9)(5) VeDm (o +6(n — no)) do.

Using this notation, we differentiate the functioftz,; y, n(z’, y)) = y+z, Ve p(n(z’, y))+
Z' with respect toy. We get

Y 0 0
— =Gld+2%,— W)+ —Z (zu;y,1(z,Y)) -
= 2 % (n) 5 (zosy.n (2. y))
Since we have
AW, 1 (9 ! 3\ 0Pm
oW _ _I[_(n_no)”]/(l—e)(—) 2Pn (3o + 60 — 1)) d
Wi vt Lo 0 905) 9%

- V/ll_e (i)y PP+ 00— 10) 0 i d
+|;:2 Vl(n )70) 0( ) 85 aékagl ('70+ (7’] ’70)) 8yk’71 .

and (3.18), we have

Y
det(—(zn; o n))
dy

It follows from (4.30) that the proof of the surjectivity othé differential map
dr(r): LA — Ty;)E is completed. O

(4.30) >C(l+|z.)", (z,y) €.

We note that we can choose the constantyj = 1,2, 3) as s§ < Cey < &3,
moreover,e; and g3 are independent each other. Though we do not use this fact in
this paper, it is useful in considering the global properted the phase functiop =
o(z, x).

End of the proof of Theorem 4.1: Lemma 4.1 directly shows thaperty (4.6).
The proof for this part can be seen in [23] (see the argumeetr dfemma 3.1 in
[23]). The properties from (4.7) to (4.9) can also be obtdiby following the argu-
ments in [21]. Since we have

dgo , ,
X = Y (le;ys _8_(Z ,)’)) ’
y

R17 d¢o )
—(@x)=GO) = (-G ). Pu |y, == 0) )
az 0z ay

0 0
Plex)=F)=0 (zn: v =2, y)) ;
ax ay
we have the properties from (4.6) to (4.9). Especially, we chtain the equation

3%p 0. 30) Bpm( ) 0 Pm
3 = ) —1
02,00, 00T T, VO T T e

(yo, m0),



MICROLOCAL ANALYTIC SMOOTHING EFFECTS 41

which was shown in [21]. Since,, is real valued and, p,.(yo, no) 7 0, which are

the conditions of real principal type, we can show the priypét.9). The details about

this part is found after Corollary 3.6 in [21]. Therefore wavh proved Theorem 4.1.
U

Next we study the global properties of the phase functionghvhre used for the
construction of the amplitude function globally along thieharacteristics. The proof
of Lemma 4.1 shows that the map= Y(z,;y, n(z’, y)) has the inverse map: E —
77Y(E) such thaty = «(z, x). The functionx is holomorphic andc(zo, yo) = yo. From
the construction ofc we have

(4.31) lkc(z, x) — yol < €3, (z,x)€E.

The equation (4.29) implies

_ . 7 =z
K(Z,X)_yOZG 1[X—Y(Zn§y0,'70)—lZnA( 0 )

0
(4.32)
- ZZHW(n)l)‘:K(Z.X) - Z(zuy Y, ’7)'_\'=K(z.x) + Z(zy; Yo, 770)] .
and
(4.33)

d
Id=GV,k(z, x)+2z2,V, (W(n)|y:K(z,X)) +V, IZ (zn, v, _81;0(1/’ y))

y=/((z,x)}

It follows from (4.32), the estimates oA(s) and the Cauchy formula that fot,(x) €
E we have

C

< At
(434) ( |Zn|)

S
a (1 + |Zn|)2

Since the Lagrangean manifold is expressed in the two ways, (4.18) and (4.22),
we have

dp deo, ,
% x)=—0 (zn; yo— 20 y))
ax dy y=«(z,x)

deo, , 9o, ,
=- [—a—(z,y)+§ (zn;y,—a—(z,y))]
y y y=k(z,X)

7=z . 990, ,
Rl (L RO BT I IE0)
y

y=k(z,x) y=x(z,x)
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We also obtain

9% : d¢o
—5 = VZp(z, x) = iVy(z, x) — Yy {; (zn; Y, _W(Z/’ y))

0x

y=k(z,x) ] .

By the equation (4.33) we have
(4.35)

329
a2

y=k(z,x) ]:|

e 9o /
=iG ! |:Id _2Zn VX (W(n)l):K(Z.X)) - Vx [Z (Zm Y, _W(Z ’ )’))

dgo, ,
—VX[C(Zniy,—a—(Z,y)) }
y y=k(z,x)

= iG_l - iZZnG_lvx (W(rl)ly:K(z.X))
0
- iG_le [Z (Zm Yy, _ﬂ(zlv y))
dy

a
- G_lvxé‘ (Zn; y, _ﬂ(z/’ y))
dy

y=/c(z,x)]

First we consider the case = 2. Sinced; p2(§) = 0 for |«| = 3, we haveW (n) =
0 for m = 2. We prove that there exists a constéht- 0 such that

3
— 2,AL (zn:y, —%(1/, y))
y

y=k(z,x)

y=k(z,x)

2

(4.36) (IM@EG™)v, v) for veC"

> -
z @rmnpe!

Since G, = Id, it suffices to show (4.36) whefz,| > §,. Using the Hessian matrix
A = VZpa(no) (detA #0), the matrix G is defined by

G =1d—iz,A = {ld+(Imz,)A} — i(Rez,)A
= (Rez,)A[(Rez,) *A~ {Id +(Imz,)A} — i Id].

Writing
M =1d+(Imz,)A, M;=(Rez,) *A™My,
we have
G = (Rez,)A(M, — i Id).
We note that the matrices,M; and M, are commutable each other. Using

(Mz — i ld)(Mz + 1d) = M3 +1d,
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we obtain
G 1= (Rez,) *AYMy —ild)t
= (Rez,) *A~X (M +iId) (M2 +1d) "
Since AM; and M, are real symmetric matrices, we have
(4.37) Im (iG™*) = Re(G™Y) = (Rez,) *A~M; (M3 +1d) .

Since A is a real symmetric matrix, there exists the matrix ithwlet T # O such that
T-1AT = D4, where O is the diagonal matrix associated with the eigenvalues of A.
We note that each eigenvalue of A is real and not zero. Usiegcttimmon matrix T,
the matrices A, M1 and M, are diagonalized as

TA7'T=D;', T*M;T=Id+(Imz,)D; = Dy,
T!M,T = (Rez,) *T'ATT*M;T = (Rez,)'D;'D; = (Rez,) 'Ds.

We also have

T (M3 +1d) T =D3+Id = D,.
This consideration shows that Ii& 1) is also diagonalized as
(4.38) T m (iG™) T = (Rez,) Dy 'D3D; %

We denotedyy; (1 < j < n) eigenvalues of A. In other wordsg, ; are diagonal
elements of the diagonal matrix;DFor D,, Dz and Dy we can definei() ;, dz),; and
dwy, j, respectively. From det # 0, we haved(;); 7 0. The calculation above shows

-1 2
d@j =1+ (Mmz.)dwy ;.  d@, = dw,) de.j. da,;=1+da),)"

We haved(z) ; > 1/2 by making|Imz,| small enough. From (4.38) the eigenvalugs
of the real symmetric matrix InA\G™1) are given as

_ -1 -1 _ —2 -1
v; = (Rez) ™ (dqy;) ~ deayj (day) = (Rezn) ™ (dwyj)  dj (deay i) -
It follows from d(1y; # O and the expressions @fy),; (k = 2, 3,4) that there exists a

positive constanC such thatv; > C(Rez,)™2. When ¢, x) € E with |z,| > 8, our
guadratic form can be estimated as

. C
(4.39) (Im(iG™) v, v) > ( min Mj) [v]? > mlmz for veC".

1<j=n
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On the other hand (3.19), (4.26), (4.34) and Cauchy formhtawvs

(4.40)
0
G, [z (z v, —%(z’, y))
y

_ oK
< C“G 1” |Z(Zn) - ZnAg(Zn)| ‘a

- C (Ko, Inol) 1
B R (1+]z,])?

d¢o
_ZnAé‘ (Zn;ys_a (Z’y))
y

y=k(z,x) ]

y=k(z,x)

In the same way we estimate the other term in (4.35). Now wegeordhe next Lem-
ma:

Lemma 4.2. Whenm = 2, there exists a positive constant such that for all
(z.x) € E,

2

4

Next we study the casa > 3. Since we consider the operators with the principal
parts associated with constant coefficients, we note that

(4.42) Y(20; Y, 1) = Y(20: ¥, 1) = ¥ + 24 Ve ().

We showed the existence and the uniqueness of the holoncommd y = «(z, x) with
Yo = x(zo, no), Which is the inverse of (4.42). We define

, A 7=z :
X(Z,X):f](Z,y) |y:K(z.x):n0+l( 0 0 )—I(K(Z,x)—y0)~

Writing x = Y(z,; v, n(z/, y)) by using X(z, x), we have

A
(4.43) X =2, Vepm(X(z,x)) +iX(z,x)+yo—ino+ ( N OZO ) .
On the other hand we have
aaq) ¢ =0 (2, / = / =
( . ) a(z’x)__ (Zn.y,U(Z,Y)) }}':K(Z,X) = —n (Z’y) |y=K(z.x) ——X(Z,X).

Differentiating (4.43) and (4.44), we have

Id = Vx {Zn Véﬁm (X(Z’ x)) + iX(Z’ x)}
= {2u V2P (X(z, ) +i 1d} V. X(z, %),
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and
2 82(»0 . . 2~ -1
wa(zv x) = Z(Z’ x) = _VXX(Zv x) =t (Id —lZanPm (X(Z7 x))) .
ox

We introduce the notation as the case= 2

[Gl = Id —iz,A(n),
A(n) = V2P (X(z, x)).

The following arguments were exploited in [23] when= 1. The setE was defined
in Theorem 4.1 as

(4.45)
E={(,20,x',x,) e C" ' x Cx C" ' x C;

|Z/ - 16| <é, Rezn > —é&1, “m an < €1, |X - Y(Zn; Yo, 770)| < 82(1 + |Zn|)} -

We set
(4.46)
E|= [ (Z’, z,,,x’,xn) eC"ITxCxR"TxR;

1
|Z/ - ZE)‘ < €1, Rezn > —é&1, “m an < €y, |x - Y(Zn;yO’ ’70)| < 582(1 + |Zn|) .

E= U {20 ¥ x0) € CIxCxR"IxR;
(r1,r0)

|Z/ _Z6| < €1, Rezn > —é€1, “le1| <é&, X = Y(Zn;yOa 770)+an1+"0},

where the union forr, rg) is taken inr; € R*,rg € C" with |r1| < &, |rol < &2,
respectively. We knowE; c E (C (E N {x € R"})). Let us prove the next estimate
which is used in Section 6 to show the main theorem. Theresegis> 0 such that
we have

1

m |d, for (Z, x) e E.

82
(4.48) Im>2(zx) > C
9x2

The precise statement will be found in Lemma 4.3.
For (z, x) € E the equation (4.43) becomes

Zn Véﬁm(x(z’ x)) + iX(Z, x) +yo— ”70
(4.49) N ( 7 -z

0 )_{Y(Zn;yOvnO)-"anl"'rO}:0~
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We sett = z;1. Let us consider the next system of equations

F (W, t,7,re, ro) = Vsﬁm(W)‘Fl'tW - (Vgﬁm(no)+r1)

4.50 A
” (759 ee]

for (W,t,7/,rg,r1) € C" x C x C"~1 x C" x C". Each elements of (W, t, 7', ro, r1) iS
holomorphic function of ¥, 1, 2, ro, r1), and F(no, 0, zy, 0, 0) = 0. Thanks to the im-
plicit function theorem in holomorphic function categoifpr( example see [14]), there
exists a positive constanty, and holomorphic functiongy = (Y, ..., ¥,) such that
W = y(t, 2/, r, ro) and ng = ¥(0,25,0,0) and F(y(t, 2/, r1, ro), t, 2/, ro, r1) = O for
(t.7',r1,r0) € C x C"1 x C* x C" with |t], |z’ — zgl, |r1l, Irol < wo. Especially
¥(t, 7/, r1, ro) is holomorphic inz. We can write

(4.51) W =1 (r,2',r1,r0) = Wo (', r1, r0) + W1 (', r1.r0) + Rz (8,2, r1, o)

and there exists a constant C such that [fdr— zp| < (1/2)wo, |rol < (1/2)no and
Ir1] < (1/2)uo we have

1
(4.52) |W = Wo (2, ri,ro) — tWa (2, r1, o) | < Clef%, ] < S Ho-
So we can get the expansion

1
(4.53) X(z,x) = Xo+ — X1+ Q2,
z

n

for z, € C with |Imz,| < & and |z,| > M, where M = 2u5*. The remainder term
0, is small uniformly. Let us findXy = Xo(z’, r1, ro) and X, = X1(z/, r1, ro). Since we
have

~ - — 1 ~ ~
Vng(X(Z, .X)) = Vépm(XO) + ngpm(XO) (Z_Xl + RZ) + R3’

n

where R, and Rz are in O(|z,]72), we obtain from (4.49)

_ ” o 1. -
2n Ve Pn(X0) + VEPu(Xo) (X1 +24R2) +z4R3+i ( Xo+ —X1+ R

n

~ 7 —zg .
— Zn (Vépn1(770)+rl)+( 0 0 )—”70—"020-

From (4.52) the remainder terms are @X|z,|™). From this expansion we obtain
Véﬁm (XO) = Véﬁm (770) +ry,

ngﬁm(XO)Xl‘Fl (Xo—l( < :)ZO ) — 7]0+i7‘0) =0.
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Now we restrictr; to R”. Sincer; is a real vector ang,,(¢) is real, there exist; >

0 and Xo = Xo(n0, r1) € R" by the implicit function theorem such thaf; € C" with
|X1] < Cuy is also obtained as

X1= =i VZ5u(Xo) (Xo —i ( ‘ BZO ) - 770+ir0) .
If (z,x) € E, we have

A(1) = VEPw (X (2. x)) = VZpu(Xo) + ;<X1, Ve (V2Pm) (Xo)) + R,

1 o/
= AO + _Al + RZ’
le

where Ag = Ve p,(Xo) is the real symmetric matrix with defyp 7 0 and [Im A4| <
Cu1. Writing

1
G = Id—izA(H) = —izn [Id +i—A(n)-1] AQ).
Z”
we have

-1
G1l= iiA(n)—l [Id +iZiA(n)—1] )

n

Since

)}

1
A(n) = Ao [m +ZAJMAL+ o(
Zn n

we obtain from the Neumann series

-1
1|2 ~

Z n

e

n

1
= {ld ——AJAL+ O(
ZH

1
=A; - ZAJIAIAT+ 0(
Zn

A(n)~t= [ ld +ZiA51A1 + (’)(

Zn

1 2)'

Zn
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From this expression we have

1)

1 1
Gl=i=Am™? {Id —i—A(n)t+ (9( —
Zn Zn

n

13
Z )

n

1 1
=i—A(n) '+ = (A(n)™Y)? + (’)(

n n

1

<n

3)
Since A;* is also the real symmetric matrix with defA# 0, we have

1 1 o 1 N
(i—Agl) + (i—Agl) =i—Ayt—i= (AgY)
Zn Zn

0 2

1 1 N2 A _
=i=A 1+Z—"{(A01) —zA01A1A01}+(’)(

n

and

[i (Aal)zl ¥ [iz (A(?l)zr = (z_l,z, + %) (Aal)z

Z; n
2R n 2 I n 2
2 e
Zn

By writing B = A;*A1A %, it follows from B* = Aj*AZAS? that we have

EaRIlER]

2 B+i ! B*
2z
o i T ATIA AT 4 ASTAA
|Zn|4 0 0 |Zn|4 0 10
.(ReZH)Z -1 -1 1 :
—i A" (AL —A)A;-+0OL | —
|Zl1|4 O ( l l) O Z}l

<n

1 3)'

2(Rez,)?
= 7(& |Z4) Agl(|mA1)Agl+(9(
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The positivity of the matrix(Ag 1)2 shows
82
<Im %(Z, x)v, v> = ((Re G_l) v, v)
- (2 {G_l + (G_l)*} v, v
2 b

[Im z,,]| _ (ReZn)z 1,2
> — e (Agtv, v) + e <(A01) v, v>

(4.54)

Rez,)? , _ _ 1P
— ( Z4) <A01(ImA1)AOl)+O - (U, U>
[Zal Zn
1 (Rez,)?
i E |Z”|4 C(”’ U).

Therefore we prove that there exists a positive constast 0 such that for £, x) € E,
|z.| > M we have

8% C
(455) <|m @(Z, x)v, U> > m(v, U).

The positive constant/ = M(u;) is independent ok, e, and e3. We consider the
caseM > |z,|. For @z, x) € E we have|X(z, x) — no| < €3. Since we have

HZn ngﬁm(x(za X)) - (ReZn)vgzﬁm(HO)” < &1 *es,

for smalle; > 0 andez > 0 with &1 < ug, €3 < wg, it follows from the expression
VZp(z,x) = —i (Id —iz, V2P (X (z, x)))_1 that we obtain

32 1
(4.56) <Im a—x(g(z,x)v, v> > EIIUIIZ,

for (z, x) € E with |z,] < M. Thus we have the following lemma:

Lemma 4.3. Letm > 3. We assume that the coefficients of the principal part of
P(x, D,) are independent ok. Then there exists a positive constafitsuch that for
(z,x) € E1 (Cc C" x R") we have

8%p c
4.57 Im—(z,x) > — Id.
(4.57) 92 2 )
Let (z,x) € E1 ¢ C" x R". We set g(z,x) = Im(d¢/dx)(z,x). Since
g ((z6, Rez,) , Y(Rez,; yo, n0)) = ImO(Rez,; yo, m0) = O, it follows from Lemma 4.2
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or Lemma 4.3 that there exists a functief): C" — R” such that

¢ @x@)=1m 2 . x@) =0,
0x

X (Z67 ReZ,,) = Y(Rezn; Yo, 770)

The existence and uniquenessxgf) come from the repeated use of the implicit func-
tion theorem. In order to justify this argument, we show tséneate

1
(458) |X(Z) - Y(Rezn; Yo, 770)| < 282(1 + |Zn|)’

which guarantees the repeated use of (4.57).
Sincex(z) is real valued an@ is holomorphic, the differentiation of the equation

0=1m% (2. x(2) = ;(g—f @ x@) - 52 x(z»),

implies

0
x(z) _ 1- m 0
0z 2i

2 -1 42
e Ex@) ).

Since Lemma 4.2 and Lemma 4.3 show

2 -1
H (Im % (z, x(z)))

and the differentiation of the equation

e 0=60-= (Z"Z’?(z’, ), P (y, -, y)))

< C(1+]za))%

y=K(z,x)

we obtain from (4.34) that forz € C" with }z’—z{)| < &1, Rez, > —e1 and
[Imz,| < e

) ox i 7 —7
K= (e Resn) = @) (0 ),

0x(z)
0z

< C(1+]zal).

By the Taylor expansion

we have

|x(z) — Y(Rez,; yo, no)l < €1(1 +1z,1).
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By the choices ofs; and e, with 0 < 4e; < g5, we obtain (4.58) and the argument
about the repeated use of the implicit function theorem hreenhustified.
For z € C" with |z’ — z{)| < &1, Rez, > —g; and|Imz,| < &1 we define

(4.59) D(z) = — Ime(z, x(2)).
We can show

(4.60)

®(z) =0.
0 Rez )

We do not repeat the proof for (4.60) (see Lemma 3.8 in [21]).

5. Solving the transport equations

In the previous section we constructed the phase functiabadly along the
bicharacteristics. Now we solve the transport equations. ddhstruct the amplitude
function

5.1) flex ) =Y i),

k=0

as an analytic symbol of order zero, elliptic near the suppérthe cutoff function
along the bicharacteristics.

Theorem 5.1. Let F(z,x,) be introduced in(4.3), and ®(z) be defined in
(4.59). There existr,, > 0 and an analytic symbolf = f(z, x,A) of order zerg el-
liptic, defined in the set

E = (z’, zn,x/,xn) e IxCxC1xC;

1 1 1
’Z’ —ZE)‘ < T, REZ, > — 7o, [IMz,] < Z7c,s

2 2 2
1
|x - Y(Zn; Yo, 770)' < Eroo(l + |Zn|)] s
such that we have
(5.2) |F(z, x, A)| < CO14 (1 + |z, ),

where ug > 0 and Ng € N.

In order to prove Theorem 5.1, we change the variables anditkeown functionf.
We define the change of variablds: O — E by

(5.3) (2.x) = (z, y (zn; . —38—“;0@, y))) for (z.y) €O,
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where the se® is given by

(5.4)
0={(z,y) e C" x C"; |2/ — 2| < &1, Rez, > —e1, [Imz,| <e1, |y —yol <es},

and the setF is given by (4.5). We define

oo
1
8y, )= qaley) = fov
k=0

(5.5) :f(aY(au»—3?§&Cw))
= g %kfk (z, Y (zn: Y, —Z—T(Z/, )’))) :

Since we have from (4.16)

d d = 3'p,, dp 3
(5.6) g(z,y) = - " x, —(@x)) —1t f(z,x) ;
02y, 02, — 9§ 0x 0x;
=1 x=Y (z05y.0(2'. y))
we obtain
9 m—1 1
. —iA —
(5.7) ire ™ FoWw= (8z,1 +d(z, y)) 8- ; FQI(Z, y. Dy)g.
where
d(z, < )
ld(z, y)I 141
(5.8) Qi(z,y. D))= D" qu(z y)D5,
Joe|<I+1
G
[ W
|%(Z,)’)| < W

Next we change the unknown functiogg(z, y) into h(z, y) by
1
Alz,y) =0 d(z, y) = Zn/ d(Z',1z,, y)dt,
0
hi(z, y) = e*Egi(z, y).

Then the analytic symbot = > A~ (z, y) should be constructed by the equations

oh
9=0, hol,=0=1,
0z,
(5.9 M
ohy
= Wl(Zs Y, Dy)hk—h hk|z"=0 = O’ (k > 1),
02 =1
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where
M= k, k<m-1),
m—1 (k>m),

and

Wy =etQe = Z wl(z, y)DY,
(5.10) st

[+1—|«|
w2 )| < 7(“' yiios (109(L *121)) :

The solutions of the equations (5.9) are given by

ho(z, y) =

5.11
(5.11) hi(z, y) = / ZW,hk (2 tzn, y)dt, (k> 1).

Let us check the estimates
(5.12) lgk(z, y)| < CoCik",

which shows that the existence and the boundedness of theosyifz, v, 1). The tech-
nique, “nested open set,” introduced in [21] and [26] is ukdf proving these esti-
mates (see also Section 3 in [23]). Foe (OUN) we define the sequencgs;}, {R;},

{r;j} by

s0=0, Ro= 2(1/4)00, 7o given in (Q 81),

. = J .= j(1+(1/2)“) /
(513) =2 RE2EEEW gz

-1 .
(sj —sj—1), j=1
-1

rj:rj_l—

As proved in [21], the monotone decreasing sequengi?, converges tow > 0. We
define the open set
(5.14) @] ={(z,y) € C" x C"; |z’ — 25| + M;(z.) + 1y — yol < r; — 1, Rez, >s,},

wherer € (0, r;] and

,.
M;(z,) = R—{ |Rez, —s;| +|Imz,|.
J

We note that {,s;,y) € @/ implies ¢, s;,y) € @/~ for j > 1. Let p be a pos-
itive number. We denote by, ; the space of formal analytic symbolgz, y, 1) =
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> =0+ *hi(z, y, 1) such that

(5.15) sup |z, y)| < fi (WKt 0<t <,

@]

where f; ;j(h) is the best constant and the seri§z, fi.j(h)p* is convergent. This
definition shows that

Ihllp.; =D fe.j()o*

k=0

ok
=> = sup Itk Sup_lhk(z,}’)ll’

k=0 = O<tsr (z.y)eQ!

(5.16)

k|b

is a norm onA, ;. The solution of (5.9) given by (5.11) gives rise to the forrsgm-
bol A(z, y, 1) = > ;.0 *hi(z, y) which is a solution of the Cauchy problem

m—1
oh
i A'Wih =0, Rez, >sj,
(5.17) Zn =1

hl,=s;, = h(Z', s}, y).

We denote by:/ the value of the solution i®2). Thenh/ satisfies

8hj m—1 .

v A'win! =0,
Zn =1

B |z, = hI 7Y,

where we definei ™|, -0 = 1. We setg/ = h/ — hi~1|, . The system can be written

(d—B)B/ =B (hj_1|mz:-fj) ’

(5.18) ,
Bleym; =0,
where
m—1 m—1
(5.19) B =071 > AWz y. Dy) =200 > AWz, y, Dy),
=1 =1

and 8;11) = Lj” v(z/, 1, y)dr.
As proved in [23] we have the following lemma.

Lemma 5.1. There exists a positive consta@t such that for; > 0 we have

CR; -
-1 —J . = —(k+1) .
(6.20) 2oyl = v las, for v %@ Virt € Ay,
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<plyly, for yeA,;, 1<s<n,

P

19
5.21 -
(>:21) H A Bysy

SCP||)/||p,j, for VEAp.j-

(5.22) ” %y |
P,J

It follows from Lemma 5.1 and (5.10) that we have

m—1
1BBIl,.; = |20 D A EDW(z, v, Dy)B
=1 p,j
CR: m—1
<=L D YWz, y, Dy)B
1% rj 1=1 ovj
CR: m—1
(5.23) < =210 > wile T PDgp
PTi= | <l+1 )
P.J
CR: m—1
< —— sup fuye ]| > > A PDgp
P (2,5)e9y =1 |a|<l+1 o
CR;
< ==L sup |wi(z )| CO%IBI,.;,

pr (z.y)e).La
when p > is small enough. Foj > 1 we have

C [+1—|«|
1

sup  |wh(z. y)| £ ———5= (log(1 +|s;1)) ,
(z-y)eﬂé.l.a’ o) (L +]s; e !

and

sup [ (c.)] < Co
(z,5)eQ). L

We define the sequend&;} as

_ (ogt +s)" R,

= , for j>1,
! @+ 7 ° /=

and Kg = CRorO_lCo,o. If we choose a small enough, we have

Cp

oo

C2-(1/3m)0)

K;

IA

<1,

IN

K;
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for j > 1 and Ky < 1. From (5.18) we have

18/ < K18 0 + K5 | (W7 )|

SO

(5.24) 1B 1,7 < H (hf 1, _S/_)HN for j > 0.

1- K

Since ¢, s;,y) € SZ,/ implies @, s;,) € Qf‘l, we have

s = s BTN S foger (0 R,

(@y)eQi™

forO<t <rj (<rj-1), and

(1), =5 e [ e

k* O<t<r;

hJ 1(Z sj,y)‘]

y)e!
Z}z sup {1 fjoa (W71 K1Y
k=0 rj
—Z,O fej-a('™)
=0
T
=n7,

Since g/ =h/ — hi7Y|, -, andh|_L; =0, we obtain

=5

18005 < g 17 s

and
. / 1 0 0
(5.25) A7 ,.; < (/=1 1——1(,) 17°] 0 < Ch°] o

Since k] is the restriction of the solution, to ©/, we obtain

Foo\ K
iz )| < sup |l < Cp~*k* (7) _

J
Q1/2v0

This shows that the system (5.9) has a solufién y, 1) = >, A */(z, y) such that
for k > 0 we have

(5.26) lhi(z, y)| < C*KF,
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in the setO, = {(z, y) € C" x C"; |2 — z5| + [y — yol + [IMz,| < (1/2)ro0, ReZ, > O}
From the definitions ofA(z, y), h«(z, y) and the estimates above, the symbol
8(z. ¥, 1) = 02 gu(z, ) satisfies

(5.27) lgk(z, )| < CKR* (L +1z,)™, (2. y) € O,

where N; is a fixed integer. Let us take = Zf:o gr(z,y) and K € N is chosen later.
It follows from (5.7), (5.27) and Cauchy’s formula that wevha

IN

CAKX (L +z, )™

ire ¥ F o W| T

1 /CK\X
N 1+ n Nl-
A(A) (L +]zal)

(5.28)

We definekg and Ag with 0 < kg < 1/(2C) and Ao > 2/kg respectively. Choosing the
integer K = K(1) with kghg — 1 < K = [koA] < koA for A > Ao, there exists a positive
constant; such that we have

K
log (CT) < —u <0.

This shows
) 1
ire M ow| < XeKlog(CKm(l +zal)™
1
(5.29) < el g,
e,U«l
<

ST L)

The proof of Theorem 5.1 is completed by setting a positivenloer o = wi1ko and
making Ao large enough. U

6. Proof of the main theorem

Let po = (yo,n0) € T*R" \ 0 given in Theorem 1.1. Thanks to Lemma 2.1 and
Lemma 2.2, forp; = (y1,n1) € T*R" \ 0 which is constructed in Lemma 2.2, the
property p1 = (y1, 71) ¢ WF a[u(to, - )] shows our conclusion. Instead of, we use
the same notatiomg = (yo, 7o) € T*R" \ 0 with |yo| > 2R, (yo, Ve pm(n0)) > 0 and
detvgﬁm(no). Let ¢ = ¢(z,x) be the phase function which is constructed in Theo-
rem 4.1 andf = f(z,x,2) be the amplitude function given in Theorem 5.1. For a
small enough constany > 0, they are defined in the set

6.1)
Eo={(z,zn. %", xs) € ClxCxCtxC;

‘Z/ - 16| < €0, Rezn > —£o, “mznl < &1, I)C - Y(Zn; Yo, 770)' < 80(1 + Iznl)} -
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and we havee™ """ ug e 12 (y ).
Let x € Cg°(R") be such that & x <1 and

1

17 |t| S —€0,
x(t) = 2
0, t] > eo.

In Section 4 we defined the operatSu(t, z,1). Now we choosey; in (4.1) as
x1(z, x) = x((x — Y(Rez,; yo, n0))/(1 +z,1)), that is,

X — Y(Rezn; Yo, 770)
1+|zal

(6.2) Su(t,z,\) = / ei)“”(""x)f(z, x,A)x ( ) u(t, x)dx,
er

where ¢(z, x) and f(z, x, 1) are given in Theorem 4.1 and Theorem 5.1, respectively.
Let u(¢, -) be the solution to the initial value problem

Du+P(x,D)u=0, t<0, xeR",
uli=0 = uo(x).
Taking the integral transforn§, we obtain

SD;u+SP(x, D)u =0,
Su|,:o = Suo.

Using the notation in Section 4, we have

9 9
— L) Su(r, z, A) = i I(t, 7, M),
Su(ta Zv )\)erO = SuO(Z’ )“)‘

This equation is solved as
13
(6.3) S(t,z,A) =Sug (2,2 — A" 71, 1) + ikm/ (o, (Z za +2" Yo — 1), 1)) do.
0

for t < 0. We have

Suo (2,20 — A", 1)

:/ ei)‘(p(x'(Z/'Z”_MH'))f (x, (Z’, 2 — A”’_lt) ’)\)

_1,.
% x x — Y(Rez, — A" t; yo, no) e_(80/4)|xll/(m_l)6(80/4)|x|1/(m_1)uo(x) dz.
1+ |Zn - )‘m_ltl

On the support ofy, there existsu > 0 such that

|)C -Y (Zn - )‘m_lt; Yo, 770)| < éo (1 + |Zn - )‘m_lt|) < CSO (1 +)‘m_1t0) s
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for z € C" with |2/ —z§| < w, |zal < i, and |t — to] < p. On the other hand (3.11)
shows

- R
|Y (Rez, — A" 7t; yo, no)| > R+ |Rez, — A" 7| | Ve p(no)| > >t CA"nol™Htol.

By making 1 > 0 small enough ana large enough, we havix| > 8g|nol” |to] A L.
We note that (4.60) show®(z’, z,—1"t) = ®(z). Theorem 5.1 implies thatf (z’, z—
A", x, )| is bounded. It follows from these properties that we have

|Suo (2,20 — A", 1)

< Ce*®D~(1/16)nol lro "o / ’ X(...)e(so/4)|x|l/(”””uo(x)’dz

(6.4)

n

< Cet®E—W/18)mol o Vion

1/(m—1)
‘ ol u

, .
L (F;O_EO)

We have shown the next lemma:

Lemma 6.1. For ug € L2 (F;Oqgo) there exist positive constants, Ao and C such

that for A > Ag and |t — 1g] < 1

(65) }Suo (Z/v in — )\’n_lt, A.)| < Cg}‘q:'(z)—ll«l)»

1/(m—1)
’ ol u

0 12(Thy )
On the other hand we write
I(t,z,A) = I(t, z, A) + Ix(t, 2, 1),
where
L(t, z, A) 2/ Ji(z, x, Mu(t, x)dx, (k=1,2),

and

h@%M:H;ij%HLMOQWﬁ]m

1 1 ,

Jo(z, x, ) = I:(XDZ” - )L—th(X, Dx)) , X] (e’)”(l’f) ,

where [P, Q] = PQ — QP. To estimate/; we use Theorem 5.1,
[11(z, 2, 1)

—Y(Re 1y YO,
< Ce,\<1>(z)—uo/\(1+|zn|)N°/X (x (1+|Z lyo 770)) lu(t, x)| dx
Z"l

sc&”¢”“u+kﬂwwwawwn-my(

Cioco)
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We estimate the ternd;. On the support of a derivative ¢fi(z, x), we have
1
|)C - Y(Zn; Yo, 770)' > 580(1 + |Zn|)-

For z € C" andx € R" we have the Taylor's expansion with respectxtat x(z) € R”

Rey(z. x)) = — IMp(z. x(2)) - <lm % .. - x(z)>
1 1 37 ¢
- ZMZ:Z =) /0 a—0ym 7 (o x(@) +os ~ x(N .

where d/dx; is the real differentiation and(z) = (x1(z), ..., x,(z)) is the real valued
functions given in Section 4. On the support pf Lemma 4.2 or Lemma 4.3 implies

(6.6) Re(ip(z. x)) < B(2) - m I — ().

Since we have

1
lx — x(z)| > ZSo(l +z,1),

on the support of a derivative of;, there exist§ > 0 and u; > 0 such that for
|t — t0] < & we have

(6.7)

13
/ L(t, 7, zo + A" "Nt — 1), M) dT| < C**O7H sup u(r, USRS
0 PO-£Q

t—to] <8

By (6.3), (6.5) and (6.7) we obtain the next theorem:

Theorem 6.1. Let 7 < 0. Assumeug € XZO. Then there exisC > 0, Ag > O,
e>0,8 >0 andp > 0 such that for|z — zp| +|z,| < &, |t —1to] <8 and A > Ao, we
have

[Vln=1)
u

(6.8)  |Su(t.z.1)] < C&H¥Ww (H el

0 + sup lu(t, )lleey ).
LZ(F;()‘SO)

lt—to] <8
Let us set

(6.9) Tu(t,z,A) 2/ N £z x, W) x(x — yo)u(t, x) dx.

We also obtain the next theorem in view of Proposition 5.32fh]]

Theorem 6.2. Let g < 0. Assumeug € XZO. Then there exisC > 0, ¢ > 0,
8 >0 and u > 0 such that for|z’ — zj| +|z,| < € and |t — 1| < 8, we have

(6.10) |Tu(t,z,A) — Su(r, z, \)| < Ce*®@)=1*,
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Theorem 6.1 and Theorem 6.2 show that we have

(6.11) ITu(t, z, \)| < Ce*®@H%

which implies po ¢ WF 4[u(t, -)]. We obtain the desired conclusion.

(1]
(2]
(3]
(4]

(5]
(6]

(7]
(8]
&)
(0]
[11]
(12]
[13]

(14]
(18]

[16]

(17]

(18]
[19]

(20]
[21]

[22]

References

J.M. Bony: Equivalence des diverses notions de spectre singulieytama®eminaire Goulaouic-
Schwartz (1976/1977Ecole Polytech., Palaiseau, 1977.

H. Chihara:Gain of regularity for semilinear Scbdinger equationsMath. Ann. 315, (1999),
529-567.

H. Chihara:Smoothing effects of dispersive pseudodifferential égogtComm. Partial Differ-
ential Equation®27 (2002), 1953-2005.

W. Craig, T. Kappeler and W. StrausMicrolocal dispersive smoothing for the Sékiinger
equation Comm. Pure Appl. Math48, (1995), 769-860.

J.-M. Delort: F.B.I. transformation, Lecture Notes in MaStudiesl22, Springer-Verlag, 1992.
S. Doi: Remarks on the Cauchy problem for Sidlinger-type equationsCommun. Partial Dif-
ferential Equation®1 (1996), 163-178.

S. Doi: Smoothing effects of Sddinger evolution groups on Riemannian manifolduke
Math. J.82 (1996), 679—706.

S. Doi: Commutator algebra and abstract smoothing effegt Funct. Anal.168, (1999),
428-469.

S. Doi: Smoothing effects for Sdhtinger evolution equation and global behavior of geodesti
flow, Math. Ann. 318, (2000), 355-389.

N. Hayashi and K. KatoRegularity in time of solutions to nonlinear Sédinger equationsJ.
Funct. Anal.128 (1995), 253-277.

N. Hayashi and S. Saitoh: Analyticity and smoothingeetffor the Schidinger equation, Ann.
Inst. H. Poinca@ Phys. Tlkor. 52, (1990), 163-173.

L. Hormander: The Analysis of Linear Partial Differential Ogtrs, Ill, Springer-Verlag,
Berlin, 1985.

L. Hormander: The Analysis of Linear Partial Differential Ogters, 1V, Springer-Verlag,
Berlin, 1985.

L. Hormander: An Introduction to Complex Analysis in Severati&bles, North-Holland, 1990.
T. Hoshiro: Decay and regularity for dispersive eqomsi with constant coefficients, J. Anal.
Math. 91 (2003), 211-230.

K. Kajitani and S. Wakabayashhnalytically smoothing effect for Sdhdinger type equations
with variable coefficientsin Direct and Inverse Problems of Mathematical Physics, $dc.
Anal. Appl. Comput., Kluwer Acad. Publ., Dordrecht, 200@53219.

K. Kajitani: Smoothing effect in Gevrey classes for ®dimger equationsl; in Workshop on
Partial Differential Equations (Ferrara, 1999). Ann. Uriferrara Sez. V1145, 2000, 173-186.
A. Martinez: An Introduction to Semiclassical and Miavoll Analysis, Springer-Verlag, 2002.
Y. Morimoto, L. Robbiano and C. ZuilyRemark on the analytic smoothing for the Sifinger
equation Indiana Univ. Math. J49, (2000), 1563-1579.

T. Okaji: Propagation of wave packets and smoothing properties aftisois to Schidinger
equations with unbounded potentigreprint.

L. Robbiano and C. ZuilyMicrolocal analytic smoothing effect for the Sddinger equation
Duke Math. J.100, (1999), 93-129.

L. Robbiano and C. Zuily:Effet régularisant analytique microlocal pour @guation de
Schiddinger. le cas des dores oscillantes Comm. on Partial Differential Equation25,
(2000), 1891-1906.



62 H. TAKUWA

[23] H. Takuwa:Analytic smoothing effects for a class of dispersive eguatiTsukuba J. Math.
28 (2004), 1-34.

[24] S. Tarama:On the wellposed Cauchy problem for some dispersive eqstib Math. Soc.
Japan47 (1995), 143-158.

[25] S. TaramaAnalyticity of solutions of the Korteweg-de Vries equatidnMath. Kyoto Univ.44
(2004), 1-32.

[26] J. Spstrand:Singularies analytigues microlocaleé\stérisques95 (1982), 1-166.

Department of mathematics

Graduate School of Science

Osaka University

Machikaneyama 1-1, Toyonaka

Osaka 560-0043, Japan

e-mail: takuwa@gaia.math.wani.osaka-u.ac.jp



