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GLUING SILTING OBJECTS

QUNHUA LIU, JORGE VITÓRIA, and DONG YANG

Abstract. Recent results by Keller and Nicolás and by Koenig and Yang have
shown bijective correspondences between suitable classes of t-structures and co-
t-structures with certain objects of the derived category: silting objects. On the
other hand, the techniques of gluing (co-)t-structures along a recollement play
an important role in the understanding of derived module categories. Using the
above correspondence with silting objects, we present explicit constructions of
gluing of silting objects, and, furthermore, we answer the question of when the
glued silting is tilting.

§1. Introduction

In a given triangulated category, the study of its torsion pairs helps

to understand its structure. Two kinds of torsion pairs have been consid-

ered with particular emphasis in the literature. These are the notions of

t-structure introduced by Beilinson, Bernstein, and Deligne in [5] and co-t-

structure introduced independently by Bondarko in [8] and by Pauksztello

in [22]. These are torsion pairs with an additional property concerning the

suspension functor of the underlying triangulated category, and they give

rise to additive (or even abelian in the case of t-structures) subcategories

which are of interest. In this paper, we work with correspondences that

classify these torsion pairs in terms of objects of the triangulated category.

Keller and Vossieck established in [17] a bijection between bounded t-

structures and equivalence classes of silting objects in the bounded derived

category of modules over the path algebra of a Dynkin quiver over a field.

Recently, this bijection has been extended by Keller and Nicolás in [16]

for the bounded derived categories of homologically smooth nonpositive

differential graded algebras, and by Koenig and Yang in [18] for bounded

derived categories of finite-dimensional algebras over a field. Indeed, they

show that in such a category, there is a bijection between silting objects
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and bounded t-structures whose hearts are length categories. It turns out

that Keller and Vossieck’s result is a corollary, since for algebras of finite

representation type all hearts of bounded t-structures are length categories.

A new correspondence between silting objects and bounded co-t-structures

was proved in [21] and [16]. This bijection will be central in our approach.

Silting objects play, thus, a more general role than tilting objects. They

describe all hearts which are length categories and these turn out to be

precisely those which are module categories over some finite-dimensional

algebra over a field. This algebra, although not in general derived equivalent

to the one we started with, is obtained as the endomorphism algebra of the

silting object, just like in the tilting setting. Indeed, it is easy to observe that

a silting object is tilting if and only if it lies in the heart of the corresponding

t-structure.

Gluing techniques with respect to a recollement, due to Beilinson, Bern-

stein, and Deligne, have been intensively studied in [5] for t-structures and,

recently, in [8] for co-t-structures. This leads to the natural question of

how to glue silting objects and which silting objects are glued from smaller

ones. Indeed, recent work by the two first authors has shown that, in the

piecewise hereditary case, all bounded t-structures whose heart is a length

category are glued with respect to a nontrivial recollement (see [20]). In this

setting it is then clear that every silting object can be decomposed by this

process into as many pieces as derived simple factors of the algebra (check

[3] and [4] for terminology). It turns out, however, that an answer to the

problem of gluing silting objects can be given more easily when the focus is

on co-t-structures rather than on t-structures. Our main result is as follows.

Theorem A (Theorem 3.1). Let R be a recollement of a triangulated

category D of the form

Y i∗ D
i!

i∗

j∗ X .
j∗

j!

Let X and Y be, respectively, silting objects of X and Y, and let (X≥0,X≤0)

and (Y≥0,Y≤0) be, respectively, the associated co-t-structures in X and Y.

Then the induced co-t-structure (D≥0,D≤0) in D is associated with the silt-

ing object Z = i∗Y ⊕KX in D, with KX defined by the triangle

i∗β≥1i
!j!X → j!X →KX → (i∗β≥1i

!j!X)[1],

where β≥1 is a (nonfunctorial) choice of truncation for the co-t-structure

(Y≥0,Y≤0) in Y.
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Furthermore, the question of when we can glue derived equivalences—

that is, tilting objects—comes as a particular setting of the general context

of gluing silting. Similar constructions of tilting objects have been discussed

in [19] and [2]. In particular, we will show that the construction in [2] is

a particular case of the preceding construction. The following is our main

theorem concerning tilting (see Theorem 4.5).

Theorem B (Theorem 4.5). Let R be a recollement of D =Db(R) by X =

Db(C) and Y =Db(B), where R, C, and B are finite-dimensional algebras

over a field of finite global dimension. Let X and Y be tilting objects of X
and Y, respectively. Then Z = i∗Y ⊕KX is tilting in D if and only if the

following conditions hold:

(a) HomY(Y, i∗j∗X[k]) = 0 for all k <−1,

(b) HomY(i∗j∗X,Y [k]) = 0 for all k < 0,

(c) HomY(i∗j∗X, i∗j∗X[k]) = 0 for all k <−1.

This paper is structured as follows. In the next section we discuss some

preliminary results on recollements, t-structures, co-t-structures, and silting

needed for the later sections. In Section 3 we show how to glue silting objects

and we use this in Section 4 to give necessary and sufficient conditions for

the glued silting to be tilting. These conditions are particularly nice in the

hereditary case and they are made explicit in Section 5. Finally, in Section 6,

we make a few observations on the gluing of Happel–Reiten–Smalø (HRS)-

tilts with a view towards a result on the compatibility of silting mutation

with gluing (see Corollary 6.9).

§2. Preliminaries

Throughout, K denotes a fixed field, and R, B, and C denote finite-

dimensional K-algebras. The bounded derived category of finitely gener-

ated right R-modules and the bounded homotopy category of finitely gen-

erated projective right R-modules will be denoted, respectively, by Db(R)

and Kb(proj-R). The symbols X , Y , and D denote triangulated categories.

2.1. Recollements

A recollement of D by X and Y is a diagram of six triangle functors

(2.1) Y i∗ D
i!

i∗

j∗ X
j∗

j!

satisfying the following properties:
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(1) (i∗, i∗), (i∗, i!), (j!, j∗), (j∗, j∗) are adjoint pairs,

(2) i∗, j∗, j! are full embeddings,

(3) i! ◦ j∗ = 0 (and thus also j∗ ◦ i∗ = 0 and i∗ ◦ j! = 0),

(4) for each Z ∈D, the units and counits of the adjunctions yield triangles

i∗i
!Z → Z → j∗j

∗Z → i∗i
!Z[1],

j!j
∗Z → Z → i∗i

∗Z → j!j
∗Z[1].

The following result allows us to change the sides of a recollement.

Theorem 2.1 ([7, Propositions 3.6–3.7], [15, Proposition 5, Theorem 7]).

Let R be a recollement of D of the form (2.1). If D has a Serre functor S,

then both X and Y have Serre functors (resp., SX and SY) and there are

reflected recollements RU and RL (resp., upper and lower reflection)

RU : X j! D
j∗

j#

i∗ Y,
i∗

i#

where i# = S−1i∗SY and j# = S−1
X j∗S are left adjoints of i∗ and j!, respec-

tively, and

RL : X j∗ D
j+

j∗

i! Y,
i+

i∗

where i+ = Si∗S
−1
Y and j+ = SX j∗S−1 are right adjoints of i! and j∗, respec-

tively.

2.2. t-structures and co-t-structures

A torsion pair in D is a pair of strict full subcategories (D′,D′′), closed
under taking direct summands and direct sums, such that

(1) HomD(X,Y ) = 0 for all X ∈D′ and Y ∈D′′,
(2) for each Z in D, there are X ∈D′, Y ∈D′′ and a triangle

(2.2) X → Z → Y →X[1].

By definition, it is easy to see that

D′ =
{
X ∈D : HomD(X,Y ) = 0,∀Y ∈D′′} =: ⊥D′′,

D′′ =
{
Y ∈D : HomD(X,Y ) = 0,∀X ∈D′} =:D′⊥.
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A t-structure in D is a pair (D≤0,D≥0) such that (D≤0,D≥1) is a torsion

pair and D≤0 ⊆D≤1, where D≤n :=D≤0[−n] and D≥n :=D≥0[−n] for n ∈
Z. The subcategory D≤0 is called the t-aisle, and D≥0 is called the t-co-

aisle. The heart D≤0 ∩D≥0 is always an abelian category. We say that the

heart is a length category if it has only finitely many simple objects (up to

isomorphism) and each object in the heart has finite length. A t-structure

is said to be bounded if it satisfies⋃
n∈Z

D≥n =D =
⋃
n∈Z

D≤n.

For all n ∈ Z, there is a right adjoint to the inclusion of the subcategory

D≤n in D, called the truncation at n and denoted by τ≤n. Similarly, there is

a left adjoint to the inclusion of D≥n, denoted by τ≥n. In fact, the triangle

(2.2) can be written functorially, for any Z ∈D, as

τ≤0Z → Z → τ≥1Z → (τ≤0Z)[1].

Moreover, it is possible to define associated cohomological functors

H i :D→D≤0 ∩D≥0, H i(X) = (τ≤iτ≥iX)[i], ∀X ∈D.

If a t-structure is bounded, then for any object X ∈ D, H i(X) = 0 for all

but finitely many i ∈ Z. A well-known example is the standard t-structure

in Db(R). The associated cohomological functors are given by the usual

cohomology of complexes in Db(R).

Similarly, a co-t-structure in D is a pair (D≥0,D≤0) such that (D≥0,D≤−1)

is a torsion pair and D≥0 ⊆ D≥−1, where D≥n := D≥0[−n] and D≤n :=

D≤0[−n], for all n ∈ Z. The subcategory D≥0 is called the co-t-aisle, and

D≤0 is called the co-t-co-aisle. The co-heart D≥0∩D≤0 is not, in general, an

abelian category, as in the case of t-structures, but it still has the structure

of an additive category. A co-t-structure is said to be bounded if it satisfies⋃
n∈Z

D≥n =D =
⋃
n∈Z

D≤n.

Contrarily to t-structures, the triangle obtained from the torsion pair

(D≥0,D≤−1) is not functorial. However, a choice of X ∈ D≥0 (resp., of

Y ∈D≤−1) as in triangle (2.2) will be denoted by β≥0Z (resp., by β≤−1Z).

A well-known example (see [8], [22]) is the standard co-t-structure in

Kb(proj-R). Here, the nonfunctorial choices of β≥0Z or β≤0Z for some object
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Z ∈Kb(proj-R) are usually given by the stupid truncations, consisting in

setting suitable entries of the complex Z to be zero.

It is known that t-structures and co-t-structures can be glued (or induced)

with respect to a recollement (see [5] for t-structures and [8] for co-t-

structures). The same arguments can be used to prove the following result.

Theorem 2.2. Let R be a recollement of D of the form (2.1). Let (X ′,X ′′)
and (Y ′,Y ′′) be torsion pairs in X and Y, respectively.

(1) There is a glued torsion pair (D′,D′′) in D defined by

D′ = {Z ∈D : j∗Z ∈ X ′, i∗Z ∈ Y ′}, D′′ = {Z ∈D : j∗Z ∈ X ′′, i!Z ∈ Y ′′}.

(2) ([5, Théorème 1.4.10]) If (X ′,X ′′[1]) and (Y ′,Y ′′[1]) are t-structures,

then (D′,D′′[−1]) is a t-structure in D.

(3) ([8, Theorem 8.2.3]) If (X ′,X ′′[−1]) and (Y ′,Y ′′[−1]) are co-t-structures,

then (D′,D′′[1]) is a co-t-structure in D.

(4) ([8], [20], [28]) The gluing of bounded t-structures whose heart is a length

category is a bounded t-structure whose heart is a length category. Also,

the gluing of bounded co-t-structures is still bounded.

If D admits a Serre functor S, if R is a recollement of D of the form (2.1),

and if (X≤0,X≥0) and (Y≤0,Y≥0) are t-structures in X and Y , respec-

tively, then there are three naturally associated t-structures in D, obtained

by gluing these with respect to R, RU , and RL—we will denote them by

(D≤0,D≥0), (D≤0
U ,D≥0

U ), and (D≤0
L ,D≥0

L ), respectively. Similarly, given co-

t-structures (X≥0,X≤0) and (Y≥0,Y≤0) in X and Y , we get three glued

co-t-structures (D≥0,D≤0), (DU
≥0,DU

≤0), and (DL
≥0,DL

≤0).

2.3. Correspondences with silting objects

An object M ∈ D is silting if HomD(M,M [i]) = 0, for all i > 0, and if

D is the smallest triangulated subcategory containing M which is closed

under direct summands, extensions, and shifts. It is tilting if, in addition,

HomD(M,M [i]) = 0, for all i < 0. We say that two such objects M and N

are equivalent if add(M) = add(N). The following result is a consequence

of [21, Corollary 5.9] (see also [16]).

Theorem 2.3. There is a bijection between bounded co-t-structures in D
whose co-heart is additively generated by one object and equivalence classes

of silting objects of D.
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This bijection can be described as follows.

• Given a co-t-structure (D≥0,D≤0), the associated equivalence class is

given by a silting object M which is an additive generator of the co-heart,

that is, D≥0 ∩D≤0 = add(M).

• Given a silting object M ∈ D, the associated co-t-structure is defined as

follows: D≥0 is the smallest full subcategory closed under direct sum-

mands, direct sums, and extensions containing {M [i] : i ≤ 0}; similarly,

D≤0 is the smallest full subcategory closed under direct summands, direct

sums, and extensions containing {M [i] : i≥ 0}.

Theorem 2.4 ([18, Theorem 7.1]). In Db(R), there are bijections between

• the set of bounded t-structures in Db(R) whose heart is a length category;

• the set of equivalence classes of silting objects in Kb(proj-R);

• the set of bounded co-t-structures in Kb(proj-R).

Recall that R is of finite global dimension if and only if Db(R) admits

a Serre functor (see [7], [23]). Also, in this case, we haveKb(proj-R)∼=Db(R)

and, thus, the correspondence between t-structures and co-t-structures

occurs in the same category. Under this assumption, the bijections of the

theorem can be made explicit as follows (see [18, Section 6] for details).

• Given a t-structure (D≤0,D≥0) in Db(R), we can associate a co-t-structure

(D≥0,D≤0) by taking D≤0 =D≤0 and D≥0 =
⊥ D≤−1; in the language of

[8], this is the left adjacent co-t-structure to the t-structure (D≤0,D≥0).

• Given a co-t-structure (D≥0,D≤0) in Db(R), we can associate a t-structure

by taking D≤0 =D≤0 and D≥0 =D⊥
≤−1; in the language of [8], this is the

right adjacent t-structure to the co-t-structure (D≥0,D≤0).

• Given a t-structure (D≤0,D≥0) in Db(R), the associated silting object is

the direct sum of the indecomposable Ext-projective objects in the aisle,

that is, the objects X of D≤0 such that HomDb(R)(X,Y [1]) = 0 for all

Y ∈D≤0.

• Given a silting object M in Db(R), the associated t-structure is defined

as follows:

D≤0 =
{
Z ∈Db(R) : HomDb(R)

(
M,Z[i]

)
= 0,∀i > 0

}
,

D≥0 =
{
Z ∈Db(R) : HomDb(R)

(
M,Z[i]

)
= 0,∀i < 0

}
.

Remark 2.5. If R is of finite global dimension, as before, then the co-

t-co-aisle D≤0 associated with a silting object M in Db(R) coincides with
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the aisle D≤0 associated with the same silting object. In other words, the

co-t-structure associated to M is left adjacent to the t-structure associated

to M .

Remark 2.6. The structures glued from adjacent t-structures and co-t-

structures are not directly related by adjacency, as observed by Bondarko

[8, Remark 8.2.4.4]. Suppose, however, that D has a Serre functor and

that (X≥0,X≤0) (resp., (Y≥0,Y≤0)) is a left adjacent co-t-structure to the

t-structure (X≤0,X≥0) (resp., (Y≤0,Y≥0)). Using the descriptions provided

in Theorem 2.2 and the functors of Theorem 2.1 for a fixed recollement R,

we have

DU
≤0 =D≤0 = {Z ∈D : j∗Z ∈ X≤0 =X≤0, i

∗Z ∈ Y≤0 = Y≤0}.

This means that the co-structure (DU
≥0,DU

≤0) glued by the upper reflected

recollement RU is left adjacent to the t-structure (D≤0,D≥0) glued by the

recollement R. Similarly, the t-structure (D≤0
L ,D≥0

L ) glued by RL is right

adjacent to the co-t-structure (D≥0,D≤0) glued by R.

Remark 2.7. A tilting object T in Kb(proj-R) yields equivalences

between Db(R) and Db(End(T )) and between Kb(proj-R) and

Kb(proj-End(T )) (see [24, Theorem 6.4]). Under these equivalences, the

t-structure and the co-t-structure associated to T in Db(R) correspond to

the standard ones in Db(End(T )) and Kb(proj-End(T )), respectively.

2.4. HRS-tilts and silting mutation

There are mutation operations on both t-structures and silting objects.

Recall that the definition of a torsion pair in an abelian category is analogous

to that of a torsion pair in a triangulated category, replacing the triangle

axiom by a short exact sequence.

Theorem 2.8 ([14, Proposition 2.1], [9, Proposition 2.5]). Let (D≤0,D≥0)

be a bounded t-structure in a triangulated category D with heart A and

associated cohomology functors H i, i ∈ Z. Suppose that (T ,F) is a torsion

pair in A. Then (D≤0
(T ,F),D

≥0
(T ,F)) is a t-structure in D, where

D≤0
(T ,F) =

{
E ∈D :H i(E) = 0,∀i > 0,H0(E) ∈ T

}
,

D≥0
(T ,F) =

{
E ∈D :H i(E) = 0,∀i <−1,H−1(E) ∈ F

}
.

The t-structure (D≤0
(T ,F),D

≥0
(T ,F)) is called the HRS-tilt of (D≤0,D≥0) with

respect to (T ,F).
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Remark 2.9. HRS-tilts span an important class of t-structures. In fact,

it is known from [6, Theorem 3.1] and [29, Proposition 2.1] that, for a

bounded t-structure (D≤0,D≥0), the bounded t-structures (C≤0,C≥0) such

that D≤−1 ⊆ C≤0 ⊆ D≤0 are precisely those obtained from (D≤0,D≥0) by

an HRS-tilt with respect to a torsion pair.

Assume that the heart A of the t-structure (D≤0,D≥0) is a length cat-

egory, and let S be a simple object of A without self-extensions. The left

mutation of (D≤0,D≥0) with respect to S is defined by

μ−
S (D≤0,D≥0) = (D≤0

−,S ,D
≥0
−,S) := (D≤0

(⊥S,add(S))
,D≥0

(⊥S,add(S))
),

and its right mutation by

μ+
S (D≤0,D≥0) = (D≤0

+,S ,D
≥0
+,S) :=

(
D≤0

(add(S),S⊥)
[−1],D≥0

(add(S),S⊥)
[−1]

)
.

The torsion pairs (add(S), S⊥) and (⊥S,add(S)) will be called mutation

torsion pairs.

On the other hand, silting mutation was introduced and studied by Buan,

Reiten, and Thomas in [10] and, independently, by Aihara and Iyama in [1].

We recall its definition.

Definition 2.10. Let M = X ⊕ Y be a silting object in Db(R). The

left mutation of M at X , denoted by μ−
X(M), is defined as the direct sum

X̃ ⊕ Y , where X̃ is the cone of a left add(Y )-approximation of X (i.e., of

a morphism φ :X → L, with L in add(Y ) such that for any Z in add(Y ),

HomDb(R)(φ,Z) is surjective).

Similarly, the right mutation of M at X , denoted by μ+
X(M), is defined

as the sum X̄ ⊕Y , where X̄ is the cone of a right add(Y )-approximation of

X (i.e., of a morphism ψ :K →X , with K in add(Y ) such that for any Z

in add(Y ), HomDb(R)(Z,ψ) is surjective).

We say that a mutation is irreducible if X is indecomposable.

Theorem 2.11 ([18, Theorem 7.12]). Irreducible silting mutations are

compatible with the bijections established in Theorem 2.4. More precisely,

if S1, . . . , Sn are the simple objects in the heart of a t-structure (D≤0,D≥0)

and X1, . . . ,Xn are indecomposable Ext-projective objects in D≤0 such that

Hom(Xi, Si) �= 0, for all 1≤ i≤ n, then the aisles corresponding to the silting

objects μ+
Xi
(M) and μ−

Xi
(M) are D≤0

+,Si
and D≤0

−,Si
, respectively.

The question of whether these mutations are compatible with gluing is

discussed in Section 6.
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§3. Gluing of silting objects

The results in this section make explicit in a more general setting the

bijection established in [1, Theorem 2.37], for Krull–Schmidt triangulated

categories D, between the equivalence classes of silting objects in D contain-

ing i∗Y as a direct summand and the equivalence classes of silting objects

in the triangle quotient D/ thick(i∗Y ). Here thick(i∗Y ) is the smallest thick

triangulated subcategory of D containing i∗Y . More precisely, the theo-

rem below shows how to glue two silting objects of X and Y into a silting

object of D with respect to a recollement of the form (2.1) in a way that is

compatible with the bijection between silting objects and co-t-structures of

Theorem 2.3.

Theorem 3.1. Let R be a recollement of D of the form (2.1). Let X

and Y be silting objects corresponding to co-t-structures (X≥0,X≤0) and

(Y≥0,Y≤0) in X and Y, respectively. Then the induced co-t-structure

(D≥0,D≤0) in D is associated with the silting object Z = i∗Y ⊕KX , with

KX defined by the following triangle:

i∗β≥1i
!j!X → j!X →KX → (i∗β≥1i

!j!X)[1],

where β≥1 is a (nonfunctorial) choice of truncation for the co-t-structure

(Y≥0,Y≤0) in Y.

Proof. First observe that, since i∗ is a fully faithful functor, i∗Y is partial

silting and, moreover, it is easily checked to lie in the co-heart of the glued

co-t-structure (D≥0,D≤0) in D.

Let us consider the following (nonfunctorial) triangle associated with the

co-t-structure in Y

i∗β≥1i
!j!X → i∗i

!j!X → i∗β≤0i
!j!X → (i∗β≥1i

!j!X)[1]

and the following universal triangle of the recollement (applied to j!X)

i∗i
!j!X → j!X → j∗X → (i∗i

!j!X)[1].
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Hence, we get the following commutative diagram where the rows are tri-

angles

i∗β≥1i
!j!X i∗i!j!X i∗β≤0i

!j!X (i∗β≥1i
!j!X)[1]

i∗β≥1i
!j!X j!X KX (i∗β≥1i

!j!X)[1]

i∗i!j!X j!X j∗X (i∗i!j!X)[1]

By the octahedral axiom, this can be completed to a commutative diagram

i∗β≥1i
!j!X i∗i!j!X i∗β≤0i

!j!X (i∗β≥1i
!j!X)[1]

i∗β≥1i
!j!X j!X KX (i∗β≥1i

!j!X)[1]

i∗i!j!X j!X j∗X (i∗i!j!X)[1]

i∗β≤0i
!j!X KX j∗X (i∗β≤0i

!j!X)[1]

the rows of which are again triangles. We will now show that KX lies in

the co-heart of (D≥0,D≤0). Indeed, it is clear that i∗β≥1i
!j!X ∈ D≥1 and,

therefore, that (i∗β≥1i
!j!X)[1] lies in D≥0. Clearly we also have that j!X lies

in D≥0 and, thus, the second row of the diagram shows that KX lies in D≥0.

Similarly, since i∗β≤0i
!j!X lies in D≤0 and j∗X lies in D≤0, it follows that

KX lies in D≤0, proving that it lies in the co-heart.

Finally, it is enough to observe that Z generates D. It is clear that i∗Y
and j!X generate D since X and Y generate X and Y , respectively, and i∗
and j! are fully faithful functors. But, by the second triangle of the diagram,

j!X can be generated by KX and an object in the image of i∗, which is

generated by i∗Y . Therefore Z generates D and thus it is silting.
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Remark 3.2. Note that the leftmost morphism i∗β≥1i
!j!X → j!X of a

triangle in Theorem 3.1 corresponds to the chosen morphism β≥1i
!j!X →

i!j!X via the adjunction morphism

Hom(i∗β≥1i
!j!X,j!X)

�−→Hom(β≥1i
!j!X, i!j!X).

Remark 3.3. In Krull–Schmidt categories (such as Db(R) for an alge-

bra, finite-dimensional over a field), the object Z constructed in the proof

of the theorem is not necessarily a basic object (i.e., the indecomposable

summands of Z can appear with multiplicities) even if both X and Y are

basic. We can, however, obtain a basic silting object in the corresponding

co-heart by ignoring the multiplicities of the direct summands of Z.

Similarly, we can describe a gluing of silting objects that is compatible

with the bijection between silting objects and t-structures for D = Db(R),

where R has finite global dimension.

Corollary 3.4. Let R be a recollement of D =Db(R) of the form (2.1),

with X = Db(C) and Y = Db(B). Let X and Y be silting objects corre-

sponding to t-structures (X≤0,X≥0) and (Y≤0,Y≥0) in X and Y, respec-

tively. Suppose that R has finite global dimension. Then the glued t-structure

(D≤0,D≥0) in D is associated with the silting object Z = j!X⊕KY , with KY

defined by the triangle

j!α≥1j
∗i#Y → i#Y →KY → (j!α≥1j

∗i#Y )[1],

where α≥1 is a (nonfunctorial) choice of truncation for the left adjacent

co-t-structure of the t-structure (X≤0,X≥0) in X .

Proof. This follows from Theorem 3.1 by observing, as in Remark 2.6

that DU
≤0 = D≤0 and that the left adjacent co-t-structure of a t-structure

corresponds to the same silting object.

The following definition settles what we will mean by gluing silting objects.

As shown by Theorem 3.1, it is more natural, in this setting, to consider

co-t-structures rather than t-structures.

Definition 3.5. Let D,X ,Y be triangulated categories, and let R be a

recollement of the form (2.1). We say that a silting object Z ∈ D is glued

from X ∈ X and Y ∈ Y with respect to R if Z is obtained by the construction

of Theorem 3.1, that is, Z corresponds to the co-t-structure glued from the

co-t-structures associated to X and Y with respect to R.
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The object KX of Theorem 3.1 can be described in a nonconstructive

way as follows.

Proposition 3.6. Let R be a recollement of a triangulated category D
of the form (2.1). Let X and Y be silting objects corresponding to co-t-

structures (X≥0,X≤0) and (Y≥0,Y≤0) in X and Y, respectively. Let Z =

i∗Y ⊕ KX be the silting object in D glued from X and Y with respect

to R, compatible with the glued co-t-structure (D≥0,D≤0). Then the fol-

lowing hold.

(1) Object KX is a right (D≥0 ∩D≤0)-approximation of j∗X.

(2) Object KX is a left (D≥0 ∩D≤0)-approximation of j!X.

(3) Up to summands in D≥0 ∩D≤0, KX is uniquely determined by the fol-

lowing conditions:

(i) j∗KX =X,

(ii) i∗KX ∈ Y≥0,

(iii) i!KX ∈ Y≤0.

Proof. To prove (1), let C be an object of D≥0 ∩ D≤0, and let f be a

morphism in HomD(C, j∗X). Since (i∗β≤0i
!j!X)[1] lies in D≤−1, it is clear

that HomD(C, (i∗β≤0i
!j!X)[1]) = 0 and thus, by using the defining triangle

i∗β≤0i
!j!X →KX → j∗X → (i∗β≤0i

!j!X)[1],

f factors through KX , proving (1). Analogously, (2) can be shown using the

defining triangle

i∗β≥1i
!j!X → j!X →KX → (i∗β≥1i

!j!X)[1].

In order to prove (3) observe that, for any object L satisfying proper-

ties (i), (ii), and (iii), we have a canonical triangle coming from the recolle-

ment R
i∗i

!L→ L→ j∗X → i∗i
!L[1]

and, since i∗(Y≤0)⊆D≤0, we have that i∗i!L[1] lies in D≤−1. Therefore, for

any object C in D≥0 ∩ D≤0, any map from C to j∗X factors through L,

proving that L is a right (D≥0∩D≤0)-approximation of j∗X . Hence, by (1),

L differs from KX by a summand in D≥0 ∩D≤0.
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§4. Gluing of tilting objects

In this section we investigate necessary and sufficient conditions for the

glued silting to be tilting. These conditions will be expressed exclusively

in terms of the functors of the recollement and of vanishing conditions on

X and Y rather than in D. In this section, R has finite global dimension

and, thus, Db(R) has a Serre functor. Under this assumption we can use

Theorem 2.1 and the functors therein.

Proposition 4.1. Let R be a recollement of D = Db(R) of the form

(2.1), with X =Db(C) and Y =Db(B). Let X and Y be silting objects of X
and Y, respectively. Then Z = i∗Y ⊕KX is tilting if and only if the following

conditions are satisfied:

(1) Y is tilting,

(2) HomY(Y, i!j!X[k]) = 0 for all k < 0,

(3) HomY(i∗j∗X,Y [k]) = 0 for all k < 0,

(4) HomX (X,j+KX [k]) = 0 for all k < 0.

Proof. The induced silting object Z corresponds to the co-t-structure

glued along R and to the t-structure glued along RL from the respective

structures on X and Y associated withX and Y , respectively. The statement

that Z is tilting is equivalent to the statement that Z lies in the heart of

(D≤0
L ,D≥0

L ) which, by the description of the glued structures, translates into

the conditions

(i) i!Z ∈ Y≤0 ∩Y≥0 or, equivalently, Y, i!KX ∈ Y≤0 ∩Y≥0,

(ii) j∗Z ∈ X≤0,

(iii) j+Z ∈ X≥0.

To examine these conditions we will use the following triangle definingKX

(4.1) i∗β≤0i
!j!X →KX → j∗X → (i∗β≤0i

!j!X)[1].

Condition (i) is equivalent to Y being tilting (corresponding to condition (1)

of the proposition) and i!KX lying in Y≤0 ∩Y≥0. By applying i! to the tri-

angle (4.1), we get that i!KX
∼= β≤0i

!j!X lies in Y≤0 = Y≤0. By Remark 2.7,

β≤0 corresponds to the stupid truncation in Db(End(Y )) and, therefore, the

fact that i!KX lies in Y≤0 ∩ Y≥0 is equivalent to the condition that i!j!X

lies in Y≥0. This can then be translated to condition (2) of the proposition,

by definition of the t-structure associated with a silting object.

Clearly, since j∗ maps the co-heart in D to the co-heart in X , (ii) is auto-

matically satisfied for any silting Z and, thus, this condition is irrelevant.
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Condition (iii) is equivalent to HomX (X,j+Z[k]) = HomD(j∗X,Z[k]) = 0

for all k ≤ 0. By splitting Z into its summands i∗Y and KX and applying

adjunction, we get precisely conditions (3) and (4) of the proposition.

Remark 4.2. To simplify our notation, we will use the fact (see [5, Sec-

tion 1.4]) that i∗j∗ = i!j![1].

In many important cases, the left side of the recollement is just given

by Db(K).

Corollary 4.3. Let R be a recollement of D =Db(R) of the form (2.1),

with X = Db(C) and Y = Db(K). Let X be a silting object in X , and let

Y =K. If Z = i∗Y ⊕KX is tilting, then there are finite-dimensional K-vector

spaces X ′
−1,X

′
0 such that i∗j∗X ∼=X ′

−1[1]⊕X ′
0.

Proof. In view of Remark 4.2, condition (2) of Proposition 4.1 is equiv-

alent to Hk(i∗j∗X) = 0 for all k < −1, since Y = B = K. Since the Serre

functor of Db(K) is isomorphic to the identity functor, condition (3) of

Proposition 4.1 is equivalent to HomY(Y [k], i∗j∗X) = 0 for all k < 0, which

is equivalent to Hk(i∗j∗X) = 0 for all k > 0. To summarize, if Z is a tilt-

ing object, then it follows from Proposition 4.1 that Hk(i∗j∗X) = 0 for

k �=−1,0, thus proving the corollary.

Example 4.4. Let R be the K-algebra given by the quiver with relations

2

γβ1

α

3

δ

βα, αδ, δγ.

The simple module S1 supported at 1 is a partial tilting module of projective

dimension 2. It has a minimal projective resolution over R given by the exact

sequence

0→ P2
β−→ P3

δ−→ P1 → S1 → 0.

Rickard and Schofield showed in [25] that S1 cannot be completed to a

tilting module over R. We will strengthen this result by showing that S1

cannot be completed to a tilting object in Db(R).



132 Q. LIU, J. VITÓRIA, AND D. YANG

If e is the idempotent e2 + e3 then, as a right A-module, R/ReR is iso-

morphic to S1, which does not have self-extensions. It therefore follows from

[11, Theorem 3.1] and [12, Section 2] that there is a recollement

Db(R/ReR)
i∗ Db(R)
i!

i∗

j∗ Db(eRe),
j∗

j!

where

i∗ =−
L⊗

R
R/ReR, j! =−

L⊗
eRe

eR,

i∗ =−
L⊗

R/ReR
R/ReR, j∗ =−

L⊗
R
Re,(4.2)

i! = RHomR(R/ReR,−), j∗ =RHomeRe(Re,−).

Fix Y =R/ReR, and let X ∈ Db(eRe) be a silting object (e.g., X = eRe).

Then Theorem 3.1 yields a completion Z = i∗Y ⊕KX of the partial silting

object i∗Y = S1 into a silting object. However, as we will show, Z is never

tilting and, thus, S1 cannot be completed to a tilting object.

Let T be a basic tilting object of Db(R) which contains S1 as a direct

summand. The functor j∗ factors through the canonical projection functor

π :Db(R)→Db(R)/ thick(S1), as follows:

Db(R)
j∗

π

Db(eRe)

Db(R)/ thick(S1)

�

As thick(S1) is a silting subcategory of Db(R), by [1, Theorem 2.37], the

object X = j∗(T ) is silting in Db(eRe) and T is equivalent to S1 ⊕ KX .

Observe that eRe is the path algebra of the Kronecker quiver

2
γ

β
3.
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We draw the component of the AR quiver of Db(eRe) containing the pre-

projective modules

· · ·

I ′
3[−1] P ′

3 P ′
3,1

I ′
2[−1] P ′

2 P ′
2,1

· · ·

where P ′
2 and P ′

3 are, respectively, the indecomposable projective eRe-

module at the vertex 2 and 3. Let τ = τeRe denote the Auslander–Reiten

translation of Db(eRe). Then according to [26, Lemma 3.1], there exist p

and q such that τpP ′
2[q] is a direct summand of KX . We claim that

Hn
(
i∗j∗

(
τpP ′

2[q]
))

=

{
K if n=−q− 1,−q+ 1,

0 otherwise.

As a consequence of Corollary 4.3, S1⊕KX cannot be a tilting object, which

is a contradiction.

The claim follows from a direct computation, which we show only for

P ′
2,1 = τ−1P ′

2 (it is analogous for others). For n ∈ Z, we have

Hn
(
i∗j∗(P

′
2,1)

)
=Hn+1

(
i!j!(P

′
2,1)

)
=Hn+1

(
RHomR

(
R/ReR, j!(P

′
2,1)

))
=Hn+1

(
RHomR

(
S1, j!(P

′
2,1)

))
=HomDb(R)

(
S1, j!(P

′
2,1)[n+ 1]

)
.

We take a minimal projective resolution of P ′
2,1

P ′
2

(γβ)−→ P ′
3 ⊕ P ′

3,

where the underlined term is in degree 0. Applying j! we obtain the following

object in Db(R):

P2

(γβ)−→ P3 ⊕ P3.

The above differential is injective and its cokernel has the following minimal

injective resolution:

I2 ⊕ I2 ⊕ I1 → I3 ⊕ I3 ⊕ I3 → I1 → I2 → I3.
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Therefore j!(P
′
2,1) is isomorphic to this complex in Db(R) and it follows that

HomR

(
S1, j!(P

′
2,1)[n+ 1]

)
=

{
K if n=−1,1,

0 otherwise.

In using Proposition 4.1 we do not seem to be dealing with computations

in D. Still, these occur in the construction of KX . This can be avoided by

introducing the assumption that X is tilting.

Theorem 4.5. Let R be a recollement of D =Db(R) of the form (2.1),

with X =Db(C) and Y =Db(B). Let X and Y be tilting objects of X and Y,

respectively. Then Z = i∗Y ⊕KX is tilting in D if and only if the following

conditions are satisfied:

(a) HomY(Y, i∗j∗X[k]) = 0 for all k <−1,

(b) HomY(i∗j∗X,Y [k]) = 0 for all k < 0,

(c) HomY(i∗j∗X, i∗j∗X[k]) = 0 for all k <−1.

Proof. Condition (a) is obtained from Proposition 4.1(2) and from

Remark 4.2, while condition (b) corresponds exactly to Proposition 4.1(3).

We will show that if X is tilting and (a) and (b) are satisfied, then Proposi-

tion 4.1(4) is equivalent to (c). Indeed, ifX is tilting, HomD(j∗X,j∗X[k]) = 0

for all k �= 0 and thus, applying the functor HomD(j∗X, ) to the kth shift

of triangle (4.1), we get HomD(j∗X,KX [k]) ∼= HomD(j∗X, (i∗β≤0i
!j!X)[k])

for all k �= 0,1. Since (j∗, j+) is an adjoint pair, this shows that Proposi-

tion 4.1(4) is equivalent to

HomD
(
j∗X, (i∗β≤0i

!j!X)[k]
)
=HomD

(
i∗j∗X, (β≤0i

!j!X)[k]
)
= 0, ∀k < 0.

Applying the functor HomY(i∗j∗X, ) to the triangle

(β≥1i
!j!X)[k]→ i!j!X[k]→ (β≤0i

!j!X)[k]→ (β≥1i
!j!X)[k+ 1],

we get that HomY(i∗j∗X,β≤0i
!j!X[k]) ∼= HomY(i∗j∗X, i!j!X[k]), for all

k < 0. Indeed, this follows from (b) after recalling that β≥1i
!j!X lies in Y≥1,

which by construction (see Section 2.3) is suitably generated by (Y [n])n<0,

showing that HomY(i∗j∗X, (β≥1i
!j!X)[k+ 1]) = 0 for all k < 0. Using again

Remark 4.2, we obtain condition (c), thus finishing the proof.

Before showing applications of this theorem, we discuss the behavior of

the Serre functor with respect to a t-structure corresponding to a tilt-

ing object. Recall from [5, Proposition 3.1.10] that for any bounded t-

structure (D≤0,D≥0) in Db(R) with heart A, there is a triangle functor real :
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Db(A)→Db(R), t-exact for the standard t-structure (D≤0
st ,D≥0

st ) in Db(A)

and (D≤0,D≥0) in Db(R), that is, it is both right t-exact (real(D≤0
st )⊆D≤0)

and left t-exact (real(D≥0
st )⊆D≥0).

Lemma 4.6. Let (D≤0,D≥0) be a bounded t-structure in Db(R) with asso-

ciated basic silting object T . Let SR be the Serre functor of Db(R). Then

the following are equivalent:

(1) T is tilting,

(2) SR is right t-exact,

(3) SR(T ) lies in the heart.

Proof. (1) ⇒ (2): Suppose that T is tilting. Let Γ = EndDb(R)(T ), and

let (D≤0
st ,D≥0

st ) be the standard t-structure in Db(Γ). Then, by [27, Theo-

rem 6.6], the realization functor is a t-exact equivalence. Therefore, real ◦
SΓ = SR ◦ real (since Serre functors are unique) and real(D≤0

st ) =D≤0. Note

also that SΓ preserves the standard aisle in Db(Γ) since it can be realized as

a derived tensor product with a bimodule. This is enough to observe that

SR is right t-exact, since

SR(D≤0) = SR

(
real(D≤0

st )
)
= real

(
SΓ(D≤0

st )
)
⊆ real(D≤0

st ) =D≤0.

(2)⇒ (3): For any K ∈D≤−1, HomDb(R)(K,SRT ) = HomDb(R)(T,K) = 0,

by definition of the t-structure associated to T (see Section 2.3). This shows

that SRT ∈D≥0. If SR is right t-exact, then SR(T ) ∈D≤0 and, thus, SR(T )

lies in the heart.

(3) ⇒ (1): Suppose that SR(T ) lies in the heart. By the definition of

the t-structure associated to T , it is clear that Hom(T,T [k]) = Hom(T,

SR(T )[−k]) = 0 for all k �= 0. Therefore T is tilting.

Proposition 4.7. Let R be a recollement of D =Db(R) of the form (2.1),

with X =Db(C) and Y =Db(B). Let X and Y be tilting objects of X and Y,

respectively. If i∗j∗X is an element of Db(B) such that HomY(Y, i∗j∗X[k])

is zero except for two consecutive values of k ∈ Z, then the family of silting

objects (Zn = i∗Y ⊕KX[n])n∈Z contains at least one tilting object.

Proof. Let (Y≤0,Y≥0) be the t-structure associated with Y . By definition

of the t-structure associated to Y , HomY(Y, i∗j∗X[k]) is nonzero exactly for

two consecutive values of k ∈ Z if and only if there is a in Z such that i∗j∗X ∈
Y≥a∩Y≤a+1. Since Y is tilting, by Lemma 4.6 we have that SY i∗j∗X lies in

Y≤a+1. In Theorem 4.5, condition (a) can be reformulated as i∗j∗X ∈ Y≥−1
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and condition (b) as SY i∗j∗X ∈ Y≤0. Note that once condition (c) is satisfied

for some X[n], it is satisfied for all its shifts. By Theorem 4.5, Zn is tilting

if and only if

(a) i∗j∗X[n] ∈ Y≥−1, which means that a − n ≥ −1 or, equivalently, n ≤
a+ 1;

(b) SY i∗j∗X[n] ∈ Y≤0, which is guaranteed if a+1−n≤ 0 or, equivalently,

n≥ a+ 1;

(c) HomY(i∗j∗X, i∗j∗X[k]) = 0 for all k <−1.

Therefore, take n = a + 1, and we only need to check condition (c). This

condition is, however, automatic from our assumption that i∗j∗X has coho-

mologies with respect to (Y≤0,Y≥0) concentrated in exactly two consecutive

degrees, thus finishing the proof.

Remark 4.8. In the family (Zn)n∈Z there may be more than one tilting

object. Let a be the maximal integer such that i∗j∗X ∈ Y≥a, and let b be

the minimal integer such that SY i∗j∗X ∈ Y≤b. Then Zn is tilting if and only

if b≤ n≤ a+ 1.

From the proof above, we see that, for X and Y tilting, whenever i∗j∗X
lies in Y≤0 ∩Y≥−1 (i.e., the cohomologies of i∗j∗X with respect to Y lie in

degrees −1 and 0), the induced silting Z = i∗Y ⊕KX is tilting. Since i∗j∗ =
i!j![1], the condition is equivalent to that i!j!X ∈ Y≤1 ∩ Y≥0 which, in its

turn, is equivalent to HomY(Y, i!j!X[k])∼=HomD(i∗Y, j!X[k]) = 0 whenever

k �= 0,1. Under this assumption, we can apply the construction from [2,

Theorem 2.5] to the pair T1 = j!X and T2 = i∗Y . A similar construction was

studied in [19] in the setting of triangular matrix rings.

We briefly recall the construction in [2]. Since (j!, j
∗) is an adjoint pair

in the recollement (of the form (2.1)), HomD(j!X, i∗Y [k]) ∼= HomX (X,

j∗i∗Y [k]) = 0 for all k ∈ Z. Let m be the dimension of HomD(i∗Y, j!X[1]),

and take a basis α1, . . . , αm : i∗Y → j!X[1]. Consider the universal maps

α= (α1, . . . , αm)tr : i∗Y
⊕m → j!X[1],

β = (α1, . . . , αm) : i∗Y → j!X[1]⊕m.

The map α is left-universal, that is, the induced map

Hom(i∗Y,α) : HomD(i∗Y, i∗Y
⊕m)→HomD

(
i∗Y, j!X[1]

)
is surjective. Similarly, the map β is right-universal, that is, the induced

map

Hom
(
β, j!X[1]

)
: HomD

(
j!X[1]⊕m, j!X[1]

)
→HomD

(
i∗Y, j!X[1]

)
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is surjective. Consider the triangles determined by α and β:

Tα : j!X →C1 → i∗Y
⊕m α−→ j!X[1],

Tβ : j!X
⊕m →C2 → i∗Y

β−→ j!X[1]⊕m.

Theorem 2.5 in [2] asserts that i∗Y ⊕ C1 and j!X ⊕ C2 are tilting objects

in D.

The next proposition proves that the tilting object i∗Y ⊕C1 is precisely

the silting (indeed tilting) glued from X ∈ X and Y ∈ Y with respect to the

recollement R, and j!X⊕C2 is the silting (indeed tilting) glued from X ∈ X
and Y ∈ Y with respect to the upper reflection RU . As a consequence, under

the conditions of Theorem 4.5, we are not only able to glue tilting objects

in the original recollement R, but also in the upper reflection RU .

Proposition 4.9. Let R be a recollement of D =Db(R) of the form (2.1),

with X =Db(C) and Y =Db(B). Let X and Y be tilting objects of X and Y,

respectively, such that HomY(Y, i∗j∗X[k]) = 0 for all k �= 0,−1. Then, up to

multiplicity, the tilting object i∗Y ⊕ C1 coincides with Z = i∗Y ⊕ KX of

Theorem 3.1, and the tilting object j!X ⊕C2 coincides with ZU = j!X ⊕KY

of Corollary 3.4.

Proof. By hypothesis, i∗j∗X lies in Y≤0 ∩ Y≥−1, for the t-structure

(Y≤0,Y≥0) associated with Y . We will prove that C1 satisfies the condi-

tions (i)–(iii) for KX in Proposition 3.6(3). It follows then that i∗Y ⊕ C1

lies in the glued co-heart of D and that it generates i∗Y ⊕ j!X , thus gener-

ating the whole of D. Therefore, up to multiplicities, it coincides with the

glued silting Z = i∗Y ⊕KX .

For condition (i), we apply j∗ to the defining triangle Tα of C1 and obtain

that j∗C1 = j∗j!X =X , since j∗i∗ = 0. For condition (ii), we apply i∗ to Tα

and obtain that i∗C1 = i∗i∗Y ⊕m = Y ⊕m ∈ Y≥0, since i∗j! = 0. For condition

(iii), we apply i! to Tα and obtain a triangle

i!j!X → i!C1 → i!i∗Y
⊕m i!α−−→ i!j!X[1].

By applying HomY(Y,−) to this triangle, we obtain a long exact sequence

· · · →HomY(Y, i
!i∗Y

⊕m)
(i!α)∗−−−→HomY

(
Y, i!j!X[1]

)
→HomY

(
Y, i!C1[1]

)
→HomY

(
Y, i!i∗Y [1]⊕m

)
→ · · · .



138 Q. LIU, J. VITÓRIA, AND D. YANG

For k > 0, we have HomY(Y, i!i∗Y [k]⊕m) � HomY(Y,Y [k]⊕m) = 0 (since,

by assumption, Y is tilting) and for k > 1, HomY(Y, i!j!X[k]) = 0 (by our

assumption on i∗j∗X = i!j!X[1]). Hence, HomY(Y, i!C1[k]) = 0, for all k > 1.

By adjunction, there is a commutative diagram

(i!α)∗ : HomY(Y, i!i∗Y ⊕m) HomY
(
Y, i!j!X[1]

)

α∗ : HomD(i∗Y, i∗Y ⊕m)

�

HomD
(
i∗Y, j!X[1]

)�

Since, by construction, α is left-universal, that is, α∗ is surjective, it follows

that (i!α)∗ is surjective. Hence, we get HomY(Y, i!C1[1]) = 0 and, thus, i!C1

lies in Y≤0 = Y≤0. The proof for the statement about j!X⊕C2 is analogous.

§5. The hereditary case

In this section we assume that R has finite global dimension, and we

apply Theorem 4.5 when B is a hereditary algebra. The conditions for the

glued silting to be tilting are then easier to handle.

Proposition 5.1. Let R be a recollement of D = Db(R) of the form

(2.1), with X = Db(C), Y = Db(B), and B hereditary. Let X be a tilting

object in X , and let Y =B. Then Z = i∗Y ⊕KX is tilting in D if and only

if there are finitely generated B-modules X ′
−1, X

′
0, and X ′

1 such that

• i∗j∗X is isomorphic to X ′
−1[1]⊕X ′

0 ⊕X ′
1[−1],

• X ′
1 is either zero or not projective,

• HomB(X
′
1,X

′
−1) = 0.

Proof. We analyze the conditions of Theorem 4.5 when B is heredi-

tary and Y = B. Since B is hereditary, we may assume that i∗j∗X =⊕
n∈ZX

′
n[−n], with X ′

n a finitely generated right B-module for all n in Z.

In this setting, HomY(Y, i∗j∗X[k]) = 0, for all k <−1, is equivalent to

HomDb(B)

(
B,

⊕
n∈Z

X ′
n[−n+ k]

)
= 0 for all k <−1,

which happens if and only if X ′
k = 0, for all k <−1. On the other hand, the

condition

HomY
(
i∗j∗X,Y [k]

)
=HomDb(B)

(
i∗j∗X,B[k]

)
= 0, for all k < 0
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can be reformulated, using the Serre functor SB in Db(B), by

HomDb(B)

(
B,SB(i

∗j∗X)[k]
)
= 0, for all k > 0.

It is well known that SB = [1]◦ τB , where τB is the Auslander–Reiten trans-

lation in Db(B) and, thus, the statement above is equivalent to

HomDb(B)

(
B,

⊕
n∈Z

τB(X
′
n)[−n+ k+ 1]

)
= 0, ∀k > 0,

that is, X ′
k = 0, for all k > 1, and X ′

1 is not a projective B-module. So, (a)

and (b) of Theorem 4.5 hold if and only if i∗j∗X =X ′
−1[1]⊕X ′

0 ⊕X ′
1[−1],

with X ′
1 not projective as a B-module. Assuming this, we can easily unfold

the last condition of Theorem 4.5 as

HomY
(
i∗j∗X, i∗j∗X[k]

)
= 0, ∀k <−1 ⇔ HomDb(B)(X

′
1,X

′
−1) = 0,

thus finishing the proof.

As a nice corollary, we obtain a necessary and sufficient condition for the

case Y =Db(K).

Corollary 5.2. Let R be a recollement of D = Db(R) of the form (2.1),

with X =Db(C) and Y =Db(K). LetX be a tilting object in X , and let Y =K.

Then Z = i∗Y ⊕ KX is tilting if and only if there are finite-dimensional

K-vector spacesX ′
−1,X

′
0 such that i

∗j∗X ∼=X ′
−1[1]⊕X ′

0.

Example 5.3. Let R be the path algebra over K of the quiver 1 → 2,

of type A2. Let e = e1 be the trivial path at the vertex 1. Consider the

following standard recollement

Db(R/ReR)
i∗ Db(R)
i!

i∗

j∗ Db(eRe),
j∗

j!

where the six functors are defined as in (4.2). Let D denote the functor

HomK(−,K). It is easy to observe that

(1) as algebras, both R/ReR and eRe are isomorphic to K;

(2) as an R-module, eR is the simple module S1, supported at the vertex

1, and has an injective resolution (D(Re)→D(R(1− e)));

(3) as an R-module, R/ReR is the simple module S2 supported at the

vertex 2.
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Fix Y =R/ReR and X = eRe. Then, in Db(R), we have

i!j!X = i!(eR) =RHomR(R/ReR,eR)

∼=
(
HomR

(
R/ReR,D(Re)

)
→HomR

(
R/ReR,D

(
R(1− e)

)))
∼=R/ReR[−1].

By Corollary 5.2, there are exactly two tilting objects in {Zn = i∗Y ⊕KX[n] :

n ∈ Z}. We construct this family using Theorem 3.1. For n ∈ Z, we can

choose the map β≥1(i
!j!X[n])→ i!j!X[n] to be{

R/ReR[n− 1]
id→R/ReR[n− 1] if n≤ 0,

0→R/ReR[n− 1] if n > 0.

By adjunction, we have a bijection

Hom
(
i∗β≥1

(
i!j!X[n]

)
, j!X[n]

) �−→Hom
(
β≥1

(
i!j!X[n]

)
, i!j!X[n]

)
.

If n≥ 0, this adjunction morphism is

HomDb(R)

(
S2[n− 1], S1[n]

) �−→HomDb(R)

(
R/ReR[n− 1],R/ReR[n− 1]

)
.

Both these vector spaces are 1-dimensional over K. Let f be the preimage

of idR/ReR[n−1]. Then the cone of f [−n] is (1− e)R, the projective cover P2

of S2. If n< 0, the above adjunction morphism is

HomDb(R)

(
0, S1[n]

) �−→HomDb(R)

(
0,R/ReR[n− 1]

)
.

Thus a morphism i∗β≥1(i
!j!X[n]) → j!X[n] as in Theorem 3.1 is (see

Remark 3.2) {
S2[n− 1]

f→ S1[n] if n≤ 0,

0→ S1[n] if n > 0.

Hence, we have

KX[n] =

{
P2[n] if n≤ 0,

S1[n] if n> 0,
and Zn =

{
S2 ⊕ P2[n] if n≤ 0,

S2 ⊕ S1[n] if n > 0.

Among these silting objects, Z0 = S2 ⊕ P2 and Z1 = S2 ⊕ S1[1] are tilting

objects.
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§6. HRS-tilts and recollements

In this section we show that HRS-tilts of t-structures with respect to

torsion theories (see [14]) are compatible with the gluing of t-structures

via recollements. The main results of this section are Theorem 6.4 and

Proposition 6.5. Our notation is fixed as follows:

• D is a triangulated category admitting a recollement R of the form (2.1),

• (Y≤0,Y≥0) and (X≤0,X≥0) are bounded t-structures in Y and X , respec-

tively,

• (D≤0,D≥0) is glued from (Y≤0,Y≥0) and (X≤0,X≥0) (see Theorem 2.2).

In fact (see [5], [20]), (D≤0,D≥0) is glued with respect to R if and only if

j!j
∗(D≤0)⊆D≤0 (or, equivalently, if and only if j∗j∗(D≥0)⊆D≥0) in which

case the restrictions to Y and X satisfy

Y≤0 = i∗(D≤0), Y≥0 = i!(D≥0),

X≤0 = j∗(D≤0), X≥0 = j∗(D≥0).

Let AD, AY , and AX be the hearts of these t-structures. In [5, Sec-

tion 1.4], it is shown that there is a recollement of abelian categories at the

level of hearts

(6.1) AY
pi∗ AD
pi!

pi∗

pj∗ AX .pj∗

pj!

We describe these functors explicitly. Let εD : AD ↪→ D denote the full

embedding (similarly εY :AY ↪→Y and εX :AX ↪→X ), and letH i
D :D→AD,

i ∈ Z, denote the cohomological functors with respect to the fixed t-structure

in D (similarly H i
Y and H i

X for the t-structures in Y and X ). Then the func-

tors in the recollement (6.1) are given by

pi∗ =H0
Y ◦ i∗ ◦ εD, pi! =H0

Y ◦ i! ◦ εD, pi∗ =H0
D ◦ i∗ ◦ εY ,

pj! =H0
D ◦ j! ◦ εX , pj∗ =H0

D ◦ j∗ ◦ εX , pj∗ =H0
X ◦ j∗ ◦ εD.

See [13] for more on recollements of abelian categories.

Remark 6.1. Since for our fixed t-structures, i∗ and j∗ are t-exact (see,

e.g., [20] for details), we have that pi∗ = i∗ ◦ εY and pj∗ = j∗ ◦ εD. As a

consequence, these two functors are exact.
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Moreover, for any object A in AD there are exact sequences

0→ pi∗H
−1
Y

pi∗A→ pj!
pj∗A→A→ pi∗

pi∗A→ 0,(6.2)

0→ pi∗
pi!A→A→ pj∗

pj∗A→ pi∗H
1
Y
pi∗A→ 0.(6.3)

Torsion pairs in AD satisfying certain conditions can be restricted to torsion

pairs in AY and AX .

Lemma 6.2. Let (T ,F) be a torsion pair in AD. Then

(1) (pi∗(T ), pi!(F)) is a torsion pair in AY ;
(2) the following are equivalent:

(i) (pj∗(T ), pj∗(F)) is a torsion pair in AX ,
(ii) pj!

pj∗(T )⊆ T ,

(iii) pj∗pj∗(F)⊆F .

Proof. Item (1): We first check the orthogonality condition for (pi∗(T ),
pi!(F)). We have that

HomAD

(
pi∗(T ), pi!(F)

)
=HomAD

(
pi∗

pi∗(T ), pi∗
pi!(F)

)
,

since pi∗ is fully faithful. Consider the exact sequence (6.2) with A in T
and apply to it the functor HomAD(−,B) for some B in F . Since

HomAD(A,B) = 0, we conclude that Hom(pi∗pi∗(A),B) = 0, that is,
pi∗pi∗(T )⊆ T . Similarly, we have pi∗pi!(F)⊆F and, thus, HomAD(

pi∗pi∗(T ),
pi∗pi!(F)) = 0, as wanted.

Second, we produce a suitable short exact sequence for any object in AD.
By [5, Remarque 1.4.17.1], pi∗(AY) is a Serre subcategory of AD, that is,

for any short exact sequence in AD

0→K →M → L→ 0,

M lies in the pi∗(AY) if and only if K and L lie there also. Let M lie in AY ,
and consider a short exact sequence

0→ M̃1 → pi∗(M)→ M̃2 → 0

in AD with M̃1 ∈ T and M̃2 ∈ F (which exists since (T ,F) is a torsion

pair in D). Since pi∗(AY) is a Serre subcategory of AD, there exist M1

and M2 in AY such that M̃i =
pi∗(Mi) for i= 1,2. Now, pi∗ is an exact full

embedding (see Remark 6.1) and, thus, we get a short exact sequence in AY

0→M1 →M →M2 → 0,
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with M1
∼= pi∗pi∗(M1) =

pi∗(M̃1) lying in pi∗(T ) and M2
∼= pi!pi∗(M2) =

pi!(M̃2) lying in pi!(F).

Item (2): By Remark 6.1, the functor pj∗ : AD → AX is exact. Hence,

(pj∗(T ), pj∗(F)) is a torsion pair in AX if and only these classes are orthog-

onal, that is, HomAX (
pj∗(T ), pj∗(F)) = 0. Using the adjunctions (pj!,

pj∗)
and (pj∗, pj∗), this holds if and only if HomAD(

pj!
pj∗(T ),F) = 0 (equivalent

to (ii)) and if and only if HomAD(T , pj∗pj∗(F)) = 0 (equivalent to (iii)).

When the conditions of item (2) of the lemma are fulfilled, we say that

(T ,F) is compatible with the recollement (6.1). We will see that this com-

patibility condition is precisely the requirement on a torsion pair so that

the corresponding HRS-tilt of a glued t-structure is also obtained by gluing.

Proposition 6.3. A torsion pair (T ,F) in AD is compatible with respect

to (6.1) if and only if the corresponding HRS-tilt of (D≤0,D≥0) is a t-

structure glued with respect to the recollement (2.1).

Proof. Let (T ,F) be a torsion pair in AD, and let (D̃≤0, D̃≥0) be the

corresponding HRS-tilt, that is,

D̃≤0 =
{
X ∈D

∣∣H0(X) ∈ T ,H i(X) = 0,∀i > 0
}
,

D̃≥0 =
{
X ∈D

∣∣H−1(X) ∈ F ,H i(X) = 0,∀i <−1
}
,

where H i, i ∈ Z, denote the cohomological functors of the t-structure

(D≤0,D≥0). By [5], the HRS-tilt is glued if and only if j!j
∗(D̃≤0) ⊆ D̃≤0.

Denote by τ≤−1 the truncation at −1 associated to (D≤0,D≥0). For any

X ∈ D̃≤0, there is a triangle in D of the form

τ≤−1X →X →H0X → (τ−1X)[1],

since, by definition, D̃≤0 ⊆ D≤0. Applying to it the functor j!j
∗, we get

another triangle

j!j
∗(τ≤−1X)→ j!j

∗(X)→ j!j
∗(H0X)→ j!j

∗(τ≤−1X)[1].

Since (D≤0,D≥0) is glued, j!j
∗(D≤−1)⊆D≤−1 ⊆ D̃≤0. Hence, j!j

∗(τ≤−1X)

lies in D̃≤0 and, thus, j!j
∗(X) lies in D̃≤0 if and only if j!j

∗(H0X) lies

in D̃≤0. Since X is arbitrary, this means precisely that (D̃≤0, D̃≥0) can be

restricted if and only if the torsion pair (T ,F) is compatible with (6.1).
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The question that naturally follows is whether, under the compatibility

condition on the torsion pair in D, the restrictions of the HRS-tilt of a glued

t-structure in D are precisely the HRS-tilts of the restricted t-structures on

Y and X with respect to the restricted torsion pairs.

Theorem 6.4. Let (T ,F) be a torsion pair in AD, compatible with (6.1)

and with restrictions (TY ,FY) and (TX ,FX ) in AY and AX , respectively. Let
(Ỹ≤0, Ỹ≥0) and (X̃≤0, X̃≥0) be the corresponding HRS-tilts of (Y≤0,Y≥0)

and (X≤0,X≥0), respectively. Then the HRS-tilt (D̃≤0, D̃≥0) is obtained by

gluing (X̃≤0, X̃≥0) and (Ỹ≤0, Ỹ≥0) with respect to the recollement (2.1).

Proof. Let H i
D, H

i
X , and H i

Y , i ∈ Z, denote the cohomological functors

associated with (D≤0,D≥0), (X≤0,X≥0), and (Y≤0,Y≥0), respectively. We

have to show that the following hold:

(i) j∗(D̃≤0) = X̃≤0, j∗(D̃≥0) = X̃≥0,

(ii) i∗(D̃≤0) = Ỹ≤0, i!(D̃≥0) = Ỹ≥0.

By definition, we have

j∗(D̃≤0) =
{
j∗X

∣∣X ∈D,H0
D(X) ∈ T ,H i

D(X) = 0,∀i > 0
}
,

and, since j∗ is t-exact (see [5]), H i
X (j

∗X) = j∗(H i
D(X)), thus showing that

j∗(D̃≤0)⊆
{
j∗X

∣∣X ∈D,H0
X (j

∗X) ∈ j∗T ,H i
X (j

∗X) = 0,∀i > 0
}
= X̃≤0.

Similarly, we get that

j∗(D̃≥0)⊆
{
j∗X

∣∣X ∈D,H−1
X (j∗X) ∈ j∗T ,H i

X (j
∗X) = 0,∀i <−1

}
= X̃≥0.

Since (T ,F) is compatible with the recollement, by Proposition 6.3, the

HRS-tilt (D̃≤0, D̃≥0) can be restricted and, thus, (j∗(D̃≤0), j∗(D̃≥0)) is a

t-structure in X . Since j∗(D̃≤0) ⊆ X̃≤0, we also have that j∗(D̃≥0) ⊇ X̃≥0

and, thus, j∗(D̃≥0) = X̃≥0. This proves (i).

To prove (ii), observe that i∗ is right t-exact (i.e., i∗(D≤0) ⊆ Y≤0) and

that

i∗(D̃≤0) =
{
i∗X

∣∣X ∈D,H0
D(X) ∈ T ,H i

D(X) = 0,∀i > 0
}
.

By [5, Proposition 1.3.17(ii)], for X in D̃≤0 ⊆D≤0, we have H0
Y(i

∗X) =
pi∗H0

D(X) which belongs to pi∗(T ). Since i∗(D̃≤0)⊆ i∗(D≤0)⊆Y≤0, we get

that H i
Y(i

∗D̃≤0) = 0, for all i > 0, and thus

i∗(D̃≤0)⊆
{
i∗X

∣∣ X ∈D,H0
Y(i

∗X) ∈ pi∗T ,H i
Y(i

∗X) = 0,∀i > 0
}
= Ỹ≤0.
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Analogously, we may conclude that

i∗(D̃≥0)⊆
{
i∗X

∣∣X ∈D,H−1
Y (i∗X) ∈ pi∗F ,H i

Y(i
∗X) = 0,∀i <−1

}
= Ỹ≥0.

The same argument as before shows that an equality holds, as wanted.

The previous result showed that an HRS-tilt with respect to a compat-

ible torsion pair is glued. We may now ask whether HRS-tilts on the sides

of the recollement (2.1) glue to an HRS-tilt in the middle. The following

proposition answers this question positively.

Proposition 6.5. Let (TY ,FY) and (TX ,FX ) be torsion pairs in AY
and AX , respectively. Then the pair (T ,F) defined by

T = {A ∈AD
∣∣ pi∗A ∈ TY , pj∗A ∈ TX },

F = {A ∈AD
∣∣ pi!A ∈ FY ,

pj∗A ∈ FX }

is a torsion pair in AD, compatible with (6.1). Moreover, its restrictions are

given by (TX ,FX ) and (TY ,FY), and the HRS-tilt of (D≤0,D≥0) with respect

to (T ,F) is the gluing of the HRS-tilts of (Y≤0,Y≥0) and (X≤0,X≥0) with

respect to (TY ,FY) and (TX ,FX ), respectively.

Proof. We will use Remark 2.9 to show that (T ,F) is a torsion pair,

that is, we will show that the pair (D≤0
(T ,F),D

≥0
(T ,F)) formally defined as the

HRS-tilt of (D≤0,D≥0) with respect to (T ,F) is a t-structure (satisfying

D≤−1 ⊆ D≤0
(T ,F) ⊆ D≤0). Denote by (Ỹ≤0, Ỹ≥0) and (X̃≤0, X̃≥0) the HRS-

tilts of (Y≤0,Y≥0) and (X≤0,X≥0) at (TY ,FY) and (TX ,FX ), respectively,
and let (D̃≤0, D̃≥0) be the gluing of (Ỹ≤0, Ỹ≥0) and (X̃≤0, X̃≥0) with respect

to the fixed recollement, that is,

D̃≤0 =
{
X ∈D

∣∣ i∗(X) ∈ Ỹ≤0, j∗(X) ∈ X̃≤0
}
,

D̃≥0 =
{
X ∈D

∣∣ i!(X) ∈ Ỹ≥0, j∗(X) ∈ X̃≥0
}
.

We will show that (D̃≤0, D̃≥0) = (D≤0
(T ,F),D

≥0
(T ,F)). As usual, H i

D, H
i
X , and

H i
Y , i ∈ Z, denote the cohomological functors associated with (D≤0,D≥0),

(X≤0,X≥0), and (Y≤0,Y≥0), respectively.

First we show that D≤0
(T ,F) is a subcategory of D̃≤0. Take X in D≤0

(T ,F)

(⊆ D≤0). Since i∗ is right t-exact, i∗(X) lies in Y≤0, that is, H i
Y(i

∗X) =

0, for all i > 0. By [5, Proposition 1.3.17(ii)], H0
Y(i

∗X) = pi∗H0
D(X) lies
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in pi∗(T ) ⊆ TY , showing that i∗(X) ∈ Ỹ≤0. Since j∗ is t-exact, we have

H i
X (j

∗X) = j∗H i
D(X) = 0, for all i > 0, and H0

X (j
∗X) = j∗H0

D(X) lies in

j∗(T )⊆ TX , that is, j∗X lies in X̃≤0 and, hence, X lies in D̃≤0.

Now we prove that D̃≤0 is a subcategory of D≤0
(T ,F). Take X in D̃≤0.

By definition of HRS-tilt, we have Ỹ≤0 ⊂Y≤0 and X̃≤0 ⊆X≤0. This implies

that D̃≤0 ⊆ D≤0 and, hence, H i
D(X) = 0, for all i > 0. By [5, Proposi-

tion 1.3.17(ii)], we have pi∗H0
D(X) =H0

Y(i
∗X) which belongs to TY . By the

t-exactness of j∗, we have pj∗H0
D(X) =H0

X (j
∗X) which, thus, belongs to TX .

This means that, by definition of T , H0
D(X) belongs to T . Thus X belongs

to D̃≤0 and D̃≤0 =D≤0
(T ,F), as wanted.

It remains to show that (T ,F) is compatible and that the restrictions

are as expected. By Lemma 6.2, we need to show that pj!
pj∗T ⊆ T . This

is true since, for any A in T , pi∗pj!pj∗A = 0 and pj∗pj!pj∗A = pj∗A ⊆ TX .
It follows that (pi∗(T ), pi!(F)) and (pj∗(T ), pj∗(F)) are torsion pairs in AY
and AX , respectively. On the other hand, by definition of (T ,F), we have

pi∗(T )⊆ TY , pi!(F)⊆FY ,

pj∗(T )⊆ TX , pj∗(F)⊆FX ,

and, thus, the inclusions are actually equalities, as desired.

We illustrate Proposition 6.5 with a simple example.

Example 6.6. We adopt the notation in Example 5.3 and consider the

standard recollement there. Let (D≤0,D≥0) be the standard t-structure on

Db(R), which is depicted in the Auslander–Reiten quiver of Db(R) as

where the objects in the boxes belong to the aisle D≤0. This t-structure

restricts to standard t-structures (X≤0,X≥0) and (Y≤0,Y≥0) on Db(eRe)

and Db(R/ReR), respectively. Recall that both eRe and R/ReR are isomor-

phic to K. Consequently, all bounded t-structures on Db(eRe) and

Db(R/ReR) are shifts of the standard ones, and all mutation torsion pairs

of mod−eRe and mod−R/ReR are trivial torsion pairs.

The HRS-tilt of (X≤0,X≥0) with respect to the torsion pair (0,mod−eRe)

is (X≤0,X≥0), and the HRS-tilt of (Y≤0,Y≥0) with respect to the torsion
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pair (mod−R/ReR,0) is (Y≤0[1],Y≥0[1]). These two new t-structures are

glued, via the standard recollement, to a t-structure (D′≤0,D′≥0) on Db(R),

which is depicted as

where the objects in the boxes belong to the aisle D′≤0. The heart of

(D′≤0,D′≥0) is add(S1 ⊕ S2[1]). It is easy to check that (D′≤0,D′≥0) is the

HRS-tilt of (D≤0,D≥0) at the torsion pair (add(S1),add(S2)), which is glued

from the torsion pairs (0,mod−eRe) and (mod−R/ReR,0).

By Section 2.4, we know that irreducible silting mutations correspond to

HRS-tilts (see Theorem 2.11) with respect to mutation torsion pairs in the

heart (i.e., torsion pairs in which either the torsion class or the torsion-free

class are given by the additive closure of a simple object). We analyze when

such torsion pairs are compatible with (6.1).

Remark 6.7. Recall that there is a functor j!∗ : AX → AD, called the

intermediate image functor, such that every simple object in AD is either

of the form i∗S for some simple object in AY or of the form j!∗S for some

simple object in AX . (For details, check [5, Section 1.4].)

Proposition 6.8. Suppose that AD is a length category. Let (T ,F) be a

mutation torsion pair in AD. Then (T ,F) is compatible with the recollement

(6.1) if and only if one of the following holds:

(1) T = add(i∗SY ) for some simple object SY in AY ,
(2) F = add(i∗SY ) for some simple object SY in AY ,
(3) there is a simple object SX in AX such that pj!SX is simple and T =

add(pj!SX),

(4) there is a simple object SX in AX such that pj∗SX is simple and F =

add(pj∗SX).

Moreover, in each case, the restrictions are a trivial torsion pair on one side

and a mutation torsion pair on the other.

Proof. This can be shown using Lemma 6.2 on a case-by-case analysis

of the possible mutation torsion pairs in AD. Using Remark 6.7 we get the

following four cases, where SY is a simple object in AY and SX is a simple

object in AX .
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(1) Suppose that T = add(i∗SY ). Since j∗i∗ = 0, we have that pj!j
∗T = 0

and, thus, the torsion pair (T ,F) is compatible with the recollement.

The restriction to X is (0,X ) and the restriction to Y is the mutation

torsion pair with torsion class TY = add(SY ).

(2) Suppose that F = add(i∗SY ). Since j∗i∗ = 0, we have that pj∗j∗T = 0

and, thus, the torsion pair (T ,F) is compatible with the recollement.

The restriction to X is (X ,0) and the restriction to Y is the mutation

torsion pair with torsion-free class FY = add(SY ).

(3) Suppose that T = add(j!∗SX). By Lemma 6.2, the torsion pair (T ,F)

is compatible with the recollement if and only if pj!j
∗(j!∗SX) lies in

add(j!∗SX). Since j∗j!∗ is naturally equivalent to the identity func-

tor, this amounts to pj!SX lying in add(j!∗SX), which is equivalent to
pj!SX

∼= j!∗SX because j∗pj! is also naturally equivalent to the identity

functor. The last condition holds if and only if pj!SX is simple. This fol-

lows from the fact that there is always a natural epimorphism pj!SX →
j!∗SX . The restriction to Y is the pair (0,Y) and the restriction to X is

the mutation torsion pair given by the torsion class TX = add(SX).

(4) Suppose that F = add(j!∗SX). By Lemma 6.2, the torsion pair (T ,F)

is compatible with the recollement if and only if pj∗j∗(j!∗SX) lies in

add(j!∗SX). Since j∗j!∗ is naturally equivalent to the identity func-

tor, this amounts to pj∗SX lying in add(j!∗SX), which is equivalent

to pj∗SX
∼= j!∗SX because j∗pj∗ is also naturally equivalent to the iden-

tity functor. The last condition holds if and only if pj∗SX is simple.

This follows from the fact that there is always a natural monomor-

phism j!∗SX → pj∗SX . The restriction to Y is the pair (Y,0) and the

restriction to X is the mutation torsion pair given by the torsion-free

class FX = add(SX).

The proof is complete.

Suppose now that D has a Serre functor. We finish this section with an

observation on the compatibility of irreducible silting mutation with gluing

(via the recollement RU , since our focus is on t-structures rather than co-t-

structures). Note that the items (3) and (4) of Proposition 6.8 rarely occur,

because, in general, neither pj∗SX nor pj!SY are simple in AD. Translating
items (1) and (2) of Proposition 6.8 in terms of irreducible silting mutation,

we get the following corollary, which also appears in [1, Lemma 2.40].

Corollary 6.9 ([1, Lemma 2.40]). Let Y and X be the silting objects

associated to the fixed bounded t-structures in Y and X , respectively. Suppose
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that Y ′ is an indecomposable direct summand of Y . Let Z be the glued silting

object with respect to the recollement RU (i.e., compatible with the gluing

of t-structures via R) of Y and X. Then there is an indecomposable direct

summand Z ′ of KY such that the glued silting (with respect to RU ) of μ
+
Y ′Y

(resp., μ−
Y ′Y ) and X is precisely μ+

Z′Z (resp., μ−
Z′Z).
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