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DEFORMATIONS WITH CONSTANT LÊ NUMBERS
AND MULTIPLICITY OF NONISOLATED

HYPERSURFACE SINGULARITIES

CHRISTOPHE EYRAL and MARIA APARECIDA

SOARES RUAS

Abstract. We show that the possible jump of the order in an 1-parameter
deformation family of (possibly nonisolated) hypersurface singularities, with
constant Lê numbers, is controlled by the powers of the deformation parameter.
In particular, this applies to families of aligned singularities with constant
topological type—a class for which the Lê numbers are “almost” constant. In
the special case of families with isolated singularities—a case for which the
constancy of the Lê numbers is equivalent to the constancy of the Milnor
number—the result was proved by Greuel, Plénat, and Trotman.
As an application, we prove equimultiplicity for new families of nonisolated
hypersurface singularities with constant topological type, answering partially
the Zariski multiplicity conjecture.

§1. Introduction

Let B and D be open balls around the origins in Cn (n ≥ 2) and C,
respectively, let z := (z1, . . . , zn) be linear coordinates for Cn, and let

f :
(
B ×D,{0} ×D

)
→ (C,0), (z, t) �→ ft(z) := f(z, t),

be a holomorphic function. We suppose that, for all t ∈ D, the function

ft is reduced. We denote by mult(ft) the multiplicity of V (ft) := f−1
t (0)

at 0 ∈ Cn, that is, the number of points of intersection, near 0, of V (ft)

with a generic line in Cn passing arbitrarily close to, but not through, the

origin. As ft is reduced, mult(ft) is also the order of ft at 0 (denoted by

ord(ft))—that is, the lowest degree in the power series expansion of ft at 0.

One says that the family {ft} is topologically V -constant if, for all suffi-

ciently small t, there exist open neighborhoods U0,Ut ⊆B around the origin
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together with a homeomorphism ϕt : (Ut,0)→ (U0,0) such that ϕt(V (ft)∩
Ut) = V (f0) ∩ U0. One says that {ft} is equimultiple if, for all sufficiently

small t, the multiplicity mult(ft) is independent of t (i.e., if mult(ft) =

mult(f0)).

Conjecture 1.1 (Zariski’s multiplicity conjecture [20]). If the family

{ft} is topologically V -constant, then it is equimultiple.

In fact, to be precise, Zariski did not so much conjecture as ask whether

the topological V -constancy implies equimultiplicity. Nevertheless, it is usual

(and convenient) to call Zariski’s original question the Zariski multiplicity

conjecture. By the Lê–Ramanujam theorem [11], in the special case of fam-

ilies with isolated singularities, and provided that n �= 3, the Zariski multi-

plicity conjecture is equivalent to the following conjecture by Teissier [18].

Conjecture 1.2 (Teissier). Suppose that, for all t sufficiently small, ft
has an isolated singularity at the origin. If the family {ft} is μ-constant

(i.e., if, for all sufficiently small t, the Milnor number of ft at 0, μft(0), is

independent of t), then it is equimultiple.

Although partial positive answers have been given regularly, Zariski’s

conjecture (as well as Teissier’s conjecture) is, in general, still unsettled.

(For a list of the main known results, we refer the reader to [4].)

Write

(1.1) ft(z) = f0(z) +
∑
j≥1

tjgj(z),

where gj : B →C is a holomorphic function. Clearly, the family {ft} is not

equimultiple if and only if there exists j1 with gj1 �= 0 and

inf
j≥1

ord(gj)< ord(f0) =mult(f0).

Hereafter, we will always assume that there is an index j1 such that gj1 �= 0.

We will also suppose that f0 �= 0. In [6] and [16], Greuel, Plénat, and Trot-

man showed that the possible jump in the order in a μ-constant family of

isolated hypersurface singularities is controlled by the powers of t. Precisely,

they proved that ord(gj)≥ ord(f0)− j + 1 for all j ≥ 1. (If gj = 0, then, by

convention, we set ord(gj) =∞ so that the inequality above remains valid.)

In the present paper, we will show that this estimation of the order’s jump
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also holds for families of nonisolated hypersurface singularities, provided the

μ-constancy is replaced by the constancy of the Lê numbers with respect to

the coordinates z (which we will call the λz-constancy). Note that, in the

special case of a family with isolated singularities, λz-constant means exactly

μ-constant. Concerning the proofs, for families of isolated singularities, the

argument is based on the Lê–Saito–Teissier valuation test for μ-constancy

(see [12], [18]). For nonisolated singularities, there are two different ways

to get the result. We may either invoke a generalization of the Lê–Saito–

Teissier theorem due to Massey [13] or we can apply a generalization of the

Iomdine–Lê formula also due to Massey [13].

Using the classical Lê–Saito–Teissier theorem, Plénat and Trotman in

[16] and Greuel and Pfister in [7] were also able to obtain equimultiplic-

ity for certain families of isolated singularities. For example, it is proved

in [16] that μ-constant families of isolated singularities of the form ft(z) =

f0(z) + tg1(z) + t2g2(z) are equimultiple if the singular locus of the tan-

gent cone to V (f0) is not contained in the tangent cone to V (g2). In [7], it is

shown, among other things, that any μ-constant family of isolated singulari-

ties of the form ft(z1, . . . , zn) = ht(z1, . . . , zn−1)+z2nkt(z1, . . . , zn) is equimul-

tiple if h0 is semiquasihomogeneous (or if n = 3) and ord(ht) ≤ ord(z2nkt).

Using the general Massey–Lê–Saito–Teissier theorem and Massey–Iomdine–

Lê formula, we show in the following pages that statements similar to those

of [16] and [7] also hold for nonisolated singularities, provided that the μ-

constancy is replaced by the λz-constancy.

§2. λz-constant deformations and Thom’s af condition

Let Σft be the critical locus of ft. Throughout this paper, we assume

that dim0Σft is greater than or equal to 0 (i.e., ft has a critical point at 0)

and is constant as t varies. We write d := dim0Σft.

We say that the family {ft} is λz-constant (or λ-constant with respect

to the coordinates z = (z1, . . . , zn)) if, for all 0 ≤ i ≤ d and for all suffi-

ciently small t, the ith Lê number of ft at 0 with respect to z, λi
ft,z

(0),

is defined and independent of t. (For the definition of Lê’s numbers, see

[13], [14]. For the convenience of the reader, we also recall the definition

in Appendix A.) Note that, when d= 0 (i.e., for isolated singularities), the

Lê number λ0
ft,z

(0) is nothing but the Milnor number of ft at 0 (see [13,

Example 2.1]). Therefore, in this case, the family {ft} is λz-constant if and
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only if it is μ-constant. It is well known that topologically V -constant fam-

ilies of isolated hypersurface singularities are μ-constant (see [10], [18]). In

general, for nonisolated singularities, it is not true that the topological V -

constancy implies the λz-constancy (see [2]). However, this is “almost” true

for a special class of singularities called aligned singularities.† More pre-

cisely, if {ft} is a topologically V -constant family of aligned singularities

and if {tk} is an infinite sequence of points in C approaching the origin,

then, as explained in the proof of [13, Theorem 7.9], we can use the Baire

category theorem to conclude that there exists an aligning set of coordi-

nates (see [13, Definition 7.1]) for f0 and for ftk for all k. (The existence

of a set of coordinates which is aligning for ft for all small t is not always

clear.) Then, if we still denote by z the new coordinates system, Corol-

lary 7.8 of [13] implies that λi
ftk ,z

(0) = λi
f0,z

(0). In other words, for aligned

singularities, the topological V -constancy implies the constancy of the Lê

numbers (with respect to an appropriate coordinates system) at least along

a sequence {f0, ft1 , . . . , ftk , . . .} within the family {ft}, where tk → 0.

In [13], Massey proved the following generalization of the Lê–Saito–Teissier

theorem.

Theorem 2.1 ([13, Theorem 6.5]). If the family {ft} is λz-constant,

then {0}×D satisfies Thom’s af condition at the origin with respect to the

ambient stratum, that is, if {pk} is a sequence of points in (B×D)\Σf such

that pk → (0,0) and Tpk
V (f − f(pk)) → T , then {0} × C = T(0,0)({0} ×

D)⊆ T .

As usual, Tpk
V (f − f(pk)) denotes the tangent space at pk to the level

hypersurface in Cn+1 defined by f(z, t) = f(pk), and T(0,0)({0}×D) denotes

the tangent space at (0,0) to {0}×D. The notation Σf stands for the crit-

ical locus of f . In the special case where {ft} is a family of isolated singu-

larities, since λz-constant simply means μ-constant, Theorem 2.1 coincides

with the classical Lê–Saito–Teissier theorem.

Lemma 2.2. If {0} ×D satisfies Thom’s af condition at the origin with

respect to the ambient stratum, then, for any holomorphic curve

γ : (C,0)→
(
B ×D, (0,0)

)
, s �→ γ(s),

† These singularities were introduced by Massey in [13, Definition 7.1]. They include, for
instance, isolated singularities and line singularities. We recall the definition in Appen-
dix B.
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not contained† in Σf , we have

(2.1) ord
(∂f
∂t

◦ γ
)
> inf

1≤i≤n
ord

( ∂f

∂zi
◦ γ

)
,

where ord(·) is the order in s at 0.

Definition 2.3. Hereafter, we will say that f satisfies the Thom inequal-

ities if, for any holomorphic curve γ as in Lemma 2.2 (i.e., γ(0) = (0,0) and

γ(C)�Σf ), the inequality (2.1) holds.

Proof of Lemma 2.2. We argue by contradiction. Suppose that there is a

holomorphic curve γ : (C,0)→ (B×D, (0,0)) not contained in Σf and such

that (2.1) does not hold. Then, the limit of the projective class of

gradf
(
γ(s)

)
:=

( ∂f

∂z1

(
γ(s)

)
, . . . ,

∂f

∂zn

(
γ(s)

)
,
∂f

∂t

(
γ(s)

))
,

as s tends to 0, has the form [v1 : · · · : vn :w] with w �= 0, and hence {0}×D

does not satisfy Thom’s af condition at the origin along the curve γ.

Combining Theorem 2.1 and Lemma 2.2 gives the following corollary.

Corollary 2.4. If the family {ft} is λz-constant, then f satisfies the

Thom inequalities (see Definition 2.3).

§3. Possible jump of the order in a λz-constant family

In [6, Lemma 1.3] and [16, Proposition 2.2], Greuel, Plénat, and Trotman

showed that the possible jump in the order in a μ-constant family of isolated

hypersurface singularities {ft} is controlled by the powers of t. The precise

statement is the following.

Theorem 3.1. Suppose that, for all t sufficiently small, ft has an isolated

singularity at the origin. In this case, if the family {ft} is μ-constant, then,

for all j ≥ 1,

ord(gj)≥ ord(f0)− j + 1.

In the next theorem, we show that this estimation of the order’s jump

also holds for any family of nonisolated hypersurface singularities, provided

that the μ-constancy is replaced by the λz-constancy.

† Throughout, for any subsets A,B ⊆Cn containing 0, by “A�B” we mean that A�B
in an arbitrarily small neighborhood of 0. Similarly, for any function h, by “h �= 0” we
mean h �= 0 near the origin.
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Theorem 3.2. If the family {ft} is λz-constant, then, for all j ≥ 1,

ord(gj)≥ ord(f0)− j + 1.

We give two proofs of Theorem 3.2. The first one is on the same pattern

as the proof of [6, Lemma 1.3] and [16, Proposition 2.2] with the classical

Lê–Saito–Teissier theorem replaced by the general version of Massey. With

this proof, Theorem 3.1 appears as a corollary of Theorem 3.2. In fact, this

proof shows that if f satisfies the Thom inequalities (see Definition 2.3),

then ord(gj)≥ ord(f0)− j + 1 for all j ≥ 1. In the second proof, we deduce

Theorem 3.2 from Theorem 3.1 thanks to a general version of the Iomdine–

Lê formula also due to Massey (see [13, Theorem 4.5, Corollary 4.6]). With

this proof, the tools required to prove Theorem 3.2 involve both the Lê–

Saito–Teissier theorem (through Theorem 3.1) and the Massey–Iomdine–Lê

formula. Unlike the first proof, with this second approach one really needs

to assume that the family {ft} is λz-constant in order to apply the Massey–

Iomdine–Lê formula (it is not enough to simply assume that f satisfies the

Thom inequalities shown in (2.1)).

Notation 3.3. Hereafter, if h is any holomorphic function near 0, then

we will denote by in(h) its initial polynomial at 0.

First proof of Theorem 3.2. Consider the partial derivatives

∂f

∂t
=
∑
j≥1

jtj−1gj and
∂f

∂zi
=

∂f0
∂zi

+
∑
j≥1

tj
∂gj
∂zi

.

Choose an index i0 such that ∂f/∂zi0 �= 0, and pick a point (z0, t0) ∈ (B \
{0})× (D \ {0}) such that, for all s �= 0 sufficiently small,

in
(∂f
∂t

)
(sz0, st0) �= 0 and in

( ∂f

∂zi0

)
(sz0, st0) �= 0.

Then, if γ : (C,0) → (B × D, (0,0)) is the curve defined by s �→ γ(s) =

(γ1(s), γ2(s)) = (sz0, st0), we have

ord
(∂f
∂t

◦ γ
)
= ord

(∂f
∂t

)
= inf

j≥1

(
j − 1 + ord(gj)

)
,

while

inf
1≤i≤n

ord
( ∂f

∂zi
◦ γ

)
≥ inf

1≤i≤n
j≥1

{
ord

(∂f0
∂zi

◦ γ1
)
,ord

(
γj2 ·

∂gj
∂zi

◦ γ1
)}

≥ inf
{
ord(f0)− 1, inf

j≥1

(
j + ord(gj)− 1

)}
.
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As in(∂f/∂zi0)◦γ �= 0, the set γ(C) is not contained in Σf , and Corollary 2.4

implies that ord(f0)− 1< j + ord(gj)− 1 for all j ≥ 1.

Second proof of Theorem 3.2. Here, we proceed as in the proof of Theo-

rem 7.9 in [13]. As {ft} is λz-constant, [13, Corollary 4.6] shows that, for

all integers 0�N1 �N2 � · · · �Nd (where d = dim0Σft), the functions

f0 + zN1
1 + · · · + zNd

d and ft + zN1
1 + · · · + zNd

d have an isolated singular-

ity at 0 and the same Milnor number for all t sufficiently small. That is,

{ft+ zN1
1 + · · ·+ zNd

d } is a μ-constant family of isolated singularities. There-

fore, by Theorem 3.1, we have

ord(gj)≥ ord(f0 + zN1
1 + · · ·+ zNd

d )− j + 1.

AsN1, . . . ,Nd are arbitrarily large, we deduce that ord(gj)≥ ord(f0)− j + 1.

Theorem 3.2 has the following immediate corollary.

Corollary 3.4. Suppose that ft is of the form ft(z) = f0(z)+ tg1(z). In

this case, if the family {ft} is λz-constant, then it is equimultiple.

More generally, we have the next result.

Corollary 3.5. Suppose that ft can be written in the form ft(z) =

f0(z) + ξ(t)g(z), where ξ : (D,0) → (C,0) is a nonconstant holomorphic

function and where g : (B,0)→ (C,0) is any holomorphic function. In this

case, if the family {ft} is λz-constant, then it is equimultiple. (In particular,

any λz-constant family of the form ft(z) = f0(z) + tjgj(z) is equimultiple.)

In the special case of families with isolated singularities—a case for which

the λz-constancy is the same as the μ-constancy—Corollaries 3.4 and 3.5

were first proved by Greuel in [6, Lemma 1.2] and by Trotman [19, Corol-

lary 2].

Proof of Corollary 3.5. Consider the deformation family ht(z) := f0(z)+

tg(z). As ξ is a nonconstant holomorphic function, it is open, and there-

fore locally surjective. Therefore, the λz-constancy of {ft} implies that of

{ht}. Hence, by Corollary 3.4, {ht} is equimultiple. Clearly, this implies the

equimultiplicity of {ft}.

Concerning topologically V -constant families of aligned singularities, The-

orems 3.1 and 3.2 also have the following corollary.
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Corollary 3.6. Suppose that, for all sufficiently small t, the function

ft has a d-dimensional aligned singularity at 0. In this case, if the family

{ft} is topologically V -constant, then, for all j ≥ 1,

ord(gj)≥ ord(f0)− j + 1.

Proof. If there exists a set of coordinates which is aligning for ft at 0,

for all sufficiently small t, then, by [13, Corollary 7.8], the family {ft}
is λ-constant with respect to this coordinates system, and the result fol-

lows immediately from Theorem 3.2. Otherwise, we proceed as in the proof

of Theorem 7.9 in [13]. We pick an infinite sequence of points {tk} in C
approaching the origin, and we apply the Baire category theorem to con-

clude that there exists a set of coordinates (that we will still denote by

z) which is aligning for f0 and for ftk for all k. Then, by [13, Corol-

lary 7.8], λi
ftk ,z

(0) = λi
f0,z

(0) for all large k. Hence, by [13, Corollary 4.6],

for all integers 0�N1 �N2 � · · · �Nd, the functions f0 + zN1
1 + · · ·+ zNd

d

and ftk + zN1
1 + · · · + zNd

d have an isolated singularity at 0 and the same

Milnor number, provided that k is large enough. By the upper semiconti-

nuity of the Milnor number, this implies that, for all t sufficiently small,

ft + zN1
1 + · · ·+ zNd

d has an isolated singularity at 0 and the same Milnor

number as f0 + zN1
1 + · · ·+ zNd

d . In other words, {ft + zN1
1 + · · ·+ zNd

d } is a

μ-constant family of isolated singularities. Therefore, by Theorem 3.1, we

have

ord(gj)≥ ord(f0 + zN1
1 + · · ·+ zNd

d )− j + 1.

As N1, . . . ,Nd are arbitrarily large, ord(gj)≥ ord(f0)− j + 1.

In particular, we have the next equimultiplicity result.

Corollary 3.7. Suppose that ft can be written in the form ft(z) =

f0(z) + ξ(t)g(z), where ξ : (D,0) → (C,0) is a nonconstant holomorphic

function and where g : (B,0) → (C,0) is any holomorphic function. Sup-

pose also that, for all sufficiently small t, the function ft has an aligned

singularity at 0. Under these conditions, if the family {ft} is topologically

V -constant, then it is equimultiple.

Proof. The result is immediate when ξ(t) = t (see Corollary 3.6). When

ξ(t) �= t, then, as in the proof of Corollary 3.5, the result follows from the

case where ξ(t) = t and from the local surjectivity of ξ.
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§4. λz-constant families of the form ft(z) = f0(z) + tg1(z) + t2g2(z)

In this section, we focus on deformations of the form ft(z) = f0(z) +

tg1(z) + t2g2(z). Under this assumption, Plénat and Trotman proved the

following equimultiplicity result.

Theorem 4.1 ([16, Proposition 3.2]). Suppose that ft(z) = f0(z)+tg1(z)+

t2g2(z), with g2 �= 0. Suppose also that, for all sufficiently small t, the func-

tion ft has an isolated singularity at the origin. Under these conditions, if

the family {ft} is μ-constant and such that the singular locus Σin(f0) of the

tangent cone to V (f0) is not contained in the tangent cone to V (g2), then

{ft} is equimultiple.

We recall that the tangent cone C(V (f0)) to V (f0) is the zero set of the

initial polynomial, in(f0), of f0 at 0. Similarly, C(V (g2)) = (in(g2))
−1(0).

In the next theorem, we show that this result also holds for families of

nonisolated hypersurface singularities, provided that the constancy of the

Milnor number is replaced by the constancy of the Lê numbers.

Theorem 4.2. Suppose that ft(z) = f0(z)+ tg1(z)+ t2g2(z), with g2 �= 0.

In this case, if the family {ft} is λz-constant and such that Σin(f0) �
C(V (g2)), then it is equimultiple.

We also give two proofs of Theorem 4.2. The first one is on the same

pattern as the proof of [16, Proposition 3.2], with the classical Lê–Saito–

Teissier theorem replaced by Massey’s general version. With this proof,

Theorem 4.1 appears as a corollary of Theorem 4.2. In the second proof,

we deduce Theorem 4.2 from Theorem 4.1 thanks to the Massey–Iomdine–

Lê formula. So, this proof requires the use of both the Lê–Saito–Teissier

theorem and the Massey–Iomdine–Lê formula. Another advantage of the

first proof compared with the second one is that, in Theorem 4.2, the λz-

constancy can actually be replaced by the condition “f satisfies the Thom

inequalities” (see Remarks 4.4 and 4.5).

To give the first proof of Theorem 4.2, we need the following lemma in

which we do not assume that the family {ft} is λz-constant.

Lemma 4.3. Suppose that ft(z) = f0(z)+ tg1(z)+ t2g2(z), with g2 �= 0 and

Σin(f0)�C(V (g2)). Then,

Σin(f0)×C� Ξf :=
{
(z, t) ∈Cn ×C;

∂f

∂zi
(z, t) = 0, 1≤ i≤ n

}
.
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Proof. First of all, observe that dim0Σin(f0) ≥ 1. (If dim0Σin(f0) = 0,

then Σ in(f0) = {0} ⊆ C(V (g2)), which is a contradiction.) Now, suppose

that Σ in(f0)×C⊆ Ξf , that is, for all z ∈Σin(f0), t ∈C, and 1≤ i≤ n,

∂f

∂zi
(z, t) =

∂ft
∂zi

(z) =
∂f0
∂zi

(z) +
2∑

j=1

tj · ∂gj
∂zi

(z) = 0.

In particular, this implies that, for all z ∈ Σin(f0) and all 1≤ i≤ n, (∂g2/

∂zi)(z) = 0, and consequently g2 is constant on each stratum of Σ in(f0).

Clearly, 0 ∈ Σin(f0) and g2 vanishes on the stratum containing this point.

Hence, by continuity, g2 = 0 on each stratum, that is, g2|Σin(f0) = 0. This,

in turn, implies that

in(g2)|Σin(f0)
= 0,

which is a contradiction with the hypothesis Σ in(f0) � C(V (g2)) =

(in(g2))
−1(0). To show that in(g2)|Σin(f0)

= 0, write

g2(z) = in(g2)(z) + g2,d1(z) + g2,d2(z) + · · · ,

where g2,dk is a homogeneous polynomial of degree dk with deg in(g2)< d1 <

d2 < · · · , and pick a point z0 ∈ Σin(f0). For any ζ ∈ C, ζz0 ∈ Σin(f0), and

therefore

0 = g2(ζz0) = ζdeg in(g2) in(g2)(z0) + ζd1g2,d1(z0) + ζd2g2,d2(z0) + · · · .

Now, if in(g2)(z0) �= 0, then, for ζ �= 0 sufficiently small,

∣∣ζdeg in(g2) in(g2)(z0)
∣∣ ∣∣ζd1g2,d1(z0) + ζd2g2,d2(z0) + · · ·

∣∣,

and consequently g2(ζz0) �= 0, which is a contradiction.

Now we are able to give the first proof of Theorem 4.2.

First proof of Theorem 4.2. By Theorem 3.2, ord(g1) ≥ ord(f0) and

ord(g2) ≥ ord(f0) − 1. Actually, we are going to show that the condition

imposed on the tangent cones implies that ord(g2) �= ord(f0) − 1, so that

both ord(g1) and ord(g2) are greater than or equal to ord(f0) (which implies

equimultiplicity).

So, suppose that ord(g2) = ord(f0)− 1. As ord(g1)≥ ord(f0), this implies

that ord(g2) < ord(g1). By Lemma 4.3, there is an index i0 such that the

restriction of ∂f/∂zi0 to Σ in(f0) × C is not equal to 0. Note also that,
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according to the hypothesis, the restriction of in(g2) to Σ in(f0) is also not

equal to 0. Pick a point (z0, t0) ∈ (Σ in(f0) \ {0})× (D \ {0}) such that, for

all s �= 0 sufficiently small,

in
(∂f
∂t

)
(sz0, st0) �= 0, in(g2)(sz0) �= 0,

∂f

∂zi0
(sz0, st0) �= 0,

and consider the curve γ : (C,0) → (B × D, (0,0)) defined by s �→ γ(s) =

(γ1(s), γ2(s)) = (sz0, st0). Clearly, as (∂f/∂zi0) ◦ γ �= 0, the set γ(C) is not

contained in Σf . Moreover,

ord
(∂f
∂t

◦ γ
)
= ord

(∂f
∂t

)
= ord(g2) + 1 = ord(f0),

while

inf
1≤i≤n

ord
( ∂f

∂zi
◦ γ

)

≥ inf
1≤i≤n

{
ord

(∂f0
∂zi

◦ γ1
)
,ord

(
γ2 ·

∂g1
∂zi

◦ γ1
)
,ord

(
γ22 ·

∂g2
∂zi

◦ γ1
)}

≥ ord(f0).

(The second inequality comes from the relations γ1(C)⊆Σin(f0), ord(g1)≥
ord(f0) and ord(g2) = ord(f0)−1.) In other words, the Thom inequality (see

(2.1)) is not satisfied along the curve γ, and one gets a contradiction with

Corollary 2.4.

Remark 4.4. In fact, this proof of Theorem 4.2 shows that, for a family

of the given form (i.e., ft(z) = f0(z) + tg1(z) + t2g2(z)), if f satisfies the

Thom inequalities (see Definition 2.3) and if Σ in(f0)�C(V (g2)), then the

family {ft} is equimultiple.

Second proof of Theorem 4.2. As in the second proof of Theorem 3.2, by

[13, Corollary 4.6], if 0�N1 �N2 � · · · �Nd (where d= dim0Σft), then

the functions

ft + zN1
1 + · · ·+ zNd

d = f0 + zN1
1 + · · ·+ zNd

d + tg1 + t2g2

form a μ-constant family of isolated singularities as t varies. As the inte-

gers N1, . . . ,Nd are arbitrarily large, in(f0 + zN1
1 + · · ·+ zNd

d ) = in(f0), and

therefore Σ in(f0 + zN1
1 + · · · + zNd

d ) � C(V (g2)). Hence, by Theorem 4.1,

the family {ft + zN1
1 + · · ·+ zNd

d } is equimultiple. Again, as N1, . . . ,Nd are

arbitrarily large, this implies that the family {ft} is also equimultiple.
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Remark 4.5. Unlike the first proof, in this second approach one really

needs to assume that the family {ft} is λz-constant in order to apply [13,

Corollary 4.6].

In the special case of a family with aligned singularities, Theorems 4.1

and 4.2 have the following corollary.

Corollary 4.6. Assume again that ft(z) = f0(z)+ tg1(z)+ t2g2(z), with

g2 �= 0. Also suppose here that, for all sufficiently small t, the function ft
has a d-dimensional aligned singularity at 0. Under these conditions, if the

family {ft} is topologically V -constant and such that Σin(f0)� C(V (g2)),

then it is equimultiple.

Proof. We proceed as in the proof of Corollary 3.6. If there exists a set

of coordinates which is aligning for ft at 0, for all sufficiently small t, then,

by [13, Corollary 7.8] the family {ft} is λ-constant with respect to this

coordinates system, and the result follows immediately from Theorem 4.2.

Otherwise, as in the proof of [13, Theorem 7.9], we can show that, for

0�N1 �N2 � · · · �Nd, the family of functions

ft + zN1
1 + · · ·+ zNd

d = f0 + zN1
1 + · · ·+ zNd

d + tg1 + t2g2

is a μ-constant family of isolated singularities. Then, we conclude as in the

second proof of Theorem 4.2.

§5. λz-constant deformations and hyperplane sections

In this section, we investigate the behavior of λz-constant families under

hyperplane sections. By Corollary 2.4, we know that λz-constant families

satisfy the Thom inequalities (see Definition 2.3). We show here that, under

some appropriate conditions, hyperplane sections of λz-constant families

satisfy Thom’s inequalities as well. Using this fact, we prove equimultiplicity

for new families of nonisolated hypersurface singularities of the form ft(z) =

ht(z
′) + z2nkt(z), where z′ := (z1, . . . , zn−1).

5.1. Thom’s inequalities and hyperplane sections

Let H be the hyperplane in Cn defined by zi0 = 0 for some i0. Set

Ξf :=
{
(z, t) ∈Cn ×C;

∂f

∂zi
(z, t) = 0,1≤ i≤ n

}

and

Ξ(f|H×C) :=
{
(z, t) ∈Cn ×C;zi0 = 0,

∂f

∂zi
(z, t) = 0,1≤ i≤ n, i �= i0

}
.
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We will denote by I (Ξf ∩ (H × C)) the ideal in C{z, t} generated by

{zi0 , ∂f/∂zi; 1≤ i≤ n}. Similarly, I (Ξ(f|H×C)) will be the ideal in C{z, t}
generated by {zi0 , ∂f/∂zi; 1≤ i≤ n, i �= i0}.

Theorem 5.1. We suppose that I (Ξ(f|H×C)) = I (Ξf ∩ (H × C)). In

this case, if the family {ft} is λz-constant, then, for any holomorphic curve

γ : (C,0)→
(
(B ∩H)×D, (0,0)

)

not contained in Σ(f|H×C), we have

(5.1) ord
(∂f|H×C

∂t
◦ γ

)
> inf

1≤i≤n
i �=i0

ord
(∂f|H×C

∂zi
◦ γ

)
.

In the special case of a family with isolated singularities, the result was

first proved by Greuel and Pfister in [7, Lemma 3.1]. Note that, in this case,

the conclusion (5.1) is equivalent to the μ-constancy of the family {ft|H}.

Proof of Theorem 5.1. It is similar to the proof of [7, Lemma 3.1]. Let

γ : (C,0)→
(
(B ∩H)×D, (0,0)

)
, s �→ γ(s) =

(
γ1(s), γ2(s)

)
,

be any holomorphic curve not contained in Σ(f|H×C). As I (Ξ(f|H×C)) =

I (Ξf∩(H×C)), thepartial derivative∂f/∂zi0 mustbelong toI (Ξ(f|H×C)),

and since γ(C)⊆H ×D, this implies that

(5.2) ord
( ∂f

∂zi0
◦ γ

)
≥ inf

1≤i≤n
i �=i0

ord
( ∂f

∂zi
◦ γ

)
.

Now, as {ft} is λz-constant, Corollary 2.4 shows that

ord
(∂f
∂t

◦ γ
)
> inf

1≤i≤n
ord

( ∂f

∂zi
◦ γ

)
(5.2)
= inf

1≤i≤n
i �=i0

ord
( ∂f

∂zi
◦ γ

)
,

and since γ(s) ∈H ×D, we have (5.1).

Remark 5.2. In fact, the proof of Theorem 5.1 shows that, under the

hypothesis I (Ξ(f|H×C)) = I (Ξf∩(H×C)), if f satisfies the Thom inequal-

ities (2.1), then f|H×C satisfies the Thom inequalities (5.1).
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5.2. Deformations of the form ft(z) = ht(z
′) + z2nkt(z)

Throughout this section, we assume that f can be written in the form

f(z, t) = h(z′, t) + z2nk(z, t), where h and k are holomorphic functions and

z′ := (z1, . . . , zn−1). As usual, we set ht(z
′) := h(z′, t) and kt(z) := k(z, t).

We will assume that ht is reduced and that n≥ 3. The interest in families

of this form (already studied by Greuel and Pfister in [7] in the special case

of isolated singularities) is that they satisfy the condition I (Ξ(f|H×C)) =

I (Ξf ∩ (H×C)) of Theorem 5.1, with the hyperplane H defined by zn = 0.

Then, by this theorem or by [7, Lemma 3.1], in many interesting cases the

equimultiplicity problem for the family {ft} can be reduced to one for the

family {ht}.
For example, let us consider the following four conditions:

(C1) for all t sufficiently small, ht is convenient and has a nondegenerate

Newton principal part with respect to z′ (see [9] for the definition);

(C2) for all t sufficiently small, ht is of the form

ht(z
′) = h0(z

′) + ξ(t)�(z′),

where ξ and � are holomorphic functions with ξ(0) = 0;

(C3) h0 is a semiquasihomogeneous polynomial with respect to z′;
(C4) n= 3 (i.e., {ht} is a family of plane curve singularities).

In [3], the first author proved the following equimultiplicity result for non-

isolated singularities.

Theorem 5.3 ([3, Theorem 2]). Suppose that {ft} is a topologically

V -constant family of d-dimensional aligned singularities, at 0, of the form

ft(z) = ht(z
′) + z2nkt(z). Let {tk} be an infinite sequence of points in C

approaching the origin. Suppose that the coordinates z = (z1, . . . , zn), or

some cyclic permutation of them, form an aligning set of coordinates at

0 for f0 and for ftk for all k. Under these conditions, if at least one of the

four conditions (C1)–(C4) above is satisfied, then the family {ht} is equi-

multiple. In particular, if, in addition, ord(ht)≤ ord(z2nkt), then the family

{ft} is equimultiple too.

In the special case of a family with isolated singularities, the result was

first proved by Greuel and Pfister in [7, Proposition 3.2].

Actually, the proof of Theorem 5.3 shows the next result.

Theorem 5.4. Suppose that the family {ft} is λz-constant and of the

form ft(z) = ht(z
′) + z2nkt(z). If at least one of the four conditions (C1)–

(C4) above is satisfied, then the family {ht} is equimultiple.
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As above, if, in addition to the hypotheses of Theorem 5.4, we also have

ord(ht) ≤ ord(z2nkt), then the family {ft} is equimultiple too. (A similar

remark applies to the theorems below as well.)

Proof of Theorem 5.4. By [13, Corollary 4.6], for all integers 0�N1 �
N2 � · · · �Nd (where d = dim0Σft), the family {ft + zN1

1 + · · ·+ zNd
d } is

a μ-constant family of isolated singularities. Applying [7, Lemma 3.1], with

the hyperplane zn = 0, gives that the family {ht+zN1
1 + · · ·+zNd

d } is also a μ-
constant family of isolated singularities. As N1, . . . ,Nd are arbitrarily large,

if ht satisfies one of the conditions (C1)–(C4), then so does ht + zN1
1 + · · ·+

zNd
d . But in each case, (C1)–(C4), the Zariski multiplicity conjecture is true

if we deal with families of isolated singularities (the references for that are

[1], [6], [15], [17], [19], [21]). In other words, the family {ht+zN1
1 + · · ·+zNd

d }
is equimultiple. Again, as N1, . . . ,Nd are arbitrarily large, we deduce that

the family {ht} is also equimultiple.

In the same vein, we can also prove the next theorem.

Theorem 5.5. Suppose that the family {ft} is λz-constant and of the

form ft(z) = ht(z
′) + z2nkt(z), where ht(z

′) = h0(z
′) + t�1(z

′) + t2�2(z
′) for

some holomorphic functions �1 and �2, with �2 �= 0. Suppose also that

Σin(h0) � C(V (�2)). Under these conditions, the family {ht} is equimul-

tiple.

To prove this theorem, we can proceed exactly as in the proof of Theo-

rem 5.4, first by applying the Massey–Iomdine–Lê formula and the Greuel–

Pfister lemma in order to reduce the problem to one dealing with μ-constant

families of isolated singularities, and then by invoking Theorem 4.1. The

details of this proof are left to the reader. Theorem 5.5 can be also obtained

as a corollary of Theorem 5.1 (or Remark 5.2) and Remark 4.4. With this

second approach, the λz-constancy of {ft}, in Theorem 5.5, can be replaced

by the condition “f satisfies the Thom inequalities” (see Definition 2.3).

The details are as follows.

Proof of Theorem 5.5. By Theorem 5.1 (or Remark 5.2), applied to the

family {ft} and the hyperplane H defined by zn = 0, for any holomorphic

curve γ : (C,0)→ ((B∩H)×D, (0,0)) not contained in Σ(f|H×C)≈Σh, the
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Thom inequality (5.1) holds. That is, by abuse of notation,†

ord
(∂h
∂t

◦ γ
)
> inf

1≤i≤n−1
ord

( ∂h

∂zi
◦ γ

)
.

As Σ in(h0) � C(V (�2)), this implies that the family {ht} is equimultiple

(see Remark 4.4).

Focusing on aligned singularities, we get the following result.

Theorem 5.6. Suppose that {ft} is a topologically V -constant family

of d-dimensional aligned singularities, at 0, of the form ft(z) = ht(z
′) +

z2nkt(z), where ht(z
′) = h0(z

′)+ t�1(z
′)+ t2�2(z

′) for some holomorphic func-

tions �1 and �2, with �2 �= 0. Let {tk} be an infinite sequence of points in

C approaching the origin. Suppose that the coordinates z= (z1, . . . , zn), or

some cyclic permutation of them, form an aligning set of coordinates at

0 for f0 and for ftk for all k. Finally, suppose that Σin(h0) � C(V (�2)).

Under these conditions, the family {ht} is equimultiple.

Proof. As cyclic permutations of the coordinates do not alter the special

form of the function ft, we can suppose that the aligning set of coordinates

for f0 and for ftk , for all k, is the set z= (z1, . . . , zn). Then, by [13, Corol-

lary 7.8], λi
ftk ,z

(0) = λi
f0,z

(0) for all large k. As in the proof of Corollary 3.6,

this implies that, for all integers 0� N1 � N2 � · · · � Nd, the functions

ft + zN1
1 + · · ·+ zNd

d form a μ-constant family of isolated singularities as t

varies. Then, applying [7, Lemma 3.1], with the hyperplane zn = 0, gives that

the family {ht+zN1
1 + · · ·+zNd

d } is also a μ-constant family of isolated singu-

larities. As N1, . . . ,Nd are arbitrarily large, in(h0+zN1
1 + · · ·+zNd

d ) = in(h0),

and therefore Σ in(h0+zN1
1 + · · ·+zNd

d )�C(V (�2)). Hence, by Theorem 4.1,

the family {ht + zN1
1 + · · ·+ zNd

d } is equimultiple. Again, as N1, . . . ,Nd are

arbitrarily large, we deduce that the family {ht} is also equimultiple.

Appendix A. Lê numbers

The Lê numbers generalize to nonisolated hypersurface singularities the

data given by the Milnor number for an isolated singularity. They were

introduced about 25 years ago by Massey. (For a detailed exposition, see

[13], [14]). For its convenience, we also briefly recall the definition hereafter.

† We have identified the (n + 1)-tuple γ(s) = (γ1,1(s), . . . , γ1,n−1(s),0, γ2(s)) with the

n-tuple (γ1,1(s), . . . , γ1,n−1(s), γ2(s)).
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The Lê numbers are intersection numbers of certain analytic cycles (so-

called Lê cycles) with certain affine subspaces. The definition of the Lê

cycles, in turn, is based on the notion of gap sheaf. We start this section by

explaining what analytic cycle and gap sheaf mean.

A.1 Analytic cycles

Let (X,OX) be a complex analytic space. An analytic cycle in X is a

finite formal sum
∑

mV [V ], where the V ’s are distinct irreducible analytic

subsets of X and where the mV ’s are nonzero integers. The analytic cycle

associated to X is the cycle [X] :=
∑

mV [V ] obtained when the V ’s run

over all the irreducible components of X and when the mV ’s are defined as

follows. Take a point x ∈ V , and consider the germ Vx of V at x. Then, if V 0
x

is any irreducible germ component of Vx, the integer mV is defined to be the

length of the local ring of X at x localized at the prime ideal corresponding

to V 0
x . Of course, this definition is independent of the choices of the point x

and the component V 0
x . (Hereafter, we will always use brackets [·] to denote

analytic cycles.)

If V and W are irreducible analytic subsets of a connected complex ana-

lytic manifold M , then we say that V and W intersect properly in M if, for

each irreducible component Z of V ∩W , we have

codimM Z = codimM V + codimM W.

When this is the case, the intersection product of [V ] and [W ] inM (denoted

by [V ] · [W ]) is characterized axiomatically by four properties: openness,

transversality, projection, and continuity (see [14, Appendix A] and [5,

Example 11.4.4] for details). Now, if
∑

mi[Vi] and
∑

nj [Wj ] are two cycles

in M intersecting properly (i.e., Vi and Wj intersect properly for all i, j),

then we define their intersection product as
(∑

mi[Vi]
)
·
(∑

nj [Wj ]
)
:=

∑
minj

(
[Vi] · [Wj ]

)
.

Finally, if C1 and C2 are two cycles intersecting properly and if

C1 ·C2 =
∑

pk[Zk],

then the intersection number (C1 ·C2)Zk
of C1 and C2 at Zk is defined by

(C1 ·C2)Zk
:= pk.

In other words, (C1 ·C2)Zk
represents the number of times Zk occurs in the

intersection, counted with multiplicity.
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A.2 Gap sheaves

Let (X,OX) be a complex analytic space, letW ⊆X be an analytic subset

of X , and let I be a coherent sheaf of ideals in OX . As usual, we will denote

by V (I ) the analytic space defined by the vanishing of I . At each point

x ∈ V (I ) we want to consider scheme-theoretically those components of

V (I ) which are not contained in W . For this purpose, we look at a minimal

primary decomposition of the stalk Ix of I in the local ring OX,x, and we

consider the ideal Ix¬W in OX,x consisting of the intersection of those

(possibly embedded) primary components Q of Ix such that V (Q) �W .

Note that if S is the multiplicatively closed set

OX,x \
⋃

P,

where the union is taken over all the associated prime ideals P of OX,x/Ix

such that V (P )�W , then

Ix¬W = S−1Ix ∩OX,x,

where S−1Ix is the ring of fractions of Ix with denominators in S. In

particular, the definition of Ix¬W does not depend on the choice of the

minimal primary decomposition of Ix. Now, if we perform the operation

described above at the point x simultaneously at all points of V (I ), then

we obtain a coherent sheaf of ideals called a gap sheaf and denoted by

I¬W . Hereafter, we shall denote by V (I )¬W the scheme (i.e., the complex

analytic space) V (I¬W ) defined by the vanishing of the gap sheaf I¬W .

A.3 Lê cycles and Lê numbers

Now, we are ready to define the Lê cycles and the Lê numbers. Consider a

holomorphic function h : (U,0)→ (C,0), where U is an open neighborhood

of 0 in Cn, and fix a system of linear coordinates z = (z1, . . . , zn) for Cn.

Let Σh be the critical locus of h. For 0≤ i≤ n− 1, the ith (relative) polar

variety of h with respect to z is the scheme

Γi
h,z := V

( ∂h

∂zi+1
· · · ∂h

∂zn

)
¬Σh.

Clearly, for i= 0, Γ0
h,z = ∅. Also, it can be shown easily that

(
Γi+1
h,z ∩ V

( ∂h

∂zi+1

))
¬Σh=Γi

h,z
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as schemes, and therefore, all the components of the cycle

(A.1)
[
Γi+1
h,z ∩ V

( ∂h

∂zi+1

)]
− [Γi

h,z]

are contained in Σh. The cycle (A.1) is called the ith Lê cycle of h with

respect to z. It is denoted by [Λi
h,z].

Definition A.1. The ith Lê number λi
h,z(p) of h at p= (p1, . . . , pn) with

respect to the coordinates system z is defined to be the intersection number

(A.2) λi
h,z(p) :=

(
[Λi

h,z] ·
[
V (z1 − p1, . . . , zi − pi)

])
p
,

provided that this intersection is 0-dimensional or empty at p; otherwise,

we say that λi
h,z(p) is undefined.

For i= 0, the relation (A.2) means that

λ0
h,z(p) =

(
[Λ0

h,z] ·U
)
p
=
[
Γ1
h,z ∩ V

( ∂h

∂z1

)]
p
.

The last term is also equal to the intersection number

(
[Γ1

h,z] ·
[
V
( ∂h

∂z1

)])
p

whenever Γ1
h,z is 1-dimensional at p.

Remark A.2. The Lê numbers have the following properties.

(1) For a generic choice of coordinates all the Lê numbers are defined.

(2) For dimpΣh < i≤ n− 1, λi
h,z(p) = 0. For this reason, we usually only

consider the Lê numbers

λ0
h,z(p), . . . , λ

dimpΣh
h,z (p).

(3) Finally, if p is an isolated singularity of h, then λ0
h,z(p) (which is the

only possible nonzero Lê number) equals the Milnor number of h at p.

Appendix B. Aligned singularities

Aligned singularities were also introduced by Massey in [13]. They include

isolated singularities and line singularities. To give the definition, we first

need to introduce the notion of good stratification.
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Let h : (U,0) → (C,0) be a holomorphic function, where U is an open

neighborhood of 0 in Cn. A good stratification for h at 0 is an analytic

stratification S of the hypersurface V (h) in a neighborhood W ⊆ U of 0

such that

(1) the smooth part of V (h) is a stratum;

(2) S satisfies Thom’s ah condition with respect to W \ V (h); that is,

if {pk} is a sequence of points in W \ V (h) such that pk → p ∈ S

(where S is a stratum) and the tangent space Tpk
V (h − h(pk))→ T ,

then TpS ⊆ T .

Such a stratification always exists (see [8]).

An aligned good stratification for h at 0 is a good stratification for h at 0

in which the closure of each stratum of the singular set Σh of h is smooth at

the origin. If such an aligned good stratification exists and if dim0Σh= d,

then we say that h has a d-dimensional aligned singularity at 0.

Now, if S is an aligned good stratification for h at 0, then we say that a

linear choice of coordinates z= (z1, . . . , zn) is an aligning set of coordinates

for S if, for each i, the (n− i)-plane V (z1, . . . , zi) in Cn intersects trans-

versely the closure of each stratum of dimension at least i at the origin. We

say that a set of coordinates z= (z1, . . . , zn) is aligning for h at 0 if there

exists an aligned good stratification for h at 0 with respect to which z is

aligning.

Remark B.1. Given an aligned singularity, aligning sets of coordinates

are generic.

Our main interest in aligned singularities and aligning sets of coordinates

comes from the following theorem by Massey.

Theorem B.2 ([13, Corollary 7.8]). Let U be an open neighborhood of 0

in Cn, and let h1, h2 : (U,0)→ (C,0) be two reduced holomorphic functions

with a d-dimensional aligned singularity at 0. Let z and z̃ be aligning sets

of coordinates at 0 for h1 and h2, respectively. If h1 and h2 are topologi-

cally V -equivalent (i.e., if there exist open neighborhoods U1,U2 ⊆ U around

the origin together with a homeomorphism ϕ : (U1,0) → (U2,0) such that

ϕ(V (h1)∩U1) = V (h2)∩U2), then

λi
h1,z(0) = λi

h2,z̃(0)

for all i.
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Acknowledgments. The authors thank the referees for valuable com-

ments and suggestions that led to improvements in this paper. The authors’

research was partially supported by the Conselho Nacional de Desenvolvi-

mento Cient́ıfico e Tecnológico (CNPq), Brazil.

References

[1] O. M. Abderrahmane, On the deformation with constant Milnor number and
Newton polyhedron, preprint, http://www.rimath.saitama-u.ac.jp/lab.jp/Fukui
/ould/dahm.pdf (accessed 21 November 2004).

[2] J. Fernández de Bobadilla and T. Gaffney, The Lê numbers of the square of a function
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Universidade de São Paulo

13566-590 São Carlos - SP

Brazil

maasruas@icmc.usp.br

http://www.ams.org/mathscinet-getitem?mr=2034839
http://dx.doi.org/10.1017/S0017089503001599
http://dx.doi.org/10.1017/S0017089503001599
http://www.ams.org/mathscinet-getitem?mr=0374482
http://www.ams.org/mathscinet-getitem?mr=0277533
http://www.ams.org/mathscinet-getitem?mr=1507926
http://dx.doi.org/10.2307/2370887
http://dx.doi.org/10.2307/2370887
mailto:eyralchr@yahoo.com
mailto:maasruas@icmc.usp.br

	Introduction
	lambdaz-constant deformations and Thom's af condition
	Possible jump of the order in a lambdaz-constant family
	lambdaz-constant families of the form ft(z)=f0(z)+tg1(z)+t2g2(z)
	lambdaz-constant deformations and hyperplane sections
	Thom's inequalities and hyperplane sections
	Deformations of the form ft(z)=ht(z')+zn2kt(z)

	Appendix A. Lê numbers
	Analytic cycles
	Gap sheaves
	Lê cycles and Lê numbers

	Appendix B. Aligned singularities
	Acknowledgments
	References
	Author's Addresses

