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THE ONE-DIMENSIONAL STRATUM IN THE

BOUNDARY OF THE MODULI STACK OF STABLE

CURVES

JÖRG ZINTL

Abstract. It is well-known that the moduli space Mg of Deligne-Mumford

stable curves of genus g admits a stratification by the loci of stable curves

with a fixed number i of nodes, where 0 ≤ i ≤ 3g − 3. There is an analogous

stratification of the associated moduli stack Mg .

In this paper we are interested in that particular stratum of the moduli

stack, which corresponds to stable curves with exactly 3g − 4 nodes. The irre-

ducible components of this stratum are one-dimensional substacks of Mg . We

show how these substacks can be related to simpler moduli stacks of (permu-

tation classes of) pointed stable curves. Furthermore, we use this to construct

all of the components of this boundary stratum generically in a new way as

explicit quotient stacks.

§1. Introduction

A stable curve f : C → Spec(k) of genus g ≥ 2 in the sense of Deligne

and Mumford [DM] may have at most 3g − 3 nodes. The locus of curves

with exactly i nodes is a subscheme M
(i)
g of the moduli space Mg, and it is

of dimension 3g − 3 − i. Thus there is a stratification of the moduli space

of Deligne-Mumford stable curves

Mg = M (0)
g ∪ · · · ∪M (3g−3)

g .

If the maximal number of nodes is attained by a stable curve, then this

curve decomposes into 2g− 2 irreducible components. Up to isomorphisms,

there are only finitely many such curves. Therefore their locus M
(3g−3)
g is

discrete in M g.

Our objects of study in this paper are the connected components of

the subscheme M
(3g−4)
g . Each connected component D of this stratum can
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be identified with a corresponding much simpler moduli space M . Before

we make this formal in Section 3, let us briefly sketch the idea behind this

approach.

1.1. Let f0 : C0 → Spec(k) be a fixed stable curve of genus g with 3g−3

nodes, and let one node P1 of C0 be fixed. The pair (C0, P1) distinguishes

one connected component D of the stratum M
(3g−4)
g , as we will explain in

Section 2. Indeed, for any deformation of C0, which preserves all nodes of

C0 except P1, all fibres of the deformation are represented by points of D.

Each connected component of M
(3g−4)
g can be obtained in this way.

The geometry of the boundary MgrM
(0)
g is well known, see for example

[HM]. It is a normal crossing divisor, and the strata M
(i)
g for i ≥ 1 are

cut out by intersections of its irreducible components. In particular, the

closures of the one-dimensional subschemes D in Mg are meeting each other

transversally exactly in the points of M
(3g−3)
g . Therefore the connected

components D are simultaneously the irreducible components of M
(3g−4)
g .

We will see below that for each D its closure is a rational curve, and it is

even nonsingular, compare Lemma 3.4 and 2.5.

A closed point of D represents a stable curve f : C → Spec(k) with

exactly 3g − 4 nodes, and at least 2g − 3 irreducible components. Each

of the irreducible components of C can be considered as a pointed stable

curve itself, the special points being the points of intersection with other

components. There is exactly one irreducible component C+ of C, which

has not the maximal number of nodes, when considered as a pointed stable

curve. The closure of the complement of C+ in C is a pointed prestable

curve C−
0 , which is the same for all curves represented by closed points of

D. In fact, C−
0 is the closure of the complement of C+

0 in C0, where C+
0 is

the union of all irreducible components of C0 which contain the node P1.

Note that C−
0 needs not to be connected.

Example 1.2. Consider the stable curve C0 of genus g = 3 as pictured

below. It attains the maximal number of nodes 3g−3 = 6. Each component

of C0 is a rational curve. Let P1, . . . , P6 be an enumeration of the nodes of

C0 as indicated. The node P1 determines a decomposition of C0 into two

2-pointed subcurves C−
0 and C+

0 as shown on the right hand side of the

arrow in the picture.
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P2

P1

P4

P6

P5

P3

C0

−→ P5 P3

C−

0

∪ P3

P5

C+
0

A curve C, obtained by a deformation of C0 preserving all nodes except

P1, looks schematically like this.

C

P2

P4

P6

P5

P3
−→ P5 P3

C−

0

∪

C+

P5

P3

The stable curve C is represented by a point in some connected compo-

nent D, which lies inside the stratum M
(5)
3 . It decomposes as C = C+∪C−

0 ,

as pictured above, where the subcurve C+ is a 2-pointed stable curve of

genus g+ = 1.

In general, if a pair (C0, P1) is fixed, then there are numbers g+ ≤ g and

m ≤ 4, such that for any curve C represented by a point of D there exists

a curve C+, represented by a point of the moduli space Mg+,m of pointed

stable curves, with

C = C+ ∪ C−
0 .

Note that while there is an ordering of the marked points of C−
0 , which is

induced by the embedding of C−
0 into C0, there is no such ordering of the

marked points of C+. The process of glueing with C−
0 determines the labels

of the marked points of C+ only up to certain permutations, which are

induced by automorphisms of C−
0 . Thus, while the curve C+ is not given

as an m-pointed stable curve, it is uniquely determined as an m/Γ-pointed

stable curve as introduced in [Z2], for a suitable group Γ. We will discuss

this in detail in Section 3.

In this way we can identify the subscheme D with a known moduli

space M , see Lemma 3.4. Analogously, for the induced stratification of the

moduli stack Mg of Deligne-Mumford stable curves, there is a relationship

between the connected components D of the one-dimensional stratum of

stable curves with 3g− 4 nodes, and corresponding moduli stacksM. This

relationship is our main topic, and the content of Section 6.

As we will see, the stacks D and M are in general not isomorphic to

each other, even though their associated moduli spaces are. The reason

for this is that the group of automorphisms of a curve C is usually larger

than that of a subcurve C+. This difference does not affect the moduli
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spaces, and therefore does not affect D and M , but it has an impact on the

associated moduli stacks. In fact, keeping track of automorphisms is what

stacks are for. To recover an isomorphism, one essentially needs to enrich

the stackM in order to take care of such automorphisms, which act trivially

on the curves C ′ represented by points of M , but which act nontrivially on

its complement in C ′ ∪C+
0 .

For a general point of D representing a curve C, its group of automor-

phisms Aut(C) splits in a natural way, see Section 3 below. This allows us

to modify the moduli stackM by taking the quotient with respect to one of

the factors of Aut(C). Our main result is Theorem 6.8, stating that a dense

open substack D× of D is isomorphic to a quotient of a dense open substack

M× of M. In particular, the stack D can generically be constructed very

explicitly as a quotient stack, and incidentally as a quotient of another more

accessible moduli stack. We obtain a surjective morphism

M× −→ D×,

and show that is unramified and finite of degree equal to the order of a

certain group of automorphisms.

If the group Aut(C0) splits, too, then with certain additional technical

effort it is possible to construct an analogous isomorphism, which extends

over the boundary point representing the curve C+
0 , i.e. above the point in

the closure of D which represents C0. This is done in much detail in [Z1].

For a special curve C, the group of automorphisms Aut(C) may not

split. For this reason it is in general not possible to extend the above

morphism to all of M. As explained in [Z1], it is in particular impossible

to generalize Theorem 6.8 to a global quotient description of D, if there are

points in D representing curves with non-splitting automorphism groups.

Our strategy to study the stacks D and M is to describe both as quo-

tient stacks. We make use of the results of [Z2], where we generalized the

construction ofMg by Edidin [E] to moduli stacks of permutation classes of

pointed stable curves. Using this quotient description, the relation between

the stacks M and D is then given by a morphism between subschemes

of suitable Hilbert schemes. It is straightforward to define a morphism

M → D on the level of moduli spaces, using a process which Knudsen [K]

called clutching. However, its lifting to the level of Hilbert schemes requires

some extra work, which is done in the Sections 4 and 5. In particular, at

this stage the automorphism groups of stable curves play an important part.
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To illustrate our results, we conclude this paper with a complete analysis

of the one-dimensional stratum in the boundary of the moduli stackMg in

the case of genus g = 3. We compare our description to the classification

Faber [F] gave in the case of the moduli scheme M3.

§2. The moduli problem

2.1. The curves we are interested in are Deligne-Mumford stable curves

of some genus g ≥ 3 in the sense of Knudsen [K]. He also introduced the

more general notion of prestable curves. Here we will only be concerned with

such prestable curves f : C → Spec(k), where all connected components of

C are pointed stable curves themselves.

Notation 2.2. Throughout let one stable curve f0 : C0 → Spec(k) of

genus g ≥ 3 be fixed, which attains the maximal number 3g − 3 of nodes.

We also choose an enumeration P1, . . . , P3g−3 of the nodes.

Let C+
0 denote the subscheme of the fixed curve C0 which is the reduced

union of all irreducible components of C0 containing the node P1. On C+
0

there are marked points Q1, . . . , Qm, where the Qi ∈ {P2, . . . , P3g−3} are

all those points which are not singularities on C+
0 . Let C−

0 denote the

closure of the complement of C+
0 in C0, together with the same marked

points Q1, . . . , Qm. The set of all marked points shall be denoted by Q :=

{Q1, . . . , Qm}.

Note that if we allowed g = 2, then there would exist nodes P1, for

which C+
0 = C0 held, and thus m = 0. To avoid this peculiarity, and to

simplify our presentation, we exclude this otherwise analogous case.

2.3. Note that the chosen enumeration of the nodes of C0 distinguishes

an ordering of the marked points of the subcurves. Thus the subcurve

f+
0 : C+

0 → Spec(k) is in a natural way an m-pointed stable curve of some

genus g+. The subcurves C+
0 and C−

0 meet transversally, and exactly in

the points Q1, . . . , Qm. The curve C−
0 may have more than one connected

component, so it is an m-pointed prestable curve of some genus g−. There

is an equality g+ + g− + m − 1 = g. The connected components of C−
0

are again pointed stable curves, each with the maximal number of nodes

possible.

Remark 2.4. Only very few types of m-pointed stable curves C+
0 occur

in this way, and here is a complete list. Note that each irreducible compo-

nent of C0 is a rational curve with at most three nodes of C0 lying on it, so

we must have m ≤ 4.
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For m = 4, there exist exactly three types of non-isomorphic nodal 4-

pointed stable curves of genus g+ = 0, each consisting of two rational curves

meeting each other transversally in one point.

P1

1

2

4

3

P1

1

3 2

4

P1

1

4 2

3

The curves pictured above are represented by the three points which lie

in the boundary of the moduli space M0,4. If the condition on the existence

of a node at P1 is dropped, we obtain the full moduli space M0,4.

If m = 2, then there exist two types of non-isomorphic nodal 2-pointed

stable curves of genus g+ = 1, both with two nodes and two rational irre-

ducible components, as pictured below.

P1

1 2

P1

1 2

Both of them are represented by isolated points in the two-dimensional

moduli space M1,2. The locus of curves in M1,2, which preserve the node

which is not P1, is a one-dimensional subscheme ∆0. In fact, ∆0 is given by

that connected component of the boundary stratum M
(1)
1,2 of M1,2, which

represents irreducible singular stable curves.

The only instance with m = 1 is a curve of arithmetic genus g+ = 1

with one node at P1, i.e. the one point in the boundary of M1,1.

P11

If the condition on the existence of a node at P1 is dropped, we obtain

the full moduli space M1,1.

Notation 2.5. For the integers m = 1, 2 or 4 which occur as numbers

of marked points of C−
0 , we define

M ′
g+,m :=











M1,1 for m = 1;

∆0 for m = 2;

M0,4 for m = 4.
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Here, as usual Mg+,m denotes the open subscheme of Mg+,m, parameterizing

nonsingular stable curves. By ∆0 ⊂M1,2 we denote the reduced subscheme

given by the locus of irreducible singular stable curves with exactly one

node. Note that in each case the closure of M ′
g+,m is isomorphic to P

1.

The pair (C0, P1), which we fixed above, induces naturally a morphism

ϑ : M ′
g+,m −→Mg

as follows. For a point [C] ∈ M ′
g+,m, represented by an m-pointed stable

curve f : C → Spec(k), its image ϑ([C]) in Mg is defined as the point

representing the stable curve of genus g obtained by glueing C and C−
0 in

their respective marked points.

Since the scheme M ′
g+,m is connected, this morphism surjects onto one

connected component of the boundary stratum M
(3g−4)
g . By construction,

the point representing C0 is contained in the closure of the image of ϑ.

Definition 2.6. Let a stable curve f0 : C0 → Spec(k) with 3g − 3

nodes and a node P1 of C0 be given. We denote by

D(C0;P1) ⊂Mg

the connected component of the boundary stratum M
(3g−4)
g , which is the

reduced image of the above morphism ϑ.

Decomposing a stable curve f : C → Spec(k) by separating it at such

nodes, where two irreducible components meet, is fairly straightforward.

When we are dealing with families of curves, i.e. stable curves f : C → S

over a general base scheme S, the situation becomes more subtle. To be

able to “cut” along the nodes of C, the nodes of the fibres must be given

by sections σ : S → C, and in general this is not the case.

Lemma 2.7. Let f : C → S be a stable curve of genus g, with reduced

and irreducible base S. Suppose that the number of nodes of the fibre over

a general closed point is k, for some 1 ≤ k ≤ 3g − 3. Then there exists an

étale covering u : S′ → S, where S′ is connected, and such that the pullback

f ′ : C ′ → S′ of f : C → S to S′ admits k disjoint sections of nodes.

Proof. Note that the assumption on a general fibre implies that for an

arbitrary closed point s ∈ S, the fibre Cs has at least k nodes. Consider the
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subscheme N ⊂ C, which is defined as the reduced locus of all points of C

which are nodes of fibres of f : C → S. Formally, it can be constructed as

the locus of those points, where the sheaf Ω1
C/S is not free. Let p ∈ C be a

point which is contained in some fibre Cs over a point s ∈ S. Because of the

flatness of f : C → S, the sheaf Ω1
C/S is free in this point if and only if the

sheaf Ω1
Cs

is free in p. Therefore the points of N are precisely the nodes of

the fibres. Define R as the reduced union of all those irreducible components

of N , which surject onto S. Note that a node n ∈ Cs is contained in R if and

only if there exists an open neighbourhood U of s, such that the restriction

f : f−1(U)→ U is a deformation of Cs preserving the node n.

We claim that the restricted morphism f |R : R→ S is an étale covering

of S of degree k. To see this, it suffices to show that for any point s ∈ S

its fibre consists of exactly k simple points. Let us consider a general point

s ∈ S first. The k nodes of the fibre Cs persist in all neighbouring fibres,

since by the assumption of the lemma the number of nodes is constant for

all general fibres. Therefore all nodes of Cs are contained in R, and the fibre

of f |R over s consists exactly of those k nodes. It remains to consider an

arbitrary point s ∈ S. All nodes n ∈ Cs, which are contained in R, persist

in neighbouring fibres. Thus the number of nodes of Cs lying in R may not

exceed the number of nodes of a general fibre, which is k. Conversely, since

there is no deformation, which splits one ordinary double point into two,

the fibre of f |R over s must consist of at least as many points as a general

fibre. This shows that for any point s ∈ S the fibre of f |R : R→ S consists

of exactly k simple points, as claimed.

By assumption, the base S is connected. Therefore for any connected

component S1 of R the restriction g := f |S1 : S1 → S is an étale covering,

too. We now define f1 : C1 → S1 as the pullback of f : C → S to S1.

In particular, the stable curve f1 : C1 → S1 admits a tautological section

σ1 : S1 → C1 = S1×S C, induced by the inclusion S1 ⊂ C, such that for all

closed points s ∈ S1, the point σ1(s) is a node of the fibre C1,s.

Note that σ(S1) is a connected component of the pullback g∗R ⊂ C1,

since the restricted morphism g∗R → S1 is étale. Repeating the above

construction with the complement R1 := g∗Rrσ(S1) as a subscheme of C1,

we obtain an étale morphism R1 → S1 which is of degree k− 1. Proceeding

inductively, we define a sequence of étale coverings Si+1 → Si, for i =

1, . . . , k − 1, such that the combined pullback f ′ : C ′ → S′ of f : C → S to

S′ := Sk+1 admits k sections of nodes.
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§3. Automorphisms of decomposing stable curves

The automorphisms of stable curves will play an important part in our

considerations below. We need to relate the group of automorphisms of a

stable curve to the automorphism groups of its subcurves. In particular we

need to understand the group Aut(C−
0 ).

Notation 3.1. LetQ := {Q1, . . . , Qm} denote the set of marked points

of an m-pointed curve f : C → Spec(k), like for example C−
0 or C+

0 . We

define Aut(C;Q) as the group of all those automorphisms of C as a scheme

over Spec(k), which map the set Q to itself. As usual, Aut(C) denotes the

automorphism group of C as an m-pointed curve.

Let Σm denote the permutation group acting on the labels of the m

marked points of C contained in Q. For any φ ∈ Aut(C;Q) there is a unique

permutation γ ∈ Σm such that φ(Qi) = Qγ(i) holds for all i = 1, . . . ,m.

Thus there is a natural homomorphism of groups Aut(C;Q) → Σm. We

define Γ(C;Q) as the image of this homomorphism. In particular there is

an exact sequence

id −→ Aut(C) −→ Aut(C;Q) −→ Γ(C;Q) −→ id.

Let Γ ⊂ Σm be a subgroup. By definition, an m/Γ-pointed stable curve

over Spec(k) is an equivalence class of m-pointed stable curves f : C →

Spec(k) with respect to the action of Γ on the labels of the marked points, as

introduced in [Z2]. It is also called a permutation class of stable curves. The

group of automorphisms of the m/Γ-pointed stable curve represented by C is

denoted by AutΓ(C;Q). It is the subgroup of those elements φ ∈ Aut(C;Q),

for which there exists a permutation γ ∈ Γ such that φ(Qi) = Qγ(i) holds

for all i = 1, . . . ,m.

Lemma 3.2. Let f+ : C+ → Spec(k) be a stable curve of genus g+

with m marked points, which is represented by a point [C+] ∈ M ′
g+,m. Let

f : C → Spec(k) be the stable curve of genus g, which is obtained by glueing

C+ with C−
0 in the m marked points. Then there is an exact sequence of

groups

id −→ Aut(C−
0 ) −→ Aut(C) −→ AutΓ(C+;Q) −→ id,

where Γ = Γ(C−
0 ;Q).
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Proof. By definition, any automorphism in Aut(C−
0 ) fixes each one of

the marked points of C−
0 , and these marked points are the glueing points of

C−
0 with C+. By trivial extension, the group Aut(C−

0 ) becomes a subgroup

of Aut(C). Conversely, since [C+] ∈ M ′
g+,m, the curve C+ is the unique

connected subcurve of C of genus g+, which has not the maximal number

of nodes as an m-pointed stable curve. Hence any automorphism of C

restricts to an automorphism on C−
0 and to an automorphism on C+, which

both are not necessarily fixing the marked points. However, in this way only

such permutations of marked points occur on C+, which are also effected by

automorphisms on C−
0 . Thus by definition, an automorphism of C restricted

to C+ is an automorphism of C+ considered as an m/Γ-pointed stable curve,

i.e. an element of AutΓ(C+;Q).

All automorphisms in AutΓ(C+;Q) occur in this way. To see this, let

̺+ ∈ AutΓ(C+;Q) be an automorphism of C+ as an m/Γ-pointed stable

curve. It induces a permutation γ of the marked points, with γ ∈ Γ. By the

definition of Γ, there exists an automorphism ̺− ∈ Aut(C−
0 ;Q) inducing

γ. Glueing the automorphisms ̺+ and ̺− defines an automorphism ̺ on

C, which restricts to ̺+. Thus we have shown that there exists an exact

sequence of groups, as claimed.

Remark 3.3. For a general point [C+] ∈ M ′
g+,m as in Lemma 3.2, the

exact sequence of the lemma splits in a natural way. This can be seen as

follows. If m = 1, then clearly AutΓ(C+;Q) = Aut(C+). If m = 2 or

m = 4, then an examination of the list of possibilities for curves C+ from

Remark 2.4 shows that automorphisms of C+, which permute the marked

points, exist only if the marked points are in a very special position. Thus,

if [C+] ∈ M ′
g+,m is a general point, then again AutΓ(C+;Q) = Aut(C+).

Now a splitting homomorphism AutΓ(C+;Q)→ Aut(C) can be defined by

trivial extension.

Lemma 3.4. Let f : C → Spec(k) be a stable curve of genus g ≥ 3 rep-

resented by a point [C] ∈ D(C0;P1). Let Γ = Γ(C−
0 ;Q). Then there exists a

uniquely determined m/Γ-pointed stable curve C+, with m ∈ {1, 2, 4}, such

that C is obtained from glueing a representative of C+ and the m-pointed

prestable curve C−
0 in the corresponding marked points. In particular, there

is an isomorphism of schemes

D(C0;P1) ∼= M ′
g+,m/Γ.
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Let us remark that the closure of D(C0;P1) in Mg is always isomorphic

to P
1, see [Z1].

Proof. By the definition of D(C0;P1), there exists a decomposition of

the curve C into an m-pointed stable subcurve C+ and a subcurve isomor-

phic to C−
0 . The labels of the marked points of C+ are determined only up

to certain permutations, which are induced by automorphisms of C−
0 , i.e.

C+ is uniquely determined as an m/Γ-pointed stable curve.

Definition 3.5. We define the subscheme

D×(C0;P1) ⊂ D(C0;P1)

as the nonempty reduced open subscheme, which is the locus of points

[C] parameterizing those curves f : C → Spec(k), whose groups of auto-

morphisms split naturally as Aut(C) = AutΓ(C+;Q) × Aut(C−
0 ), where

f+ : C+ → Spec(k) denotes the unique subcurve as in Lemma 3.4.

§4. The glueing morphism

Our objective in this section is to construct a lifting of the natural

morphism ϑ : M ′
g+,m → Mg from paragraph 2.5 generically to a morphism

between subschemes of Hilbert schemes.

Notation 4.1. Let f : C → S be an m-pointed stable curve of genus

g over some base scheme S, such that 2g−2+m > 0. Let S1, . . . , Sm denote

the divisors of marked points of C, and let ωC/S be the canonical sheaf. If

n ∈ N is chosen large enough, then the sheaf
(

ωC/S(S1 + · · · + Sm)
)⊗n

is

relatively very ample, and f∗

(

(

ωC/S(S1 + · · · + Sm)
)⊗n

)

is locally free of

rank (2g − 2 + m)n− g + 1, compare [K].

Consider the Hilbert scheme Hilb
Pg,n,m

PN of curves f : C → Spec(k)

embedded in P
N with Hilbert polynomial Pg,n,m(t) := (2g−2+m)nt−g+1,

where N := (2g − 2 + m)n− g. We denote by

Hg,n,m ⊂ Hilb
Pg,n,m

PN ×(PN )m

the quasi-projective reduced subscheme, which is the locus of n-canonically

embedded m-pointed stable curves.

The standard construction of the moduli space Mg,m of m-pointed sta-

ble curves of genus g is its construction as the GIT-quotient of Hg,n,m with
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respect to the natural PGL(N + 1)-action, compare for example [DM] or

[G].

If Γ ⊂ Σm is a subgroup of the group of permutations on the labels of the

m marked points, then the moduli space of m/Γ-pointed stable curves is the

quotient Mg,m/Γ := Mg,m/Γ, see [Z2]. Equivalently, it can be constructed

as the GIT-quotient of Hg,n,m/Γ := Hg,n,m/Γ with respect to the natural

PGL(N + 1)-action.

4.2. As before, let f0 : C0 → Spec(k) denote the fixed stable curve of

genus g ≥ 3 with 3g − 3 nodes, and let P1, . . . , P3g−3 be an enumeration of

its nodes. Let C−
0 denote the unique m-pointed prestable curve of genus g−,

which is the reduced union of all of the irreducible components of C0 which

do not contain P1. The closure of the complement of C−
0 in C0 is denoted

by C+
0 . It can be viewed as an m-pointed stable curve of some genus g+.

Notation 4.3. Let Γ := Γ(C−
0 ;Q). For n ∈ N sufficiently large let

Hg,n,0 and Hg+,n,m/Γ denote the subschemes of the Hilbert schemes as in 4.1,

with the moduli spaces Mg and Mg+,m/Γ as their respective GIT-quotients.

Let H ′
g+,n,m denote the reduced preimage of M ′

g+,m in Hg+,n,m, and we

define H ′
g+,n,m/Γ := H ′

g+,n,m/Γ, as well as M ′
g+,m/Γ := M ′

g+,m/Γ.

4.4. Construction step 1. Consider the universal embedded m-pointed

stable curve u+ : Cg+,n,m → Hg+,n,m, which is the restriction of the universal

curve on the full Hilbert scheme. We glue this along the m given sections

to the trivial m-pointed prestable curve C−
0 × Hg+,n,m → Hg+,n,m. This

produces a stable curve u0 : C0 → Hg+,n,m of genus g, compare [K]. Knudsen

calls this procedure of glueing along a pair of disjoint sections “clutching”.

Let i : Cg+,n,m →֒ C0 denote the inclusion morphism. Consider the

restriction of the canonical invertible dualizing sheaf ω
C0/Hg+,n,m

to a fibre

Ch → Spec(k) of u0 : C0 → Hg+,n,m, for some closed point h ∈ Hg+,n,m.

Let n : Ĉh → Ch be the normalization of Ch, and for a node Pi ∈ Ch let Ai

and Bi denote its preimages in Ĉh. The restriction of ω
C0/Hg+,n,m

to Ch can

be described as the sheaf of those 1-forms on Ĉh which have at most simple

poles in Ai and Bi, and such that the sum of the residues in Ai and Bi is

zero, compare for example [K].

By construction, the curve u0 : C0 → Hg+,n,m comes with m disjoint sec-

tions of nodes, which are given by the sections of glueing. Let n0 : Ĉ ′
h → Ch
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denote the partial normalization of Ch, in the sense that it is the normaliza-

tion map near those nodes resulting from the glueing, and an isomorphism

elsewhere. In particular, Ĉ ′
h preserves exactly those nodes, which are not

glueing nodes. Thus Ĉ ′
h decomposes into two disjoint subcurves, one of

them isomorphic to C−
0 , the other one isomorphic to C+

h , where C+
h is the

fibre of the universal curve u+ : Cg+,n,m → Hg+,n,m over the point h. This

induces a morphism ι : C+
h → Ĉ ′

h, such that i = n0 ◦ ι, and an isomorphism

ι∗n∗
0 ωCh/k

∼= ωC+

h /k(Q1 + . . . + Qm), where Q1, . . . , Qm denote the marked

points on C+
h . Thus there is a natural isomorphism of sheaves

i∗ω
C0/Hg+,n,m

∼= ω
Cg+,n,m/Hg+,n,m

(S1 + · · ·+ Sm).

There is a natural surjection of sheaves ω
C0/Hg+,n,m

→ i∗i
∗ω

C0/Hg+,n,m
. After

applying n-th tensor powers, and push-forward, we obtain a surjection

(u0)∗(ωC0/Hg+,n,m
)⊗n −→ u+

∗ i∗(ω
C0/Hg+,n,m

)⊗n

of locally free sheaves, using the factorization u+ = u0 ◦ i. Together with

the above isomorphism, and applying Grothendieck’s construction of the

associated projective bundle, we obtain an inclusion of projective bundles

Pu+
∗ (ω

Cg+,n,m/Hg+,n,m
(S1 + · · ·+ Sm))⊗n −֒→ P(u0)∗(ωC0/Hg+,n,m

)⊗n.

Recall that f0 : C0 → Spec(k) is the stable curve fixed throughout this

section, and f+
0 : C+

0 → Spec(k) is the subcurve defined in 2.2. We fix once

and for all an embedding of C0 into P
N , which is equivalent to distinguishing

an isomorphism P(f0)∗(ωC0/k)
⊗n ∼= P

N , and we fix an embedding of C+
0 into

P
N+

, with N+ := (2g+−2+m)n−g++1, corresponding to an isomorphism

P(f+
0 )∗(ωC+

0 /k(Q1 + · · ·+ Qm))⊗n ∼= P
N+

, in such a way that the diagram

(⋄)

C+
0 →֒ P

N+ ∼= P(f+
0 )∗(ωC+

0
/k(Q1 + · · ·+ Qm))⊗n

↓ ↓ ↓

C0 →֒ P
N ∼= P(f0)∗(ωC0/k)

⊗n

commutes. The universal curve u+ : Cg+,n,m → Hg+,n,m determines a trivi-

alization

Pu+
∗ (ω

Cg+,n,m/Hg+,n,m
(S1 + · · ·+ Sm))⊗n ∼= P

N+

×Hg+,n,m

∼= P(f+
0 )∗(ωC+

0 /k(Q1 + · · ·+ Qm))⊗n ×Hg+,n,m.
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The tautological section of this projective bundle shall be denoted by

τ+ : Hg+,n,m −→ Pu+
∗ (ω

Cg+,n,m/Hg+,n,m
(S1 + · · ·+ Sm))⊗n.

If [C+] ∈ Hg+,n,m is a point representing an embedded curve C+, then by

definition of τ+, the point τ+([C+]) is fixed under the action of the group

Aut(C+) ∼= StabPGL(N++1)([C
+]) on the fibre of the projective bundle over

the point [C+].

Remark 4.5. Via diagram (⋄) of the above construction, we may con-

sider PGL(N+ + 1) as a subgroup of PGL(N + 1). The group of auto-

morphisms of C0 can be identified with a subgroup of PGL(N + 1) via

Aut(C0) ∼= StabPGL(N+1)([C0]), and the diagram

Aut(C+
0 ) ∼= StabPGL(N++1)([C

+
0 ]) ⊂ PGL(N+ + 1)

↓ ↓ ↓
Aut(C0) ∼= StabPGL(N+1)([C0]) ⊂ PGL(N + 1)

commutes. Furthermore, for any embedded curve C+, which is represented

by a point [C+] ∈ Hg+,n,m, there is a natural embedding of Aut(C+) first

into the group PGL(N+ + 1), and from there into PGL(N + 1).

4.6. Construction step 2. As in 4.4, there is also a natural surjection

of the sheaves j∗ω
C0/Hg+,n,m

→ ωC−

0 ×Hg+,n,m/Hg+,n,m
(S1 + · · ·+ Sm), where

j : C−
0 ×Hg+,n,m → C0 denotes the embedding as a subcurve over Hg+,n,m

as constructed above. Clearly there is a trivialization

P
N−

×Hg+,n,m
∼= P((pr2)∗(ωC−

0 ×Hg+,n,m/Hg+,n,m
(S1 + · · · + Sm))⊗n)

as a projective bundle over Hg+,n,m, where N− = (2g− − 2 + m)n− g− + 1,

provided n has been chosen sufficiently large. We may assume that the

corresponding embedding of C−
0 into PN−

is generic in the sense that the

m marked points on C−
0 are contained in no subspace of dimension m− 2.

The tautological section shall be denoted by τ−.

The above projective bundle is again in a natural way a subbundle of

the projective bundle P(u0)∗(ωC0/Hg+,n,m
)⊗n.
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4.7. Construction step 3. Combining the constructions of 4.4 and 4.6,

we obtain two subbundles of P(u0)∗(ωC0/Hg+,n,m
)⊗n, together with a surjec-

tive morphism π:

Pu+
∗ (ω

Cg+,n,m/Hg+,n,m
(
∑m

i=1 Si))
⊗n

⊕
π
−→ P(u0)∗(ωC0/Hg+,n,m

)⊗n

P(pr2)∗(ωC−

0 ×Hg+,n,m/Hg+,n,m
(
∑m

i=1 Si))
⊗n

of projective bundles over Hg+,n,m. Note that the intersection of the two

subbundles can be described as the projectivization of the cokernel of an

injective homomorphism

u+
∗ (ω

Cg+,n,m/Hg+,n,m
(S1 + · · ·+ Sm))⊗n

(u0)∗(ωC0/Hg+,n,m
)⊗n → ⊕

(pr2)∗(ωC−

0 ×Hg+,n,m/Hg+,n,m
(S1 + · · ·+ Sm))⊗n

of locally free sheaves over the base Hg+,n,m.

Thus, for a fibre of u0 : C0 → Hg+,n,m, the subcurve C−
0 is embedded

into a subspace P
N−

⊂ P
N , while the closure of its complement is embedded

into a subspace P
N+

⊂ P
N , and the intersection of P

N−

and P
N+

is a

subspace of dimension m− 1. This is just the subspace spanned by the m

marked points of C−
0 embedded into P

N .

By construction, for the two sections of the subbundles holds π ◦ τ+ =

π ◦ τ−, considered as a section from Hg+,n,m into the bundle

P(u0)∗(ωC0/Hg+,n,m
)⊗n. In 4.10 we will use this section to construct a triv-

ialization of the ambient PGL(N + 1)-bundle, extending the trivializations

of the subbundles.

Remark 4.8. In exactly the same way as in Remark 4.5, the construc-

tion of paragraph 4.6 induces an embedding of PGL(N−+1) into PGL(N +

1). In particular, the group Aut(C−
0 ;Q) can be considered as a subgroup of

PGL(N + 1), too.

Notation 4.9. We define the nonempty reduced subscheme

H×

g+,n,m
⊂ Hg+,n,m

of the Hilbert scheme as the locus of points [C+] ∈ H ′
g+,n,m parameterizing

curves f+ : C+ → Spec(k) with the following property: if f : C → Spec(k)
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denotes the stable curve of genus g, which is obtained by glueing C+ with C−
0

in the m marked points, then its group of automorphisms splits naturally

as Aut(C) = AutΓ(C+;Q) × Aut(C−
0 ). It follows from Remark 3.3 that

H×

g+,n,m
is a dense subscheme of H ′

g+,n,m.

Let M×

g+,m
denote the GIT-quotient of H×

g+,n,m
with respect to the

natural PGL(N+ + 1)-action. For Γ = Γ(C−
0 ;Q) we define H×

g+,n,m/Γ
:=

H×

g+,n,m
/Γ and M×

g+,m/Γ
:= M×

g+,m
/Γ.

4.10. Construction step 4. Let π denote the morphism of projective

bundles over Hg+,n,m as in 4.7. The restriction of π to H×

g+,n,m
, composed

with the tautological sections τ+ and τ− of the subbundles, respectively,

defines in both cases the same section

τ : H×

g+,n,m
−→ P(u0)∗(ωC0/Hg+,n,m

)⊗n|H×

g+,n,m
,

compare 4.7. By 4.4 and 4.6, there exist trivializations

ϑ+ : Pu+
∗

(

ω
Cg+,n,m/Hg+,n,m

(

m
∑

i=1

Si

))⊗n
|H×

g+,n,m
−→ P

N+

×H×

g+,n,m

and

ϑ− : P(pr2)∗

(

ωC−

0 ×Hg+,n,m/Hg+,n,m

(

m
∑

i=1

Si

))⊗n
|H×

g+,n,m
−→ P

N+

×H×

g+,n,m

as PGL(N+ +1)-bundles and PGL(N− +1)-bundles, respectively. We want

to extend both of these to a common trivialization of the ambient PGL(N +

1)-bundle P(u0)∗(ωC0/Hg+,n,m
)⊗n|H×

g+,n,m
. If e is a point in the fibre of

P(u0)∗(ωC0/Hg+,n,m
)⊗n|H×

g+,n,m
over a point [C+] ∈ H×

g+,n,m
, representing

an embedded m-pointed stable curve C+, then e can be written as e =

γ · τ([C+]) for some γ ∈ PGL(N + 1). We now define

ϑ : P(u0)∗(ωC0/Hg+,n,m
)⊗n|H×

g+,n,m
−→ P

N ×H×

g+,n,m

by ϑ(e) := γ · ϑ+(τ+([C+])), using the fact that the point τ([C+]) = π ◦

τ+([C+]) is contained in the subbundle Pu+
∗ (ω

Cg+,n,m/Hg+,n,m
(
∑m

i=1 Si))
⊗n,

and the fixed embedding of the subspace P
N+

⊂ P
N from 4.4. Note that in

general γ is not uniquely determined by the point e. To show that the above
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map is indeed well-defined, it suffices to show that all elements of PGL(N +

1), which stabilize the point τ([C+]) also stabilize the point ϑ+(τ+([C+])).

By construction, the elements stabilizing the point τ([C+]) in the fibre are

exactly the elements of the group Aut(C) ∼= StabPGL(N+1)([C]), where C

is the embedded curve in P
N obtained by glueing C+ and C−

0 in their

marked points. Recall that τ = π ◦ τ+ = π ◦ τ−, and thus ϑ+(τ+([C+])) =

ϑ−(τ−([C+])) ∈ P
N , with respect to the fixed embeddings of 4.4 and 4.6.

By the definition of the subscheme H×

g+,n,m
we have a splitting of Aut(C)

as a product AutΓ(C+;Q)×Aut(C−
0 ). Because τ+ and τ− are the tautolog-

ical sections of the subbundles, the points ϑ+(τ+([C+])) and ϑ−(τ−([C+]))

are fixed by Aut(C+) and Aut(C−
0 ), respectively. Since the process of glue-

ing makes the ordering of the m glueing points contained inQ disappear, the

point ϑ+(τ+([C+])) is also fixed under the action of AutΓ(C+;Q). There-

fore, the point ϑ+(τ+([C+])) = ϑ−(τ−([C+])) is fixed unter the action of

Aut(C), and we are done.

We have thus constructed a trivialization of the restricted projective

bundle

P(u0)∗(ωC0/Hg+,n,m
)⊗n |H×

g+,n,m
∼= P(f0)∗(ωC0/k)

⊗n ×H×

g+,n,m

∼= P
N ×H×

g+,n,m
,

which is fibrewise compatible with the natural inclusions of both projective

bundles P(f+
0 )∗(ωC+

0 /k(Q1 + · · · + Qm))⊗n and P(f−
0 )∗(ωC−

0 /k(Q1 + · · · +

Qm))⊗n into P(f0)∗(ωC0/k)
⊗n, as constructed above. Globally, there is a

commutative diagram of projective bundles over H×

g+,n,m
:

P
N+

×H×

g+,n,m
� _

��

∼= Pu+
∗ (ω

Cg+,n,m/Hg+,n,m
(
∑m

i=1 Si))
⊗n|H×

g+,n,m
� _

��

P
N ×H×

g+,n,m
∼= P(u0)∗(ωC0/Hg+,n,m

)⊗n|H×

g+,n,m

P
N−

×H×

g+,n,m

?�

OO

∼= P((pr2)∗(ωC−

0 ×H×

g+,n,m
/H×

g+,n,m

(
∑m

i=1 Si))
⊗n).

?�

OO

By the universal property of the Hilbert scheme Hg+,n,m, the trivialization

of the projective bundle P(f0)∗(ωC0/k)
⊗n restricted to H×

g+,n,m
defines a

morphism Θ× : H×

g+,n,m
→ Hg,n,0, which in general is not an embedding.
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By construction, this morphism is equivariant with respect to the action of

the group PGL(N+ + 1), considered as a subgroup of PGL(N + 1) as in

Remark 4.5.

We summarize our construction in the following proposition. Using

the universal property of Hilbert schemes, it is formulated geometrically in

terms of embedded curves rather than those of projective bundles, while the

content is of course equivalent to our construction.

Proposition 4.11. Let C×
g+,n,m

→ H×

g+,n,m
be the restriction of the

universal embedded m-pointed stable curve on the Hilbert scheme Hg+,n,m

to H×

g+,n,m
, and let u×

0 : C×0 → H×

g+,n,m
denote the stable curve of genus g

obtained by glueing it along the m given sections to the trivial m-pointed

prestable curve C−
0 ×H×

g+,n,m
→ H×

g+,n,m
.

Then there exists a global embedding of the curve u×
0 : C×0 → H×

g+,n,m

into pr2 : P
N × H×

g+,n,m
→ H×

g+,n,m
, which makes the following diagram

commutative:

C×
g+,n,m

� � //
� _

��

C×0
� _

��

C−
0 ×H×

g+,n,m_?
oo

� _

��

P
N+

×H×

g+,n,m

((PPPPPPPPPPPP

� � // PN ×H×

g+,n,m

��

P
N−

×H×

g+,n,m

vvnnnnnnnnnnnn

_?
oo

H×

g+,n,m
.

In particular, there exists a PGL(N+ + 1)-equivariant morphism

Θ× : H×

g+,n,m
−→ Hg,n,0.

Proof. The construction was given in four steps in the paragraphs 4.4,

4.6, 4.7, and 4.10.

Proposition 4.12. The morphism Θ× : H×

g+,n,m
→ Hg,n,0 from Prop-

osition 4.11 is invariant under the action of Γ(C−
0 ;Q).

Proof. Recall that Γ(C−
0 ;Q) acts freely on Hg+,n,m. The projective

bundle Pu+
∗ (ω

Cg+,n,m/Hg+,n,m
(S1 + . . .+Sm))⊗n is invariant under the action
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of Σm, and hence in particular under the action of Γ(C−
0 ;Q). This is just

saying that the embedding of a fibre of u+ : Cg+,n,m → Hg+,n,m into P
N+

does not depend on the order of the marked points. By construction 4.4,

the embedding of this projective bundle into P(u0)∗(ωC0/Hg+,n,m
)⊗n is also

independent of the ordering of the marked points. Thus for any point [C ′] ∈

H×

g+,n,m
representing an embedded curve C ′ ⊂ P

N+

, the embedding of C ′

into P
N is the same as the embedding corresponding to the point γ([C ′]),

for any γ ∈ Γ(C−
0 ;Q). So it remains to consider the complement of C ′ in the

curve C representing the point Θ×([C ′]). The closure of the complement of

C ′ in C is just the distinguished embedding of the curve C−
0 , by construction

of the morphism Θ×. By definition of Γ(C−
0 ;Q), and by the choice of the

embedding of Aut(C−
0 ;Q) into PGL(N+1) this complement is also invariant

under the action of Γ(C−
0 ;Q). Therefore the whole curve C ⊂ P

N , and hence

the point Θ×([C ′]) ∈ Hg,n,0, is fixed under the action of Γ(C−
0 ;Q).

Corollary 4.13. The morphism Θ× : H×

g+,n,m
→ Hg,n,0 is equivari-

ant with respect to the action of the group PGL(N+ + 1)× Γ(C−
0 ;Q).

Proof. The equivariance with respect to the individual groups follows

from Proposition 4.11 and Proposition 4.12. Note that the actions of the

groups PGL(N+ +1) and Γ(C−
0 ;Q) on H×

g+,n,m
commute, since the embed-

ding of an m-pointed stable curve into P
N+

is independent of the ordering

of its marked points.

Remark 4.14. We can view the group Aut(C−
0 ) ∼= StabPGL(N−+1)([C

−
0 ])

as a subgroup of PGL(N− + 1), and thus as a subgroup of PGL(N + 1).

The inclusion is determined by the fixed embedding of P
N−

into P
N . By

definition, elements of Aut(C−
0 ) fix the m marked points of C−

0 , which span

the intersection P
N−

∩ P
N+

in P
N by Remark 4.7. Thus such an element

acts as the identity on the intersection, and therefore elements of Aut(C−
0 )

and elements of PGL(N+ + 1) commute inside PGL(N + 1). In particular,

we can view PGL(N+ + 1)×Aut(C−
0 ) as a subgroup of PGL(N + 1).

Furthermore, the action of Aut(C−
0 ) on Hg,n,0 commutes with the action

of Γ(C−
0 ;Q), since the embedding of C−

0 into P
N is independent of the labels

of the m marked points. We can thus strengthen Corollary 4.13 as follows.

Lemma 4.15. The morphism Θ× : H×

g+,n,m
→ Hg,n,0 is equivariant

with respect to the action of PGL(N+ + 1) × Γ(C−
0 ;Q) × Aut(C−

0 ), where

Aut(C−
0 ) acts trivially on H×

g+,n,m
.
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Proof. It only remains to show that the image of H×

g+,n,m
under Θ× is

pointwise fixed under the action of Aut(C−
0 ). Recall that Θ× is constructed

via compatible trivializations as in the following diagram:

Pu+
∗ (ω

Cg+,n,m/Hg+,n,m
(
∑m

i=1 Si))
⊗n � � //

∼=
��

P(u0)∗(ωC0/Hg+,n,m
)⊗n

∼=

��
P(f+

0 )∗(ωC+
0 /k(

∑m
i=1 Qi))

⊗n ×Hg+,n,m
� � // P(f0)∗(ωC0/k)

⊗n ×Hg+,n,m,

restricted to the subscheme H×

g+,n,m
. By definition of the inclusion of

Aut(C0) into PGL(N + 1), the embedding of C0 into P
N is fixed under

the action of Aut(C0), and hence in particular fixed under the action of

Aut(C−
0 ). Therefore the embedding of the projective bundles is invariant

under the action of Aut(C−
0 ), and thus Θ× is also invariant with respect to

the action of Aut(C−
0 ).

Proposition 4.16. Let Γ := Γ(C−
0 ;Q). The morphism Θ× induces an

embedding

Θ : H×

g+,n,m/Γ
−→ Hg,n,0

and an isomorphism of schemes M×

g+,m/Γ
∼= D×(C0;P1).

Proof. Proposition 4.12 implies that the morphism Θ× : H×

g+,n,m
→

Hg,n,0 factors through H×

g+,n,m/Γ
= H×

g+,n,m
/Γ.

Let C1 and C2 denote two embedded m-pointed stable curves over

Spec(k), represented by two points [C1], [C2] ∈ H×

g+,n,m
. Suppose that

Θ×([C1]) = Θ×([C2]) ∈ Hg,n,0, and let C denote the embedded curve rep-

resenting this point. By the assumption on [C1] and [C2], the curve C has

3g − 4 nodes, so there is a unique irreducible component on C, which has

not the maximal number of nodes when considered as a pointed stable curve

itself. This component is of course equal to the embedded curves C1 and

C2 in P
N , considered as curves with m distinguished points, but without

ordered labels on these points. The closure of its complement in C is isomor-

phic to C−
0 by definition of the morphism Θ×. Since Θ×([C1]) and Θ×([C2])

represent the same embedded curve, the order of the marked points of C1

and C2 can differ at most by a reordering induced by an automorphism of

C−
0 . Hence by definition of Γ(C−

0 ;Q), the points [C1] and [C2] are the same

modulo the action of Γ(C−
0 ;Q). This proves the first part of the proposition.
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For the second part note that by Corollary 4.13 the morphism Θ× in-

duces a morphism M×

g+,m/Γ
→Mg. By the definition of M×

g+,m
, its image is

D×(C0;P1). The morphism is just the restriction of the isomorphism from

Lemma 3.4.

§5. Decomposition of stable curves

Notation 5.1. Let π : Hg,n,0 → Mg be the canonical quotient mor-

phism. We denote by

K(C0;P1) ⊂ Hg,n,0

the reduction of the preimage of D(C0;P1). Furthermore, we denote

by K×(C0;P1) the reduction of the preimage of the open subscheme

D×(C0;P1), which represents curves with splitting automorphism groups.

Lemma 5.2. The subscheme K×(C0;P1) is equal to the reduction of the

PGL(N + 1)-orbit K×(C0;P1) = Θ×(H×

g+,n,m
) · PGL(N + 1) of the image

of the morphism Θ× : H×

g+,n,m
→ Hg,n,0 from Proposition 4.11.

Proof. This follows immediately from the definition of K×(C0;P1), and

the surjectivity of the morphism M ′
g+,m → D(C0;P1).

Remark 5.3. The scheme K(C0;P1) is a smooth and irreducible sub-

scheme of Hg,n,0. This follows from the definition of D(C0;P1) as a con-

nected component of M
(3g−4)
g , and the fact that the boundary Hg,n,0\Hg,n,0

is a normal crossing divisor, compare [DM].

Lemma 5.4. Let f : C → S be a stable curve of genus g, with reduced

and irreducible base S, such that for all closed points s ∈ S the fibre Cs has

exactly 3g − 4 nodes. Then the induced morphism ϑf : S → Mg factors

through D(C0;P1) if and only if there exists an étale covering u : S′ → S,

such that the pullback stable curve f ′ : C ′ → S′ decomposes as follows. There

is an m-pointed prestable subcurve, which is unique up to permutations of the

labels of its marked points, and isomorphic to the trivial curve C−
0 ×S′ → S′,

together with an m-pointed stable curve f# : C# → S′ of genus g+, such

that the curve f ′ : C ′ → S′ is obtained by glueing the two subcurves along

the corresponding sections of marked points.

Proof. Suppose that such an étale covering exists. Since f ′ : C ′ → S′

is the pullback of f : C → S, it too is a stable curve of genus g with exactly
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3g−4 nodes in each fibre, and the induced morphism ϑf ′ : S′ →Mg factors

as ϑf ′ = ϑf ◦u. Thus ϑf and ϑf ′ map to the same irreducible component D

of M
(3g−4)
g , since S is irreducible. For a general point s ∈ S′, the closure of

the complement of C−
0 in the fibre C ′

s is an m-pointed stable curve of genus

g+. Thus by definition ϑf ′(s) ∈ D(C0;P1), and hence D = D(C0;P1).

Conversely, suppose that ϑf : S → Mg factors through D(C0;P1).

By Lemma 2.7 there exists an étale covering u : S′ → S, such that S′ is

connected, and the pullback f ′ : C ′ → S′ admits 3g − 4 sections of nodes.

For a closed point s ∈ S′ there are two types of nodes on the fibre C ′
s: those

nodes, which are intersection points of different irreducible components of

C ′
s, and those which are singularities of one irreducible component. Since

the curve f ′ : C ′ → S′ is locally a deformation of its fibre C ′
s, and since the

number of nodes is constant for all fibres, all nodes of one section must be

of the same type.

Suppose that σ1, . . . , σk : S′ → C ′ are the sections of nodes, which are

intersection points. Let f̃ : C̃ → S′ denote the flat family, which is obtained

by “cutting” the curve C ′ along this k sections. Formally, we may construct

C̃ by choosing an embedding of f ′ : C ′ → S′ into P
ℓ × S′ → S′, for some

sufficiently large ℓ, and blowing up along the subschemes σ1(S
′), . . . , σk(S

′).

The family f̃ : C̃ → S′ is then given as the strict transform of f ′ : C ′ → S′,

where the points of C ′ contained in the k sections are separated into pairs

of points of C̃ above.

Note that f̃ : C̃ → S′ is a pointed prestable curve over S′. In particular,

since S′ is connected, for any connected component of Z ⊂ C̃ the restriction

f̃ |Z : Z → S′ is still a pointed stable curve. Thus the genus and the number

of nodes remains constant for all fibres of f̃ |Z. For a general closed point

s ∈ S′, the fibre C ′
s has exactly 3g − 4 nodes. Hence there exists a unique

irreducible component of C ′
s, which has not the maximal number of nodes

when considered as a pointed stable curve itself. Therefore there exists

a unique connected component of the fibre C̃s, which has not the maximal

number of nodes when considered as a pointed stable curve. This component

is necessarily an m-pointed stable curve of genus g+. This implies that there

exists a unique connected component C# of C̃, which is an m-pointed stable

curve of genus g+ over S′. By construction, this curve f# : C# → S′ can

be considered as a subcurve embedded in f ′ : C ′ → S′.

Let f− : C− → S′ denote the family obtained as the closure of the

complement of f# : C# → S′ in f ′ : C ′ → S′. Let s ∈ S′ be a closed point,

such that ϑf ′(s) ∈ D(C0;P1). Then the fibre C ′
s must contain a subcurve
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isomorphic to C−
0 by definition. All irreducible components of C−

0 have the

maximal number of nodes when considered as pointed stable curves, so C−
0

must be equal to the closure of the complement of C#
s in C ′

s. Thus, all fibres

of the m-pointed prestable curve f− : C− → S′ are isomorphic to C−
0 . In

particular, after applying another étale covering of S′ if necessary, the curve

f− : C− → S′ is isomorphic to the trivial family C−
0 × S′ → S′.

Note that although f# : C# → S′ is uniquely determined as a sub-

scheme, being the complement of C−
0 ×S′ → S′, the labels of its m sections

of marked points depend on choices made during the process of glueing.

Corollary 5.5. Let f : C → S be a stable curve of genus g, with

reduced base S. Suppose that the induced morphism ϑf : S → Mg factors

through D(C0;P1). Then there exists a uniquely determined decomposition

of f : C → S into an m/Γ(C−
0 ;Q)-pointed stable curve f+ : C+ → S of

genus g+, and an m/Γ(C−
0 ;Q)-pointed prestable curve f− : C− → S of

genus g−, where the second curve is locally isomorphic to the trivial curve

C−
0 × S → S with respect to the étale topology.

Proof. Without loss of generality we may assume that S is irreducible.

Indeed, if decompositions exist on the irreducible components of S, then the

uniqueness property implies that they fit together to a global decomposition.

By Lemma 5.4 there exists an étale covering u : S′ → S, such that the

pullback curve f ′ : C ′ → S′ decomposes into an m-pointed stable curve

f# : C# → S′, and a trivial m-pointed prestable curve C−
0 × S′ → S′. By

assumption, each fibre of f : C → S has exactly 3g − 4 nodes. Consider

the pullback morphism u : C ′ → C. For a closed point s ∈ S′, it maps

the fibre C#
s of the subcurve f# : C# → S′ isomorphically onto the unique

irreducible component of the fibre Cu(s), which has not the maximal number

of nodes when considered as a pointed stable curve. In particular, the image

of C# in C defines uniquely a subfamily f+ : C+ → S in f : C → S.

Analogously, the image of the trivial subcurve C−
0 × S′ → S′ defines a

subfamily f− : C− → S. Since the latter is the étale image of an m-pointed

prestable curve, it is by definition an m/Γ(C−
0 ;Q)-pointed curve.

Let s, s′ ∈ S′ be two closed points with u(s) = u(s′). If C#
s and C#

s′

denote the two corresponding fibres of f# : C# → S′, then glueing in the m

marked points to C−
0 produces in both cases the same fibre Cu(s) = Cu(s′)

of f : C → S. Thus the labels of the respective m marked points may
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differ only by a permutation induced by an automorphisms of C−
0 , i.e. by a

permutation contained in Γ(C−
0 ;Q). Thus the induced curve f+ : C+ → S

is an m/Γ(C−
0 ;Q)-pointed stable curve of genus g+, as defined in [Z2].

The above Corollary 5.5 deals only with stable curves f : C → S, where

the base S is reduced. In our applications, we will need an analogous state-

ment for arbitrary schemes S, and for this we need one extra assumption.

Remark 5.6. There is a functorial way to assign to each pointed stable

curve f : C → S a pair (EC/S , φC/S), consisting of a principal bundle

p
C/S

: EC/S → S, and an equivariant morphism φC/S : EC/S → Hg,n,m. We

recall briefly the description of this construction from [Z2].

Let f : C → S be an m-pointed stable curve of genus g, with sections of

marked points σ1, . . . , σm : S → C. The sections define divisors S1, . . . , Sm

on C. We denote by p
C/S

: EC/S → S the PGL(N + 1)-principal bundle

associated to the projective bundle P := Pf∗(ωC/S(S1 + · · · + Sm))⊗n over

S. The pullback of P to EC/S has a natural trivialization as a projective

bundle. This implies that the pullback stable curve f : C → EC/S of the

stable curve f : C → S has a natural embedding into P
N × EC/S . By the

universal property of the Hilbert scheme this is equivalent to specifying a

PGL(N + 1)-equivariant morphism φC/S : EC/S → Hg,n,m.

It is straightforward to see that this construction is functorial. The

assignment is even reversible: let u : Cg,n,m → Hg,n,m denote the uni-

versal curve. Then the curve f : C → S can be recovered from the

pair (EC/S , φC/S) by taking the quotient φ∗
C/S(Cg,n,m)/PGL(N + 1) →

EC/S/PGL(N + 1).

Proposition 5.7. Let f : C → S be a stable curve of genus g. Sup-

pose that the induced morphism ϑf : S → M g factors through D(C0;P1).

Let (EC/S , φC/S) be the pair associated to f : C → S as in Remark 5.6.

Suppose that φC/S factors through K(C0;P1). Then there exists a uniquely

determined decomposition of f : C → S into an m/Γ(C−
0 ;Q)-pointed stable

curve f+ : C+ → S of genus g+, and an m/Γ(C−
0 ;Q)-pointed prestable

curve f− : C− → S of genus g−, where the second curve is locally isomor-

phic to the trivial curve C−
0 × S → S with respect to the étale topology.

Proof. Let Cg,n,0 → Hg,n,0 denote the universal curve, and CK →

K(C0;P1) its restriction to K(C0;P1). Since K(C0;P1) is reduced, Corollary

5.5 shows the existence of a unique subcurve C−K , which is locally isomorphic
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to the trivial curve C−
0 ×K(C0;P1) as an m/Γ(C−

0 ;Q)-pointed curve. Let CE
and C−E denote the respective pullbacks of CK and C−K to EC/S . By the defi-

nition of EC/S , one has f : C = CE/PGL(N +1)→ EC/S/PGL(N +1) = S,

and C− := C−E/PGL(N + 1) → S is the unique subcurve, which is locally

isomorphic to C−
0 × S → S as an m/Γ(C−

0 ;Q)-pointed curve.

§6. The moduli substack

After our discussion on the level of moduli spaces, let us now define

the corresponding substacks in the boundary of the moduli stack Mg of

Deligne-Mumford stable curves of genus g.

Definition 6.1. Let D̃(C0;P1) denote the preimage substack of the

scheme D(C0;P1) in Mg under the canonical map from Mg to Mg. The

stack D(C0;P1) is defined as the reduced stack underlying D̃(C0;P1). We

define the substack D×(C0;P1) as the reduction of the preimage of the open

and dense subscheme D×(C0;P1).

Remark 6.2. For any scheme S, the set of objects of the fibre category

D̃(C0;P1)(S) is equal to the set of those stable curves f : C → S of genus

g, such that the induced morphism ϑf : S → Mg factors through the

subscheme D(C0;P1). It follows from Proposition 5.7 that D(C0;P1) is

a moduli stack for curves f : C → Spec(k), which contain a subcurve

isomorphic to C−
0 , where the marked points on C−

0 correspond to nodes on

C, and that D(C0;P1) is its moduli space.

Lemma 6.3. There are isomorphisms of stacks

D(C0;P1) ∼= [K(C0;P1)/PGL(N + 1)],

and

D×(C0;P1) ∼=
[

K×(C0;P1)/PGL(N + 1)
]

.

In particular, both stacks are smooth and irreducible, and of dimension one.

Proof. It was shown by Edidin [E] that the moduli stack of stable curves

of genus g can be constructed as a quotient stack Mg
∼= [Hg,n,0/PGL(N +

1)]. Using this, the descriptions of D(C0;P1) and D×(C0;P1) follow imme-

diately from the definitions by standard arguments on Cartesian products

and quotient stacks. Since by Remark 5.3 the scheme K(C0;P1) is smooth

and irreducible as an atlas of D(C0;P1), so is D(C0;P1) itself.
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Remark 6.4. From Lemma 6.3 the following characterization of

D(C0;P1) can be derived. For any scheme S, the fibre category D(C0;P1)(S)

has as its objects such stable curves f : C → S of genus g, where the in-

duced morphism ϑf : S →Mg factors through D(C0;P1), and the morphism

φC/S : EC/S → Hg,n,0 from Remark 5.6 factors through K(C0;P1).

Notation 6.5. LetM′
g+,m denote the substack ofMg+,m which is the

reduction of the preimage of M ′
g+,m. Analogously, let M′

g+,m/Γ denote the

substack of M′
g+,m/Γ which is the reduction of the preimage of M ′

g+,m/Γ.

As in 2.5, there is a natural morphism ϑ :M′
g+,m →Mg, which is given by

glueing the trivial curve with fibre C−
0 to any m-pointed stable curve.

However, unlike the situation in the case of moduli spaces as described

in Lemma 3.4, there is no induced isomorphism between the moduli stacks

M′
g+,m/Γ and D(C0;P1), where Γ = Γ(C−

0 ;Q). It turns out that in order to

relate the two stacks, we need to consider a finite quotient ofM′
g+,m/Γ, see

Remark 6.7. Even then, there is no global morphism from this quotient to

D(C0;P1), so we must furthermore restrict ourselves to the following open

and dense substack.

Let us denote byM×

g+,m/Γ
the substack ofMg+,m/Γ, which is the reduc-

tion of the preimage of M×

g+,m/Γ
. Analogously we defineM×

g+,m
in Mg+,m.

By Lemma 4.15 and Proposition 4.16, there exists a PGL(N+ + 1) ×

Aut(C−
0 )-equivariant morphism Θ : H×

g+,n,m/Γ
→ Hg,n,0, where Aut(C−

0 )

acts trivially on H×

g+,n,m/Γ
. The following proposition provides a stack ver-

sion of the induced morphism M×

g+,m/Γ
→ D×(C0;P1).

Proposition 6.6. There is a morphism of Deligne-Mumford stacks

Λ :
[

H×

g+,n,m/Γ / PGL(N+ + 1)×Aut(C−
0 )

]

−→ D×(C0;P1)

where Aut(C−
0 ) acts trivially on H×

g+,n,m/Γ
, and Γ := Γ(C−

0 ;Q).

As abbreviations, we will from now on use A := Aut(C−
0 ), Γ :=

Γ(C−
0 ;Q) and P := PGL(N+ + 1). We will also denote the subschemes

K×(C0;P1) and D×(C0;P1) simply by K× and D×, respectively.

Remark 6.7. In [Z2], the moduli stack of m/Γ-pointed stable curves

has been constructed as a quotient stackMg+,m/Γ
∼= [Hg+,n,m/Γ/P ]. Thus
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there is also an isomorphism M×

g+,m/Γ
∼= [H×

g+,n,m/Γ
/P ]. By composing

the morphism Λ of Proposition 6.6 with the canonical quotient morphism

M×

g+,m/Γ
→ M×

g+,m/Γ
/A = [H×

g+,n,m/Γ
/P × A ], we obtain a morphism

of stacks M×

g+,m/Γ
→ Mg, which factors through D×(C0;P1), and which

induces the natural morphism M×

g+,m
→ D×(C0;P1) on the corresponding

moduli spaces.

Proof of Proposition 6.6. Viewing stacks as categories fibred in groupo-

ids over the category of schemes, the morphism Λ will be given as a functor

respecting the fibrations. Let a scheme S be fixed. Recall that an object

of [H×

g+,n,m/Γ
/P × A ](S) is a triple (E′, p′, φ′), where p′ : E′ → S is a

principal P × A-bundle, together with a P × A-equivariant morphism φ′ :

E′ → H×

g+,n,m/Γ
. Note that this data is equivalent to specifying a stable

curve f : C → S as an object of M×

g+,m/Γ
, with p

C/S
= p′ and φC/S = φ′,

compare Remark 5.6.

Viewing P × A as a subgroup of PGL(N + 1) as in Remark 4.14, we

can define an extension E of E′ by

E := (E′ × PGL(N + 1))/(P ×A)

as a principal PGL(N +1)-bundle p : E → S over S. By Lemma 5.2 we have

K× = Θ×(H×

g+,n,m
) ·PGL(N + 1) = Θ(H×

g+,n,m/Γ
) ·PGL(N + 1). Therefore

we can define a morphism

φ : E −→ K×

e 7−→ Θ(φ′(e′)) · γ,

where e ∈ E is represented by a pair (e′, γ) ∈ E′ × PGL(N + 1). This map

is indeed well-defined, as Θ◦φ′ is equivariant with respect to P ×A. For all

g ∈ PGL(N + 1) we have φ(eg) = φ(e)g for all e ∈ E, so φ is PGL(N + 1)-

equivariant. Hence (E, p, φ) ∈ [K×/PGL(N + 1)] (S) ∼= D×(C0;P1)(S),

where the last isomorphism holds by Lemma 6.3.

It is easy to see that this construction of extending principal bundles is

functorial. In this way we obtain for each scheme S a functor between the

fibre categories ΛS : [H×

g+,n,m/Γ
/P ×A](S)→ D×(C0;P1)(S). This in turn

defines the desired morphism of stacks Λ : [H×

g+,n,m/Γ
/P×A]→ D×(C0;P1)

in the usual way.

We now arrive at our central result on the one-dimensional boundary

strata of the moduli stack of Deligne-Mumford stable curves.
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Theorem 6.8. There is an isomorphism of Deligne-Mumford stacks

[

H×

g+,n,m/Γ
/ PGL(N+ + 1)×Aut(C−

0 )
]

∼= D×(C0;P1)

where Aut(C−
0 ) acts trivially on H×

g+,n,m/Γ
, and Γ := Γ(C−

0 ;Q).

Remark 6.9. (i) By the construction given in [Z2], there is an isomor-

phism of stacksM×

g+,m/Γ
∼= [H×

g+,n,m/Γ
/ PGL(N++1)]. Therefore Theorem

6.8 implies that generically the moduli substack D(C0;P1) is isomorphic

to the stack quotient M′
g+,m/Γ/Aut(C−

0 ). Note that since the action of

Aut(C−
0 ) on H ′

g+,n,m/Γ is trivial, this quotient is isomorphic to the prod-

uct of the moduli stack M′
g+,m/Γ with the classifying stack BAut(C−

0 )

of the group Aut(C−
0 ). In particular, even though there is an isomor-

phism D×(C0;P1) ∼= M×

g+,m/Γ
of the respective moduli spaces, the stacks

D×(C0;P1) and M′
g+,m/Γ are in general not isomorphic.

(ii) Theorem 6.8 is in fact the strongest result possible. Indeed, consider

a stable curve f : C → Spec(k), which is an object of D(C0;P1)(Spec(k)),

but not of D×(C0;P1)(Spec(k)). An extension of the isomorphism must fail,

since the splitting of the stack into a product would imply a corresponding

splitting of the automorphism group Aut(C), as explained in [Z1], and thus

contradict the definition of D×(C0;P1).

However, Theorem 6.8 can be extended to a certain degree to the closure

of D(C0;P1). Recall that D(C0;P1) is defined by a connected component

of the boundary stratum M
(3g−4)
g parameterizing stable curves with exactly

3g−4 nodes. So its closure contains stable curves with at least 3g−4 nodes.

For a full discussion and the construction of this extension, see [Z1].

Proof of Theorem 6.8. The proof is by explicit construction of an in-

verse morphism Ξ to the morphism Λ from Proposition 6.6 in such a way,

that the composition Λ ◦ Ξ is isomorphic to, and the composition Ξ ◦ Λ is

equal to the respective identity functor. As before, we are using the abbre-

viations A := Aut(C−
0 ), Γ := Γ(C−

0 ;Q) and P := PGL(N+ + 1), as well as

K× := K×(C0;P1) and D× := D×(C0;P1).

We need to construct for each object of D×(C0;P1)(S), for each scheme

S, its image in [H×

g+,n,m/Γ
/ PGL(N+ + 1) × Aut(C−

0 )](S) under Ξ. By

Lemma 6.3 we may assume that such an object is given by a triple (E, p, φ),

where p : E → S is a principal PGL(N + 1)-bundle, together with a
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PGL(N + 1)-equivariant morphism φ : E → K×. In a first step we will

construct from this data a principal P ×A-bundle p+ : E+ → S.

(i) Consider the restriction Cg,n,0 → K× of the universal stable curve

over Hg,n,0 to K×, and denote its pullback to E via φ by CE → E. Taking

quotients by the action of PGL(N + 1) induces a morphism

fS : CS := CE/PGL(N + 1) −→ E/PGL(N + 1) = S,

which is a stable curve of genus g over S. The induced morphism ϑf :

S → Mg factors through D×. Therefore, by Proposition 5.7, there exists

a unique subcurve f−
S : C−S → S of fS : CS → S, and an étale covering

u : S′ → S, such that the pullback f−
S′ : C−S′ → S′ of f−

S is isomorphic to the

trivial m-pointed stable curve C−
0 × S′ → S′. Let fS′ : CS′ → S′ denote the

pullback of fS .

Recall that in general C−
0 is not a stable curve, but only prestable. Sup-

pose that C−
0 decomposes into connected components C−

1 , . . . , C−
r , where

C−
i is an mi-pointed stable curve of some genus g−i for i = 1, . . . , r. This

induces a decomposition of f−
S′ : C−S′ → S′ into subcurves f−

S′,i : C−S′,i → S′.

Let S′
1,i, . . . , S

′
mi,i

denote the respective sections of the mi marked points on

C−S′,i. As in construction 4.4 there is a natural inclusion of projective bundles

P(f−
S′,i)∗(ωC

−

S′,i
/S′(S′

1,i+ · · ·+S′
mi,i

))⊗n →֒ P(fS′)∗(ωCS′/S′)⊗n, where we may

assume that n has been chosen large enough a priori. Put N−
i := (2g−i −

2 + mi)n− g−i + 1. There is a principal PGL(N−
i + 1)-bundle p−i : E−

i → S′

associated to the projective bundle P(f−
S′,i)∗(ωC

−

S′,i
/S′(S′

1,i + · · ·+ S′
mi,i

))⊗n.

This bundle is naturally a subbundle of the principal PGL(N+1)-bundle

pS′ : ES′ → S′ associated to the projective bundle P(fS′)∗(ωCS′/S′)⊗n,

which is equal to the pullback of the principal bundle p : E → S from

above. Indeed, there is a natural inclusion of P(f−
S′,i)∗(ωC

−

S′,i
/S′(S′

1,i + · · · +

S′
mi,i

))⊗n into P(fS′)∗(ωCS′/S′)⊗n, compare 4.4. Viewing A as a subgroup

of PGL(N−
i + 1), this induces an embedding of the respective quotients

with respect to the action of A, and therefore an inclusion E−
i /A →֒ ES′/A.

Recall from 3.1 that A is a normal subgroup of Aut(C−
0 ;Q), with quotient

Aut(C−
0 ;Q)/A = Γ. Since the embedding of the projective bundles is in-

variant with respect to reorderings of the labels of the marked points, i.e.

with respect to the action of Γ, there is thus even an induced embedding

E−
i /Aut(C0;Q) −֒→ ES′/A.
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For i = 1, . . . , r we define f−
Ei

: C−Ei
→ E−

i as the pullback of the sta-

ble curve f−
S′,i : C−S′,i → S′ along p−i . Each is an mi-pointed stable curve

of genus g−i over E−
i , with sections of marked points S̃′

1,i, . . . , S̃
′
mi,i

. The

projective bundle P(f−
Ei

)∗(ωC
−

Ei
/Ei

−(S̃′
1,i + · · ·+ S̃′

mi,i
))⊗n has a natural trivi-

alization, compare also Remark 5.6. Hence by the universal property of the

Hilbert scheme there is an induced morphism ϑ−
i : E−

i → Hg−i ,n,mi
. which

is PGL(N−
i + 1)-equivariant.

(ii) Now we want to put these constructions on the connected compo-

nents C−S′,i together for the whole prestable curve f−
S′ : C−S′ → S′. We define

P− := PGL(N−
1 +1)×· · ·×PGL(N−

r +1), and H
−

g−,n,m := Hg−1 ,n,m1
×· · ·×

Hg−r ,n,mr
. We obtain a principal P−-bundle p−S′ : E−

S′ := E−
i ×· · ·×E−

r → S′,

together with an induced P−-equivariant morphism ϑ−
S′ : E−

S′ → H
−

g−,n,m.

By construction, the induced morphism C−E1
×· · ·×C−Er

/P− → E−
S′/P−

on the quotients is just the m-pointed prestable curve f−
S′ : C−S′ → S′ of

genus g− over S′. Hence for the induced morphism ϑ′ : S′ → M
−

g−,m holds

ϑ′ ◦ p−S′ = π ◦ ϑ−
S′ , where π : H

−

g−,n,m → M
−

g−,m := Mg−1 ,m1
× · · · ×Mg−r ,mr

denotes the canonical quotient morphism. Note that by construction all

fibres of f−
S′ : C−S′ → S′ are isomorphic to C−

0 , hence ϑ′ is constant. So there

is in fact a commutative diagram

E−
S′

ϑ−

S′

−→ F ⊂ H
−

g−,n,m

p−

S′
↓ ↓ ↓ π

S′ −→ {[C−
0 ]} ⊂ M

−

g−,m

where F ∼= P−/A is the fibre of the canonical morphism H
−

g−,n,m →M
−

g−,m

over the point [C−
0 ] representing the isomorphism class of C−

0 .

Fix an embedding of C−
0 into P

N−

1 × · · · × P
N−

r , corresponding to a

point in H
−

g−,n,m, which shall also be denoted by [C−
0 ]. Note that the de-

composition of A = Aut(C−
0 ) into a product Aut(C−

1 ) × · · · × Aut(C−
r ) is

compatible with the decomposition of P−, since each connected component

of C−
0 contains at least one marked point. A standard computation now

shows that

E−
S′/A ∼= F × S′

is a trivial fibration. Indeed, we can define a trivializing section σ′ : S′ →

E−
S′/A as follows. For s ∈ S′ choose some e ∈ (p−S′)−1(s) ⊂ E−

S′ , such that
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ϑ−
S′(e) = [C−

0 ] ∈ F ⊂ H
−

g−,n,m. Under the identification F ∼= P−/A the

point [C−
0 ] corresponds to the class [id] of the identity id ∈ P−. Hence by

the P−-equivariance of ϑ−
S′, the point e is uniquely defined up to the action

of A, and thus σ′(s) := [e] ∈ E−
S′/A is well defined.

(iii) So far we have been working on an étale cover u : S′ → S. From

the construction of the section σ′ : S′ → E−
S′/A one sees that, if s1, s2 ∈ S′

are closed points such that u(s1) = u(s2), then σ′(s1) and σ′(s2) differ at

most by an element in Aut(C−
0 ;Q)/A = Γ. Thus we can define a section σ :

S → E−
S′/Aut(C−

0 ;Q). Using the inclusion E−
S′/Aut(C0;Q) →֒ ES′/A, and

composing it with the canonical quotient morphism, as well as the pullback

morphism ES′ → E, we finally obtain a section σ : S → E/P ×A. We now

define a subbundle E+ of the principal PGL(N + 1)-bundle p : E → S by

the following Cartesian diagram:

E+ //

p+

��

E

��
S σ

// E/P ×A.

It is easy to see that p+ : E+ → S is a principal P × A-bundle, and its

extension (E+ × PGL(N + 1))/(P × A) is isomorphic to E. Note that

this property makes this construction the inverse of the construction of

Proposition 6.6.

(iv) Recall that our aim is to construct an object (E+, p+, φ+) ∈

[H×

g+,n,m/Γ
/P×A](S). To do this, we stil need to define an P×A-equivariant

morphism φ+ : E+ → H×

g+,n,m/Γ
.

Let v : K ′ → K× be an étale cover as in Lemma 5.4, such that the

pullback fK ′ : CK ′ → K ′ of the universal curve Cg,n,0 → K× contains a

trivial subcurve f−
K ′ : C−

0 × K ′ → K ′. Let f+
K ′ : C+

K ′ → K ′ denote the

closure of the complement of this trivial subcurve. This is an m-pointed

stable curve of genus g+ over K ′. By construction, E+ ⊂ E is a subbundle,

which is stabilized under the action of the subgroup P in PGL(N + 1).

Thus the PGL(N + 1)-equivariant morphism φ : E → K× restricts to a

P -equivariant morphism φ+
K : E+ → K×.

Consider the pullback φ+
v : E+

v := v∗E+ → K ′ of this morphism along

v. We define an m-pointed stable curve f+
v : C+

v → E+
v of genus g+ as the

pullback of the stable curve f+
K ′ : C+

K ′ → K ′ along φ+
v . The projective bundle

P(f+
v )∗(ωC

+
v /E+

v
(S1 + · · · + Sm))⊗n on E+

v is isomorphic to the pullback of
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the projective bundle P(f+
K ′)∗(ωC

+

K′/K ′(S1 + · · · + Sm))⊗n on K ′ along the

morphism φ+
v . Here again S1, . . . , Sm and S1, . . . ,Sm denote the divisors of

the m marked points on C+
v and C+

K ′ , respectively.

(v) Note that there is a distinguished trivialization of the projective

bundle P(f+
K ′)∗(ωC

+

K′/K ′(S1 + · · · + Sm))⊗n over K ′. This can be seen as

follows. The curve fK ′ : CK ′ → K ′ has been constructed as the pullback

of the universal curve on Hg,n,0, restricted to K×. Therefore there exists

a natural embedding of the subcurve f+
K ′ : C+

K ′ → K ′ into P
N ×K ′ → K ′.

To distinguish a trivialization of P(f+
K ′)∗(ωC

+

K′/K ′(S1 + · · · + Sm))⊗n over

K ′, it suffices to distinguish a corresponding embedding of the subcurve

f+
K ′ : C+

K ′ → K ′ into P
N+

×K ′ → K ′.

Consider first the curve f× : C×
g+,n,m

→ H×

g+,n,m
, which is the restric-

tion of the universal curve on the full Hilbert scheme. By definition, this

curve is embedded into P
N+

× H×

g+,n,m
= Pf×

∗ (ω
C
×

g+,n,m
/H×

g+,n,m

(S1 + · · · +

Sm))⊗n, which in turn is embedded into P(u0)∗(ωC0/H×

g+,n,m

)⊗n = P
N ×

H×

g+,n,m
by the natural inclusion of Pf×

∗ (ω
C
×

g+,n,m
/H×

g+,n,m

(S1 + . . . +Sm))⊗n

in P(u0)∗(ωC0/H×

g+,n,m

)⊗n. Compare construction 4.4 for details and for the

notation. Note that the embedding is fibrewise independent of the ordering

of the labels of the marked points. We used this in Proposition 4.11 for

the construction of the morphism Θ× : H×

g+,n,m
→ Hg,n,0. Recall that Θ×

induces a morphism Θ : H×

g+,n,m/Γ
→ Hg,n,0, see Proposition 4.16.

For each closed point [C] ∈ Θ(H×

g+,n,m/Γ
) = Θ×(H×

g+,n,m
) representing a

stable curve C embedded into P
N , there is a unique subcurve isomorphic to

C−
0 , and thus a unique subcurve C+, which is an m/Γ-pointed stable curve of

genus g+, satisfying Θ([C+]) = [C]. Thus, the restriction of f+
K ′ : C+

K ′ → K ′

to the preimage T ′ of Θ(H×

g+,n,m/Γ
) has a distinguished embedding into

P
N+

× T ′ → T ′, namely the one given by the embedding of the universal

curve over H×

g+,n,m
. We want to extend this embedding to all of K ′, using

Lemma 5.2, which implies that K× = Θ(H×

g+,n,m/Γ
) · PGL(N + 1). Note

that if x, y ∈ K ′ are closed points with v(x) = v(y), then the fibres of f+
K ′

over the two points differ only by a reordering of the labels of their marked

points, which does not affect their embedding into P
N+

.

Let [C] ∈ T be a closed point representing a stable curve C embedded

into P
N , with a decomposition C = C+∪C−

0 as above, together with the em-

bedding of C+ into P
N+

. For an element γ ∈ PGL(N +1), the distinguished
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m/Γ-pointed stable subcurve of genus g+ of the translated embedded curve

γC is the curve γC+, by the uniqueness statement of Corollary 5.5. The

obvious embedding of γC+ into γP
N+

⊂ P
N is in fact independent of the

choice of γ.

Indeed, let γ′ ∈ PGL(N + 1) be another element such that γ′([C]) =

γ([C]). Then γ′ ◦ γ−1 ∈ Aut(C). By the definition of D×(C0;P1), this

group splits as Aut(C) = AutΓ(C+;Q) × A. Since the embedding of C+

into P
N+

is independent of the ordering of the labels of the marked points,

and since Aut(C+) = StabPGL(N++1)([C
+]), any elements of Aut(C) lying in

AutΓ(C+;Q) leave the embedding invariant. By construction 4.6, there is a

fixed embedding C−
0 ⊂ P

N−

⊂ P
N , and thus inclusions A ⊂ PGL(N−+1) ⊂

PGL(N + 1). Note that PGL(N− + 1) acts trivially on P
N+

outside the

intersection P
N+

∩P
N−

. However, elements of A fix by definition the marked

points of C−
0 , which span the intersection P

N+

∩ P
N−

as a subspace of P
N ,

and thus fix the subspace P
N+

. Hence elements of Aut(C) lying in A fix

the embedding of C+ as well.

Therefore, for all closed points [C] ∈ K×, representing an embedded

stable curve C ⊂ P
N , there is a well-defined embedding of the distinguished

m/Γ-pointed stable subcurve C+ ⊂ C into P
N+

, and so there exists an

embedding of f+
K ′ : C+

K ′ → K ′ into P
N+

×K ′ → K ′, as claimed.

(vi) So finally we obtain an m-pointed stable curve f+
v : C+

v → E+
v ,

together with a trivialization of the projective bundle P(f+
v )∗(ωC

+
v /E+

v
(S1 +

· · ·+ Sm))⊗n. By the universal property of the Hilbert scheme, this defines

a P -equivariant morphism φ̃+
v : E+

v → H×

g+,n,m
.

Recall that E+
v = v∗E+. If e1, e2 ∈ E get mapped to the same point in

E+, then by the construction of φ̃+
v there exists a permutation γ ∈ Γ, such

that γφ̃+
v (e1) = φ̃+

v (e2). Therefore there is a well-defined induced morphism

φ+ : E+ −→ H×

g+,n,m/Γ
,

which is P ×A-equivariant, with A acting trivially on H×

g+,n,m/Γ
.

(vii) Taking everything together, we obtain an object (E+, p+, φ+) of

the fibre category [H×

g+,n,m/Γ
/P × A](S). Note that up to the action of A

this triple just represents the m/Γ-pointed stable curve over S, which is

the closure of the complement of the étale trivial curve C−
0 × S → S in

fS : CS → S, as in Lemma 5.4.

Up to isomorphism, this construction of the reduction E+ of E is in-

verse to the extension used in the proof of Proposition 6.6. In fact one
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has the equality Ξ(Λ(E+, p+, φ+)) = (E+, p+, φ+), and an isomorphism

Λ(Ξ(E, p, φ)) ∼= (E, p, φ).

(viii) It finally remains to define the inverse functor Ξ for all schemes

S on morphisms ϕ : (E2, p2, φ2) → (E1, p1, φ1) in D×(C0;P1)(S). Such a

morphism is given by a morphism of principal PGL(N + 1)-bundles f :

E1 → E2, such that the diagram

E1

φ1

((QQQQQQQQQQQQQQQ

f

  B
B

B
B

B
B

B
B

p1

��1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

E2 φ2

//

p2

��

K×

S

commutes. We need to show that f restricts to a morphism of principal

P ×A-bundles f+ : E+
1 → E+

2 , where E+
1 and E+

2 are the P ×A-subbundles

of E1 and E2 constructed as above. Note that this restriction, if it exists,

necessarily satisfies φ1 = φ2 ◦ f+.

For i = 1, 2, the morphism φi factors as φi = Θ◦φ+
i , where Ξ(Ei, pi, φi)

= (E+
i , p+

i , φ+
i ). The injectivity of Θ : H×

g+,n,m/Γ
→ K×, which follows from

Proposition 4.16, implies the identity φ+
1 = φ+

2 ◦ f+, so f+ : E+
1 → E+

2 de-

fines indeed a morphism between the triples (E+
2 , p+

2 , φ+
2 ) and (E+

1 , p+
1 , φ+

1 ).

It is clear from the construction that this inverts the definition of Λ on mor-

phisms. Thus Ξ is shown to be an inverse functor to Λ, up to isomorphism,

provided that we can prove the existence of f+.

Clearly, such a restriction f+ : E+
1 → E+

2 exists, if and only if the

condition f(E+
1 ) ⊆ E+

2 is satisfied.

To do this, let us briefly recall our construction of Ξ on objects. Let

i = 1, 2. We used the morphism φi : Ei → K× to pull back the universal

curve Cg,n,0 → K× to Ei. This pullback contains a distinguished m-pointed

prestable curve f−
Ei

: C−Ei
→ Ei as a subcurve, which in turn induces a

morphism ϑ−
i : E−

i → H
−

g−,n,m. Strictly speaking, this is true only up to

étale coverings. However, the above inclusion condition is not affected by

étale pullbacks, so we may safely ignore this technical complication.

By the universal property of the Hilbert space, we have the identity

(∗) ϑ−
1 = ϑ−

2 ◦ f.
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We saw that ϑ−
i is in fact a morphism ϑ−

i : E−
i → F , where F ∼= P−/A

is the fibre of the quotient morphism H
−

g−,n,m → M
−

g−,m over the point

representing the isomorphism class of C−
0 . Again, we identify here the

image [id] of the unit id ∈ P−/A with the point [C−
0 ] representing the fixed

embedding of C−
0 .

There is a section σ′
i : S → E−

i /A, sending a point s ∈ S to the

equivalence class of points e ∈ E−
i in the fibre over s with ϑ−

i (e) = [id] ∈

F . This is well-defined because ϑ−
i is P−-equivariant. Let σi denote the

morphism from S to Ei/P ×A induced by σ′
i. Now the bundle E+

i is defined

as the unique subbundle of Ei, which fits into the Cartesian diagram

E+
i

//

p+
i

��

Ei

qi

��
S σi

// Ei/P ×A,

where qi : Ei → Ei/P × A denotes the natural quotient map. In other

words, for an element e ∈ Ei holds e ∈ E+
i if and only if qi(e) = σi(p

+
i (e)),

which in turn is equivalent to ϑ−
i (e) = [id] by the definition of σi. So the

relation f(E+
1 ) ⊆ E+

2 translates into the condition ϑ−
2 (f(e)) = [id] for all

e ∈ E+
1 . However, above we found the identity (∗) ϑ−

1 = ϑ−
2 ◦ f , which

concludes the proof.

Corollary 6.10. An isomorphism of stacks

D×(C0;P1) ∼=M
×

g+,n,m/Γ(C−

0 ;Q)

exists if and only if Aut(C−
0 ) is trivial.

Proof. This follows immediately from Theorem 6.8.

Corollary 6.11. There exists a natural morphism of moduli stacks

Ω : M×

g+,n,m/Γ(C−

0 ;Q)
−→ D×(C0;P1),

which is representable, surjective, finite and unramified, and of degree equal

to the order of the group Aut(C−
0 ).
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Proof. Using the notation from the proof of Theorem 6.8, the mor-

phism Ω is given as the composition of the canonical quotient morphism

[H×

g+,n,m/Γ
/P ]→ [H×

g+,n,m/Γ
/P ×A] with the isomorphism Λ from Proposi-

tion 6.6. Note that the quotient morphism is a representable, finite and un-

ramified surjective morphism. Since bothM×

g+,n,m/Γ(C−

0 ;Q)
and D×(C0;P1)

are smooth stacks of dimension one by Lemma 6.3, this implies that Ω is

étale as well.

Remark 6.12. Summarizing the above results, we obtain the following

commutative diagram:

H×

g+,n,m/Γ
= H×

g+,n,m/Γ
→֒ Hg,n,0

↓ ↓ ↓

M×

g+,m/Γ
← D×(C0;P1) →֒ Mg

↓ ↓ ↓

M×

g+,m/Γ
∼= D×(C0;P1) →֒ Mg.

Note that, since Aut(C−
0 ) acts trivially, there is also a canonical morphism

D×(C0;P1) ∼= [H×

g+,n,m/Γ
/P ×A ] −→ [H×

g+,n,m/Γ
/P ] ∼=M×

g+,m/Γ
,

which is of degree equal to 1
#Aut(C−

0 )
. In [Z2] it is shown that the moduli

stack of m/Γ-pointed stable curves is a quotient of the moduli stack of

m-pointed stable curves with respect to the action of Γ. This implies in

particular that there is a finite surjective morphisms

Ω : M×

g+,m
−→ D×(C0;P1),

which is of degree equal to the order of Aut(C−
0 ;Q). In general, this mor-

phism is not representable, see [Z1].

§7. The case of genus three

To illustrate the description of one-dimensional boundary substacks of

the moduli space of Deligne-Mumford stable curves as given above, we want

to consider the case of genus g = 3 in detail.

Remark 7.1. (i) There are exactly five different stable curves of genus

g = 3 with 3g − 3 = 6 nodes. We denote them by C1, . . . , C5, in the same

order as they are listed in Faber’s paper [F]. Schematically they can be

represented as in the following pictures.
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C1 :

P1

P5

P4

P3

P6

P2

P1

P2

P5

P4

P6

P3

C2 :

P4

P2

P5

P6

P3

P1

C3 :

C4 :

P1

P3

P4

P2 P5
P6

P1

P2

P3

P4

P5

P6

C5 :

(ii) There are eight different types of stable curves of genus 3 with

exactly 5 nodes. Following Faber’s notation, we denote them by (a), . . . , (h).

They are represented by the pictures below.

P2

P1

(a) :

P3

P4 P5

0

0

0

P2

P1

P5P3 P4

(b) :

0

0

0

(c) :

P2

P4

P3

P1

P5

0

0

0

(d) :

P1

P2

P4

P3

P50

0
0

P5

(e) : P1

P2

P3

P4

0

0

0

P1

P2

P3

P4

P5

(f) :

0
0

0

1

P1

P2

P3

P4

P5

(g) :

0

0

0

1

P2

P4

P3

P1

P5

(h) : 0

0
1

0

The number next to an irreducible component gives its geometric genus.
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Remark 7.2. The type of a curve containing 3g − 4 = 5 nodes does

not vary within a connected component D of the boundary stratum M
(5)
3 .

Recall that each such component can be written as D = D(Ci ;Pj) for some

1 ≤ i ≤ 5 and 1 ≤ j ≤ 6. The following table lists all possible presentations

for all connected components.

D D(Ci ;Pj) M ′
g+,m deg(Ω) Aut(C−

i ) Γ(C−
i ;Q)

(a) D(C1;P2,5) M ′
1,2 4 Z2 Σ2

D(C2;P3,4) M ′
1,2 4 Z2 Σ2

(b) D(C2;P5,6) M0,4 12 Z2 Σ3

(c) D(C1;P3,4) M ′
1,2 8 Z2 × Z2 Σ2

D(C3;P2,4,6) M ′
1,2 8 Z2 × Z2 Σ2

(d) D(C4;P3,4) M0,4 8 id D8

D(C5;P1,...,6) M0,4 8 id D8

(e) D(C2;P2) M ′
1,2 4 Z2 Σ2

D(C4;P1,2,5,6) M ′
1,2 4 Z2 Σ2

(f) D(C1 : P1,6) M1,1 4 Z2 × Z2 id
(g) D(C2;P1) M1,1 4 Z2 × Z2 id
(h) D(C3;P1,3,5) M1,1 8 D8 id

The first column specifies the connected component D by indicating the type

of a general point. The second column lists all possible choices of curves

Ci and nodes Pj to represent the respective component. More than one

subscript, like for example P2,5, indicates that both nodes P2 and P5 produce

the same component D. The third column gives the moduli scheme M ′
g+,m

covering D as in Lemma 3.4, and the fourth column states the degree of the

finite morphism Ω :M×

g+,m
→ D×(Ci;Pj) as in Remark 6.12. Columns five

and six give the corresponding group of automorphisms Aut(C−
i ) and the

subgroup of permutations Γ(C−
i ;Q) ⊂ Σm, respectively. Here, D8 denotes

the dihedral group of order 8.

Example 7.3. Consider the stable curve C2. There are two pairs of

equivalent nodes on C2, in the sense that for each pair there exists an au-

tomorphism of C2 interchanging the two nodes. Therefore deformations,

which preserve all but one node of C2, distinguish four different connected

components D of M
(5)
3 . Let us have a closer look at all four of those com-

ponents. In particular, we want to apply the isomorphism from Theorem



THE ONE-DIMENSIONAL STRATUM IN THE BOUNDARY OF Mg 65

6.8 to the corresponding moduli substacks D. We quote from [Z1] to supply

additional information about possible extensions of this isomorphism.

(i) We consider first the connected component D = D(C2;P1). A

general point of this component represents a curve of type (g). Since

m = 1, all automorphism groups split. In particular, we have the equal-

ity D×(C2;P1) = D(C2;P1). Thus we have an isomorphism D(C2;P1) ∼=

M1,1/Z2×Z2 by Theorem 6.8. In fact, in this case the isomorphism extends

to the respective closures D(C2;P1) ∼=M1,1/Z2 × Z2.

(ii) Consider now D = D(C2;P2), where a general point of this com-

ponent represents a curve of type (e). Note that for all points [C+] ∈

M ′
1,2, representing a stable curve C+ with two marked points, the auto-

morphism group Aut(C) splits. Thus there is an isomorphism D(C2;P2) ∼=

M′
1,2/Σ2

/Z2. It can be extended to a partial compactification of D×(C2;P2)

over the point [C2], but not to its closure.

(iii) The case of D = D(C2;P3) is analogous to case (ii). Note that

this is the same connected component as D(C2;P4), where a general point

represents a curve of type (a). There is also an isomorphism D(C2;P3) ∼=

M′
1,2/Σ2

/Z2, which can be extended to a partial compactification, but not

to all of the closure.

(iv) Finally, consider the connected component D = D(C2;P5) =

D(C2;P6), with general point of type (b). Again we have an equality

D×(C2;P5) = D(C2;P5). There is an isomorphism of stacks D(C2;P5) ∼=

M0,4/Σ3
/Z2. This isomorphism cannot be extended any further. However,

one can find a natural reduced substack M̂2,1 of the moduli stack M2,1 of

1-pointed stable curves of genus 2, so that for the closure of D(C2;P5) there

is an isomorphism D(C2;P5) ∼= M̂2,1/Z2. For full details, see [Z1].

Example 7.4. To provide an example, where the isomorphism of The-

orem 6.8 does not hold for all of D, look at the connected component D =

D(C3;P2). A general point represents a curve of type (c). If [C+] ∈ M ′
1,2

represents a stable curve C+ with two marked points, which are in a special

position, then the exact sequence of automorphism groups of Lemma 3.2

does not split. There is an isomorphism D×(C3;P2) ∼= M
×

1,2/Σ2
/Z2 × Z2,

but it cannot be extended any further.
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