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AUTOMORPHISMS OF COXETER GROUPS AND

LUSZTIG’S CONJECTURES FOR HECKE ALGEBRAS

WITH UNEQUAL PARAMETERS

CÉDRIC BONNAFÉ

Abstract. Let (W,S) be a Coxeter system, let G be a finite solvable group

of automorphisms of (W,S) and let ϕ be a weight function which is invariant

under G. Let ϕG denote the weight function on W G obtained by restriction

from ϕ. The aim of this paper is to compare the a-function, the set of Du-

flo involutions and the Kazhdan-Lusztig cells associated with (W, ϕ) and to

(W G, ϕG), provided that Lusztig’s Conjectures hold.

Let (W,S) be a Coxeter system, with S finite, let Γ be a totally ordered

abelian group and let ϕ : W → Γ be a weight function such that ϕ(s) > 0

for all s ∈ S.

Let G be a group of automorphisms of W stabilizing S and ϕ. We

denote by ϕG the restriction of ϕ to the fixed points subgroup W G. If

ω ∈ S/G (the orbit set) is such that Wω (= 〈ω〉) is finite, we denote by

sω the longest element of the standard parabolic subgroup Wω and we set

SG = {sω | ω ∈ S/G and Wω is finite}. Then it is well-known that (W G, SG)

is a Coxeter system and that ϕG : W G → Γ is a weight function (such that

ϕG(sω) > 0 for all ω ∈ S/G).

With the datum (W,S,Γ,ϕ) are associated a Hecke algebra H(W,S,Γ,ϕ)

over the ring Z[Γ], a Kazhdan-Lusztig basis (Cw)w∈W of H(W,S,Γ, ϕ),

equivalence relations ∼L, ∼R and ∼LR and two functions a : W → Γ

and ∆ : W → Γ (see [L]). We set D = {w ∈ W | a(w) = ∆(w)}. With the

datum (W G, SG,Γ, ϕG), we associate similarly ∼G

L, ∼G

R, ∼G

LR, aG, ∆G and

DG. The main result of this paper is the following:

Theorem A. Assume that G is a finite solvable group and that

Lusztig’s conjectures (P1), (P2), (P3), (P4) in [L, Chapter 14] hold for the

datum (W H , SH ,Γ, ϕH) for all subgroups H of G. Let x, y ∈ W G. Then:
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(a) aG(x) = a(x).

(b) DG = D ∩ W G.

(c) Assume moreover that Lusztig’s Conjecture (P13) in [L, Chapter 14]

hold for the datum (W H , SH ,Γ, ϕH) for all subgroups H of G. If

? ∈ {L,R}, then x ∼? y if and only if x ∼G

? y.

(d) Assume moreover that Lusztig’s Conjectures (P9) and (P13) in [L,

Chapter 14] hold for the datum (W H , SH ,Γ, ϕH) for all subgroups H

of G. Then x ∼LR y if and only if x ∼G

LR y.

Remark . If G is not solvable and if we assume moreover that Lusztig’s

conjecture (P12) in [L, Chapter 14] holds, then the statements (a), (b) and

(c) of Theorem A hold. It is probable that (d) also holds, but the proof

should rely on a really different argument than the one presented here.

Indeed, using (P12) and a theorem of Meinolf Geck [G], one can reduce the

problem to the case where Wω is finite for all G-orbits ω in S. Then, since

the automorphism groups of irreducible finite Coxeter systems are solvable,

one can assume that G is solvable and apply Theorem A above.

The proof of this Theorem makes essential use of reduction modulo p.

Indeed, an easy induction argument reduces immediately the problem to

the case where G is a p-group for some prime number p. The main ingre-

dient is then the following: the natural stupid map H(W G, SG,Γ, ϕG) →

H(W,S,Γ, ϕ)G is not a morphism of algebras in general. However, if we

denote by BrG(H(W,S,Γ, ϕ)) the quotient of H(W,S,Γ, ϕ)G by the two-

sided ideal
∑

H<G TrG
H(H(W,S,Γ, ϕ)H ) (Brauer’s quotient, see for instance

[T, Page 91]), then:

Proposition B. Assume that G is a finite p-group. Then the natu-

ral linear map H(W G, SG,Γ, ϕG) → BrG(H(W,S,Γ, ϕ)G) is a morphism of

algebras whose kernel is generated by p. Moreover, it preserves the Kazhdan-

Lusztig basis.
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§1. The set-up

1.A. The group (W, S)

Let (W,S) be a Coxeter system (with S finite), let ℓ : W → N denote the

length function, let Γ be a totally ordered abelian group and let ϕ : W → Γ

be a weight function [L, §3.1] that is, a map such that ϕ(ww′) = ϕ(w)+ϕ(w′)

whenever ℓ(ww′) = ℓ(w) + ℓ(w′).

Let A be the group algebra Z[Γ]: we will use an exponential notation

for A, namely A =
⊕

γ∈Γ Zeγ , where eγ · eγ′

= eγ+γ′

for all γ, γ′ ∈ Γ. If

a =
∑

γ∈Γ aγeγ ∈ A, we denote by deg a (resp. val a) the degree (resp. the

valuation) of a, that is, the element γ of Γ such that aγ 6= 0 and which is

maximal (resp. minimal) for this condition (by convention, deg 0 = −∞ and

val 0 = +∞).

We shall denote by H the Hecke algebra associated with the datum

(W,S,Γ, ϕ). It is a free A-module, with standard basis (Tw)w∈W , and the

multiplication is entirely determined by the following rules:

{

TwTw′ = Tww′ if ℓ(ww′) = ℓ(w) + ℓ(w′);

(Ts − eϕ(s))(Ts + e−ϕ(s)) = 0 if s ∈ S.

Note that this implies that Tw is invertible in H for all w ∈ W . This algebra

is endowed with an A-anti-linear involution ¯ : H → H which is determined

by the following properties:

{

eγ = e−γ if γ ∈ Γ,

Tw = T−1
w−1 if w ∈ W .

By [L, Theorem 5.2], there exists a unique element Cw ∈ H such that

{

Cw = Cw,

Cw ≡ Tw mod H<0,

where H<0 =
⊕

w∈W A<0Tw, and where A<0 =
⊕

γ<0 Zeγ .

Let τ : H → A be the unique A-linear map such that

τ(Tw) =

{

1 if w = 1,

0 otherwise.

If w ∈ W , we set

∆(w) = − deg τ(Cw),
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and we denote by nw the coefficient of e−∆(w) in τ(Cw). Finally, if x, y ∈ W ,

we write

CxCy =
∑

z∈W

hx,y,zCz,

where the hx,y,z’s are in A and satisfy hx,y,z = hx,y,z.

1.B. The group (W G, SG)

Let G be a group of automorphisms of W such that, for all σ ∈ G, we

have

σ(S) = S and ϕ ◦ σ = ϕ.

If I is a subset of S, we denote by WI the (standard parabolic) subgroup of

W generated by I. If ω ∈ S/G is such that Wω is finite, we denote by sω

the longest element of Wω. We denote by SG the set of sω, where ω runs

over the set of G-orbits in S such that Wω is finite. Recall the following

proposition [H, Corollary 3.5 and Proof of Proposition 3.4]:

Proposition 1.1. (W G, SG) is a Coxeter system. Let ℓG : W G → N

denote the corresponding length function and let x, y ∈ W G. Then ℓ(xy) =

ℓ(x) + ℓ(y) if and only if ℓG(xy) = ℓG(x) + ℓG(y).

Let

ϕG : W G −→ Γ
w 7−→ ϕ(w)

denote the restriction of ϕ to W G. Then, by Proposition 1.1,

(1.2) ϕG is a weight function.

Therefore, we can define HG, HG,<0, T G

w , CG

w, τG, ∆G, nG

z and hG

x,y,z with

respect to (W G, SG,Γ, ϕG) in a similar way as H, H<0, Tw, Cw, τ , ∆, nz

and hx,y,z were defined with respect to (W,S,Γ, ϕ).

§2. Brauer quotient

Hypothesis and notation. From now on, and until the end of Sec-

tion 3, we fix a prime number p and we assume that G is a finite p-group.



AUTOMORPHISMS OF COXETER GROUPS AND LUSZTIG’S CONJECTURES 157

2.A. Definition

For all the facts contained in this subsection, the reader may refer to

[T, §11]: even though this reference deals only with O-algebras (where O is

a commutative complete local noetherian Zp-algebra) which are O-modules

of finite type, the proofs can be applied almost word by word to our slightly

more general situation.

Let R be a commutative ring and let M be an RG-module. If H is a

subgroup of G, we set

TrG
H : MH −→ MG

m 7−→
∑

σ∈[G/H]

σ(m).

Here, [G/H] denotes a set of representatives classes in G/H. We also define

Tr(M) =
∑

H<G

TrG
H(MH).

This is an R-submodule of MG, containing pMG. The Brauer quotient

BrG(M) is then defined by

BrG(M) = MG/Tr(M)

and we denote by brG : MG → BrG(M) the canonical map.

Lemma 2.1. Assume that pR 6= R and that M admits an R-basis B

which is permuted by the action of G. Then BrG(M) is a free R/pR-module

with basis (brG(b))b∈BG .

If M is an R-algebra and if G acts on M by automorphisms of algebra,

then Tr(M) is a two-sided ideal of MG and so BrG(M) is an R-algebra. Of

course, brG is a morphism of algebras in this case. We recall the following

result:

Lemma 2.2. Assume that pR 6= R, that M is an R-algebra, that G acts

on M by automorphisms of algebra, that M admits an R-basis B which is

permuted by G and let us write ab =
∑

c∈B λa,b,cc for a, b ∈ B. If a, b ∈ BG,

then

brG(a) brG(b) =
∑

c∈BG

π(λa,b,c) brG(c),

where π : R → R/pR is the canonical morphism.
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2.B. Applications to Hecke algebras

Since G stabilizes S and ϕ, it also acts on H by automorphisms of

A-algebra (by σ(Tw) = Tσ(w) for all w ∈ W ). Moreover, it permutes the

standard basis (Tw)w∈W , so it follows from Lemma 2.1 that:

Corollary 2.3. (brG(Tw))w∈W G is an Fp[Γ]-basis of the Fp[Γ]-algebra

BrG(H).

Now, let

canG : HG −→ BrG(H)

be the unique A-linear map such that

canG(T G

w ) = brG(Tw)

for all w ∈ W G. The main result of this subsection is the following:

Proposition 2.4. The map canG : HG → BrG(H) is a surjective mor-

phism of A-algebras whose kernel is pHG.

Proof. It follows from Corollary 2.3 that canG is surjective and that

Ker(canG) = pHG. It remains to show that canG is a morphism of algebras.

First, note that if x, y ∈ W G satisfy ℓG(xy) = ℓG(x) + ℓG(y), then ℓ(xy) =

ℓ(x) + ℓ(y) (by Proposition 1.1) and so

canG(T G

x T G

y ) = canG(T G

xy) = brG(Txy)

= brG(TxTy) = brG(Tx) brG(Ty) = canG(T G

x ) canG(T G

y ).

So it remains to show that, if ω is a G-orbit in S such that Wω is finite,

then

(?) brG((Tsω
− eϕ(sω))(Tsω

+ e−ϕ(sω))) = 0.

Since sω is the longest element of Wω, we have [L, Corollary 12.2]

Csω
=

∑

w∈Wω

eϕ(w)−ϕ(sω)Tw

and [L, Theorem 6.6 (b)]

(Tsω
− eϕ(sω))Csω

= 0.

But (Wω)G = {1, sω}. Since ϕ(w) = ϕ(σ(w)) for all w ∈ Wω and all σ ∈ G,

we have

Csω
≡ Tsω

+ e−ϕ(sω) mod Tr(H).

This completes the proof of (?).
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Corollary 2.5. Fp ⊗Z HG ≃ BrG(H).

Corollary 2.6. If h ∈ HG and h′ ∈ HG are such that canG(h) =

brG(h′), then τG(h) ≡ τ(h′) mod pA.

Proposition 2.7. If w ∈ W G, then canG(CG

w) = brG(Cw).

Proof. Let C = canG(CG

w) − brG(Cw). Then

C = C.

where : BrG(H) → BrG(H) is defined by brG(h) = brG(h) for all h ∈ HG.

Moreover, there exists a family (αw)w∈W G of elements of Fp ⊗Z A<0 such

that

C =
∑

w∈W G

αw brG(Tw).

Assume that C 6= 0 and let w be maximal (for the Bruhat order) such that

αw 6= 0. Then

C = αw brG(T−1
w−1) +

∑

x∈W G

x 6=w

αx brG(T−1
x−1).

Therefore, the coefficient of brG(Tw) in C is equal to αw. But C = C, so

αw = αw. Since αw 6= 0 and αw ∈ Fp ⊗Z A<0, we get a contradiction. So

C = 0, as desired.

Corollary 2.8. If x, y, z ∈ W G, then hx,y,z ≡ hG

x,y,z mod pA and

τ(Cz) ≡ τG(CG
z ) mod pA.

Proof. This follows immediately from Proposition 2.7, from Lemma 2.2

and from Corollary 2.6.

§3. Lusztig’s conjectures

3.A. Cells

With (W,S,Γ, ϕ) are associated preorder relations 6L, 6R and 6LR on

W as defined in [L, §8.1]. The associated equivalence relations are denoted

by ∼L, ∼R and ∼LR respectively. The equivalence classes for the relation

∼L (respectively ∼R, respectively ∼LR) are called left (respectively right,
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respectively two-sided) cells of W (or for (W,S,Γ, ϕ) if it is necessary to

emphasize the weight function).

Similarly, with (W G, SG,Γ, ϕG) are associated preorder relations 6G

L,

6G

R and 6G

LR on W . The associated equivalence relations are denoted by

∼G

L, ∼G

R and ∼G

LR respectively. We shall compare in this section the (left,

right or two-sided) cells of W and the ones of W G.

3.B. Boundedness

Following Lusztig [L, §13.2], we say that (W,S,Γ, ϕ) is bounded if there

exists γ0 ∈ Γ such that deg τ(TxTyTz) 6 γ0 for all x, y and z ∈ W . Lusztig

has conjectured [L, Conjecture 13.4] that (W,S,Γ, ϕ) is always bounded.

Hypothesis. From now on, and until the end of this paper, we assume

that (W,S,Γ, ϕ) and (W G, SG,Γ, ϕG) are bounded. Recall that p is a prime

number and that G is a finite p-group.

Remark . A finite group is of course bounded. An affine Weyl group is

also bounded [L, §13.2].

By [L, Lemma 13.5 (b)], this hypothesis allows us to define Lusztig’s

function a : W → Γ by

a(z) = max
x,y∈W

(

deg hx,y,z

)

.

If x, y, z ∈ W , we shall denote by γx,y,z−1 the unique element of Z such

that

hx,y,z ≡ γx,y,z−1ea(z) mod
(

⊕

γ<a(z) Zeγ
)

.

Similarly, we define a function aG : W G → Γ and elements γG

x,y,z−1 of Z (for

x, y, z ∈ W G).

Let D = {z ∈ W | a(z) = ∆(z)}. If I ⊆ S, we denote by aI the

analogue of the function a but defined for WI instead of W : if z ∈ WI , then

aI(z) = max
x,y∈WI

deg hx,y,z.

Lusztig’s Conjectures for (W,S,Γ, ϕ). With the above notation,

we have:

P 1. If z ∈ W , then a(z) 6 ∆(z).

P 2. If d ∈ D and if x, y ∈ W satisfy γx,y,d 6= 0, then x = y−1.
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P 3. If y ∈ W , then there exists a unique d ∈ D such that γy−1,y,d 6= 0.

P 4. If z′ 6LR z, then a(z) 6 a(z′). Therefore, if z ∼LR z′, then a(z) =

a(z′).

P 5. If d ∈ D and y ∈ W satisfy γy−1,y,d 6= 0, then γy−1,y,d = nd = ±1.

P 6. If d ∈ D, then d2 = 1.

P 7. If x, y, z ∈ W , then γx,y,z = γy,z,x.

P 8. If x, y, z ∈ W satisfy γx,y,z 6= 0, then x ∼L y−1, y ∼L z−1 and

z ∼L x−1.

P 9. If z′ 6L z and a(z′) = a(z), then z′ ∼L z.

P 10. If z′ 6R z and a(z′) = a(z), then z′ ∼R z.

P 11. If z′ 6LR z and a(z′) = a(z), then z′ ∼LR z.

P 12. If I ⊂ S and z ∈ WI , then aI(z) = a(z).

P 13. Every left cell C of W contains a unique element d ∈ D. If y ∈ C,

then γy−1,y,d 6= 0.

P 14. If z ∈ W , then z ∼LR z−1.

P 15. If x, x′, y, w ∈ W are such that a(y) = a(w), then
∑

y′∈W

hw,x′,y′ ⊗Z hx,y′,y =
∑

y′∈W

hy′,x′,y ⊗Z hx,w,y′

in A ⊗Z A.

Let us recall the following result:

Lemma 3.1. Assume that Lusztig’s Conjectures (P1), (P2), (P3) and

(P4) hold for (W,S,Γ, ϕ). Then:

(a) Lusztig’s Conjectures (P5), (P6), (P7) and (P8) hold for (W,S,Γ, ϕ).

(b) If d ∈ D, then γd,d,d = nd = ±1.

(c) If x ∈ W and if d ∈ D is the unique element of W such that γx−1,x,d 6=

0, then γx,d,x−1 = ±1.

Proof. (a) is proved in [L, Chapter 14].

(b) By (P6), we get that d2 = 1. By (P3), there exists a unique e ∈ D

such that γd,d,e 6= 0. By (P5), this implies that γd,d,e = ne = ±1. By (P7),

this implies that γe,d,d = ±1. By (P2), we get that e = d−1 = d.

(c) If x ∈ W and if d ∈ D is the unique element of W such that

γx−1,x,d 6= 0, then γx,d,x−1 = γx−1,x,d = ±1 by (P7) and (P5).
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We can now state the main result of this paper (from which the Theorem

A in the introduction follows easily by an induction argument on the order

of G):

Theorem 3.2. Recall that G is a finite p-group. Assume that Lusztig’s

conjectures (P1), (P2), (P3) and (P4) hold for both (W,S,Γ, ϕ) and (W G, SG,

Γ, ϕG). Let x and y be two elements of W G. Then:

(a) aG(x) = a(x).

(b) DG = D ∩ W G (= DG).

(c) Assume moreover that Lusztig’s Conjecture (P13) holds for both (W,S,

Γ, ϕ) and (W G, SG,Γ, ϕG). Then x ∼G

L y (respectively x ∼G

R y) if and

only if x ∼L y (respectively x ∼R y).

(d) Assume moreover that Lusztig’s Conjectures (P9) and (P13) hold for

both (W,S,Γ, ϕ) and (W G, SG,Γ, ϕG). Then x ∼G

LR y if and only if

x ∼LR y.

Proof. (a) By Corollary 2.8, we have, for all x, y, z ∈ W G:

(1) If γx,y,z−1 6≡ 0 mod p, then a(z) 6 aG(z).

(2) If γG

x,y,z−1 6≡ 0 mod p, then aG(z) 6 a(z).

Now let z ∈ W G. By (P3), there exists a unique d ∈ D such that γz−1,z,d 6= 0.

From the uniqueness, we get that d ∈ DG ⊆ W G. By Lemma 3.1 (c), we

get that γz,d,z−1 = ±1. So a(z) 6 aG(z) by (1).

The same argument shows that there exists d ∈ DG such that γG

z,d,z−1 =

±1, so (2) can be applied to get that aG(z) 6 a(z). The proof of (a) is

complete.

Before going further, let us state the following consequence of (a):

Corollary 3.3. If x, y, z ∈ W G, then γx,y,z ≡ γG

x,y,z mod p.

Proof. This follows easily from Theorem 3.2 (a) and Corollary 2.8.

(b) Let d ∈ DG. By Lemma 3.1 (b), we have nd = ±1. Moreover, by

Corollary 2.8, we have

τ(Cd) ≡ τG(CG

d ) mod pA.
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This shows that the coefficient of e−∆(d) in τG(CG

d ) is non-zero. So ∆G(d) 6

∆(d). But, by (P1),

aG(d) 6 ∆G(d) 6 ∆(d) = a(d).

So aG(d) = ∆G(d) = ∆(d) = a(d) by (a). In particular, d ∈ DG.

The same argument shows that, if d ∈ DG, then ∆(d) 6 ∆G(d) and

again we get similarly that d ∈ D. The proof of (b) is complete.

(c) Let d (respectively e) be the unique element of D such that γx−1,x,d =

±1 (respectively γy−1,y,e = ±1). By uniqueness, we have d, e ∈ DG = DG.

By Corollary 3.3, we also get γG

x−1,x,d 6= 0 and γG

y−1,y,e 6= 0. Therefore, by

(P8), we have

x ∼L d, x ∼G

L d, y ∼L e and y ∼G

L e.

But, by (P13), we have x ∼L y (respectively x ∼G

L y) if and only if d = e.

This proves (c).

(d) Recall that (P9) implies (P10). Moreover, it follows easily from

(P4), (P9) and (P10) that ∼LR (respectively ∼G

LR) is the equivalence relation

generated by ∼L and ∼R (respectively ∼G

L and ∼G

R). So (d) follows from

(c).

3.C. Asymptotic algebra

Let J (respectively JG) be the free abelian group with basis (tw)w∈W

(respectively (tG

w)w∈W ).

Hypothesis. In this subsection, and only in this subsection, we as-

sume moreover that Lusztig’s Conjectures (P1), (P2), . . . , (P15) hold for

(W,S,Γ, ϕ) and (W G, SG,Γ, ϕG).

By [L, §18.3], J (respectively JG) can be endowed with a structure of

associative ring, the multiplication being defined by txty =
∑

z∈W γx,y,z−1tz
(respectively tG

x tG

y =
∑

z∈W G γG

x,y,z−1t
G

z ). Then it follows immediately from

Corollary 3.3 and from Lemma 2.2 that:

Theorem 3.4. Assume that G is a finite p-group and that Lusztig’s

Conjectures (P1), (P2), . . . , (P15) hold for (W,S,Γ, ϕ) and (W G, SG,Γ, ϕG).

Then

Fp ⊗Z JG ≃ BrG(J).
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§4. Open questions

The results of this paper should be compared with [L, Chapter 14],

where the quasi-split case is considered: more particularly, see [L, Lemmas

16.5, 16.6 and 16.14]. This leads to the following questions:

• Does Theorem A (d) hold if G is not solvable? It is probably the case,

but a proof should rely on completely different arguments. For the

statements (a), (b) and (c), see the remark after Theorem A in the

introduction.

• Let z ∈ W G. Is it true that ∆(z) 6 ∆G(z)? See [L, Lemma 16.5] for

the quasi-split case.

• Let x, y ∈ W G be such that x 6G

L y. Is it true that x 6L y? See [L,

16.13 (a)] for the quasi-split case.
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