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NORMALITY, QUASINORMALITY AND PERIODIC

POINTS

JIANMING CHANG

Abstract. Let M ≥ 1 be a positive number. Let F be a family of holomorphic

functions f in some domain D ⊂ C for which there exists an integer k = k(f) ≥

2 such that |(fk)′(ζ)| ≤ Mk for every periodic point ζ of period k of f in D. We

show first that F is quasinormal of order at most one in D. This strengthens

a result of W. Bergweiler. Secondly, for the case M = 1, we prove that F is

normal in D if there exists a positive number K < 3 such that |f ′(η)| ≤ K

for each f ∈ F and every fixed point η of f in D. This improves a result of

M. Essén and S. J. Wu. We also construct an example which shows that the

condition |f ′(η)| ≤ K < 3 can not be replaced by |f ′(η)| < 3.

§1. Introduction and main results

Both the concepts of normal families and quasinormal families were

introduced by Montel. Let D ⊂ C be a domain and let F be a family of

holomorphic functions in D. Then

(i) F is said to be normal in D in the sense of Montel if each sequence

{fn} ⊂ F contains a subsequence which converges locally uniformly

in D to a holomorphic function or diverges locally uniformly in D to

∞. See [15], [19], [21].

(ii) F is said to be quasinormal in D in the sense of Montel if for every

sequence {fn} ⊂ F there exists a subsequence {fnj
} and a finite set

E ⊂ D such that {fnj
} converges locally uniformly in D \ E to a

holomorphic function or ∞. Furthermore, if there exists a smallest

integer q such that the cardinality |E| ≤ q for all exceptional sets E,

then F is called quasinormal of order q. See [19].
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Thus a normal family is quasinormal of order 0. In recent years, there

have been many interesting results on (quasi)normal families that concern

the existence of periodic points.

Let D ⊂ C be a domain and let f : D → C be a holomorphic function.

Then the iterates fn : Dn → C of f are defined inductively by D1 = D,

f1 = f and Dn = f−1(Dn−1) = {z ∈ D : f(z) ∈ Dn−1}, fn = fn−1 ◦ f for

n ≥ 2. Note that Dn+1 ⊂ Dn ⊂ D for all n ∈ N. See [3], [7], [8], [11], [13],

[14].

Let z0 ∈ D. If there exists a positive integer p ∈ N such that z0 ∈
Dp, fp(z0) = z0 and f j(z0) 6= z0 for all 1 ≤ j ≤ p − 1, then z0 is

said to be a periodic point of f of period p, and the corresponding cy-

cle {z0, f(z0), . . . , f
p−1(z0)} ⊂ D is said to be a periodic cycle of period p.

A periodic point with period 1 is said to be a fixed point. Define the multi-

plier of the periodic point z0 (and the corresponding cycle) by λ = (fp)′(z0).

According to |λ| < 1, |λ| = 1, or |λ| > 1, the periodic point z0 (and the cor-

responding cycle) is said to be attracting, neutral, or repelling. See [9]. We

also call a fixed point weakly repelling if it is repelling or has multiplier 1.

In complex dynamics, periodic points play an important role. For ex-

ample, the Julia set of a meromorphic function is the closure of the set of

its repelling periodic points. See [9]. Thus it is well worth studying normal

or quasinormal families of holomorphic functions defined by conditions on

fixed points or periodic points.

M. Essén and S. J. Wu [13], [14] proved the following result, thereby

answering affirmatively a question of Yang [20, Problem 8].

Theorem A. ([13], [14]) Let F be a family of functions holomorphic

in D ⊂ C. If for every f ∈ F , there exists an integer k = k(f) ≥ 2 such

that fk has no repelling fixed point in D, then F is normal in D.

W. Bergweiler [7], improving a result due to D. Bargmann and W. Berg-

weiler [3], considered an analogue under a weaker condition than that of

Theorem A, and proved

Theorem B. ([7]) Let M ≥ 1 be a positive number and let F be a

family of functions holomorphic in D ⊂ C. If for every f ∈ F , there exists

an integer k = k(f) ≥ 2 such that |(fk)′(ζ)| ≤ M for all periodic points ζ

of period k of f in D, then F is quasinormal of order at most 1 in D.
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In the present paper, we will improve both Theorem A and Theorem B.

Following the idea of Bergweiler [7] with some additional attention to the

multipliers, we have the following result.

Theorem 1. Let M ≥ 1 be a positive number, D ⊂ C be a domain,

and F be a family of functions holomorphic in D. If for every f ∈ F , there

exists an integer k = k(f) ≥ 2 such that |(fk)′(ζ)| ≤ Mk for all periodic

points ζ of period k of f in D, then F is quasinormal of order at most 1 in

D.

Theorem 1 strengthens Theorem B, since {Mk(f)} may be unbounded.

From the family {nz : n ∈ N}, we see that, to obtain normality, some further

assumptions are needed. In this direction, we have

Theorem 2. Let M ≥ 1 be a positive number, D ⊂ C be a domain,

and F be a family of functions holomorphic in D. If for every f ∈ F , f has

no weakly repelling fixed point in D, and there exists an integer k = k(f) ≥ 2

such that |(fk)′(ζ)| ≤ Mk for all periodic points ζ of period k of f in D,

then F is normal in D.

The following example shows that the condition that every f ∈ F has

no weakly repelling fixed point can not be replaced by the condition that

every f ∈ F has no repelling fixed point in D.

Example 1. Let

F = {fn(z) = z + nz2 : n ∈ N}.

Then F is a family of functions holomorphic in C. Every fn ∈ F has a

single fixed point z = 0 in C with multiplier 1, so that has no repelling fixed

point in C. And for every fn ∈ F , we have

f2
n(z) = z + nz2(n2z2 + 2nz + 2),

so that |(f2
n)′(ζ)| ≤ (

√
5)2 for all periodic points ζ of period 2 of fn in C.

But F is not normal in C since fn(0) = 0 and fn(1/
√

n) = 1 + 1/
√

n → 1.

However, it does not seem unlikely that if M <
√

5 in Theorem 2,

then such a replacement is permissible. Here we consider the special case

that M = 1 and prove the following result, which is a generalization of

Theorem A.
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Theorem 3. Let K < ∞ be a positive number, D ⊂ C be a domain,

and F be a family of functions holomorphic in D. If for every f ∈ F ,

|(f)′(η)| ≤ K for every fixed point η of f in D, and there exists a positive

integer k = k(f) such that f has no repelling periodic points of period k in

D, then F is normal in D, provided that one of the following conditions

holds:

(a) K < 3 and k(f) ≥ 2 for all f ∈ F ;

(b) K < 2
√

2 + 1 and k(f) ≥ 3 for all f ∈ F ;

(c) K < ∞ and k(f) ≥ 4 for all f ∈ F .

The simple example {nz} shows that it is necessary to assume that the

multipliers of the fixed points of f for all f ∈ F are uniformly bounded. We

also construct two examples in Section 4 which show that |(f)′(η)| ≤ K < 3

and |(f)′(η)| ≤ K < 2
√

2 + 1 can not be replaced by |(f)′(η)| < 3 and

|(f)′(η)| < 2
√

2 + 1 respectively, so that the conditions in Theorem 3 are

sharp.

The plan of this paper is as follows. In Section 2, we state the required

preliminary results, including the Ahlfors islands theorem, the fundamental

theorem of polynomial-like mappings and Zalcman-Pang’s rescaling lemma.

In Section 3, we give the proofs of our results. In Section 4, we construct the

two examples mentioned above, and finally in Section 5, we give a remark

about the family of meromorphic functions.

§2. Notation and preliminary results

For z0 ∈ C and r > 0, D(z0, r) = {z ∈ C : |z − z0| < r} and D(z0, r) =

{z ∈ C : |z − z0| ≤ r}.
For two functions f and g, we say they are similar, if there exist con-

stants a (6= 0), b such that f(z) = φ−1 ◦ g ◦ φ(z), where φ(z) = az + b. See

[1].

To prove the theorems, we require some preliminary results. One of

the central tools is the Ahlfors islands theorem coming from Ahlfors theory

of covering surfaces. The idea of applying the Ahlfors islands theorem to

study normal or quasinormal families of holomorphic functions defined by

conditions on fixed points or periodic points is due to Essén-Wu [13], [14]

and Bargmann-Bergweiler [3].

Let f : D → C be a holomorphic function. For a given Jordan domain

Ω ⊂ C, a connected component Ω0 of f−1(Ω) is called a simple island over

Ω if f |Ω0
: Ω0 → Ω is a conformal homeomorphism.
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The Ahlfors islands theorem is well-known and plays an important role

in complex dynamics. For example, using the Ahlfors islands theorem,

Baker [2] proved that the Julia set of a transcendental entire function is

the closure of the set of its repelling periodic points. The following version

of the Ahlfors islands theorem can be found in [6].

Lemma 1. ([6, Theorem A.1]) Let D ⊂ C be a domain and let D1, D2,

D3 be Jordan domains in C whose closures are pairwise disjoint. Then the

family of all holomorphic functions f : D → C which have no simple island

over any Dj is normal in D.

The second central tool comes from the theory of polynomial-like map-

pings of Douady and Hubbard [12]. This theory explains how the under-

standing of polynomials is not only interesting per se, but helps understand

a wider class of functions that locally behave as polynomials do. We say

(f, U, V ) is a polynomial-like mapping of degree d if U, V ⊂ C are bounded

and simply connected domains with U ⊂ V and f : U → V is a proper

map of degree d. We also call a polynomial-like mapping of degree 1 a reg-

ular map, cf. [7]. Obviously, a regular map is a holomorphic and bijective

map. The following well-known result which is called Straightening The-

orem explains the relation between polynomial-like mappings and actual

polynomials.

Lemma 2. ([12, Theorem 1], [9, Theorem VI.1.1], cf. [3, Lemma 2])

Let (f, U, V ) be a polynomial-like mapping of degree d ≥ 2. Then there

exists a polynomial P of degree d and a quasi-conformal map φ : C → C

with φ(z) = z + o(1) near ∞ such that f(z) = φ−1 ◦ P ◦ φ(z) for all z ∈ U .

Moreover, φ(U) contains the filled-in Julia set K(P ) of P , and hence all

periodic points of P .

We also require some useful facts about polynomial-like mappings.

Lemma 3. ([14, Lemma 3]) Let (f, U, V ) be a polynomial-like mapping

of degree d ≥ 2. Then f has at least one weakly repelling fixed point in U .

Lemma 4. ([7, Lemma 2.2]) Let (f, U, V ) be a polynomial-like mapping

of degree d ≥ 2, and D1, D2 be two Jordan domains with pairwise disjoint

closures contained in V . Then there exist two domains U1, U2 ⊂ U , each of

which is a simple island over D1 or D2.
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Lemma 5. Let U ⊂ D(c, r) ⊂ D(a, ε) be a simply-connected domain.

Let f : U → D(a, λε), (λ ≥ 2) be a regular map. Then f has a fixed point

z0 ∈ U which satisfies

|f ′(z0)| ≥
3λε

4r
.

Proof. Without loss of generality, assume that a = 0 and λε = 1. It

follows from Rouché’s theorem that f has a fixed point z0 ∈ U and then

|z0| < ε = 1/λ ≤ 1/2. Let φ(z) = (f−1(z) − c)/r. Then, φ is a self-mapping

of the unit disk and φ(z0) = (z0 − c)/r. Applying the Schwarz-Pick lemma

to φ, we have

|φ′(z0)| ≤
|φ′(z0)|

1 − |z0−c|2

r2

≤ 1

1 − |z0|2
,

and, since φ′(z0) = 1/rf ′(z0),

|f ′(z0)| ≥
1

r
(1 − |z0|2) ≥

3

4r
.

This proves Lemma 5.

Lemma 6. Let U ⊂ D(a, ε) and V ⊃ D(b, λε), (λ ≥ 2) be simply-

connected domains. Let f : U → V be a regular map. Then for D(c, r) ⊂
D(b, ε), there exists a disk D(c′, r′) ⊂ D(a, ε) such that r′ < 3r/λ and

f−1(D(c, r)) ⊂ D(c′, r′).

Proof. Without loss of generality, assume that a = b = 0 and λε = 1.

Let φ(z) = f−1(z)/ε, which is a self-mapping of the unit disk. For ζ ∈
D(c, r), by the Schwarz-Pick lemma, we have

|φ(ζ) − φ(c)|
|1 − φ(ζ)φ(c)|

≤ |ζ − c|
|1 − ζc|

.

Since

|ζ − c|
|1 − ζc|

≤ r

1 − 1/λ2
and

|φ(ζ) − φ(c)|
|1 − φ(ζ)φ(c)|

≥ 1

2
|φ(ζ) − φ(c)| =

1

2ε
|f−1(ζ) − f−1(c)|,

we obtain

|f−1(ζ) − f−1(c)| ≤ 2εr

1 − 1/λ2
<

3r

λ
.

Lemma 6 is proved.
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We also require the following results which concern with the existence

of (repelling) periodic points of given periods. It was Baker [1] who first

studied this problem. His conjecture [16, Problem 2.20] about this question

for transcendental entire functions has been confirmed by Bergweiler [5].

Lemma 7. ([5, Theorem 1]) Let f be a transcendental entire function

and k ≥ 2 be an integer. Then f has infinitely many repelling periodic points

of period k.

Lemma 8. ([10, Theorem 1], cf. [4, Satz 1]) Let P be a polynomial of

degree d ≥ 2, and k ≥ 2 be an integer. If P has no repelling periodic

cycle of period k, then k ∈ {2, 3} and P is similar to one of the following

polynomials: for k = 2,

(a) Q(z) = z2 + c with constants c satisfying |c + 1| ≤ 1/4,

(b) Q(z) = z3 − (2 + 3c2)z + 2c3 with constants c satisfying |c2 − 1/36| ≤
1/36, and

(c) Q(z) = z4 + (−1 ± 2i)z;

while for k = 3,

(d) Q(z) = z2 − 7/4.

As a corollary, we get

Lemma 9. Let P be a polynomial of degree d ≥ 2, and k ≥ 2 be an

integer such that P has no repelling periodic cycle of period k. Then k ∈
{2, 3} and

(1) max
P (z)=z

{|P ′(z)|} ≥
{

2
√

2 + 1, if k = 3;

3, if k = 2.

Proof. By Lemma 8, we have k ∈ {2, 3}.
First suppose k = 3. Then by Lemma 8, P is similar to the polynomial

Q(z) = z2 − 7/4. As for two similar polynomials P and Q, we have

(2) max
P (z)=z

{|P ′(z)|} = max
Q(z)=z

{|Q′(z)|},

so we may assume P (z) = z2 − 7/4. Clearly, we have

(3) max
P (z)=z

{|P ′(z)|} = 2
√

2 + 1.
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This proves the case k = 3.

Now suppose k = 2. Then as above, we may assume P (z) = z2 + c for

some c satisfying |c + 1| ≤ 1/4 or P (z) = z3 − (2 + 3c2)z + 2c3 for some c

satisfying |c2 − 1/36| ≤ 1/36 or P (z) = z4 + (−1 ± 2i)z.

If P (z) = Pc(z) = z2 + c for some c satisfying |c + 1| ≤ 1/4. Choose a

constant t such that Re(t) ≥ 0 and c = (1 − t2)/4. Then P (z) = z2 + (1 −
t2)/4 = z +

(

z − 1+t
2

)(

z − 1−t
2

)

and |t2 − 5| ≤ 1. Since Re(t) ≥ 0, we see

that Re(t) ≥ 2. Thus we see that

(4) max
P (z)=z

{|P ′(z)|} = max{|1 + t|, |1 − t|} ≥ 3.

Next suppose P (z) = Pc(z) = z3− (2+3c2)z +2c3 for some c satisfying

|c2 − 1/36| ≤ 1/36. Note

(5) max
P0(z)=z

{|P ′
0(z)|} = 7.

For c 6= 0, we claim Pc has three different fixed points with different

multipliers. For otherwise, suppose Pc(z1) = z1 6= z2 = Pc(z2) and P ′
c(z1) =

P ′
c(z2). As P ′

c(z) = 3z2 − (2+3c2), we get z2
1 = z2

2 so that z1 = −z2. It with

Pc(z1) = z1 and z2 = Pc(z2) shows that c = 0. A contradiction. Moreover

the three different multipliers are exactly three roots of the equation

(6) λ3 − (12 + 9c2)λ2 + (21 + 18c2)λ + 98 + 315c2 + 324c4 = 0.

In fact, let z = z0 be a fixed point of Pc, and let λ = P ′
c(z0). Then

z3
0 − (3 + 3c2)z0 + 2c3 = 0 and λ = 3z2

0 − (2 + 3c2). Thus 108c6 = 27z2
0 [z2

0 −
(3 + 3c2)]2 = [λ + (2 + 3c2)][λ − 2(3 + 3c2)]2, which is equivalent to the

equation (6).

Thus for fixed points z1, z2, z3 of Pc, we have |P ′
c(z1)+P ′

c(z2)+P ′
c(z3)| =

|12 + 9c2| = |12 + 1/4 + 9(c2 − 1/36)| ≥ 12 + 1/4 − 9/36 = 12. It follows

that max{|P ′
c(z1)|, |P ′

c(z2)|, |P ′
c(z3)|} ≥ 4. Thus we see that

(7) max
P (z)=z

{|P ′(z)|} ≥ 4.

Finally suppose P (z) = z4 + (−1 ± 2i)z. It is easily seen that

(8) max
P (z)=z

{|P ′(z)|} =
√

85 > 9.

By (4), (5), (7) and (8), we see that (1) holds for k = 2. Thus we have

proved Lemma 9.
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By Lemma 2 and Lemma 8 or Satz 1 in [4], we have the following result.

Lemma 10. Let (f, U, V ) be a polynomial-like mapping of degree ≥ 2

and k ≥ 4 be an integer. Then f has at least one repelling periodic point of

period k in U .

Besides the above results coming from complex dynamics, we also re-

quire the following rescaling lemma due to Pang and Zalcman [18].

Lemma 11. ([18, Lemma 2]) Let F be a family of functions holomor-

phic on the unit disc, all of whose zeros have multiplicity at least k, and

suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) = 0.

Then if F is not normal, there exist, for each 0 ≤ α ≤ k,

a) a number 0 < r < 1;

b) points zn, |zn| < r;

c) functions fn ∈ F ; and

d) positive numbers ρn → 0

such that ρ−α
n fn(zn + ρnζ) =: gn(ζ) → g(ζ) locally uniformly, where g is

a nonconstant entire function on C, all of whose zeros have multiplicity

at least k, such that the spherical derivative g#(ζ) of g satisfies g#(ζ) ≤
g#(0) = kA + 1 for all ζ ∈ C.

We shall use the special case α = k = 1 of Lemma 11, which can be

found in [17, Lemma 2].

Finally, we also need a result from graph theory, which is used implicitly

in [13], [14] and stated formally in [3].

Let V be a finite set and E ⊂ V × V . Then the pair G = (V,E) is

called a digraph. An element of V is called a vertex and an element of E is

called an edge. The edges are allowed to be of the form (v, v) with v ∈ V ,

which is different from the usual terminology.

Let k ∈ N and w = (v0, . . . , vk) ∈ V k+1. We call w a primitive closed

walk of length k in G if v0 = vk, (vj−1, vj) ∈ E for every 1 ≤ j ≤ k, and

there is no p ∈ N, 1 ≤ p < k, such that p|k and vj = vl for all 1 ≤ j, l ≤ k

satisfying p|(j − l).

Finally define the outdegree of a vertex v to be the cardinality of the

set {u ∈ V : (v, u) ∈ E}.
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Lemma 12. ([3, Lemma 9]) Let q, n ∈ N with q ≥ 6 and n ≥ 2, and let

G be a digraph with q vertices such that the outdegree of each vertex is at

least q − 2. Then G contains a primitive closed walk of length n.

§3. Proofs of Theorems 1–3

Proof of Theorem 1. Suppose that F is not quasinormal of order at

most 1. Then there exist q ≥ 2 points aj ∈ D and a sequence {fn} ⊂ F
such that no subsequence of {fn} is normal in a neighborhood of any aj .

By Theorem B, we may assume that the integers k(fn) satisfy k(fn) ≥ 3.

Set δ < 1
2 min{|ai − aj | : i 6= j, 1 ≤ i, j ≤ q} and ε = δ/λ, where

λ = 3M ≥ 3. Bergweiler [7, Proof of Theorem 1.1] considered the digraph

G = (V,E) whose vertices are the aj and whose edges are all pairs (ai, aj) for

which fn has a simple island that is over D(aj , δ) and contained in D(ai, ε).

For the case q ≥ 6, using the Ahlfors islands theorem (Lemma 1), he showed

that the outdegree of each vertex is at least q − 2. Hence, by Lemma 12, G

contains a primitive closed walk {ai0 , ai1 , . . . , aik−1
, aik} (aik = ai0) of length

k = k(fn) ≥ 2. Using the theory of polynomial-like mappings (Lemma 4),

Bergweiler [7, Proof of Theorem 1.1] proved that the latter conclusion also

holds when F is quasinormal of order 2 ≤ q ≤ 5.

Hence D(aik−1
, ε) contains a simple island Uk−1 over D(aik , δ) =

D(ai0 , δ). Next D(aik−2
, ε) contains a simple island Uk−2 over D(aik−1

, δ)

and thus in particular, D(aik−2
, ε) contains a simple island U ′

k−2 over Uk−1.

Inductively, for j = k−3, . . . , 1, 0, D(aij , ε) contains a simple island Uj over

D(aij+1
, δ) and D(aij , ε) contains a simple island U ′

j over U ′
j+1.

By Lemma 6, we see that U ′
k−1 = Uk−1 ⊂ D(ck−1, rk−1) = D(aik−1

, ε)

(say), and inductively, for j = k − 2, . . . , 1, 0,

(9) U ′
j = f−1

n (U ′
j+1) ⊂ f−1

n (D(cj+1, rj+1)) ⊂ D(cj , rj) ⊂ D(aij , ε),

where

rj <
3

λ
rj+1.

It follows that U ′
0 ⊂ D(c0, r0) ⊂ D(ai0 , ε) and

(10) r0 <

(

3

λ

)k−1

ε.

Thus by Lemma 5, fk
n has a fixed point ζ0 ∈ U ′

0 ⊂ D such that

(11) |(fk
n)′(ζ0)| ≥

3

4
· λε

r0
>

9

4

(

3

λ

)k

> Mk.
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On the other hand, as the walk {ai0 , ai1 , . . . , aik−1
, aik} is primitive, the fixed

point ζ0 of fk
n is in fact a periodic point of period k of fn. This contradicts

the condition that fn ∈ F . The proof of Theorem 1 is complete.

Proof of Theorem 2. Suppose that F is not normal at some z0 ∈ D.

Then by Theorem 1, there exists a sequence {fn} ⊂ F which is normal in

D\{z0} such that no subsequence of {fn} is normal at z0. By the maximum

principle, we have fn → ∞ in D \ {z0}.
Choose a positive number δ such that D(z0, δ) ⊂ D, and let R = (|z0|+

δ)M . Since fn → ∞ in D \ {z0}, for sufficiently large n, |fn(z)| > R on

|z − z0| = δ. However, as no subsequence of {fn} is normal at z0, for

sufficiently large n, |fn(zn)| < R for some point zn ∈ ∆(z0, δ), so that

f−1
n (D(0, R)) has a component Un ⊂ D(z0, δ). Note that Un ⊂ D(0, R/M).

Thus the triple (fn, Un,D(0, R)) is a polynomial-like mapping. By Lemma

3, fn has at least one weakly repelling fixed point zn ∈ Un ⊂ D. This

however contradicts the hypotheses. Theorem 2 is proved.

Proof of Theorem 3. First, we consider the case (c): k(f) ≥ 4 for all

f ∈ F . Suppose F is not normal at some z0 ∈ D. Then by Theorem 1

or Theorem B, there exists a sequence {fn} ⊂ F which is normal in the

punctured domain D \ {z0} such that no subsequence of {fn} is normal at

z0. By the maximum principle, we have fn → ∞ in D \ {z0} as n → ∞.

Choose a positive number δ such that D(z0, δ) ⊂ D, and let R >

4(K + 1)(|z0| + δ). Since fn → ∞ in D \ {z0}, for sufficiently large n,

|fn(z)| > R on |z − z0| = δ. However, as no subsequence of {fn} is

normal at z0, for sufficiently large n, |fn(zn)| < R for some point zn ∈
D(z0, δ), so that f−1

n (D(0, R)) has a component Un ⊂ D(z0, δ). Note that

Un ⊂ D(0, R/[4(K + 1)]). Thus the triple (fn, Un,D(0, R)) is a polynomial-

like mapping of some degree d ≥ 1. By Lemma 10 and the assumption

that fn has no repelling periodic point of some period k = k(fn) ≥ 4,

we see that d = 1, so that (fn, Un,D(0, R)) is a regular map. Since

R/[4(K + 1)] < R/2, by Lemma 5, we find that fn has a fixed point

ζ ∈ Un ⊂ D with |f ′
n(ζ)| ≥ K + 1 > K. This is a contradiction since

we assumed every f ∈ F has no fixed point z with |f ′(z)| > K. Thus we

complete the proof of Theorem 3 for the case (c).

Now we consider the case (b): K < 2
√

2+1 and k(f) ≥ 3 for all f ∈ F .

It follows from the case (c) that we may assume that k(f) = 3 for all f ∈ F .

Set

G = {g = f − id : f ∈ F},
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where id denotes the identity function. Since |f ′(z)| ≤ K whenever f(z) = z

for every f ∈ F , we see that |g′(z)| ≤ K + 1 whenever g(z) = 0 for every

g ∈ G.

Obviously, F is normal in D if and only if G is normal in D. Now

suppose that G is not normal at z0 ∈ D. Then by Lemma 11, we can find

points zn → z0, positive numbers ρn → 0 and functions gn = fn − id ∈ G
such that

(12) Gn(ζ) =
gn(zn + ρnζ)

ρn

→ G(ζ)

locally uniformly on C, where G is a nonconstant entire function on C such

that G#(ζ) ≤ G#(0) = K + 2.

Set

Mn(ζ) = zn + ρnζ,(13)

Hn(ζ) = Gn(ζ) + ζ.(14)

Then by (12)–(14), we have

(15) Hn(ζ) =
fn(Mn(ζ)) − zn

ρn

.

This with (13) yields Mn(Hn(ζ)) = zn + ρnHn(ζ) = fn(Mn(ζ)). Thus Mn

conjugates fn and Hn, and hence Hj
n = M−1

n ◦ f j
n ◦ Mn for every j ∈ N.

Thus we have

(16) f j
n(Mn(ζ)) = zn + ρnHj

n(ζ), j = 1, 2, 3,

and

(17) Hj
n(ζ) − ζ =

f j
n(Mn(ζ)) − Mn(ζ)

ρn

, j = 1, 2, 3.

Let

(18) H(ζ) = G(ζ) + ζ.

Then by (12) and (14), for j = 1, 2, 3,

(19) Hj
n(ζ) → Hj(ζ)

locally uniformly on C as n → ∞.
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If H(ζ) has a repelling periodic point ζ0 ∈ C of period 3 , then there

exist positive numbers λ (> 1), δ and ε such that |(H3)′(ζ)| ≥ λ and

|Hj(ζ)−ζ| ≥ ε, (j = 1, 2) for ζ ∈ D(ζ0, δ) ⊂ C. Thus by (19) and Hurwitz’s

Theorem, there exist points ζn → ζ0 such that H3
n(ζn) = ζn, |(H3

n)′(ζn)| ≥
(λ + 1)/2 > 1 and |Hj

n(ζ) − ζ| ≥ ε/2, (j = 1, 2) for ζ ∈ D(ζn, δ/2). Hence

by (17), for sufficiently large n, Mn(ζn) is a repelling periodic point ζ0 ∈ C

of period 3 of fn in D. This contradicts the condition.

Hence H(ζ) has no repelling periodic point of period 3 in C. Thus by

Lemma 7, we deduce that H is a polynomial.

Similarly, we can find that H has no fixed point ζ with |H ′(ζ)| > K in

C.

If deg(H) ≥ 2, then we see by Lemma 9 that H has a fixed point z0

such that |H ′(z0)| ≥ 2
√

2 + 1 > K. This is a contradiction.

Hence deg(H) ≤ 1, so that H(ζ) = Aζ +B for some constants A and B.

Since H(ζ) has no fixed point ζ with |H ′(ζ)| ≥ K, we have that |A| ≤ K.

Hence |G′(ζ)| = |A − 1| ≤ K + 1, which contradicts G#(0) = K + 2.

Hence G is normal in D, so that F is normal in D. Thus the proof of

the case (b) is complete.

Finally, we consider the case (a): K < 3 and k(f) ≥ 2 for all f ∈ F .

The proof of this case is analogous to that of the case (b). We omit the

details.

Remark 1. The reviewer pointed out in the report that the cases (a)

and (b) can also be proved by using the theory of polynomial-like mappings.

Indeed, the modulus of the annulus given by the difference between the

range and the domain of the polynomial-like map can be chosen arbitrarily

large. Therefore the dilatation of the quasiconformal conjugacy between

this polynomial-like mapping and an actual polynomial can be arbitrarily

small and hence the multipliers of the fixed points will be changed only by

an arbitrarily small amount.

§4. Examples

Here we construct two examples mentioned in the first section. These

examples are modifications of the extremal polynomials in Lemma 8. For

instance, in Example 2, we first choose a polynomial f(z) = z+z2−1 which

has no periodic point of period 2 and the multipliers of whose fixed points

are 3 and −1 respectively. Then the functions 1
n
f(nz) = z + n

(

z2 − 1
n2

)

have the same property. Finally, we choose a suitable function Un which
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converges to 1 locally uniformly on the plane such that the functions fn(z) =

z +n
(

z2 − 1
n2

)

Un(z) have no periodic points of period 2 and no fixed points

in the unit disk ∆ other than ±1/n. In particular, the multipliers of the

fixed points ±1/n are less than 3.

Example 2. Let for every n ∈ N

(20) fn(z) = z + n

(

z − 1

n

)(

z +
1

n

)

n4 − nz2

n4 + z
.

Then every fn is holomorphic in the unit disk ∆ = {z : |z| < 1}. By a direct

computation, we have

(21) f2
n(z) = z + n4

(

z − 1

n

)(

z +
1

n

)3 (n3 − z2)Pn(z)

(n4 + z)3Qn(z)
,

where

Pn(z) = n6z10 − 2n5z9 +
(

−3n9 − 4n4
)

z8 +
(

2n8 + 10n3
)

z7

+
(

3n12 + 16n7 + n2
)

z6 +
(

2n11 − 14n6 − 12n
)

z5

+
(

−n15 − 14n10 − 20n5 + 6
)

z4 +
(

−2n14 − 4n9 + 22n4
)

z3

+
(

n13 + 20n8 − 2n3
)

z2 +
(

6n12 − 4n7
)

z − n11 + n16

= n16 − z4n15 − 2 z3n14 + z2n13 +
(

3 z6 + 6 z
)

n12 +
(

2 z5 − 1
)

n11

− 14 z4n10 +
(

−3 z8 − 4 z3
)

n9 +
(

2 z7 + 20 z2
)

n8 +
(

16 z6 − 4 z
)

n7

+
(

z10 − 14 z5
)

n6 +
(

−2 z9 − 20 z4
)

n5 +
(

−4 z8 + 22 z3
)

n4

+
(

10 z7 − 2 z2
)

n3 + z6n2 − 12 z5n + 6 z4,

(22)

Qn(z) = −n2z4 +
(

n5 + 2
)

z2 + 2n4z + n8 − n3

= n8 + z2n5 + 2 zn4 − n3 − z4n2 + 2 z2.

(23)

Thus we see that fn has no periodic point of period 2 in ∆ for n ≥ 179.

Indeed, suppose that fn has a periodic point z0 of period 2 in ∆. Then

|z0| < 1, and by (20)–(23), we have Pn(z0) = 0, so that

n16 =
∣

∣−z4
0n

15 − 2z3
0n14 + z2

0n13 + (3z6
0 + 6z0)n

12 + (2z5
0 − 1)n11

− 14z4
0n10 − (3z0

8 + 4z3
0)n9 + (2z7

0 + 20z2
0)n8 + (16z6

0 − 4z)n7

+ (z10
0 − 14z5

0)n6 − (2z9
0 + 20z4

0)n5 + (−4z8
0 + 22z3

0)n4

+ (10z7
0 − 2z2

0)n3 + z6
0n

2 − 12z5
0n + 6z4

0

∣

∣
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≤ n15 + 2n14 + n13 + 9n12 + 3n11 + 14n10 + 7n9 + 27n8

+ 20n7 + 15n6 + 22n5 + 26n4 + 12n3 + n2 + 12n + 6

≤ 178n15.

It follows that n ≤ 178.

We also can see that every fn ∈ F has two fixed points z = 1/n and

z = −1/n with multiplier

f ′
n(1/n) = 3 − 4

n5 + 1
, and f ′

n(−1/n) = −1,

so that |f ′
n(z)| < 3 whenever fn(z) = z in ∆.

The family {fn : n ≥ 179} is not equicontinuous since fn(1/n) → 0 and

fn(1/
√

n) → 1 as n → ∞. It follows that the family {fn : n ≥ 179} is not

normal in the unit disk ∆.

Example 3. Let for every n ∈ N

(24) fn(z) = z +
1

n
(n2z2 − 2)

(

1 − (n3z3 + 2n2z2 − nz − 1)2

n32

)

.

Then every fn is holomorphic in the unit disk ∆ = {z : |z| < 1}.
Obviously, for n ≥ 2, every fn has no fixed point in ∆ except ±

√
2/n.

Next we claim that there exists an integer n0 ≥ 2 such that for n ≥ n0,

every fn has no periodic point of period 3 in ∆ except z1/n, z2/n, z3/n,

where zj (j = 1, 2, 3) are roots of the equation z3 + 2z2 − z − 1 = 0.

Let ζ 6∈ {z1/n, z2/n, z3/n} be a periodic point of period 3 of fn in ∆.

Then ζ, fn(ζ), f2
n(ζ) ∈ ∆ and f3

n(ζ) = ζ. Since f3
n(z) is a polynomial, whose

coefficients are rational functions in n, it follows from f3
n(ζ) = ζ and ζ ∈ ∆

that

(25) ζ = c0 +
c1

ns1
+ o

(

1

ns1

)

as n → ∞, where c0, c1, s1 are constants not depending on n and satisfying

|c0| ≤ 1 and s1 > 0.

First we show that c0 = 0. If it is not the case, then by (24) and (25),

we have fn(ζ) = c2
0n + o(n). This contradicts fn(ζ) ∈ ∆. Thus c0 = 0.

Next we prove s1 = 1. In fact, if s1 > 1, then by (24) and (25), we

have fn(ζ) = −2/n + o(1/n) and then f2
n(ζ) = o(1/n), so that ζ = f3

n(ζ) =

−2/n + o(1/n). This contradicts (25) as c0 = 0 and s1 > 1. A similar
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argument yields that s1 < 1 is also impossible. Thus we have proved that

s1 = 1. Hence

(26) ζ =
c1

n
+ o

(

1

n

)

.

Final, we prove that c1 ∈ {z1, z2, z3} and o
(

1/n
)

≡ 0 exactly in (26). For

otherwise, we must have

(27) ζ =
c1

n
+

c2

ns2
+ o

(

1

ns2

)

,

where c2 6= 0 and s2 > 1 are constants. Thus by (24), we have

fn(ζ) =
(c1)

2 + c1 − 2

n
+

2c1c2 + c2

ns2
+ o

(

1

ns2

)

.(28)

f2
n(ζ) =

(c1)
4 + 2(c1)

3 − 2(c1)
2 − 3c1

n

+
[4(c1)

3 + 6(c1)
2 − 2c1 − 2]c2

ns2
+ o

(

1

ns2

)

.

(29)

f3
n(ζ) =

(c1)
8 + 4(c1)

7 − 14(c1)
5 − 7(c1)

4 + 14(c1)
3 + 7(c1)

2 − 3c1 − 2

n

+
[8(c1)

7 + 28(c1)
6 + 4(c1)

5 − 60(c1)
4 − 32(c1)

3 + 26(c1)
2 + 10c1 − 2]c2

ns2

+ o

(

1

ns2

)

.

(30)

Since ζ = f3
n(ζ), we get by (26) and (30) that

(c1)
8 + 4(c1)

7 − 14(c1)
5 − 7(c1)

4 + 14(c1)
3 + 7(c1)

2 − 3c1 − 2 = c1,(31)

[8(c1)
7 + 28(c1)

6 + 4(c1)
5 − 60(c1)

4 − 32(c1)
3 + 26(c1)

2(32)

+ 10c1 − 2]c2 = c2.

By (31), we can see that either (c1)
2 = 2 or (c1)

3 +2(c1)
2− c1−1 = 0. Each

case with (32) shows that c2 = 0. Thus

(33) ζ =
c1

n
.

If (c1)
2 = 2, then ζ is a fixed point of fn, contradicting that ζ is a periodic

point of period 3. Thus (c1)
3 + 2(c1)

2 − c1 − 1 = 0. That is c1 ∈ {z1, z2, z3}.
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Thus we have proved the above claim. Now consider the multipliers of

the fixed points ±
√

2/n and periodic points z1/n, z2/n, z3/n of period 3 of

fn in ∆. By computation, we have

f ′
n(
√

2/n) = 2
√

2 + 1 − 24 + 22
√

2

n32
,

f ′
n(−

√
2/n) = −2

√
2 + 1 − 24 − 22

√
2

n32
,

so that for n ≥ 2, |f ′
n(z)| < 2

√
2 + 1 whenever fn(z) = z in ∆.

We also can see that z1/n, z2/n, z3/n are periodic points of period 3 of

fn with multiplier 1.

But one can see that the family F = {fn(z) : n ≥ n0} is not normal at

the origin.

Remark . Following [8], we say P is a Bloch property if the following

two assertions

(a) If 〈f, C〉 ∈ P , then f is constant, and

(b) The family {f : 〈f,D〉 ∈ P} is normal on D for each domain D ⊂ C

are equivalent. A Bloch property such that both (a) and (b) are true is

called a Picard-Montel property.

From Examples 2 and 3, we see that there exist Bloch properties P that

are not Picard-Montel properties such that the assertion

(a′) The family {f : 〈f, C〉 ∈ P} is normal on C

is true.

Indeed, using Lemma 7 and Lemma 9 in the present paper, one can

verify that the property P :

f has no repelling periodic point of period 2 and f has no fixed point

ζ satisfying |f ′(ζ)| ≥ 3,

and the property Q:

f has no repelling periodic point of period 3 and f has no fixed point

ζ satisfying |f ′(ζ)| ≥ 2
√

2 + 1

are the desired properties.



94 J. CHANG

§5. A remark on families of meromorphic functions

Using a similar argument as in the first part of the proof of Theorem 1,

we have the following result.

Theorem 4. Let M ≥ 1 be a positive number, D ⊂ C be a domain,

and F be a family of all meromorphic functions f in D for which there

exists an integer k = k(f) ≥ 2 such that |(fk)′(ζ)| ≤ Mk for all periodic

points ζ of period k of f in D, then F is quasinormal of finite order.

However, we do not know the exact order of the quasi-normality. The

following example shows that the order of the quasi-normality is at least 2.

It seems likely that the number 2 is the exact order of the quasi-normality.

Example 4. Let

F =

{

fn(z) =
1

nz(z − 1)
: n ∈ N

}

.

Then F is a family of functions meromorphic in C. And for every fn ∈ F ,

we have

fn(z) = z − nz3 − nz2 − 1

nz(z − 1)
, and f2

n(z) = z − z(nz3 − nz2 − 1)

nz2 − nz − 1
.

Thus every fn ∈ F has no periodic point of period 2 in C. On the other

hand, it is easy to check that F is quasinormal of order 2 in C.
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