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ON L-FUNCTIONS OF TWISTED 3-DIMENSIONAL

QUATERNIONIC SHIMURA VARIETIES

CRISTIAN VIRDOL

Abstract. In this paper we compute and continue meromorphically to the

entire complex plane the zeta functions of twisted quaternionic Shimura vari-

eties of dimension 3. The twist of the quaternionic Shimura varieties is done

by a mod ℘ representation of the absolute Galois group.

§1. Introduction

Let X be a smooth projective variety defined over a number field F and

let

X̄ = X ×F Q̄.

For a prime number l, let H i
et(X, Q̄l) be the l-adic cohomology of X̄. If K is

a number field, we denote ΓK := Gal(Q̄/K). The Galois group ΓF acts on

H i
et(X, Q̄l) by a representation ρi,l. The L-function Li(s,X/F ) attached to

the representation ρi,l converges for Re(s) > 1 + i/2. It is conjectured that

the L-function Li(s,X/F ) converges and does not vanish in the half plane

Re(s) > 1+i/2 and it has a meromorphic continuation to the complex plane

with a finite number of poles and satisfies a functional equation.

In this article we look at the zeta functions of “twisted” quaternionic

Shimura varieties (see below) and in particular general quaternionic Shimura

varieties of dimension 3. We show that their zeta functions can be mero-

morphically continued to the complex plane, satisfy functional equations,

converge and do not vanish in the half plane Re(s) > 5/2. To obtain these

results, we use in particular the computation of all the local factors of the

L-functions of quaternionic Shimura varieties (see [B, Theorem 3]) and the

Weight-Monodromy conjecture that is known in the case of quaternionic

Shimura varieties (see [B, Theorem 2]). We prove all these results also for

the base change of these Shimura varieties to arbitrary solvable extensions

of totally real fields that contain their field of definition (see below).
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More exactly, in this paper we consider a totally real field F with [F :

Q] > 3 and a quaternion algebra D over F , which is unramified at exactly 3

of the infinite places of F . Let G be the algebraic group over F defined by

the multiplicative group D× of D and let Ḡ = ResF/Q(G). For ℘ a prime

ideal of the ring of integers O := OF of F , such that G(F℘) is isomorphic

to GL2(F℘), let SḠ,K = SK be the canonical model of the quaternionic

Shimura variety associated to an open compact subgroup K := K℘ ×H of

Ḡ(Af ), where K℘ is the set of elements of GL2(O℘) that are congruent to

1 modulo ℘, H is an open compact subgroup of the restricted product of

(D ⊗F Fp)× where p runs over all the finite places of F , p 6= ℘ and Af is

the finite part of the ring of adeles AQ of Q. Then SK is a quasi-projective

variety defined over a totally real finite extension E/Q called the canonical

field of definition.

The variety SK has a natural action of GL2(O/℘). For H sufficiently

small this action is free. We fix such a small group H and consider a

continuous Galois representation ϕ : ΓE → GL2(O/℘) and let S′
K

be the

variety defined over E obtained from SK via twisting by ϕ composed with

the natural action of GL2(O/℘) on SK (see Section 2 for details).

We assume that D 6= M2(F ) and L := Q̄Ker(ϕ) is a solvable extension

of a totally real field, and in this case we prove that (see Theorem 6.1) if k

is an arbitrary solvable extension of a totally real field containing E, then

the L-function L3(s, S′
K/k) is holomorphic and does not vanish in the half

plane Re(s) > 5/2 and satisfies a functional equation. We remark that one

can obtain these results also for general (not twisted) quaternionic Shimura

varieties of arbitrary level and also for more general twisted quaternionic

Shimura varieties (see Remark 6.2).

§2. Twisted quaternionic Shimura varieties

Let F be a totally real field of degree d > 3 over Q and O := OF be its

the ring of integers. Let AQ = R × Af be the ring of adeles of Q and AF

the ring of adeles of F . We denote by IQ and IF the groups of ideles of Q
and F , respectively.

We consider a quaternion algebra D over F which is unramified at

exactly 3 infinite places of F . We denote by S∞ the set of the infinite places

of F and we identify S∞ as a ΓQ-set with ΓF \ΓQ. Let S′
∞ be the subset of

S∞ at which D is ramified. Thus the cardinality of S∞ − S′
∞ is equal to 3.

Let G be the algebraic group over F defined by the multiplicative

group D×. By restricting the scalars, we obtain the algebraic group Ḡ =
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ResF/Q(G) over Q defined by the propriety: Ḡ(A) = G(A ⊗Q F ) for all Q-

algebras A. It is easy to see that Ḡ(R) is isomorphic to GL2(R)3×H×(d−3)
,

where H is the algebra of quaternions over R.

For v ∈ S∞ − S′
∞, we fix an isomorphism of G(Fv) with GL2(R). We

have Ḡ(R) =
∏

v∈S∞
G(Fv). Let J = (Jv) ∈ Ḡ(R), where

Jv =

{

1 for v ∈ S′
∞;

1/
√

2
(

1 1
−1 1

)

for v ∈ S∞ − S′
∞.

Let K∞ be the centralizer of J in Ḡ(R). Set

X = Ḡ(R)/K∞.

It is well known that X is complex analytically isomorphic to (H±)3 where

H± = C − R. For each open compact subgroup K ⊆ Ḡ(Af ) set

SK(C) = Ḡ(Q) \X × Ḡ(Af )/K.

For K sufficiently small, SK(C) is a complex manifold which is the set of

the complex points of a quasi-projective variety. In general SK(C) is not

connected. The canonical field of definition of SK(C) is by definition the

subfield E of Q̄ such that ΓE is the stabilizer of S′
∞ ⊆ ΓF \ΓQ. It is known

that SK(C) has a canonical model over the totally real field E which is

denoted by SK . The dimension of SK is equal to 3.

Let ℘ be a prime ideal of OF such that G(F℘) is isomorphic to GL2(F℘).

Consider K := K℘ ×H, where K℘ is the set of elements of GL2(O℘) which

are congruent to 1 modulo ℘ and H is some open compact subgroup of the

restricted product of (D ⊗F Fp)×, where p runs over all the finite places of

F , with p 6= ℘. Then it is well known (see for example [C, Corollary 1.4.1.3])

that for H sufficiently small, the group GL2(O/℘) acts freely on

SK(C) = Ḡ(Q) \X × Ḡ(Af )/K.

We fix such a small H. Then the action of GL2(O/℘) can be described

in the following way: GL2(O℘) →֒ Ḡ(AQ) by α 7→ (1, . . . , α, 1, . . . , 1), α at

the ℘ component. Using the isomorphism GL2(O/℘) ∼= GL2(O℘)/K℘, the

action of an element g ∈ GL2(O℘) is given by the right multiplication at

the ℘-component.



90 C. VIRDOL

We fix a continuous representation

ϕ : ΓE −→ GL2(O/℘).

Let L be the finite Galois extension of E defined by L := (Q)Ker(ϕ).

Let

S′ = SK ×Spec(E) Spec(L).

The group GL2(O/℘) acts on SK. Since ϕ : Gal(L/E) →֒ GL2(O/℘), the

group Gal(L/E) acts on SK. We denote this action of Gal(L/E) on SK by

ϕ′. The Galois group Gal(L/E) has a natural action on Spec(L) and we

can descend via the quotient process S′ to S′
K
/Spec(E) using the diagonal

action

Gal(L/E) ∋ σ −→ ϕ′(σ) ⊗ σ

on S′. Thus, we obtain a quasi-projective variety S′
K
/Spec(E). This is the

twisted quaternionic Shimura variety that we mentioned in the title.

§3. Zeta functions of twisted quaternionic Shimura varieties

From now on, if π is an automorphic representation of Ḡ(AQ), we denote

the automorphic representation of GL2(AF ), obtained from π by Jacquet-

Langlands correspondence (usually denoted JL(π)) by the same symbol π.

If π is an cuspidal automorphic representation of weight 2 of GL(2)/F ,

then there exists ([T], [C]) a λ-adic representation

ρπ,λ : ΓF −→ GL2(Oλ) −֒→ GL2(Ql),

which satisfies L(s−1/2, π) = L(s, ρπ,λ) and is unramified outside the primes

dividing nl. Here n is the level of π, O is the integer ring of the coefficient

field of π and λ is a prime ideal of O above some prime number l. In order

to simplify the notations we denote by ρπ the representation ρπ,λ.

We assume that K =
∏

v<∞
Kv where Kv is open compact in G(Fv)

and Kv = GL2(Ov) for almost all v, where Ov is the ring of integers of Fv .

Let HK be the Hecke algebra of convolutions of bi-K-invariant Q̄l-valued

compactly supported functions on Ḡ(Af ). If π = π∞⊗πf is an automorphic

representation of Ḡ(AQ), we denote by πK
f the space of K invariants in πf .

The Hecke algebra HK acts on πK
f .

In this paper we assume that D 6= M2(F ). Then SK is compact.

We have an action of the Hecke algebra HK and an action of the Galois

group ΓE on the étale cohomology H3
et(SK , Q̄l) and these two actions com-

mute. We say that the representation π is cohomological if H3(g,K∞, π∞)
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6= 0, where g is the Lie algebra of K∞ (the cohomology is taken with respect

to (g,K∞)-module associated to π∞). Then we know (see for example [RT,

Proposition 1.8]):

Proposition 3.1. The representation of ΓE × HK on the étale coho-

mology H3
et(SK , Q̄l) is isomorphic to

⊕

π

ρ(π) ⊗ πK
f ,

where ρ(π) is a representation of the Galois group ΓE of dimension 8. The

above sum is over weight 2 cohomological irreducible cuspidal holomorphic

automorphic representations π of Ḡ(AQ) and the HK-representations πK
f

are irreducible and mutually inequivalent, i.e. the decomposition is isotypic

with respect to the action of HK .

We fix an isomorphism j : Q̄l → C and define the L-function

L3(s, SK) :=
∏

π

∏

q

det(1 −Nq−sj(ρ(π)(Frobq))|H3
et(SK , Q̄l)

Iq)−1,

where Frobq is a geometric Frobenius element at a finite place q of E and Iq
is a inertia group at q. In order to define the local factors at the places of

E dividing l, one has to use actually the l′-adic cohomology for some l′ 6= l

and [B, Theorem 3] that gives us the expression of the local factors of the

zeta functions of quaternionic Shimura varieties.

We consider the injective limit:

V := lim−→
K

H3
et(SK , Q̄l) ∼= lim−→

K

⊕

π

V (π∞) ⊗Q̄l
πK

f ,

where V (π∞) is the Q̄l-space that corresponds to ρ(π) (see Proposition 3.1

for notations).

Using the multiplicity one for Ḡ, we get that the π-component V (π) of

V is isomorphic to ρ(π)⊗πf as ΓE ×H-module. Taking the K-fixed vectors

we deduce that V (π)K is isomorphic to ρ(π) ⊗ πK

f as ΓE × GL2(O/℘O)-

module. Since the varieties SK and S′
K

become isomorphic over Q̄, we

have the isomorphism H3
et(SK, Q̄l) ∼= H3

et(S
′
K
, Q̄l). The actions of ΓE on

these cohomologies which give the expression of the zeta functions of these

varieties are different. If we consider the component V ′(π) that corresponds
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to π of H3
et(S

′
K
, Q̄l) (see the decomposition of Proposition 3.1), we get that

V ′(π) is isomorphic to ρ(π) ⊗ (πK

f ◦ ϕ) as ΓE-module. Hence we conclude

the following result. This is a particular case of Theorem 1.1 from [V]. See

[B, Theorem 3], where the local factors of L3(s, SK) are computed at all

places.

Theorem 3.2. The L-function L3(s, S′
K

) is given by the formula:

L3(s, S′
K) =

∏

π

L(s, ρ(π) ⊗ (πK

f ◦ ϕ)),

where the product is taken over cohomological irreducible cuspidal holomor-

phic automorphic representations π of Ḡ(AQ) of weight 2, such that πK

f 6= 0.

§4. Base change

We know the following result (Theorem 2.2 of [V]):

Theorem 4.1. If F is a totally real field, π is a cuspidal automorphic

representation of weight 2 of GL(2)/F and F ′ is a solvable extension of

a totally real field containing F , then there exists a Galois extension F ′′

of Q containing F ′ and there exists a prime λ of the field coefficients of π,

such that ρπ,λ|ΓF ′′
is modular i.e. there exists an automorphic representation

π1 of GL(2)/F ′′ and a prime β of the field of coefficients of π1 such that

ρπ,λ|ΓF ′′

∼= ρπ1,β.

In this section we fix an automorphic representation π as in Theorem 4.1

and we denote ω := πK

f ◦ ϕ. In this paper we assume that the field L :=

Q̄Ker(ϕ) is a solvable extension of a totally real field. Thus the field K :=

Q̄Ker(ω) is a solvable extension of a totally real field.

Let k be a solvable extension of a totally real field which contains E.

From Theorem 4.1 we deduce that there exists a Galois extension F ′′ of Q
containing FKk, a prime λ of the field coefficients of π and an automorphic

representation π1 of GL(2)/F ′′ and a prime β of the field of coefficients of

π1 such that ρπ,λ|ΓF ′′

∼= ρπ1,β.

By Brauer’s theorem (see [SE, Theorems 16 and 19]), we can find some

subfields Fi ⊂ F ′′ such that Gal(F ′′/Fi) are solvable, some characters χi :

Gal(F ′′/Fi) → Q̄× and some integers mi, such that the representation

ω|Γk
: Gal(F ′′/k) −→ Gal(Kk/k) −→ GLN (Q̄l),
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can be written as ω|Γk
=

∑i=k
i=1 mi IndΓk

ΓFi
χi (a virtual sum). Then

L(s, (ρ(π) ⊗ ω)|Γk
) =

i=k
∏

i=1

L(s, ρ(π)|Γk
⊗ IndΓk

ΓFi

χi)
mi

=
i=k
∏

i=1

L(s, IndΓk

ΓFi

(ρ(π)|ΓFi
⊗ χi))

mi =
i=k
∏

i=1

L(s, ρ(π)|ΓFi
⊗ χi)

mi .

If F ⊂ Fi, since ρπ,λ|ΓF ′′
is modular and Gal(F ′′/Fi) is solvable, from

Langlands base change one can deduce that ρπ,λ|ΓFi
is modular and in this

case we denote by πi the automorphic representation of GL(2)/Fi such that

ρπ,λ|ΓFi

∼= ρπi
.

§5. Known results

It is known that (see for example [HLR, Proposition 4.5.4]):

Proposition 5.1. If π is a cuspidal automorphic representation of

GL(2)/F , where F is a totally real field. Then one of the following two

statements holds:

(i) ρπ|ΓL
is irreducible for each finite extension L/F .

(ii) There exists a quadratic extension L/F and an algebraic Hecke char-

acter ψ of L such that ρπ
∼= Ind(ψ).

We say that a representation ρ of a group G is dihedral if there exists

a normal subgroup N of index 2 in G and a character χ : N → C× such

that ρ = IndG
N χ.

We say that an automorphic representation π of GL(2)/L for some

number field L is of CM-type if there exists some quadratic Galois character

η : IL/L
× → Q̄×

l , with η 6= 1 such that π ∼= π ⊗ η. In this case, there exists

a quadratic extension M/F and an algebraic Hecke character θ of M such

that π = π(θ). If π is an automorphic representation of GL(2)/L, then π is

of CM-type if and only if ρπ is a dihedral representation.

We know (see [I, Proposition 2.3]):

Proposition 5.2. Let k be a number field and π1, π2 and π3 be irre-

ducible cuspidal automorphic representations of weight 2 of GL2(Ak). We

denote by ω the product of the central characters of π1, π2 and π3. Then,

L(s, π1 ⊗ π2 ⊗ π3) can be meromorphically continued to C and has no zeros
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for s > 1. It is entire if ω2 6= 1 or if ω = 1. If ω2 = 1 and ω 6= 1, then

L(s, π1⊗π2⊗π3) has possible poles at s = 0, 1. The function L(s, π1⊗π2⊗π3)

satisfies a functional equation

L(s, π1 ⊗ π2 ⊗ π3) = ǫ(s, π1 ⊗ π2 ⊗ π3, σ)L(1 − s, π̃1 ⊗ π̃2 ⊗ π̃3).

We know (see [I, Proposition 2.7]):

Proposition 5.3. Let k be a number field and π1, π2 and π3 be irre-

ducible cuspidal automorphic representations of weight 2 of GL2(Ak). We

denote by ω the product of the central characters of π1, π2 and π3. Assume

that ω2 = 1, ω 6= 1 and L(s, π1 ⊗ π2 ⊗ π3) has a simple pole at s = 1. If

we denote by K the quadratic extension of k corresponding to ω by class

field theory and by θ the generator of Gal(K/k), then there exists quasi-

characters χ1, χ2 and χ3 of IK/K
× such that π1 = π1(χ1), π2 = π(χ2),

π3 = π(χ3) and χ1χ2χ3 = 1. Also in this case we have

L(s, π1 ⊗ π2 ⊗ π3) = ζK(s)LK(s, χ−1
1 χθ

1)LK(s, χ−1
2 χθ

2)LK(s, χ−1
3 χθ

3).

Let k be a number field and k′ a cubic extension of k. Let H be the

algebraic group defined over k given by

H = {g ∈ Resk′/k GL2 | det g ∈ k×}.

Let Π be an irreducible cuspidal automorphic representation of GL2(Ak′).

The L-group of H is a semi-direct product of Γk and GL2(C) ×GL2(C) ×
GL2(C) and Γk acts by permuting the three factors GL2(C). We consider

the representation σ of the L-group of H such that the restriction of σ

to GL2(C) × GL2(C) × GL2(C) is σ2 ⊗ σ2 ⊗ σ2, where σ2 is the standard

2-dimensional representation of GL2(C), and the restriction of σ to Γk per-

mutes the three factors. We consider the L-function L(s,Π, σ) given by

L(s,Π, σ) :=
∏

v

L(s,Πv, σ),

where v runs over the finite places of k and if Π is unramified at v, then the

local factor L(s,Πv, σ) is given by

L(s,Πv, σ) := det(18 − σ(Frobv, gv)Nv
−s)−1,

where Frobv is a geometric Frobenius at v and gv is the Langlands class of

Πv.

Then, we know (see [I, Proposition 2.3]):
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Proposition 5.4. L(s,Π, σ) can be meromorphically continued to C
and has no zeros for s > 1. Let Ω the cental character of Π and ω the

restriction of Ω to the center Z(Ak). The function L(s,Π, σ) is entire if ω2

is not a principal quasi-character. If ω2 = 1, then L(s,Π, σ) has possible

poles at s = 0, 1. The function L(s,Π, σ) satisfies a functional equation

L(s,Π, σ) = ǫ(s,Π, σ)L(1 − s, Π̃, σ).

We know (see [I, Proposition 2.6]):

Proposition 5.5. Let k be a number field and k′ a cubic extension of

k. Assume that L(s,Π, σ) has a pole at s = 1. Then ω2 = 1, ω 6= 1. Let

K be the quadratic extension of k corresponding to ω by class field theory.

Let θ be the non-trivial element of Gal(k′K/k′). Then there exists a quasi-

character χ of Ik′K/k
′K× such that Π = π(χ) and χ|IK

= 1. Moreover, the

function L(s,Π, σ) is given by

L(s, π(χ), σ) = ζK(s)Lk′K(s, χ−1χθ).

Let k be a number field and k′ be a quadratic extension of k. Let H be

the algebraic group defined over k given by

H =
{

(g(1), g(2)) ∈ GL2 × Resk′/k GL2 | det g(1) = det g(2)
}

.

Let Π be in irreducible cuspidal automorphic representation of GL2(Ak ⊗
(k ⊕ k′)), i.e. Π = π1 ⊗ π2, where π1 and π2 are irreducible representations

of GL2(Ak) and GL2(Ak′) respectively.

The L-group of H is also the semi-direct product of Γk and GL2(C) ×
GL2(C)×GL2(C) and Γk acts by permuting the three factors GL2(C). Then

Proposition 5.4 remains true for L(s,Π, σ) and we know (see [I, Proposi-

tion 2.3]):

Proposition 5.6. Let k be a number field and k′ be a quadratic exten-

sion of k. Assume that L(s,Π, σ) has a pole at s = 1. Then ω2 = 1, ω 6= 1.

Let K be the quadratic extension of k corresponding to ω by class field the-

ory. Let θ be the non-trivial element of Gal(k′K/k′). Then there exists a

quasi-character χ of Ik′K/k
′K such that π1 = π(χ−1|IK

), and π2 = π(χ).

Moreover, the L-function is equal to

ζK(s)LK(s, (χ−1χθ)|IK
)Lk′K(s, χ−1χθ).
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§6. Poles of L-functions of twisted quaternionic Shimura varieties

Assume that k is a solvable extension of a totally real field which con-

tains E and π is a cuspidal automorphic representation of GL(2)/F that

appears in Theorem 3.2.

We recall that in Section 4 we denoted ω := πK

f ◦ϕ and we have assumed

that the field L := Q̄Ker ϕ is a solvable extension of a totally real field.

We denote by ρ(π)ss the semisimplification of ρ(π). Since at all but a fi-

nite number of finite places of E, the representations ρ(π)|ΓFi
and ρ(π)ss|ΓFi

yield the same local L-factors, and because from the Weight-Monodromy

conjecture that is true for ρ(π) and ρ(π)ss (see [B, Theorem 2]), we know

that the poles of the L-factors corresponding to ρ(π) and ρ(π)ss are on the

line Re(s) = 3/2 (see [B, Theorem 2]), we deduce that the order of the pole

at some s with Re(s) > 5/2 of L(s, (ρ(π) ⊗ ω)|ΓK
) =

∏i=k
i=1 L(s, ρ(π)|ΓFi

⊗
χi)

mi is equal to the order of the pole at s of L(s, (ρ(π)ss ⊗ ω)|Γk
) =

∏i=k
i=1 L(s, ρ(π)ss|ΓFi

⊗ χi)
mi .

In this paper we show the following result:

Theorem 6.1. If k is a solvable extension of a totally real field con-

taining E, and K := Q̄Ker(ω) is a solvable extension of a totally real field,

then the function L(s, (ρ(π)ss ⊗ω)|Γk
) has a meromorphic continuation and

satisfies a functional equation s ↔ 4 − s and it has no zeros and is holo-

morphic in the half plane Re(s) > 5/2.

Since, L(s, (ρ(π)ss ⊗ ω)|Γk
) =

∏i=k
i=1 L(s, ρ(π)ss|ΓFi

⊗ χi)
mi , in order

to prove Theorem 6.1, it is sufficient to show that L(s, ρ(π)ss|ΓFi
⊗ χi) is

holomorphic, satisfies a functional equation s ↔ 4 − s and does not vanish

in the half plane Re(s) > 5/2.

We describe now the representation ρss(π) (see [BR, §7.2]). Let G be a

group and K and H be two subgroups of G. We consider a representation

τ : H −→ GL(W )

and a double coset HσK such that d(σ) = |H \HσK| < ∞. We define a

representation τHσK of K on the d(σ)-fold tensor productW⊗d(σ). Consider

the representatives {σ1, . . . , σd(σ)} such that HσK =
⋃

Hσj . If γ ∈ K, then

there exists ξj ∈ H and an index γ(j) such that

σjγ = ξjσγ(j).
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We define the representation:

τHσK(γ)(ω1 ⊗ · · · ⊗ ωd(σ)) = τ(ξ1)ωγ−1(1) ⊗ · · · ⊗ τ(ξd(σ))ωγ−1(d(σ)).

One can prove easily that the equivalence class of τHσK is independent of

the choice of the representatives σ1, . . . , σd(σ).

Let S∞ − S′
∞ = {τ1, τ2, τ3}, and S :=

⋃

ΓF τi. We write S as a disjoint

union of double cosets

S =

k
⋃

j=1

ΓF τjΓE

and we denote by ρj the representation of ΓE defined by ρπ,λ and the double

coset ΓF τjΓE. Then our representation ρss(π) is isomorphic to ρ1⊗· · ·⊗ρk.

We assume for simplicity that S∞ − S′
∞ = {1, τ1, τ2}, where 1 is the

trivial embedding of F in Q̄. We denote by the same symbol τi the extension

of τi to Q̄. Consider

S = ΓF ∪ ΓF τ1 ∪ ΓF τ2.

The stabilizer of S is ΓE. It is easy to see that we have

ΓE = (ΓF ∩ τ−1
1 ΓF τ1 ∩ τ−1

2 ΓF τ2) ∪ (ΓF ∩ τ−1
1 ΓF τ2 ∩ τ−1

2 ΓF τ1)

∪ (ΓF τ2 ∩ τ−1
1 ΓF τ1 ∩ τ−1

2 ΓF ) ∪ (ΓF τ1 ∩ τ−1
1 ΓF ∩ τ−1

2 ΓF τ2)

∪ (ΓF τ1 ∩ τ−1
1 ΓF τ2 ∩ τ−1

2 ΓF ) ∪ (ΓF τ2 ∩ τ−1
2 ΓF τ1 ∩ τ−1

1 ΓF ).

We distinguish several cases:

i) F ⊂ E. Then,

ΓE = (ΓF ∩ τ−1
1 ΓF τ1 ∩ τ−1

2 ΓF τ2) ∪ (ΓF ∩ τ−1
1 ΓF τ2 ∩ τ−1

2 ΓF τ1).

We consider two subcases:

a) ΓF ∩ τ−1
1 ΓF τ2 ∩ τ−1

2 ΓF τ1 = Ø.

If π is cuspidal automorphic representation, we denote for simplicity

ρπ := ρπ,λ. Then we obtain

ρ(π)ss ∼= ρπ|ΓE
⊗ ρπ|τ1ΓE

⊗ ρπ|τ2ΓE
,

where

ρπ|τi

ΓE
(γ) = ρπ(τiγτ

−1
i ).
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b) ΓF ∩τ−1
1 ΓF τ2∩τ−1

2 ΓF τ1 6= Ø. Define ΓE1
:= ΓF ∩τ−1

1 ΓF τ1∩τ−1
2 ΓF τ2.

It is easy to see that [E1 : E] = 2, F ⊂ E and that

ρ(π)ss ∼= ρπ|ΓE
⊗ ρ(π)′,

where ρ(π)′ is a subrepresentation of

IndΓE

ΓE1
(ρπ|τ1ΓE1

⊗ ρπ|τ2ΓE1
),

which verifies

ρ(π)′|ΓE1
= ρπ|τ1ΓE1

⊗ ρπ|τ2ΓE1
.

We distinguish two subcases:

1) E1 ⊆ Fi. Then

ρ(π)ss|ΓFi

∼= ρπ|ΓFi
⊗ ρπ|τ1ΓFi

⊗ ρπ|τ2ΓFi

.

2) E1 * Fi. Since ρπ,λ|ΓFi
is E1Fi is a quadratic extension of Fi,

we obtain that ρπ|ΓE1Fi
is modular and thus there exists an automorphic

representation π′i of GL(2)/E1Fi such that ρπ,λ|ΓE1Fi

∼= ρπ′

i
.

One can check easily that

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s− 3/2, (πi ⊗ χi) ⊗ π′i

τ1 , σ),

where πi is the base change of π to GL(2)/Fi defined at the end of Section 4.

We remark that this equality is true even when πi is reducible, i.e. when

(by Proposition 5.1) the representation π is of CM-type, π = π(θ), where

θ is an algebraic character of M for some quadratic extension M/F and Fi

contains M . Also the results in Theorems 5.2, 5.3, 5.4, 5.5 and 5.6 about the

functional equation and the existence the poles of the L-functions remain

true for such reducible representations πi (see below Section 6.2).

ii) τ1(F ) ⊂ E. This case is similar to case i), and some subcases overlap.

iii) τ2(F ) ⊂ E. This case is also similar to case i), and some subcases

overlap.

iv) ΓF τ1 ∩ τ−1
1 ΓF τ2 ∩ τ−1

2 ΓF 6= Ø. It is easy to see (after replacing τ1
and τ2 by other representatives of ΓF τ1 and Γτ2 if necessary) that τ3

1 = 1

and τ2
1 = τ2.

We consider two cases:
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a) ΓF ∩τ−1
1 ΓF τ2∩τ−1

2 ΓF τ1 = Ø. Then it is easy to see that, [F : E] = 3,

F is Galois over E and τ1 is the non-trivial automorphism of F over E. We

get that ρ(π)ss is a subrepresentation of

IndΓE

ΓF
(ρπ ⊗ ρτ1

π ⊗ ρ
τ2
1

π )

which verifies

ρ(π)ss|ΓF
∼= ρπ ⊗ ρτ1

π ⊗ ρ
τ2
1

π .

b) ΓF ∩ τ−1
1 ΓF τ2 ∩ τ−1

2 ΓF τ1 6= Ø. Let ΓE1
:= ΓF ∩ τ−1

1 ΓF τ1 ∩ τ−1
2 ΓF τ2.

Then it is easy to see that [F : E] = 3, F is not Galois over E, [E1 : F ] = 2

and E1 is Galois over E.

We distinguish several subcases:

1) E1 ⊆ Fi. Then we get

ρ(π)ss|ΓFi

∼= ρπ|ΓFi
⊗ ρπ|τ1ΓFi

⊗ ρπ|τ
2
1

ΓFi

.

2) F * Fi, τ1(F ) * Fi and τ2
1 (F ) * Fi. Since ρπ,λ|ΓF ′′

is modular and

F ′′ is a solvable extension of FFi, we obtain that ρπ|ΓF Fi
is modular and

thus there exists a cuspidal automorphic representation π′i of GL(2)/FFi

such that ρπ,λ|ΓF Fi

∼= ρπ′

i
. Then, FFi is an extension of degree 3 of Fi and

the element τ1 can be regarded as the nontrivial embedding of FFi over Fi.

One could check easily that

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s− 3/2, π′i ⊗ χ′

i, σ),

where χ′
i = χi|ΓF Fi

.

3) F ⊆ Fi, but E1 6⊆ Fi. Then

ρ(π)ss|ΓFi

∼= ρπ|ΓFi
⊗ ρ(π)′i,

where ρ(π)′i is a subrepresentation of

Ind
ΓFi

ΓFiE1
(ρπ|τ1ΓFiE1

⊗ ρπ|τ
2
1

ΓFiE1
),

which verifies

ρ(π)′i|ΓFiE1
= ρπ|τ1ΓFiE1

⊗ ρπ|τ
2
1

ΓFiE1
.

4) τ1(F ) ⊆ Fi, but E1 6⊆ Fi. This case is similar to the case 3).

5) τ2
1 (F ) ⊆ Fi, but E1 6⊆ Fi. This case is also similar to the case 3).
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6.1. Non-CM case

In this section we assume that our automorphic representation π of

GL(2)/F is non-CM.

In the case i) described above, we have two subcases:

a) F ⊆ E and

ρ(π)ss ∼= ρπ|ΓE
⊗ ρπ|τ1ΓE

⊗ ρπ|τ2ΓE
.

The representation π is non-CM and from Proposition 5.1, we get that

the representation πi is non-CM. Then

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s, ρπi

⊗ ρτ1
πi

⊗ ρτ2
πi

⊗ χi)

= L(s− 3/2, πi ⊗ πτ1
i ⊗ πτ2

i ⊗ χi).

Since the representation πi is cuspidal non-CM, from Propositions 5.2 and

5.3, we know that the L-function L(s−3/2, πi ⊗πτ1
i ⊗πτ2

i ⊗χi) has no poles

and does not vanish for Re(s) > 5/2 and satisfies a functional equation.

b) As we said above we consider two subcases:

1) E1 ⊆ Fi. Then

ρ(π)ss|ΓFi

∼= ρπ|ΓFi
⊗ ρπ|τ1ΓFi

⊗ ρπ|τ2ΓFi

,

and we are in the same situation as in the case a).

2) E1 * Fi. Then

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s− 3/2, (πi ⊗ χi) ⊗ π′i

τ1 , σ),

where π′i is, as above, the cuspidal automorphic representation ofGL(2)/FFi

such that ρπ,λ|ΓF Fi

∼= ρπ′

i
. Because π is non-CM, from Propositions 5.1, we

get that π′i is non-CM. Since the representation π′i is cuspidal non-CM, from

Propositions 5.4 and 5.6, we know that the L-function L(s−3/2, (πi ⊗χi)⊗
π′i

τ1 , σ) has no poles and does not vanish for Re(s) > 5/2 and satisfies a

functional equation.

The cases ii) and iii) are similar to the case i).

In the case iv), a), we know that [F : E] = 3, F is Galois over E, τ1 is

the non-trivial automorphism of F over E and ρ(π)ss is a subrepresentation

of

IndΓE

ΓF
(ρπ ⊗ ρτ1

π ⊗ ρ
τ2
1

π )
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which verifies

ρ(π)ss|ΓF
∼= ρπ ⊗ ρτ1

π ⊗ ρ
τ2
1

π .

We distinguish two subcases:

1) F ⊆ Fi. Then

ρ(π)ss|ΓFi

∼= ρπ|ΓFi
⊗ ρπ|τ1ΓFi

⊗ ρπ|τ
2
1

ΓFi
,

and we are in the same situation as in the case i), a).

2) F * Fi. Then

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s− 3/2, π′i ⊗ χ′

i, σ).

Because π is non-CM, from Propositions 5.1, we get that π′i is non-

CM. Since the representation π′i is cuspidal non-CM, from Propositions 5.4

and 5.5, we know that the function L(s−3/2, π′i ⊗χ′
i, σ) is holomorphic and

does not vanish for Re(s) > 5/2 and satisfies a functional equation.

The case iv), b), 1) is similar to the case i), a); the case iv), b), 2) is

similar to the case i), b), 2); the cases iv), b), 3) and iv), b), 4) and iv), b),

5) are similar to the case i), b).

6.2. CM case

We assume that our representation π is cuspidal of CM-type. From

the fact that our representation π is cohomological, we deduce there exists

a quadratic CM-extension M/F and an algebraic Hecke character θ of M

such that π = π(θ). We denote by α the non-trivial element of Gal(M/F ).

In the case i), a) from Section 6 we know that:

ρ(π)ss ∼= ρπ|ΓE
⊗ ρτ1

π |ΓE
⊗ ρτ2

π |ΓE
.

Thus

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s, ρπi

⊗ ρτ1
πi

⊗ ρτ2
πi

⊗ χi)

= L(s− 3/2, πi ⊗ πτ1
i ⊗ πτ2

i ⊗ χi).

From Propositions 5.2 and 5.3, we get that the order of the pole of

L(s−3/2, πi⊗πτ1
i ⊗πτ2

i ⊗χi) at s = 5/2 is 1 if θiθ
τ1
i θ

τ2
i χ

′′
i = 1 or θα

i θ
τ1
i θ

τ2
i χ

′′
i =

1 or θiθ
ατ1
i θτ2

i χ
′′
i = 1 or θiθ

τ1
i θ

ατ2
i χ′′

i = 1, where θi = θ|ΓFiM
, χ′′

i = χi|ΓFiM
.

Otherwise the function L(s − 3/2, πi ⊗ πτ1
i ⊗ πτ2

i ⊗ χi) is holomorphic at
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s = 5/2. Also, the function L(s − 3/2, πi ⊗ πτ1
i ⊗ πτ2

i ⊗ χi) is non-zero for

Re(s) > 5/2 and satisfies a functional equation.

But since the CM-weight of θ is (1
2 , . . . ,

1
2 ,

−1
2 , . . . ,

−1
2 ), where the num-

ber of 1
2 ’s is equal to [F : Q] and the number of −1

2 ’s is equal to [F : Q], we

see easily that it is impossible any of the characters θiθ
τ1
i θ

τ2
i χ

′′
i , θ

α
i θ

τ1
i θ

τ2
i χ

′′
i ,

θiθ
ατ1
i θτ2

i χ
′′
i or θiθ

τ1
i θ

ατ2
i χ′′

i to have parallel weight (0, . . . , 0) and thus all

these 4 characters are different from 1 and we obtain that the function

L(s− 3/2, πi ⊗ πτ1
i ⊗ πτ2

i ⊗ χi) is holomorphic at s = 5/2.

In the case i), b) we distinguish two subcases:

1) E1 ⊆ Fi. Then

ρ(π)ss|ΓFi

∼= ρπ|ΓFi
⊗ ρπ|τ1ΓFi

⊗ ρπ|τ2ΓFi
,

and we are in the same situation as in the case i), a).

2) E1 * Fi. Then

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s− 3/2, (πi ⊗ χi) ⊗ π′i

τ1 , σ).

From Propositions 5.4 and 5.6, we get that the order of the pole of

L(s−3/2, (πi ⊗χi)⊗π′i
τ1 , σ) at s = 5/2 is equal to 1 if θ′i

τ1 |IMFi
= (θiχ

′′
i )

−1

or θ′i
τ1 |IMFi

= (θα
i χ

′′
i )

−1, where θi = θ|ΓMFi
, χ′′

i = χi|ΓMFi
and θ′i = θ|ΓE1MFi

.

Otherwise L(s − 3/2, (πi ⊗ χi) ⊗ π′i
τ1 , σ) is holomorphic at s = 5/2. Also,

the function L(s − 3/2, (πi ⊗ χi) ⊗ π′i
τ1 , σ) does not vanish for Re(s) > 5/2

and satisfies a functional equation.

Since the CM-weight of θ is (1
2 , . . . ,

1
2 ,

−1
2 , . . . ,

−1
2 ), we see easily that

it’s impossible to have θ′i
τ1 |IMFi

= (θiχ
′′
i )

−1 or θ′i
τ1 |IMFi

= (θα
i χ

′′
i )

−1 and

we obtain that the function L(s− 3/2, (πi ⊗χi)⊗ π′i
τ1 , σ) is holomorphic at

s = 5/2.

The cases ii) and iii) are similar to the case i).

In the case iv), a), we know that [F : E] = 3, F is Galois over E, τ1 is

the non-trivial automorphism of F over E and ρ(π)ss is a subrepresentation

of

IndΓE

ΓF
(ρπ ⊗ ρτ1

π ⊗ ρ
τ2
1

π )

which verifies

ρ(π)ss|ΓF
∼= ρπ ⊗ ρτ1

π ⊗ ρ
τ2
1

π .

We distinguish two subcases:
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1) F ⊆ Fi. Then

ρ(π)ss|ΓFi

∼= ρπ|ΓFi
⊗ ρπ|τ1ΓFi

⊗ ρπ|τ
2
1

ΓFi
,

and we are in the same situation as in the case i) above.

2) F * Fi. Then

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s− 3/2, π′i ⊗ χ′

i, σ).

From Propositions 5.4 and 5.5, we get that the order of the pole of L(s−
3/2, π′i ⊗χ′

i, σ) at s = 5/2 is equal to 1 if θ′iχ
′′′
i |IFiM′

= 1 or θ
′α
i χ

′′′
i |IFiM′

= 1,

where θ′i = θi|ΓMFi
, χ′′′

i = χ′
i|ΓMFi

and M ′ is the quadratic extension of

E such that M = M ′F . Otherwise L(s − 3/2, π′i ⊗ χ′
i, σ) is holomorphic

at s = 5/2. Also, the function L(s − 3/2, π′i ⊗ χ′
i, σ) does not vanish for

Re(s) > 5/2 and satisfies a functional equation.

One could see easily that none of the characters θ′iχ
′′′
i |IFiM′

or

θ
′α
i χ

′′′
i |IFiM′

could have parallel weight (0, . . . , 0) and thus these characters

are different from 1 and we get that L(s− 3/2, π′i ⊗χ′
i, σ) is holomorphic at

s = 5/2.

The case iv), b), 1) is similar to the case i), a); the case iv), b), 2) is

similar to the case i, b), 2); the cases iv), b), 3) and iv), b), 4) and iv), b),

5) are similar to the case i), b).

From this section and Section 6.1, we deduce Theorem 6.1.

Remark 6.2. The results in this article remain true if we replace the

prime ideal ℘ of OF by an arbitrary ideal n of OF such that each place ℘|n
is unramified in D.
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