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INTEGRAL SPRINGER THEOREM FOR

QUATERNIONIC FORMS

LUIS ARENAS-CARMONA

Abstract. J. S. Hsia has conjectured an arithmetical version of Springer The-

orem, which states that no two spinor genera in the same genus of integral

quadratic forms become identified over an odd degree extension. In this paper

we prove by examples that the corresponding result for quaternionic skew-

hermitian forms does not hold in full generality. We prove that it does hold for

unimodular skew-hermitian lattices under all extensions and for lattices whose

discriminant is relatively prime to 2 under Galois extensions.

§1. Introduction

If D is a ring with involution x 7→ x̄, an n-ary skew-hermitian form

over D is a map h : Dn ×Dn → D that is D-linear in the first variable and

satisfies the identity h(x, y) = −h(y, x). Equivalently

(1) h(x1, . . . , xn; y1, . . . , yn) =

n∑

i,j=1

xiai,jyj, ai,j = −aj,i ∈ D.

Using (1) it is possible to extend a skew-hermitian form to any ring with

involution containing D. If k is a number field and D is a quaternion

algebra over k, these forms share many algebraic and arithmetical properties

of symmetric bilinear forms over k. If D is not a division algebra there

is a natural correspondence between skew-hermitian forms and symmetric

bilinear forms over k as we describe in Section 3. Certainly, this applies

when the form is extended to DK = D⊗kK for some well chosen quadratic

extension K/k. It is natural, therefore, to expect that many concepts in the

theory of symmetric bilinear forms [14] have their analogs in the theory of

skew-hermitian forms. In this paper we study the existence of an analog of

the Arithmetical Springer Theorem proved by J. S. Hsia [9], [8], [11].
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Let O be the ring of integers of the number field k. Two symmetric

bilinear forms q, r : On × On → O are in the same class if there is an

invertible linear substitution l with coefficients in O, i.e., a linear map l :

On → On, satisfying

(2) q(x, y) = r[l(x), l(y)].

Two forms are said to be in the same genus if (2) is satisfied for an invertible

linear substitution l = lv with coefficients in the completion Ov for every

place v of k, including the archimedean places if we define Ov = kv when

v is archimedean. The problem of determining the number of classes in a

genus is hard, but when the form is indefinite at some archimedean place it

can be reduced to the much simpler problem of counting spinor genera in

a genus [14]. The theory of spinor genera is the abelian part of the theory

and depends on the image of the spinor norm. It has been connected to

the machinery of class field theory through the spinor class field, a multiple

quadratic extension that encodes information about the form [9], [11]. Ex-

tensive computations of spinor norm images for integral symmetric bilinear

forms exist in the current literature [12], [7]. These computations have been

used to study the following question [11]: Can two different spinor genera

in the same genus become equal under an odd degree algebraic extension?

In the indefinite case, this is another way of asking whether (2) can hold

for a linear substitution l with coefficients in OK , the ring of integers of a

field K, where K/k is an extension of odd degree. A negative answer to this

question can be considered an arithmetical version of Springer Theorem.

So far, this is known to be the case whenever 2 is unramified in the base

field k [11]. The following partial generalization of this result is also known

[11]: The number of spinor genera in a genus is nondecreasing under an

extension that is linearly disjoint to the spinor class field.

In this paper, we study the corresponding question when Integral sym-

metric bilinear forms are replaced by skew-hermitian forms over a maximal

order D of a quaternion division algebra D over k [5]. Two skew-hermitian

forms q and r are in the same class if (2) is satisfied for some left D-linear

invertible substitution l with coefficients in D. We say that two skew-

hermitian forms are in the same genus if:

• (2) is satisfied for an invertible linear substitution l = lv with coeffi-

cients in the completion Dv for every finite place v of k.
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• (2) is satisfied for an invertible linear transformation l with coefficients

in the k-algebra D.

The last condition is trivial for symmetric bilinear forms because of the

Hasse principle. This is not the case for skew-hermitian forms ([13], p. 138).

The concept of spinor genus [5] and spinor class field [1] also extend to this

setting. Some computations of the image of the spinor norm for this case

are already available [5], [2]. If (2) is satisfied for some linear substitution

l with coefficients in a maximal order D′ of DK containing D we say that

q and r are identified in D′. In this paper we exhibit counterexamples to a

quaternionic skew-hermitian analog to the Arithmetical Springer Theorem

mentioned before, namely:

Theorem 1. There exists a quaternion Q-algebra D, a maximal order

D of D, a cubic extension K of Q, and binary skew-hermitian forms h,

h1 over D that are in the same genus but different spinor genus, and are

identified in D′ for any maximal order D′ of DK containing D.

Theorem 2. There exists a quaternion Q-algebra D, a maximal order

D of D, a binary skew-hermitian form h on D, and a quadratic extension

K of Q that is linearly disjoint to the spinor class field of h, that satisfy the

following :

• The genus of h has two spinor genera.

• The genus of the extension of h to D′ has only one spinor genus for

any maximal order D′ of DK containing D.

Theorems 1 and 2 are proved by explicit constructions. On the other

hand, the analog of the arithmetical springer Theorem still holds under

some restrictions. In Theorems 3–5 K/k is a finite extension of number

fields, D is a quaternion algebra over k, D is a maximal order of D and

D′ is a maximal order of DK containing D. Let h denote an n-ary skew-

hermitian form over D, where n ≥ 2, and let h′ be its extension to D′. The

discriminant of h is the reduced norm of the matrix (ai,j)i,j in (1). A form

h over the ring D (resp. Dv) is unimodular if its discriminant is a unit of O
(resp. Ov).

Theorem 3. Assume h is unimodular. Two lattices in different spinor

genera in the genus of h cannot be identified in D′ if [K : k] is odd. The
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number of spinor genera in the genus of h is not bigger that the number of

spinor genera in the genus of h′ whenever K is linearly disjoint from the

spinor class field of h.

Theorem 4. Assume that the discriminant of h is relatively prime to

2. Then two lattices in different spinor genera in the genus of h cannot be

identified in D′ if K/k is a Galois extension of odd degree.

A skew-hermitian form is diagonalizable if it can be put in the form (1)

where ai,j = 0 for i 6= j. In this case we write ai instead of ai,i. For any

non-archimedean place v, let ∆v be a unit of maximal quadratic defect [14],

and let ν be the normalized valuation in kv .

Theorem 5. Two lattices in different spinor genera in the genus of h

cannot be identified in D′ if K/k is an odd degree Galois extension, provided

that for every dyadic local place v of k at least one of the following conditions

holds:

1. The algebra Dv is not a division algebra and either kv/Q2 is unrami-

fied, or h is a unimodular form.

2. v splits completely in K/k.

3. The algebra Dv is a division algebra and the extension hv of h to Dv

is not in any of the three following exceptional cases:

• 2 ramifies in k/Q and hv is not diagonalizable.

• hv is diagonalizable. Also a2
m = λ2

mβ, for m = 1, . . . , n, where β

is a unit satisfying β /∈ ∆(k∗v)
2. Furthermore, ν(λm) < ν(λm+1),

but for some m we have ν(16λm) ≥ ν(λm+1).

• hv is diagonalizable. Also a2
m = λ2

mβ, for m = 1, . . . , n, where β

is a prime element. Furthermore, ν(4λm) ≤ ν(λm+1) for all m,

but for some m we have ν(16λm) ≥ ν(λm+1).

The exceptional cases are those in which the image of the spinor norm

is unknown. It is likely, as far as we know, that the above result holds with

only the Galois condition. The Galois condition cannot be eliminated even

in Theorem 4. This happens because the norm principle [8] fails to extend

to our setting in the case of local extensions of even degree. In Section 5

we give a description of the local lattices and extensions that exhibit this

phenomenon in the non-dyadic case.
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§2. Lattice extensions and the norm principle

In this section we exhibit the relation between the norm principle and

extension properties of genera and spinor genera. We do not assume in this

section that G is a unitary group for the sake of generality, although this is

the only case that is used in this work.

Let V be a vector space over a number field k, and let G ⊆ GLk(V ) be

a semisimple linear algebraic group [16]. For any field E containing k, we

denote by GE the set of E-points of G. Let F be the fundamental group of

G and G̃ the universal cover of G ([16], p. 63). The spinor norm on GE is the

cohomology map θE : GE → H1(E,F ), defined by the short exact sequence

F ↪→ G̃ � G ([16], p. 72). The kernel of the spinor norm is denoted G′
E .

Let O be the ring of integers of k and Λ an O-lattice in V . The class

cls(Λ, G, k) is the G-orbit of Λ. A lattice L is in the genus gen(Λ, G, k)

if its localization Lv is in the same Gkv
-orbit as the localization Λv for

any finite place v. Equivalently, L is in gen(Λ, G, k) if L is in the GA-

orbit of Λ, for the usual action of the group GA of adelic points of G on

the set of lattices in V [1], [14], [16]. A lattice L is in the spinor genus

spn(Λ, G, k) if there exists a lattice M that is in the same G-orbit as L and

whose localizations Mv is in the same G′
kv

-orbit as Λv for any finite place v.

Equivalently, L is in spn(Λ, G, k) if L is in the GkG
′
A-orbit of Λ, where G′

A

is the subgroup of GA of elements g whose local coordinate gv has trivial

spinor norm for all v. The set of classes in a genus is classified by the set

of double cossets Gk\GA/G
Λ
A [1], where GΛ

A =
∏
v G

Λ
kv

is the stabilizer of Λ

in GA. If G is non-compact at some infinite place the concepts of class and

spinor genus coincide, but clasifying forms up to spinor genera is simpler,

since the set of spinor genera in a genus are in one-to-one correspondence

with the quotient group Θ(GA)/Θ(GΛ
AGk), where Θ is the restriction to the

adelic group GA of the product function
∏
v θkv

:
∏
v Gkv

→ ∏
vH

1(kv , F ).

The set Iv(Λ, k) = θkv
(GΛ

kv
) is called the local image of the spinor norm.

The set I(Λ, k) =
∏
v Iv(Λ, k) = Θ(GΛ

A) is called the global image of the

spinor norm. We use the convention that Λv = Vv if v is archimedean.

Let K/k be a finite extension of number fields. Note that the adelic

group GA embeds in the adelic group GAK
by embedding each Gkv

diago-

nally in the product of the groups GKw
for all w over v. In particular GA

acts naturally on the set of lattices in VK . For any place w of K let v denote

the corresponding place of k and let Nw : H1(Kw, F ) → H1(kv , F ) be the

transfer map [6]. Let N :
∏
wH

1(Kw, F ) → ∏
vH

1(kv , F ) be the function

defined locally by N(a)v =
∏
w|vNw(aw). Let X be a set of lattices in V
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that is closed under genus equivalence. A correspondence Λ 7→ ψ(Λ) that

associates a lattice in VK to every lattice inX and such that ψ(σΛ) = σψ(Λ)

for every σ ∈ GA is called an extension rule. If N
[
I(ψ(Λ),K)

]
⊆ I(Λ, k)

we say that the extension rule ψ satisfy the norm principle for Λ under the

extension K/k.

Proposition 2.1. If the extension rule ψ satisfy the norm principle for

Λ under K/k, and [K : k] is relatively prime to |F |, then for any lattice L

in the same genus as Λ, the extensions ψ(Λ) and ψ(L) are spinor equivalent

if and only if the original lattices Λ and L are spinor equivalent.

Proof. Let Ψk = Θ(GA), and let Ωk be the image of H1(k, F ) in∏
vH

1(kv, F ). Because of the Hasse principle for simply connected semisim-

ple algebraic groups ([16], p. 286), if we regard Gk as a subgroup of GA,

then Θ(Gk) = Ψk ∩ Ωk, hence

GA/G
′
AGkG

Λ
A
∼= Ψk/(Ψk ∩ Ωk)I(Λ, k).

The spinor genus of L corresponds to the coset of σ ∈ GA satisfying σΛ = L.

If we regard σ as an element of the adelic group GAK
over K, then the class

of σ over K corresponds to the spinor genus of ψ(L). Hence it suffices to

prove that if r :
∏
vH

1(kv , F ) → ∏
wH

1(Kw, F ) is the restriction map, then

r−1[ΩKI(Λ,K)] ⊆ ΩkI(Λ, k). This follows since the composition N ◦ r is

multiplication by [L : K] ([6], p. 82), hence it is invertible in the cohomology

groups of F , which have exponent |F |.

Assume from now on that F is isomorphic as a Gal(k̄/k)-module to

the group µn of n-th roots of unity. Then Ωk = H1(k, F ) = k∗/k∗n, and

the quotient Jk/J
n
k of the idele group Jk is contained in

∏
vH

1(kv , F ) =∏
v k

∗
v/k

∗n
v . In this case it is known ([15], Lemma 13) that Ψk ⊆ Jk/J

n
k .

Since the spinor norm is surjective over non-archimedean local fields ([16],

p. 284), it follows by weak approximation that ΨkΩk = Jk/J
n
k , whence

Ψk/(Ψk ∩ Ωk)I(Λ, k) ∼= Jk/k
∗H(Λ, k),

whereH(Λ, k) is the preimage in Jk of I(Λ, k). The class field corresponding

to k∗H(Λ, k) is the spinor class field ΣΛ [1]. The conditionN
[
H(ψ(Λ),K)

]
⊆

H(Λ, k) implies that ΣΛ is contained in Σψ(Λ). Next proposition follows:
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Proposition 2.2. If K ∩ ΣΛ = k and the extension rule ψ satisfies

the norm principle for Λ under K/k, then the number of spinor genera in

gen(Λ, G, k) cannot exceed the number of spinor genera in gen[ψ(Λ), GK ,K].

The following lemma is immediate from the previous discussion and it

will be useful later:

Lemma 2.3. If σ is an element of the adelic group GA, the lattice σΛ

belongs to the same spinor genus as Λ if and only if Θ(σ) ∈ k∗H(Λ, k).

Let L be a local field with ring of integers OL. Let M be an OL-lattice

in an L-vector space W . Let G ⊆ GLL(W ) be a semisimple linear algebraic

group whose fundamental group is the group of n-roots of unity. We denote

by H(Λ, L) the preimage in L∗ of the image of the spinor norm θ : GΛ →
L∗/L∗n. This is the local version of the group H defined above. Note

that for a global field k, we have H(Λ, k) =
∏
vHv(Λ, k), where Hv(Λ, k) is

defined as follows:

• if v is non-archimedean, then Hv(Λ, k) = H(Λv , kv), where Λv is the

completion at v of Λ.

• if v is archimedean, then Hv(Λ, k) is the preimage in k∗ of the image

in k∗/k∗n of the spinor norm θv : Gv → k∗/k∗n.

This is consistent with the convention Λv = Vv for archimedean v. For

simplicity of notation, we say that the norm principle is satisfied at the

place w of K lying over v if

NKw/kv

[
Hw

(
ψ(Λ),K

)]
⊆ Hv(Λ, k).

With this notation, the norm principle is satisfied if and only if it is satisfied

at every local place.

Example 1. (The canonical extension) The simplest extension rule is

ψ(Λ) = Λ⊗OOK . This rule is defined for every lattice and for any semisim-

ple group G. In case that G is an orthogonal group the norm principle is

knows to hold for all field extensions when the lattice is unimodular of rank

at least 3 and for all lattices if 2 is unramified1 in the extension k/Q [11].

1C. N. Beli [3] has given a formula to compute the image of the spinor norm in all
cases. As far as we know, this result has not yet been applied to the extension problem.
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Example 2. (Extension rules of maximal orders) Let V = A be a cen-

tral simple algebra of dimension n2 over k and Let G = A∗/k∗ be the auto-

morphism group of A. If the localization Akv
is isomorphic to Mt(A

′), where

A′ is a division algebra of dimension d2 = d(k, v)2, then Hv(A, k) = O∗
vk

∗d
v

for any maximal order A of A. It follows that if ψ is an extension rule from

the set of maximal orders of A to the set of maximal orders of AK , then the

norm principle is satisfied provided that d(k, v) divides f(Kw/kv)d(K,w)

for every w, where f denotes the residue class degree. Since d(k, v) always

divides [Kw : kv ]d(K,w), this is the case for example when the ramification

degree e(Kw/kv) is relatively prime to d(k, v) for every w.

Example 3. (Extension from D to D′) Let D be a central simple al-

gebra over k and let V be an D-module. Let D be an order in D and let

D′ be an order of DK containing D. Let G be a group of D-automorphisms

of V . Then there is an extension rule ψ such that for any D-lattice Λ, the

lattice ψ(Λ) is the D′-lattice generated by Λ, where we consider D and V

as subsets of DK and VK respectively.

In this paper we are concerned with Example 3. As far as we know it

is still unknown wether there are counterexamples to the norm principle for

the canonical extension.

§3. Skew-hermitian forms and matrix algebras

In all that follows, k is a local or number field, D is a quaternion algebra

over k, with standard involution σ 7→ σ̄, and D is a maximal order in D. If

V is a D-module, a skew-hermitian form on V is a map h : V × V → V ,

D-linear on the first variable and satisfying h(v, w) = −h(w, v). We also

say that (V, h) is a skew-hermitian space over D. An isometry between two

spaces (V, h) and (V ′, h′) is an invertible D-linear function f : V → V ′ such

that h(v, w) = h′[f(v), f(w)] for any pair of vectors v and w in V . Let D be

an order in D. Any skew-hermitian form h on n variables with coefficients

in D, as defined in the introduction, can be viewed as a form on the D-

module Dn and can be extended uniquely to V = Dn. Let h′ be another

skew-hermitian form on n variables with coefficients in D such that there

exists a isometry f between the skew-hermitian spaces (Dn, h) and (Dn, h′).

Then Λ = f−1(Dn) is a lattice in Dn with a D-basis {f−1(e1), . . . , f
−1(en)}.

As h′(et, es) = h[f−1(et), f
−1(es)], the forms h and h′ are in the same class

if and only if there exists a D-basis {v1, . . . , vn} of Λ such that h′(et, es) =
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h(vt, vs). We say that lattices M and L are equivalent if there is an isometry

of (V, h) sending M to L. It follows that h and h′ are in the same class if and

only if the lattice Λ is equivalent to Dn. A similar argument proves that h

and h′ are in the same genus if the lattices Λ and Dn are locally equivalent

at all places. Conversely, any free lattice Λ defines, once a D-basis is chosen,

a form h′ that is in the same class or genus of h if and only if Λ is in the

same class or genus of Dn. It follows that clasifying forms is equivalent to

clasifying free lattices. In all that follows we use the language of lattices.

The special unitary group G of h is the group of isometries of V with

reduced norm 1. This group is generated by simple rotations [5]. The

simple rotation (s;σ) ∈ G of axis s is defined by (s;σ)(x) = x−h(x, s)σ−1s,

whenever s ∈ V and σ ∈ D∗ satisfy σ − σ̄ = h(s, s). The spinor norm

on G is computed by the formula θ[(s;σ)] = N(σ) where N is the reduced

norm on D [5]. Note that (s;σ)s = σ̄σ−1s. Hence, if dimD V = 1, Hilbert

Theorem 90 for the extension k(σ)/k can be reformulated as follows: Any

element in the special unitary group is a simple rotation. If D is a division

algebra, all isometries of h have reduced norm 1 ([13], p. 42). It follows that

two lattices are equivalent if and only if they are in the same G-orbit. If D

is not a field, then it is isomorphic to the split quaternion algebra over k,

i.e., the ring M2(k) with the involution

(
a b
c d

)∗

=

(
d −b
−c a

)
.

Let j and ε be the matrices defined by

j =

(
0 1
1 0

)
, ε =

(
1 0
0 0

)
.

Let (V, h) be a skew-hermitian space over M2(k). Since ε2 = ε, ε+ jεj = 1,

and εjε = 0, then V = εV ⊕ jεV . For s, u ∈ V set

h(s, u) =

(
(s, u)1,1 (s, u)1,2
(s, u)2,1 (s, u)2,2

)
.

For every x and y in εV , define γ(x, y) = (x, y)2,1. Then γ is a symmet-

ric bilinear form on the k-vector space εV . There exists an isomorphism

between G and the special orthogonal group of γ sending an element of G

to its restriction to εV ([5], Lemma 4). Furthermore, by setting β = 1 in
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formula (14) of [5], we get

(3) h(x1 + jx2, y1 + jy2) =

(
γ(x1, y1) γ(x2, y1)
γ(x1, y2) γ(x2, y2)

)(
0 1
−1 0

)

for every x1, x2, y1, and y2 in εV . In particular, if u and v are linearly

independent elements in εV , the discriminant of γ in the two-dimensional

space generated by u and v is

(4) disc
[
γ
∣∣
ku+kv

]
= N [h(u+ jv, u+ jv)]k∗2.

Note that for x and y in εV we have the formulas

(5) ε(x+ jy) = x, εj(x+ jy) = y.

Until the end of Section 3, let k be a local field, and let D0 be the maximal

order M2(O). Let Λ be a D0-lattice. Since j is a unit in D0, we have

Λ = εΛ ⊕ jεΛ. Therefore, if {s1, . . . , s2n} is a O-basis of εΛ, then {s1 +

jsn+1, . . . , sn + js2n} is a D0-basis of Λ. By ([14], §92:1) and ([14], §93:15),
the O-lattice εΛ has an orthogonal decomposition, εΛ = Λ1 ⊥ · · · ⊥ Λm
into lattices of rank 2. Hence, Λ = (Λ1 ⊕ jΛ1) ⊥ · · · ⊥ (Λm ⊕ jΛm). Since

k is a local field, the ring O is a principal ideal domain. Therefore, if for

t = 1, . . . ,m we set Λt = Oxt + Oyt, it holds that Λt ⊕ jΛt = D0(xt + jyt).

Since all maximal orders in a local central simple algebra are conjugate,

next proposition follows:

Proposition 3.1. If D is a maximal order in the local split quaternion

algebra M2(k), then any skew-hermitian D-lattice has an orthogonal basis.

By Theorem 7 in [5], the restriction to εV of an element g of G stabilizes

the lattice εΛ if and only if g stabilizes Λ. Hence, we can identify canonically

the stabilizer of Λ in G with the stabilizer of εΛ in the orthogonal group

Ort(εV, γ). Since it is known that the stabilizer of a local symmetric bilinear

lattice contains an element of determinant −1 ([14], p. 241), it follows that

if k is a local field, two lattice are equivalent if and only if they are in the

same G-orbit, just as in the non-split case. It follows that for a quaternion

division algebra D over a number field L, and for any maximal order D of

D, two D-lattices in a skew-hermitian space over D are locally equivalent

at all places if and only if they are in the same G-genus. Note that G is

contained in the group SL(V,D) of D linear functions on V . Since this

group has strong approximation, Any two lattices in the same G-genus are

isomorphic as D-modules. In particular, if one is free, so is the other.
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§4. Computation of H for non-dyadic split places

In this section we give some spinor norm computations that we use to

prove the main results. In all of this section k is a non-dyadic local field with

ring of integers O, uniformizing parameter π, and a valuation ν such that

ν(π) = 1. Assume D = M2(k) and D = M2(O). We identify the unitary

group G of the skew-hermitian form h with the orthogonal group Ort(γ)

and the stabilizer GΛ of the lattice Λ with Ort(γ)εΛ in the notations of last

section. A pure quaternion a in D is good if the ring of integers Ok(a) of

the algebra k(a) is contained in D. Let a = h(s, s), for some element s ∈ Λ.

Assume that ν[N(a)] = 2t is even. Then π−ta ∈ O∗
k(a). Assume that a

is good, so that π−ta ∈ D∗. Then ε(Ds) is a modular symmetric bilinear

lattice of scale (πt). Next result follows from Theorem 3 in [12]:

Proposition 4.1. Assume that Λ = Ds1 ⊥ · · · ⊥ Dsn, where am =

h(sm, sm) ∈ D for m = 1, . . . , n. Assume also that ν[N(a1)], . . . , ν[N(an)]

are all even and congruent modulo 4, and that a1, . . . , an are all good. Then,

H(Λ, k) = O∗(k∗)2.

Proposition 4.2. Let α be a non-unit in Ok. Let q be a pure quater-

nion satisfying q2 = α. Assume that Λ = Ds1 ⊥ · · · ⊥ Dsn, where

h(sm, sm) = (−α)tmq for m = 1, . . . , n. Assume also that either of the

following conditions hold :

• tm+1 ≥ tm + 2 for m = 1, . . . , n− 1, and ν(α) is odd.

• tm+1 ≥ tm + 1 for m = 1, . . . , n− 1, ν(α) is even, and α /∈ k∗2.

Then H(Λ, k) = N(k(q)∗).

Proof. We can assume that the symmetric bilinear lattice ε(Ds1) is

diagonal, whence by (3) we have q =
(

0 y
z 0

)
, for some y and z in O satisfying

yz = α. Conjugating by j = ( 0 1
1 0 ) if needed, we may assume ν(y) ≥ ν(z),

so that 2ν(z) ≤ ν(α). It follows that

εDsm ∼= 〈(−α)tmz〉 ⊥ 〈(−α)tm+1z−1〉.

If ν(α) is even, it follows that all Jordan components of εΛ are modu-

lar lattices with scales of the same parity, and the result follows from

Theorem 3 in [12] and N(k(q)∗) = O∗(k∗)2. Assume now that ν(α) is

odd, so that 2ν(z) < ν(α). If a lattice 〈(−α)tz〉 has the same scale as
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a lattice 〈(−α)t
′+1z−1〉 we have tν(α) + ν(z) = (t′ + 1)ν(α) − ν(z) and

therefore (t − t′)ν(α) = ν(α) − 2ν(z). It follows that t − t′ = 1. By

the condition on the exponents tm, the symmetric bilinear lattice εΛ has

all its Jordan components are of the form 〈(−α)tz〉 or 〈(−α)tz−1〉. Hence

H(Λ, k) = (k∗)2 ∪ (−α)(k∗)2 = N(k(q)∗) by Theorem 3 in [12].

Proposition 4.3. Let i a quaternion such that i2 = π is a uniformiz-

ing parameter of k. Let Λ be the skew-hermitian lattice Λ = 〈i〉 ⊥ 〈πi〉.
Then H(Λ, k) = k∗.

Proof. Consider the skew-hermitian lattice L = 〈i〉. The symmetric

bilinear lattice εL has discriminant −π and therefore, it must have a Jordan

decomposition of the form εL ∼= 〈u〉 ⊥ 〈−uπ〉, where u is a unit. It follows

that

εΛ ∼= 〈u〉 ⊥ 〈−uπ〉 ⊥ 〈uπ〉 ⊥ 〈−uπ2〉.

The result follows from the relation 〈π〉 ⊥ 〈−π〉 ∼= 〈∆π〉 ⊥ 〈−∆π〉 and

Theorem 3 in [12].

§5. Norm principle for non-dyadic places

In all of Section 5 k, π, O, and ν are as in last section. Let D be

a quaternion division algebra over k with a maximal order D. Let Λ be

a D-lattice in a skew-hermitian space (V, h) with unitary group G. Let

{s1, . . . , sn} be an orthogonal D-basis of Λ. Let am = h(sm, sm), for 1 ≤
m ≤ n. It is proved in [5] that if the image of the spinor norm is not the

whole of k∗, then it has the form NL/k(L
∗), for the quadratic extension

L = k(a1). This is the case in any of the following cases:

1. ν[N(am)] is even for all m ∈ {1, . . . , n}.
2. ν[N(am)] < ν[N(am+1)] and N(am) ≡ N(am+1) (mod k∗2) for all

m ∈ {1, . . . , n− 1}.

If we have two finite extensions L and K of k, the above computation and

the contention NL/k(L
∗) ⊇ NK/k ◦NKL/K [(KL)∗] imply next result:

Proposition 5.1. Let K/k be an odd degree extension of non-dyadic

local fields. Let D′ be a maximal order of DK containing D. Let ψ be the

extension rule defined in Example 3. Then ψ satisfy the norm principle for

Λ under K/k.
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If K/k is an even extension, and hence DK is a matrix algebra, we need

the results in last section to study the norm principle.

Lemma 5.2. Let β be an element of k whose valuation ν(β) is odd. If

N(q1) = N(q2) = β for q1, q2 ∈ D, then q1 = uq2ū for some u ∈ D∗.

Proof. Multiplying by elements in the center, we can assume that

ν(β) = 1. The space of pure quaternions is a quadratic space of dimen-

sion 3 with the norm and the set D0 of pure quaternions in D is a lattice

in this space. By Witt’s Theorem for non-dyadic local lattices [14] there

is an element of the special orthogonal group of the lattice that sends q1

to q2. Since any element in the special orthogonal group of the space of

pure quaternions is a conjugation, the elements q1 and q2 are conjugate.

Write q1 = rq2r
−1. Observe that k(q2)/k is ramified by the condition on β.

Multiplying r by an element in k(q2), we can assume r is a unit. Hence,

replacing q2 by rq2r̄, we can assume q1 = ηq2, where η ∈ O∗. If η is a

square, there is nothing left to prove. We can assume that η is a non square

unit. Since the Hilbert symbol (η,−β) defines the algebra D, there exists a

pure quaternion q3 ∈ D such that q2
3 = η, and q3q2 = −q2q3. It follows that

q3q2q3 = ηq2. The result follows.

Proposition 5.3. Let K/k be an even-degree extension. Let D′ be a

maximal order of DK containing D. If the extension rule ψ of Example 3

does not satisfy the norm principle for the lattice Λ under the extension

K/k, then the following conditions hold :

• The valuations ν[N(a1)], . . . , ν[N(an)] are all odd.

• ν[N(am)] < ν[N(am+1)] for all m = 1, . . . , n− 1.

• N(am) ≡ N(ar) (mod k∗2) for all r,m = 1, . . . , n.

• The ramification degree e(K/k) is odd.

• ν[N(at+1)] = ν[N(at)] + 2, for some t.

Proof. If H(Λ, k) = k∗ there is nothing to prove. According to [5] this

holds except in cases 1 and 2 at the beginning of this section.

1. In this case H(Λ, k) = O∗(k∗)2. Let ∆ be a non-square unit in k. If

∆ is not a square in K, we claim that Proposition 4.1 applies. First,

we need to prove that a1, . . . , an are good. Note that Ok(am) = O(κ),

where κ ∈ D satisfies κ2 = ∆, hence OK(am) = OK(κ) ⊆ D′. The
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congruence hypotheses follows since the ramification degree e(K/k) is

even. Now the proof goes as for Proposition 5.1. Therefore, we can

assume that ∆ is a square in K. In this case K contains an unramified

quadratic extension L of k, hence:

NK/k

[
H(ψ(Λ),K)

]
⊆ NK/k(K

∗) ⊆ NL/k(L
∗)(6)

= O∗(k∗)2 = H(Λ, k).

2. In this case we have H(Λ, k) = N [k(a1)
∗]. If K(am) is not a field,

then k(am) injects in K and the result follows as in (6). If K(am) is a

field there are three possibilities depending on the ramification degree

e(K/k).

• If e(K/k) is odd and for some m we have ν[N(am+1)] =

ν[N(am)] + 2, then we are in the exceptional case.

• Assume that e(K/k) is odd, and ν[N(am+1)] > ν[N(am)] + 2

for all m = 1, . . . , n − 1. Replacing am by umam, where um ∈
O∗ ⊆ O∗2

K , if needed, we may assume N(am) = (−α)2tm+1, for

a suitable uniformizing parameter α of k. By Lemma 5.2 we

can assume am = (−α)tmq, where q is as in Proposition 4.2, and

therefore H[ψ(Λ),K] ⊆ N [K(q)∗]. Now the result follows as for

Proposition 5.1.

• If e(K/k) is even, then NK/k(O∗
KK

∗2) ⊆ k∗2. On the other

hand, by the same argument as above we have H[ψ(Λ),K] ⊆
N [K(q)∗] = O∗

KK
∗2.

Example. Assume K/k is an unramified quadratic extension. By

Proposition 4.3, if N(i) = −π, the lattice Λ = 〈i〉 ⊥ 〈πi〉 has full spinor norm

over K, but NK/k(K
∗) = O∗(k∗)2 is not contained in N [k(i)∗] = H(Λ, k).

Since the choice of the order D′ in DK is not unique, if e(K/k) is odd

and bigger than 1, some choices of D′ might still make the norm principle

hold. One way to accomplish this is by lifting D first to some ramified odd

degree subextension of K/k.

§6. Proof of Theorems 3, 4, and 5

For the following proposition, notations are as in Section 5, except that

here k is a dyadic field and ∆ ∈ k is a unit of maximal quadratic defect.

If Λ is diagonalizable, we assume that Λ = Ds1 ⊥ · · · ⊥ Dsn and am =

h(sm, sm). Next result follows as Proposition 5.1 using the tables in [2].
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Proposition 6.1. Let K/k be an odd degree extension of dyadic local

fields. Let D′ be the maximal order of DK . Let ψ be the extension rule

defined in Example 3. Then ψ satisfy the norm principle for Λ under K/k

except maybe in the following cases:

• 2 is not a prime in k and Λ is not diagonalizable.

• Λ is diagonalizable. The norms of the elements am have the form

N(am) = λ2
mβ, for a fixed element β ∈ k that is not in the same square

class as ∆, and elements λ1, . . . , λn ∈ k such that ν(λm)+ε ≤ ν(λm+1)

for m = 1, . . . , n− 1, where

ε =

{
1 if ν(β) is even

ν(4) if ν(β) is odd.

Furthermore, for some m we have ν(λm) + ν(16) ≥ ν(λm+1).

As noted in Section 3, there is a one to one correspondence between

classes or genera of skew-hermitian forms defined over D that are equivalent

to h over D and G-classes or G-genera of free D-lattices in (V, h). Therefore,

to prove Theorems 3, 4, and 5, we can use the language of lattices.

Proof of Theorem 5. Assume K/k is a Galois extension of odd degree.

Then spn[ψ(Λ)] = spn[ψ(L)] implies spn(Λ) = spn(L), provided that the

norm principle is satisfied by Proposition 2.1. As noted in Section 2, the

norm principle holds if it holds locally at all places. The Galois condi-

tion implies that all local degrees are odd. At non-dyadic places v where

the algebra Dv does not split, the norm principle holds by Proposition 5.1.

At non-dyadic places v where the algebra Dv splits, we can use the corre-

spondence between stabilizers of skew-hermitian lattices Λ and stabilizers

of orthogonal lattices εΛ described in Section 3 to reduce the problem to

proving the norm principle for orthogonal lattices. The norm principle fol-

lows immediately from Theorem 3 in [12], since quadratic classes do not

change under an odd degree extension. Therefore, we are reduced to prove

the norm principle at a dyadic place v. If v is in case (1), as before, we are

reduced to proving the norm principle for orthogonal lattices, which is done

in the Main Lemma for the proof of Theorem 4.1 in [8]. It follows from

last proposition that the norm principle is satisfied in case (3). Case (2) is

trivial.
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Proof of Theorem 4. We need to prove that the localization Λv at every

dyadic place v satisfies one of the conditions 1, 2, or 3 in Theorem 5. If the

local algebra Dv splits, condition 1 is satisfied, so we can assume that Dv

does not split. By Lemma 5.2 in [2], every unimodular Dv-lattice has an

orthogonal basis, whence Λv is not in the first exceptional case in condition

3. It is clear that it is not in any of the others.

Proof of Theorem 3. It suffices to prove that the norm principle holds

locally at all finite places. Because of Theorem 4.1 in [8] and the fact that

spinor norm for a lattice Λ is the same as for the corresponding symmetric

bilinear lattice εΛ as in Section 3, it suffices to consider places v that are

ramified for D. Let q ∈ Dv be a pure quaternion such that q2 = ∆ is a unit

of maximal quadratic defect. If v is non-dyadic, this is equivalent to say that

∆ is a non-square unit. In any case, this is equivalent to say that the residue

class degree f [kv(q)/kv ] equals 2, or equivalently q is a unit in D∗ satisfying

q = ω − ω̄ for some ω ∈ D. Assume first Λ = 〈q〉 ⊥ · · · ⊥ 〈q〉. Now, it

follows from the tables in [2] and Theorem 4 in [5] that H(Λ, k) = O∗k∗2.

Now let KV /kv be any local extension. If [KV : kv] is odd, the extension of

Λ to OKV
is also of the form 〈q〉 ⊥ · · · ⊥ 〈q〉, where q = ω − ω̄. It follows

that H[ψ(Λ),KV ] = OKV
K∗2
V . Assume now that [KV : kv ] is even, so that

DKV
is isomorphic to a matrix algebra. If L = 〈q〉 is a lattice over DKV

,

it follows from (4) that εL is a binary unimodular lattice, whence it has

a Gram Matrix of the form
(
z 1
1 y

)
. By (3) we can choose the isomorphism

so that q corresponds to a matrix of the form
(
−1 z
−y 1

)
, where the fact that

q = ω − ω̄ for an integer ω proves that y and z are in the ideal 2OKV
.

Therefore, in the notations of Section 3, the lattice εψ(Λ) has the form〈
z 1
1 y

〉
⊥ · · · ⊥

〈
z 1
1 y

〉
. By Lemma 1 in [10], we have H[ψ(Λ),K] = OK(K∗)2,

whence the norm principle holds. If Λ 6= 〈q〉 ⊥ · · · ⊥ 〈q〉, then v must be

dyadic and the tables in [2] prove that H(Λ, k) = k∗ whence norm principle

is immediate.

§7. Proof of Theorems 1 and 2

Let D be a quaternion algebra over Q generated by orthogonal skew-

hermitian elements j and i, satisfying j2 = −1 and i2 = pq, where p and q

are positive primes satisfying p, q ≡ 3 (mod 4) and pq ≡ 5 (mod 8). This

quaternion algebra splits everywhere except at the places p and q. Let D

be a maximal order containing ω = (1 + i)/2 and j. Consider the skew-

hermitian form

h(x1, x2; y1, y2) = x1i y1 + pqx2i y2,
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and let Λ be D × D with the form h. As noted in Section 3, there is a

correspondence between classes of free D-lattices in the genus of Λ and

classes of forms in the genus of h. Since the group SL2(D) has strong

approximation and contains the unitary group G of h, every lattice in the

genus of Λ is free. Since DR is a matrix algebra, and N(i) < 0, so that

the symmetric bilinear lattice ε〈i〉 is indefinite, the local image of the spinor

norm at ∞ is H(V,R) = R∗. For v = 2, we use i = ω− ω̄ to prove that ε〈i〉
is even as in last section. From the computations in [5], and Section 4, we

complete the following table:

Hv(Λ,Q) =





N [Qv(
√
pq)∗] if v = p, q

R∗ if v = ∞
Z∗
vQ

∗2
v if v 6= p, q,∞.

It follows that ΣQ = Q(
√
pq). In particular, the genus of Λ has two spinor

genera. The representatives of both spinor genera are Λ and σΛ, where

σr = Id for r 6= p and σp is any rotation with spinor norm −1.

Proof of Theorem 2. If K = Q(
√
−1), then DK is a matrix algebra.

Therefore, Proposition 4.3 shows that H(Λ,K, v) = K ∗
v at both v = p and

v = q. Since it is unimodular everywhere else, it follows that ΣK/K is

unramified everywhere and therefore ΣK = K. Therefore, the spinor class

number decreases in spite of the fact that K ∩ Σk = k.

Proof of Theorem 1. Find a cubic extension K/Q, so that (p) = ℘1℘2

and (q) = q1q2 where ℘1, ℘2, q1, and q2 are prime ideals in K satisfying the

following conditions:

[K℘1
: Qp] = [Kq1

: Qq] = 1, [K℘2
: Qp] = [Kq2

: Qq] = 2.

It suffices to choose p, q, and K in such a way that the idele having co-

ordinates −1 at ℘1 and ℘2 and 1 everywhere else is in H(Λ,K)K∗. Since

H(Λ,K, ℘2) = K∗
℘2

and H(Λ,K, q2) = K∗
q2

by Proposition 4.3, this is im-

mediate if K has a unit that is a local square at q1 but not at ℘1. Let α be a

root of x3+x+1 = 0. Then α is a unit of the cubic field K = Q(α). A prime

p has the above decomposition in K if and only if x3 +x+1 = 0 has exactly

one simple root in Z/pZ. Note that 2 is the only root of x3 + x+ 1 = 0 in

Z/11Z and 4 is the only root of x3 + x+ 1 = 0 in Z/23Z. Set p = 11 and

q = 23. We conclude that α ≡ 2 (mod ℘1) and α ≡ 4 (mod q1). Since 4 is

a square in Z/23Z and 2 is not a square in Z/11Z, the result follows.
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