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CARLESON MEASURES FOR WEIGHTED

HARDY-SOBOLEV SPACES

CARME CASCANTE and JOAQUIN M. ORTEGA

Abstract. We obtain characterizations of positive Borel measures µ on B
n

so that some weighted Hardy-Sobolev are imbedded in Lp(dµ), where w is an

Ap weight in the unit sphere of C
n.

§1. Introduction

The purpose of this paper is the study of the positive Borel measures µ

on Sn, the unit sphere in Cn, for which the weighted Hardy-Sobolev space

Hp
s (w) is imbedded in Lp(dµ), that is, the Carleson measures for Hp

s (w).

The weighted Hardy-Sobolev space Hp
s (w), 0 < s, p < +∞, consists of

those functions f holomorphic in Bn such that if f(z) =
∑

k fk(z) is its

homogeneous polynomial expansion, and (I + R)sf(z) =
∑

k(1 + k)sfk(z),

we have that

‖f‖Hp
s (w) = sup

0<r<1
‖(I +R)sfr‖Lp(w) < +∞,

where fr(ζ) = f(rζ).

We will consider weights w in Ap classes in Sn, 1 < p < +∞, that

is, weights in Sn satisfying that there exists C > 0 such that for any non-

isotropic ball B ⊂ Sn, B = B(ζ, r) = {η ∈ Sn ; |1 − ζη| < r},

(
1

|B|

∫

B
w dσ

)(
1

|B|

∫

B
w

−1
p−1 dσ

)p−1

≤ C,

where σ is the Lebesgue measure on Sn and |B| the Lebesgue measure of

B. We will use the notation ζη to indicate the complex inner product in

Cn given by ζη =
∑n

i=1 ζiηi, if ζ = (ζ1, . . . , ζn), η = (η1, . . . , ηn).
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If 0 < s < n, any function f in Hp
s (w) can be expressed as

f(z) = Cs(g)(z) :=

∫

Sn

g(ζ)

(1 − zζ)n−s
dσ(ζ),

where dσ is the normalized Lebesgue measure on the unit sphere Sn and

g ∈ Lp(w), and consequently, µ is Carleson for Hp
s (w) if there exists C > 0

such that

‖Csf‖Lp(dµ) ≤ C‖f‖Lp(w).

We denote by Ks the nonisotropic potential operator defined by

Ks[f ](z) =

∫

Sn

f(η)

|1 − zη|n−s
dσ(η), z ∈ B

n
.

The problem of characterizing the positive Borel measures µ on Bn for

which there exists C > 0 such that

(1.1) ‖Ks[f ]‖Lp(dµ) ≤ C‖f‖Lp(dσ),

that is, the characterization of the Carleson measures for the space

Ks[L
p(dσ)] has been very well studied and there exist different characteri-

zations (see for instance [Ma], [AdHe], [KeSa]).

The representation of the functions in Hp
s in terms of the operator Cs

gives that in dimension 1 the Carleson measures forKs[L
p(dσ)] coincide with

the Carleson measures for the Hardy-Sobolev space H p
s simply because the

real part of 1/(1 − zζ)1−s is equivalent to 1/|1 − zζ|1−s. This representation

also shows that in any dimension every Carleson measure for Ks[L
p(dσ)] is

also a Carleson measure for Hp
s . The coincidence fails to be true for n > 1

in general, as it is shown in [AhCo] (see also [CaOr2]).

Of course, when n− sp < 0, the space Hp
s consists of continuous func-

tions on B
n
, and in particular, the Carleson measures in this case are just

the finite measures. But for n − sp ≥ 0, and n > 1, the characterization

of the Carleson measures for Hp
s still remains open. In the case where we

are “near” the regular case, that is when n− sp < 1 it is shown in [AhCo],

[CohVe1] and [CohVe2], that the Carleson measures for H p
s and Ks[L

p(dσ)]

are the same, and any of the different characterizations of the Carleson

measures for the last ones also hold for Hp
s .

One of the main purposes of this paper is to extend this situation to

Hp
s (w) for w a weight in Ap. If E ⊂ Sn is measurable, we define

W (E) =

∫

E
w dσ.
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A weight w satisfies a doubling condition of order τ , if there exists τ > 0

such that for any nonisotropic ball B in Sn, W (2kB) ≤ C2kτW (B).

It is well known that any weight in Ap satisfies a doubling condition of

some order τ strictly less than np. We begin observing that if τ−sp < 0, the

space Hp
s (w) consists of continuous functions on B

n
, and consequently, the

Carleson measures are just the finite ones. If τ − sp < 1, we show that the

Carleson measures for Hp
s (w) and Ks[L

p(w)] coincide, whereas if τ−sp ≥ 1,

this coincidence may fail.

As it happens in the unweighted case (see [CohVe1]), the proof of the

characterization of the Carleson measures forHp
s (w) will be based in the con-

struction of weighted holomorphic potentials, with control of their H p
s (w)-

norm. In fact, technical reasons give that it is convenient to deal with

weighted Triebel-Lizorkin spaces which, on the other hand, have interest on

their own. In the second section we study these spaces. If s ≥ 0, we will

write [s]+ the integer part of s plus 1. Let 1 < p < +∞, 1 ≤ q ≤ +∞, and

s ≥ 0. The weighted holomorphic Triebel-Lizorkin space HF pq
s (w) when

q < +∞ is the space of holomorphic functions f in Bn for which

‖f‖HF pq
s (w)

=

(∫

Sn

(∫ 1

0
|((I +R)[s]

+
f)(rζ)|q(1 − r2)([s]

+−s)q−1 dr

)p/q
w(ζ) dσ(ζ)

)1/p

< +∞,

whereas when q = +∞,

‖f‖HF p∞
s (w)

=

(∫

Sn

(
sup

0<r<1
|((I +R)[s]

+
f)(rζ)|(1 − r2)[s]

+−s

)p
w(ζ) dσ(ζ)

)1/p

< +∞,

where I denotes the identity operator.

The Section 2 is devoted to the general theory of weighted holomor-

phic Triebel-Lizorkin spaces. We give different equivalent definitions of the

spaces HF pqs (w) in terms of admissible area functions, we give duality the-

orems on these spaces, we study some relations of inclusion among them

and we also obtain that when q = 2, the weighted Triebel-Lizorkin space

HF p2s (w) coincides with the weighted Hardy-Sobolev space H p
s (w).

The main result in Section 3 is the characterization of the Carleson

measures for Hp
s (w), when 0 < τ − sp < 1, in terms of a positive kernel.
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Theorem C. Let 1 < p < +∞, w an Ap-weight, and µ a finite positive

Borel measure on Bn. Assume that w is doubling of order τ , for some

τ < 1 + sp. We then have that the following statements are equivalent :

(i) ‖Ks(f)‖Lp(dµ) ≤ C‖f‖Lp(w).

(ii) ‖f‖Lp(dµ) ≤ C‖f‖Hp
s (w).

The proof relies on the construction of weighted holomorphic potentials,

with control of their weighted Hardy-Sobolev norm.

We also give examples of the sharpness of the above theorem. We show

that if p = 2 and τ > 1 + sp, n < τ < n+ 1, then there exists w in A2 ∩Dτ

and a measure µ on Sn which is Carleson for H2
s (w), but it is not Carleson

for Ks[L
2(w)].

Finally, the usual remark on notation: we will adopt the convention

of using the same letter for various absolute constants whose values may

change in each occurrence, and we will write A � B if there exists an

absolute constant M such that A ≤ MB. We will say that two quantities

A and B are equivalent if both A � B and B � A, and, in that case, we

will write A ' B.

§2. Weighted holomorphic Triebel-Lizorkin spaces

In this section we will introduce weighted holomorphic Triebel-Lizorkin

spaces, and we will obtain characterizations in terms of Littlewood-Paley

functions and admissible area functions. These characterizations, known in

the unweighted case, will be used in the following sections.

We begin recalling some simple facts about Ap weights that we will

need later. It is well known that A∞ =
⋃

1<p<+∞Ap and that any Ap
weight satisfies a doubling condition. We recall that a weight w satisfies

a doubling condition of order τ , τ > 0, if there exists C > 0, such that

for any nonisotropic ball B ⊂ Sn, and any k ≥ 0, W (2kB) ≤ C2τkW (B).

We will say that this weight w is in Dτ . In fact, if w ∈ Ap, there exists

p1 < p such that w is also in Ap1 , and consequently we have that w ∈ Dτ

for τ = np1 < np, (see [StrTo]).

Examples of Ap weights can be obtained as follows: if ζ = (ζ ′, ζn), and

w(ζ) = (1 − |ζ ′|2)ε, we then have that w ∈ Ap if −1 < ε < p − 1. We also

have that for this weight, w ∈ Dτ , τ = n+ ε.

The following lemma gives the natural relationships between the spaces

Lp(w), w ∈ Ap, and the Lebesgue spaces Lq(dσ).
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Lemma 2.1. Let 1 < p < +∞, and w be an Ap-weight. We then have:

(i) There exists 1 < p1 < p such that Lp(w) ⊂ Lp1(dσ).

(ii) There exists p2 > p such that Lp2(dσ) ⊂ Lp(w).

We now proceed to study the weighted holomorphic Triebel-Lizorkin

spaces Hpq
s (w) already defined in the introduction. We begin with some

definitions. If 1 < q ≤ +∞, k an integer such that k > s ≥ 0, and ζ ∈ Sn,

the Littlewood-Paley type functions are given by

A1,k,q,s(f)(ζ) =

(∫ 1

0
|(I +R)kf(rζ)|q(1 − r2)(k−s)q−1 dr

)1/q

,

when q < +∞, and

A1,k,∞,s(f)(ζ) = sup
0<r<1

|(I +R)kf(rζ)|(1 − r2)k−s,

when q = +∞.

If α > 1, ζ ∈ Sn, we denote by Dα(ζ), α > 1 the admissible region given

by Dα(ζ) = {z ∈ Bn ; |1 − zζ| < α(1 − |z|)}. We introduce the admissible

area function

Aα,k,q,s(f)(ζ) =

(∫

Dα(ζ)
|(I +R)kf(z)|q(1 − |z|2)(k−s)q−n−1 dv(z)

)1/q

,

when q < +∞, where dv is the Lebesgue measure on Bn, and in case

q = +∞,

Aα,k,∞,s(f)(ζ) = sup
z∈Dα(ζ)

|(I +R)kf(z)|(1 − |z|2)k−s.

Our first goal is to obtain that if 1 < p < +∞, 1 < q < +∞ and w is

an Ap weight, then an holomorphic function f is in HF p,q
s (w) if and only if

Aα,k,q,s(f) ∈ Lp(w), for some (and then for all) α ≥ 1 and k > s. We will

follow the ideas in [OF]. For the sake of completeness, we will sketch the

modifications needed to obtain the weighted case.

If 1 < p < +∞, 1 < q ≤ +∞ we denote by

Lp(w)(Lq1) = Lp(w)

(
Lq
(

2nr2n−1

1 − r2
dr

))
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the mixed-norm space of measurable functions f in Sn × [0, 1] such that

‖f‖p,q,w =

(∫

Sn

(∫ 1

0
|f(rζ)|q

2nr2n−1

1 − r2
dr

)p/q
w(ζ) dσ(ζ)

)1/p

< +∞.

Also if α > 1, andEα(z) =
(∫

Sn χDα(ζ)(z) dσ(ζ)
)−1

' (1−|z|2)−n, we denote

by Lp(w)(Lqα) the mixed-norm space of measurable functions f defined in

Sn ×Bn such that

‖f‖α,p,q,w =

(∫

Sn

(∫

Bn

|f(ζ, z)|q
Eα(z)

(1 − |z|2)
dv(z)

)p/q
w(ζ) dσ(ζ)

)1/p

< +∞.

We denote by F α, p,q(w) the space of measurable functions on Bn such

that

Jαf(ζ, z) = χDα(ζ)(z)f(z)

is in Lp(w)(Lqα), normed with the norm induced by ‖ · ‖α,p,q,w. We also

introduce the space F 1,p,q(w) of measurable functions on Bn such that

J1f(ζ, r) = f(rζ) is in Lp(w)(Lq1).

The representation of the dual of a mixed-norm space, see [BeLo], gives

that if 1 < p, q < +∞, the dual space of Lp(w)(Lq1) is Lp
′
(w)(Lq

′

1 ), 1/p +

1/p′ = 1, 1/q + 1/q′ = 1, and that if f ∈ F 1,p,q(w), g ∈ F 1,p′,q′(w) the

pairing is given by

(f, g) =

∫

Sn

(∫ 1

0
f(rζ)g(rζ)

2nr2n−1

1 − r2
dr

)
w(ζ) dσ(ζ).

Analogously, the dual space of Lp(w)(Lqα) is Lp
′
(w)(Lq

′

α ), and if f ∈

Fα, p,q(w), g ∈ F α, p
′,q′(w) the pairing is given by

(f, g)α =

∫

Bn

∫

Sn

f(z)g(z)χDα(ζ)(z)w(ζ) dσ(ζ)
dv(z)

(1 − |z|2)n+1

=

∫

Bn

f(z)g(z)
Ewα (z)

(1 − |z|2)n+1
dv(z),

where Ew
α (z) =

∫
Sn χDα(ζ)(z)w(ζ) dσ(ζ).

Observe that if we write z0 = z/|z|, the doubling property of w gives

that Ew
α (z) ' W (B(z0, (1 − |z|))). From now on we will write Bz =

B(z0, (1 − |z|)).
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We begin with two lemmas that are weighted versions of Lemmas 2.2.

and 2.3 in [OF], and whose proofs we omit. We recall that if ψ is a mea-

surable function on Sn, the weighted Hardy-Littlewood maximal function

is given by

Mw
HL(ψ)(ζ) = sup

B3ζ

1

W (B)

∫

B
|ψ(η)|w(η) dσ(η).

Lemma 2.2. There exist C > 0, N0 > 0 such that for any z ∈ Dα(ζ),

N ≥ N0,

(1 − |z|2)n+N

W (Bz)

∫

Sn

|ψ(η)|

|1 − zη|n+N
w(η) dσ(η) ≤ CMw

HL(ψ)(ζ).

Lemma 2.3. Let α > 1. There exists C > 0, such that for any z ∈

Dα(ζ),

1

W (Bz)

∫

Sn

χDα(η)(z)|ψ(η)|w(η) dσ(η) ≤ CMw
HL(ψ)(ζ).

Theorem 2.4. Let 1 < p < +∞, 1 ≤ q ≤ +∞, and α ≥ 1. Then the

space F α, p,q(w) is a retract of Lp(w)(Lqα).

Proof of Theorem 2.4. The fact that J1 is an isometry between F 1, p,q(w)

and Lp(w)(Lq1) gives the theorem for the case α = 1.

If α > 1, we introduce the averaging operator

Aα(ϕ)(z) =
1

Ewα (z)

∫

Sn

χDα(η)(z)ϕ(η, z)w(η) dσ(η).

The definition of Ew
α (z) gives that Aα ◦ Jα is the identity operator on

Fα, p,q(w). So, in order to finish the theorem, we need to show that Aα

maps Lp(w)(Lqα) to Fα, p,q(w). We consider first the case 1 ≤ q ≤ p < +∞.

Let m = p/q ≥ 1 and let m′ be the conjugate exponent of m. We then have

by duality that

‖Aα(ϕ)‖qα,p,q,w

= sup
‖ψ‖

Lm′
(w)

≤1

∣∣∣∣
∫

Sn

∫

Dα(ζ)
|Aα(ϕ)(z)|q

dv(z)

(1 − |z|2)n+1
ψ(ζ)w(ζ) dσ(ζ)

∣∣∣∣.
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Now Hölder’s inequality gives that

|Aα(ϕ)(z)|q ≤
1

Ewα (z)

∫

Sn

|ϕ(η, z)|qχDα(η)(z)w(η) dσ(η).

Hence, by Lemma 2.3

‖Aα(ϕ)‖qα,p,q,w

� sup
‖ψ‖

Lm′
(w)

≤1

∫

Sn

∫

Bn

1

Ewα (z)
χDα(ζ)(z)

∫

Sn

χDα(η)(z)|ϕ(η, z)|qw(η) dσ(η)

×
dv(z)

(1 − |z|2)n+1
|ψ(ζ)|w(ζ) dσ(ζ)

� sup
‖ψ‖

Lm′
(w)

≤1

∫

Sn

∫

Bn

|ϕ(η, z)|q
dv(z)

(1 − |z|2)n+1
w(η)Mw

HL(ψ)(η) dσ(η).

Next, Hölder’s inequality with exponent m = p/q gives that the above is

bounded by

sup
‖ψ‖

Lm′
(w)

≤1
‖Mw

HLψ‖Lm′ (w)

×

(∫

Sn

(∫

Bn

|ϕ(η, z)|q
dv(z)

(1 − |z|2)n+1

)p/q
w(η) dσ(η)

)q/p

≤ sup
‖ψ‖

Lm′
(w)

≤1
‖ψ‖Lm′ (w)‖ϕ‖

q
α, p,q,w,

where we have used that since w is a doubling measure, the weighted Hardy-

Littlewood maximal function is bounded from Lm
′
(w) to Lm

′
(w). That

finishes the proof of the theorem when q ≤ p.

So we are lead to deal with the case 1 < p < q ≤ +∞, which can be

easily obtained from the previous case using the duality in the mixed-norm

spaces Lp(w)(Lqα).

This result can be used as in the unweighted case to obtain a charac-

terization of the dual spaces of the weighted spaces F α, p,q(w).

Corollary 2.5. Let 1 < p < +∞, 1 < q < +∞, α > 1, and w an

Ap-weight. Then the dual of F α, p,q(w) is F α, p
′,q′(w) with the pairing given

by (f, g)α.
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The following proposition will be needed in the proof of the main the-

orem in this section. If N > 0, M > 0, we consider the operators defined

by

PN,Mf(y) =

∫

Bn

f(z)
(1 − |z|2)N (1 − |y|2)M

|1 − zy|n+1+N+M
dv(z), y ∈ Bn.

Theorem 2.6. Let 1 < p < +∞, 1 ≤ q < +∞, α, β ≥ 1, and w an

Ap weight. Then there exists N0 > 0 such that for any N ≥ N0 and any

M > 0, the operator PN,M is continuous from F α, p,q(w) to F β, p,q(w).

Proof of Theorem 2.6. We begin with the case α, β > 1. The case where

1 ≤ q ≤ p < +∞ can be deduced following the scheme of [OF], using

Lemma 2.2.

In the case 1 < p < q < +∞ we apply duality in the mixed norm space

and obtain

‖PN,M (f)‖qβ, p,q,w(2.1)

= sup
‖g‖β,p′q′,w≤1

∣∣∣∣
∫

Bn

PN,M (f)(y)g(y)
Ewβ (y)

(1 − |y|2)n+1
dv(y)

∣∣∣∣

≤ sup
‖g‖β,p′q′,w≤1

(f, P̃M−1,N+1(g))α,

where

P̃R,S(g)(z)(2.2)

=

∫

Bn

(1 − |y|2)R(1 − |z|2)Sg(y)

|1 − yz|n+1+R+S

Ewβ (y)

(1 − |y|2)n
(1 − |z|2)n

Ewα (z)
dv(y).

Observe that when w ≡ 1, then P̃M,N (f) ' PM,N(f). Here we are led

to obtain that the operator P̃M−1,N+1 maps boundedly F β,p′,q′ to Fα,p
′,q′ ,

provided p < q. If we claim this proposition, we finish the proof of the

theorem. Using (2.1), and applying Hölder’s inequality,

‖PN,M (f)‖qβ, p,q,w = sup
‖g‖α,p′q′,w≤1

(f, P̃M−1,N−1(g))α

≤ sup
‖g‖α,p′q′,w≤1

‖f‖α,p,q,w‖P̃
M−1,N−1(g)‖α,p′,q′,w

≤ C sup ‖f‖α,p,q,w.
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The cases α = 1 and β = 1 are proved in a simmilar way.

To finish the theorem we will prove the claim. Changing the notation,

it is enough to prove:

Proposition 2.7. Let 1 < q < p < +∞, α, β ≥ 1, and w an Ap
weight. We then have that there exists N0 > 0 such that for any N ≥ N0

and any M ≥ 0,

(i) P̃M,N (1) < +∞.

(ii) The operator P̃M,N is continuous from F α, p,q(w) to F β, p,q(w).

Proof of Proposition 2.7. Let us begin with (i). From the definition of

Ewα (z) and Fubini’s theorem,

∫

Bn

(1 − |z|2)M

|1 − zy|n+1+M+N

Ewα (z)

(1 − |z|2)n
dv(z)

=

∫

Sn

∫

Dα(z)

(1 − |z|2)M

|1 − zy|n+1+M+N

dv(z)

(1 − |z|2)n
w(ζ) dσ(ζ)

�

∫

Sn

1

|1 − yζ|n+N
w(ζ) dσ(ζ),

where in last inequality we have used Lemma 2.7 in [OF] since M > −1.

Next, let Bk = B(y0, 2
k(1 − |y|2)), k ≥ 0, where y0 = y/|y|. Since w

is doubling and Ew
α (y) ' W (B0) we have that W (Bk) ≤ CkEwα (y). Conse-

quently

∫

Sn

1

|1 − yζ|n+N
w(ζ) dσ(ζ) �

∑

k

∫

Bk

w(ζ) dσ(ζ)

(2k(1 − |y|2))n+N

�
Ewα (y)

(1 − |y|2)n+N

∑

k

Ck

2k(n+N)
�

Ewα (y)

(1 − |y|2)n+N
,

if N is chosen sufficiently large. That finishes the proof of (i).

Since m = p/q > 1, duality gives that

‖P̃M,N (f)‖qβ, p,q,w(2.3)

= sup
‖ψ‖

Lm′
(w)

≤1

∣∣∣∣
∫

Sn

∫

Dβ(ζ)
|P̃M,Nf(y)|q

dv(y)

(1 − |y|2)n+1
ψ(ζ)w(ζ) dσ(ζ)

∣∣∣∣.
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Next, Hölder’s inequality shows that if 0 < ε < N then

|P̃M,N (f)(y)|q

≤

∫

Bn

|f(z)|q
(1 − |z|2)M (1 − |y|2)N−ε

|1 − zy|n+1+M+N−ε

Ewα (z)

(1 − |z|2)n
(1 − |y|2)n

Ewα (y)
dv(z)

×

(∫

Bn

(1 − |z|2)M (1 − |y|2)
N+ε q′

q

|1 − zy|n+1+M+N+ε q′

q

Ewα (z)

(1 − |z|2)n
(1 − |y|2)n

Ewα (y)
dv(z)

)q/q′

�

∫

Bn

|f(z)|q
(1 − |z|2)M (1 − |y|2)N−ε

|1 − zy|n+1+N+M−ε

Ewα (z)

(1 − |z|2)n
(1 − |y|2)n

Ewα (y)
dv(z),

where in last inequality we have used (i).

Consequently,

‖P̃M,N (f)‖qβ, p,q,w

(2.4)

≤ C sup
‖ψ‖

Lm′
(w)

≤1

∣∣∣∣
∫

Sn

∫

y∈Dβ(ζ)

∫

Bn

|f(z)|q(1 − |z|2)M (1 − |y|2)N−ε

|1 − zy|n+1+N+M−ε

×
Ewα (z)

(1 − |z|2)n
(1 − |y|2)n

Ewα (y)
dv(z)

dv(y)

(1 − |y|2)n+1
ψ(ζ)w(ζ) dσ(ζ)

∣∣∣∣

= C sup
‖ψ‖

Lm′
(w)

≤1

∣∣∣∣
∫

Sn

∫

Bn

∫

Dβ(ζ)

(1 − |y|2)N+n−ε

|1 − zy|n+1+N+M−ε

dv(y)

Ewα (y)(1 − |y|2)n+1

× |f(z)|q(1 − |z|2)M−nEwα (z) dv(z)ψ(ζ)w(ζ) dσ(ζ)

∣∣∣∣.

Next, if y ∈ Dβ(ζ), E
w
α (y) 'W (By) 'W (B(ζ, (1−|y|2)), and |1−zy| '

(1 − |y|2) + |1 − zζ|.

Assume first that |1 − zζ| ≤ 1. Hence,

∫

Dβ(ζ)

(1 − |y|2)N+n−ε

|1 − zy|n+1+N+M−ε

dv(y)

Ewα (y)(1 − |y|2)n+1
(2.5)

'

∫

Bn

(1 − |y|2)N−ε

((1 − |y|2) + |1 − zζ|)n+1+N+M−ε
χDβ(ζ)(y)

×
(1 − |y|2)n

W (B(ζ, 1 − |y|2))

dv(y)

(1 − |y|2)n+1
,
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which by integration in polar coordinates is bounded by
∫ 1

0

r2n−1(1 − r2)N+n−ε

((1 − r2) + |1 − zζ|)n+1+N+M−ε

dr

(1 − r2)W (B(ζ, C(1 − r2)))

'

∫ |1−zζ|

0

tN+n−ε−1

(t+ |1 − zζ|)n+1+N+M−ε

dt

W (B(ζ, t))

+

∫ 1

|1−zζ|

tN+n−ε−1

(t+ |1 − zζ|)n+1+N+M−ε

dt

W (B(ζ, t))
= I + II .

In I we have that (t+ |1 − zζ|) ' |1 − zζ|, and, since w ∈ Ap,

tn

W (B(ζ, t))
'

(
1

tn

∫

B(ζ,t)
w−(p′−1)

)p−1

.

Thus we obtain that

I '

∫ |1−zζ|

0

tN−ε−1

|1 − zζ|n+1+N+M−ε

(
1

tn

∫

B(ζ,t)
w−(p′−1)

)p−1

dt

�

(∫

B(ζ,|1−zζ|)
w−(p′−1)

)p−1 1

|1 − zζ|n+1+N+M−ε

∫ |1−zζ|

0
tN−ε−n(p′−1)−1 dt

�
1

|1 − zζ|M+1

1

W (B(z0, |1 − zζ|))
,

where we have used that N > 0 is chosen big enough, and that w satisfies

the Ap condition.

In II , (t+ |1 − zζ|) ' t, and since M + 1 > 0, we have

II '

∫ 1

|1−zζ|

1

tM+2

dt

W (B(ζ, t))
≤

∫ 1

|1−zζ|

1

tM+2

dt

W (B(ζ, |1 − zζ|))

�
1

|1 − zζ|M+1

1

W (B(z0, |1 − zζ|))
.

If |1− zζ| > 1, then we have that (1− r2)+ |1− zζ| ' 1. We return to (2.5)

and obtain
∫ 1

0

(1 − r2)N+n−ε−1 dr

((1 − r)2 + |1 − zζ|)n+1+N+M−εW (B(ζ, 1 − r2))

�

(∫

B(ζ,1)
w−p′/p

)p/p′ ∫ 1

0
t
N−ε−n p

p′
−1
dt

�
1

|1 − zζ|M+1

1

W (B(z0, |1 − zζ|))
.
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Then we have in any case that (2.5) is bounded by

1

|1 − zζ|M+1

1

W (B(z0, |1 − zζ|))
.

In consequence, we return to (2.4) and we obtain

‖P̃M,N (f)‖qβ, p,q,w(2.6)

� sup
‖ψ‖

Lm′
(w)

≤1

∣∣∣∣
∫

Sn

∫

Bn

|f(z)|q
(1 − |z|2)M−nEwα (z)

|1 − zζ|M+1W (B(z0, |1 − zζ|))

× ψ(ζ) dv(z)w(ζ) dσ(ζ)

∣∣∣∣

� sup
‖ψ‖

Lm′
(w)

≤1

∣∣∣∣
∫

Sn

∫

Bn

|f(z)|q(1 − |z|2)M−nχDα(η)(z)

×

∫

Sn

ψ(ζ)w(ζ) dσ(ζ)

|1 − zζ|M+1W (B(z0, |1 − zζ|))
dv(z)w(η) dσ(η)

∣∣∣∣.

Next, if z ∈ Dα(η), B(η, |1−zζ |) ⊂ B(z0, C|1−zζ|), and if Bk = B(η, 2k(1−

|z|2)), k ≥ 0 and ζ ∈ Bk+1 \ Bk, |1 − zζ| ' 2k(1 − |z|2). Thus

∫

Sn

|ψ(ζ)|w(ζ) dσ(ζ)

|1 − zζ|M+1W (B(z0, |1 − zζ|))

�
1

(1 − |z|2)M+1W (B(η, 1 − |z|2))

∫

B0

|ψ(ζ)|w(ζ) dσ(ζ)

+
∑

k≥1

1

2k(M+1)(1 − |z|2)M+1W (B(η, 2k(1 − |z|2)))

∫

Bk

|ψ(ζ)|w(ζ) dσ(ζ)

�
1

(1 − |z|2)M+1

∑

k≥0

1

2k(M+1)
Mw
HL(ψ)(η) �

1

(1 − |z|2)M+1
Mw
HL(ψ)(η).

Plugging the above estimate in (2.6) and using Hölder’s inequality with

exponent m = p/q, we obtain

‖P̃M,N (f)‖qβ, p,q,w � sup
ψ∈Lm′ (w)

∫

Sn

∫

Bn

|f(z)|q
1

(1 − |z|2)n+1
χDα(η)(z) dv(z)

×Mw
HL(ψ)(η)w(η) dσ(η)

� sup
ψ∈Lm′ (w)

‖f‖qα,p,q,w‖M
w
HL(ψ)‖q

Lm′ (w)
� ‖f‖qα,p,q,w.
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We deduce from the previous theorem the following characterization of

the weighted holomorphic Triebel-Lizorkin spaces. If f ∈ H(Bn), s, t > 0,

let

Ltsf(z) = (1 − |z|2)t−s(I +R)tf(z).

Theorem 2.8. Let 1 < p < +∞, 1 < q < +∞, t > s ≥ 0 and α ≥ 1.

Let

HFα, t, p,qs (w) = {f ∈ H(Bn) ; ‖Ltsf‖α,p,q < +∞}.

Then HF α, t, p,qs (w) = HF pqs (w).

Proof of Theorem 2.8. If s < t0 < t1, α, β ≥ 1, we just need to check

that HF α, t0, p,qs (w) = HF β, t1 , p,qs (w). Any holomorphic function f on Bn

satisfying that Ltsf(z) ∈ F α, p,q(w) is in A−∞(Bn), the space of holomorphic

functions in Bn for which there exists k > 0 such that supz(1−|z|2)k|f(z)| <

+∞. Consequently, f and its derivatives have a representation formula

via the reproducing kernel cN
(1−|z|2)N

(1−zy)n+1+N , for N > 0 sufficiently large and

an adequate constant cN . Once we have made this observation, we can

reproduce the arguments in [OF] and obtain

(I +R)t0f(y) = CN

∫

Bn

(I +R)t1f(z)(I +Ry)
t0−t1 (1 − |z|2)N

(1 − yz)n+1+N
dv(z).

Since for m > 0 we have that

(2.7) (I +R)−mg(y) =
1

Γ(m)

∫ 1

0

(
log

1

r

)m−1

g(ry) dr,

we obtain

‖Lt0s f‖α,p,q,w �

∥∥∥∥
∫

Bn

|(I +R)t1f(z)|
(1 − |z|2)N (1 − |y|2)t0−s

|1 − zy|n+1+N+t0−t1
dv(z)

∥∥∥∥
α,p,q,w

= ‖PN−t1+s,t0−s(|Lt1s f |)‖α,p,q,w,

and we just have to apply Theorem 2.6 to finish the proof.

Theorem 2.9. Let 1 < p < +∞, 1 < q < +∞, w an Ap-weight, and

f a holomorphic function. Then the following assertions are equivalent :

(i) f is in HF pqs (w).

(ii) Aα,k,q,s(f) ∈ Lp(w), for some α ≥ 1 and k > s.

(iii) Aα,k,q,s(f) ∈ Lp(w), for all α ≥ 1 and k > s.
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Our next result studies some inclusion relationships between different

weighted holomorphic Triebel-Lizorkin spaces.

Theorem 2.10. Let 1 < p < +∞, 1 ≤ q0 ≤ q1 ≤ +∞, s ≥ 0 and let w

be an Ap-weight. We then have

HF pq0s (w) ⊂ HF pq1s (w).

Proof of Theorem 2.10. We begin with the case q1 = +∞. Let 0 <

ε < 1. If Lksf(z) = (1 − |z|2)k−s(I + R)kf(z), the fact that (I + R)kf is

holomorphic gives that

|Lksf(rζ)| �

(
1

(1 − r2)n+1

∫

K(rζ,c(1−r2))
|(I+R)kf(z)|ε dv(z)

)1/ε

(1−r2)k−s,

where for y ∈ Bn K(y, t) is the nonisotropic ball in Bn given by

K(y, t) = {z ∈ Bn ; |z(z − y)| + |y(y − z)| < t}.

In [OF] it is obtained that

|Lksf(rζ)| �

(
MHL

(∫ 1

0
|(I +R)kf(tη)|q(1 − t2)(k−s)q−1 dt

)ε/q
(ζ)

)1/ε

.

Thus

‖f‖p
HF p∞

s (w)
=

∫

Sn

sup
0<r<1

|Lksf(rζ)|pw(ζ) dσ(ζ)

�

∫

Sn

(
MHL

(∫ 1

0
|(I +R)kf(tη)|q(1 − t2)(k−s)q−1 dt

)ε/q
(ζ)

)p/ε

× w(ζ) dσ(ζ).

Since p/ε > p, and w is an Ap-weight, w is in Ap/ε, and in consequence the

unweighted Hardy-Littlewood maximal function is a bounded map Lp/ε(w)

to itself. Hence the above is bounded by

C

∫

Sn

(∫ 1

0
|(I +R)kf(tζ)|q(1 − t2)(k−s)q−1 dt

)p/q
w(ζ) dσ(ζ)

= C‖f‖p
HF pq

s (w)
.
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In order to finish the theorem, we will prove that if q0 < q1 < +∞, then

‖f‖HF pq1
s (w) ≤ ‖f‖

q0
q1

HF
pq0
s (w)

‖f‖
1−

q0
q1

HF p∞
s (w)

.

Since

‖f‖p
HF

pq1
s (w)

≤

∫

Sn

(
sup

0<r<1
|(I +R)kf(rζ)|(1 − r)k−s

)(q1−q0)p/q1

×

(∫ 1

0
|(I +R)kf(rζ)|q0(1 − r2)(k−s)q0−1 dr

)p/q1
w(ζ) dσ(ζ),

Hölder’s inequality with exponent q1/q0 > 1, gives that the above is bounded

by

C‖f‖
p

q0
q1

HF
pq0
s (w)

‖f‖
p(1−

q0
q1

)

HF p∞
s (w)

.

We now consider the weighted Hardy space Hp(w), for 1 < p < +∞,

and w an Ap weight. It is shown in [Lu] that f ∈ Hp(w) if and only if

f = C[f∗], where f ∗(ζ) = limr→1 f(rζ) ∈ Lp(w) is the radial limit, C is the

Cauchy-Szegö kernel. In addition, f = P [f ∗], where P is the Poisson-Szegö

kernel. It follows also that ‖f‖pHp(w) ' ‖f∗‖Lp(w).

It is immediate to deduce from this that f ∈ Hp(w) if and only if for

any α ≥ 1, Mα(f) ∈ Lp(w), where Mα is the α-admissible maximal operator

given by

Mα(f)(ζ) = sup
z∈Dα(ζ)

|f(z)|.

In addition ‖f‖Hp(w) ' ‖Mα(f)‖Lp(w), with constant that depends on α.

Indeed, since |f(rζ)| ≤ Mα(f)(ζ), we have that ‖f‖Hp(w) ≤ ‖Mα(f)‖Lp(w).

On the other hand, assume that f ∈ Hp(w). Then f = P [f ∗], f∗ ∈ Lp(w)

and since Mα(f) ≤ CMHL(f∗), (see for instance [Ru]), we deduce that

∫

Sn

(Mα(f)(ζ))pw(ζ) dσ(ζ) �

∫

Sn

(MHL(f∗)(ζ))pw(ζ) dσ(ζ)

�

∫

Sn

|f∗(ζ)|pw(ζ) dσ(ζ) � ‖f‖pHp(w),

where we have used that since w in an Ap-weight, the Hardy-Littlewood

maximal operator maps Lp(w) continuously to itself.

Our next result gives a proof for the weighted nonisotropic case of the

fact that the spaces Hp(w) can also be defined in terms of admissible area
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functions. Similar results, but using a different approach based on local-

ized good-lambda inequalities, have been obtained in [StrTo] for weighted

isotropic Hardy spaces in Rn.

Theorem 2.11. Let 1 < p < +∞, and w be an Ap-weight. Let f be an

holomorphic function on Bn. Then the following assertions are equivalent :

(i) f is in Hp(w).

(ii) There exists α ≥ 1, k > 0, such that Aα,k,2,0(f) ∈ Lp(w).

(iii) For every α ≥ 1, and k > 0, Aα,k,2,0(f) ∈ Lp(w).

In addition, there exists C > 0 such that for any f ∈ H p(w),

1

C
‖f‖Hp(w) ≤ ‖Aα,1,2,0(f)‖Lp(w) ≤ C‖f‖Hp(w).

Proof of Theorem 2.11. We already know that (ii) and (iii) are equiv-

alent, so we only have to check the equivalence of (i) and (ii) for the case

k = 1. The proof of (i) implies (ii) is given in [KaKo], using the arguments of

[St2]. For the proof of (ii) implies (i), we will follow some ideas of [AhBrCa].

Without loss of generality we may assume that f(0) = 0. Let us assume

first that f ∈ H(Bn). Then f = P [f ∗] where f ∗ ∈ C(Sn). We want to check

that

‖f∗‖Lp(w) ≤ C‖Aα,1,2,0(f)‖Lp(w).

We will use that the dual space of Lp(w) can be identified with

Lp
′
(w−(p′−1)) if the duality is given by

〈f, g〉 =

∫

Sn

f(ζ)g(ζ) dσ(ζ).

Hence,

‖f∗‖Lp(w) = sup

{∣∣∣∣
∫

Sn

f∗(ζ)g∗(ζ) dσ(ζ)

∣∣∣∣, g
∗ ∈ C(Sn), ‖g∗‖Lp′ (w−(p′−1)) ≤ 1

}
.

If g = P [g∗], we have (see [AhBrCa] page 131)

nπn

(n− 1)!

∫

Sn

f∗(ζ)g∗(ζ) dσ(ζ)(2.8)

= n2

∫

Bn

f(z)g(z) dv(z) +

∫

Bn

(∇Bnf(z),∇Bng(z))Bn

dv(z)

1 − |z|2
,
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where ∇Bn is the gradient in the Bergman metric (see for instance [St2]),

and

(F (z), G(z))Bn = (1 − |z|2)

(∑

i,j

(δi,j − zizj)Fi(z)Gj(z)

)
.

We then have (see [St2]) that since F is holomorphic

‖∇BnF (z)‖2
Bn = (∇BnF (z),∇BnF (z))Bn

' (1 − |z|2)

{
n∑

i=1

∣∣∣∣
∂

∂zi
F (z)

∣∣∣∣
2

−

∣∣∣∣
n∑

i=1

zi
∂

∂zi
F (z)

∣∣∣∣
2
}
.

In order to estimate
∫
Bn f(z)g(z) dv(z) we will need to obtain estimates of

the values of the functions f , g on compact subsets of Bn in terms of the

norms ‖Aα,1,2,0(f)‖Lp(w) and ‖Aα,1,2,0(g)‖Lp′ (w−(p′−1)) respectively.

Lemma 2.12. Let 1 < p < +∞ and w an Ap-weight. There exists

C > 0 such that for any holomorphic function f in Bn, and any z = rζ

|f(z)| �

(
|f(0)| +

∫ r

0

dt

W (B(ζ, 1 − t2))1/p(1 − t2)
‖Aα,1,2,0(f)‖pLp(w)

)
.

In particular, if K ⊂ Bn is compact and

‖f‖K = sup
z∈K

|f(z)|,

then there exists a constant C > 0, depending only on w, p and K such that

‖f‖K ≤ C
(
|f(0)| + ‖Aα,1,2,0(f)‖Lp(w)

)
.

Proof of Lemma 2.12. Since f is holomorphic, we obtain that if z =

rζ ∈ Bn, there exist Ci > 0, i = 1, 2, such that for any η ∈ B(ζ, C1(1− r
2)),

then

|∇f(z)|2 �
1

(1 − |z|2)n+1

∫

K(z,C2(1−|z|2))
|∇f(y)|2 dv(y)

�
1

(1 − |z|2)2

∫

K(z,C2(1−|z|2))
(1 − |y|2)1−n|∇f(y)|2 dv(y)

≤
C

(1 − |z|2)2
(Aα,1,2,0(f)(η))2.

Consequently

(
(1 − |z|2)|∇f(z)|

)p
� (Aα,1,2,0(f)(η))p.
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Then we have

(
(1 − |z|2)|∇f(z)|

)p
W (B(ζ, 1 − r2))

�

∫

B(ζ,1−r2)
(Aα,1,2,0(f)(η))pw(η) dσ(η) � ‖Aα,1,2,0(f)‖pLp(w).

In particular, if 0 < r < 1 and ζ ∈ Sn,

∣∣∣∣
∂f

∂r
(rζ)

∣∣∣∣ �
1

W (B(ζ, 1 − r2))1/p(1 − r2)
‖Aα,1,2,0(f)‖Lp(w),

and integrating, we finally obtain

|f(rζ)| �

(
|f(0)| +

∫ r

0

dt

W (B(ζ, 1 − t2))1/p(1 − t2)
‖Aα,1,2,0(f)‖Lp(w)

)
.

For the remaining affirmation, let K ⊂ Bn be compact. Then there exists

0 < δ < 1 such that for any z = rζ ∈ K, r ≤ 1 − δ, and

|f(z)| �

(
|f(0)| +

1

W (B(ζ, δ))1/pδ
‖Aα,1,2,0(f)‖Lp(w)

)
.

Since w is doubling, and there exists N > 0 (not depending on ζ) such that

Sn ⊂ B(ζ, cNδ)), W (Sn) �W (B(ζ, δ)), and consequently

‖f‖K � |f(0)| + ‖Aα,1,2,0(f)‖Lp(w).

Going back to the proof of the Theorem 2.11, let 0 < ε < 1. The above

lemma together with the fact that if w is an Ap weight, then w−(p′−1) is an

Ap′ -weight, give by (2.8) that

∣∣∣∣
∫

Sn

f∗(ζ)g∗(ζ) dσ(ζ)

∣∣∣∣ � ‖Aα,1,2,0(f)‖Lp(w)‖Aα,1,2,0(g)‖Lp′ (w−(p′−1))

+

∣∣∣∣
∫

1−ε≤|z|<1
f(z)g(z) dv(z)

∣∣∣∣ +
∫

Bn

‖∇Bnf(z)‖Bn‖∇Bng(z)‖Bn

dv(z)

1 − |z|2
.

In order to estimate the second integral, we use polar coordinates, and

obtain ∣∣∣∣
∫

1−ε≤|z|<1
f(z)g(z) dv(z)

∣∣∣∣,
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which by Hölder’s inequality is bounded by

∫ 1

1−ε

∫

Sn

|f(rζ)‖g(rζ)| dσ(ζ)dr �

∫ 1

1−ε
‖fr‖Lp(w)‖gr‖Lp′ (w−(p′−1)) dr

� ε‖f‖Hp(w)‖g‖Hp′ (w−(p′−1)) � ε‖f∗‖Lp(w)‖g
∗‖Lp′ (w−(p′−1)).

For the third integral, we use (5.1) of [CoiMeSt] to estimate it by

∫

Sn

Aα,1,2,0(f)(ζ)Aα,1,2,0(g)(ζ) dσ(ζ)

� ‖Aα,1,2,0(f)‖Lp(w)‖Aα,1,2,0(g)‖Lp′ (w−(p′−1)).

Since we already know (see [KaKo]) that ‖Aα,1,2,0(g)‖Lp′ (w−(p′−1)) �

‖g∗‖Lp′ (w−(p′−1)), we finally obtain

‖f∗‖Lp(w) � ‖Aα,1,2,0(f)‖Lp(w) + ε‖f∗‖Lp(w),

which gives the result for f ∈ H(B
n
).

So we are left to show that the estimate we have already obtained holds

for a general holomorphic function in Bn. If f is an holomorphic function

on Bn such that ‖Aα,1,2,0(f)‖Lp(w) < +∞, let fr(z) = f(rz) ∈ H(Bn), for

0 < r < 1. We then have that

(2.9) ‖fr‖Hp(w) � ‖Aα,1,2,0(fr)‖Lp(w).

Let us check first that

sup
r

‖Aα,1,2,0(fr)‖Lp(w) ≤ C‖Aα,1,2,0(f)‖Lp(w).

Notice that

‖Aα,1,2,0(fr)‖
p
Lp(w) = ‖Jα((1 − | · |2)(I +R)fr)‖Lp(w)(L2(

dv(z)

(1−|z|2)n+1 ))
.

We will check that there exists 0 ≤ G(ζ, z) ∈ Lp(w)(L2( dv(z)
(1−|z|2)n+1 ))

such that for any 0 < r < 1, ζ ∈ Sn, z ∈ Bn, Jα((1−| · |2)(I +R)fr)(ζ, z) ≤

G(ζ, z), and ‖G‖
Lp(w)(L2(

dv(z)

(1−|z|2)n+1 ))
� ‖Aα,1,2,0(f)‖Lp(w).

Let us obtain such a function G. Since by hypothesis Aα,1,2,0f ∈ Lp(w),

we have that the holomorphic function f satisfies that Aα,1,2,0f ∈ L1(dσ),

and consequently that there exists C > 0 such that for any z ∈ Bn, |f(z)| �
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1/(1 − |z|2)n. Hence, the integral representation theorem gives that for

N > 0 sufficiently large, and z ∈ Bn,

(I +R)f(rz) = C

∫

Bn

(1 − |y|2)N (I +R)f(y)

(1 − rzy)n+1+N
dv(y).

Next, there is a constant C > 0 such that for any 0 < r < 1, z, y ∈ Bn,

|1 − rzy| ≥ C|1 − zy|, and the above formula gives that

|(I +R)f(rz)| �

∫

Bn

(1 − |y|2)N |(I +R)f(y)|

|1 − zy|n+1+N
dv(y).

Combining the above results we have that

χDα(ζ)(z)(1 − |z|2)|(I +R)f(rz)|

� χDα(ζ)(z)

∫

Bn

(1 − |y|2)N−1(1 − |z|2)((1 − |y|2)|(I +R)f(y)|)

|1 − zy|n+1+N
dv(y)

= CχDα(ζ)(z)P
N−1,1((1 − | · |2)(I +R)f)(z) := G(z, ζ).

Theorem 2.8 shows that provided N is chosen sufficiently large, P N−1,1

maps Fα,p,2(w) to itself, and in particular that

‖G‖
Lp(w)(L2(

dv(z)

(1−|z|2)n+1 ))
= ‖PN−1,1((1 − | · |2)(I +R)f)‖α,p,2,w

� ‖(1 − | · |2)(I +R)f‖α,p,2,w = C‖Aα,1,2,0(f)‖Lp(w) < +∞.

Consequently

‖fr‖Hp(w) � ‖Aα,1,2,0(f)‖Lp(w),

and therefore f ∈ Hp(w).

We will now remark on some facts about weighted Hardy-Sobolev

spaces. Let us recall, that if 1 < p < +∞, 0 < s < n, and w is an

Ap-weight, we denote by Hp
s (w) the space of holomorphic functions f on

Bn satisfying that

‖f‖Hp
s (w) = ‖(I +R)sf‖Hp(w) < +∞.

The results obtained in the previous theorems give alternative equivalent

definitions of the spaces Hp
s (w) in terms of admissible maximal or radial

functions and admissible area functions.
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On the other hand, when w ≡ 1, and 0 < s < n, it is well known, see

for instance [CaOr1], that the space Hp
s admits a representation in terms of

a fractional Cauchy-type kernel Cs defined by

Cs(z, ζ) =
1

(1 − zζ)n−s
.

The same lines of the proof of the unweighted case can be used to obtain

a similar characterization in the weighted case. We just have to use that

the Hardy-Littlewood maximal operator is bounded in Lp(w), if w is an

Ap-weight and Lemma 2.1.

Theorem 2.13. Let 1 < p < +∞, 0 < s < n, and w be an Ap-weight.

We then have that the map

Cs(f)(z) =

∫

Bn

f(ζ)

(1 − zζ)n−s
dσ(ζ),

is a bounded map of Lp(w) onto Hp
s (w).

§3. Holomorphic potentials and Carleson measures

In this section we will study Carleson measures for H p
s (w), 1 < p < +∞

and 0 < s < n, that is, the positive finite Borel measures µ on Bn satisfying

(3.1) ‖f‖Lp(dµ) ≤ C‖f‖Hp
s (w), f ∈ Lp(w).

In what follows we will write
∫
\
E
w dσ =

1

|E|

∫

E
w,

where E is a measurable set in Sn and |E| denotes its Lebesgue measure.

By Theorem 2.13, this inequality can be rewritten as follows:

(3.2) ‖Cs(f)‖Lp(dµ) ≤ C‖f‖Lp(w), f ∈ Lp(w).

We recall that we have defined the non-isotropic potential of a positive Borel

function f on Sn by

(3.3) Ks(f)(z) =

∫

Sn

Ks(z, ζ)f(ζ) dσ(ζ) =

∫

Sn

f(ζ)

|1 − zζ|n−s
dσ(ζ),

for z ∈ B
n
.
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Analogously to what happens for isotropic potentials (see [Ad]), in the

nonisotropic case it can be proved that if w is an Ap weight and ζ0 ∈ Sn

satisfies that

(3.4)

∫

Sn

1

|1 − ζ0ζ|(n−s)p
′
w−(p′−1)(ζ) dσ(ζ) < +∞,

then for any f ∈ Lp(w), Ks(f) is continuous in ζ0. Observe that when

w ≡ 1, (3.4) holds if and only if n− sp < 0. In the general weighted case,

if w satisfies a doubling condition of order τ , and τ − sp < 0, we also have

that (3.4) holds, and consequently the Carleson measures in this case for

weighted Hardy Sobolev spaces are just the finite ones. Indeed, assume that

τ − sp < 0. We then have

∫

Sn

1

|1 − ζ0ζ|(n−s)p
′
w−(p′−1)(ζ) dσ(ζ)

=

∫

Sn

w−(p′−1)(ζ)

∫

|1−ζ0ζ|<t

dt

t(n−s)p
′ dσ(ζ) ≤

∫ K

0

∫
B(ζ0 ,t)

w−(p′−1)

t(n−s)p
′

'

∫ K

0

tn dt
(∫
\B(ζ0 ,t)

w
)p′−1

t(n−s)p′
�
∑

k

2−ksp
′

W (B(ζ0, 2−k))
.

The fact that w satisfies conditionDτ gives thatW (Sn)� 2kτW (B(ζ0, 2
−k)),

and consequently the above sum is bounded, up to constants, by

∑

k

2k(τ(p
′−1)−sp′).

Since τ − sp < 0 we also have that τ(p′ − 1) − sp′ < 0, and we are done.

From now on we will assume that τ − sp ≥ 0.

The problem of characterizing the positive finite Borel measures µ on

Bn for which the following inequality holds

(3.5) ‖Ks(f)‖Lp(dµ) ≤ C‖f‖Lp(w),

has been thoroughly studied, and there are, among others, characterizations

in terms of weighted nonisotropic Riesz capacities that are defined as follows:

if E ⊂ Sn, 1 < p < +∞ and 0 < s < n,

Cwsp(E) = inf{‖f‖pLp(w) ; f ≥ 0, Ks(f) ≥ 1 on E}.
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It is well known, that when w ≡ 1, Csp(B(ζ, r)) ' rn−sp, ζ ∈ Sn, r < 1. See

[Ad] for expressions of weighted capacities of balls in Rn.

As it happens in Rn (see [Ad]), we have that if 0 ≤ n− sp, (3.5) holds

if and only if there exists C > 0 such that for any open set G ⊂ Sn,

(3.6) µ(T (G)) ≤ CCw
sp(G).

Here T (G) is the admissible tent over G, defined by

T (G) = Tα(G) =

(
⋃

ζ /∈G

Dα(ζ)

)c
.

The problem of characterizing the Carleson measures µ for the holomor-

phic case (3.2) is much more complicated, even in the nonweighted case.

Since |Cs(z, ζ)| ≤ Ks(z, ζ), it follows from Theorem 2.13, that (3.5) im-

plies (3.2), and consequently that if condition (3.6) is satisfied, then µ is

a Carleson measure for Hp
s (w). Of course, when n − s < 1 both prob-

lems are equivalent, even in the weighted case, simply because if f ≥ 0,

|Cs(f)| ' Ks(f), but when n > 1 (see [Ah] and [CaOr2]), condition (3.5)

for the unweighted case is not, in general, equivalent to condition (3.2).

Observe that when n− sp ≤ 0, Hp
s consists of regular functions, and conse-

quently any finite measure is a Carleson measure for the holomorphic and

the real case. It is proved in [CohVe1] that this equivalence still remains

true if we are not too far from the regular case, namely, if 0 ≤ n− sp < 1.

The main purpose of this section is to obtain a result in this line for a wide

class of Ap-weights.

In [Ah] it is also shown that if (3.2) holds for w ≡ 1, then the ca-

pacity condition on balls is satisfied, i.e. there exists C > 0 such that

µ(T (B(ζ, r))) ≤ Crn−sp, for any ζ ∈ Sn and any 0 < r < 1. The follow-

ing proposition obtains a necessary condition in this line for the weighted

holomorphic trace inequality.

Proposition 3.1. Let 1 < p < +∞, 0 < s < n. Let µ be a positive

finite Borel measure on Bn, and w be an Ap-weight. Assume that there

exists C > 0 such that

‖f‖Lp(dµ) ≤ C‖f‖Hp
s (w),

for any f ∈ Hp
s (w). We then have that there exists C > 0 such that for any

ζ ∈ Sn, r > 0,

µ(T (B(ζ, r)) ≤ C
W (B(ζ, r))

rsp
.
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Proof of Proposition 3.1. Let ζ ∈ Sn, 0 < r < 1 be fixed. If z ∈ B
n
, let

F (z) =
1

(1 − (1 − r)zζ)N
,

with N > 0 to be chosen later. If z ∈ T (B(ζ, r)), and z0 = z/|z|, (1−|z|) � r

and |1 − z0ζ| � r. Hence |1 − (1 − r)zζ| � r, and consequently,

µ(T (B(ζ, r)))

rNp
≤ C

∫

T (B(ζ,r))
|F (z)|p dµ(z).

On the other hand,

‖F‖p
Hp

s (w)
≤ C

∫

Sn

1

|1 − (1 − r)ηζ|(N+s)p
w(η) dσ(η)

=

∫

B(ζ,r)

1

|1 − (1 − r)ηζ|(N+s)p
w(η) dσ(η)

+
∑

k≥1

∫

B(ζ,2k+1r)\B(ζ,2kr)

1

|1 − (1 − r)ηζ|(N+s)p
w(η) dσ(η).

If k ≥ 1, and η ∈ B(ζ, 2k+1r) \ B(ζ, 2kr), |1 − (1 − r)ηζ| ' 2kr. This

estimates together with the fact that w is doubling, give that the above is

bounded by

∑

k≥0

W (B(ζ, 2k+1r))

(2kr)(N+s)p
�
W (B(ζ, r))

r(N+s)p

∑

k≥0

(
C

2(N+s)p

)k
,

which gives the desired estimate, provided N is chosen big enough.

We observe that for some special weights besides the case w ≡ 1, the

expression that appears in the above proposition W (B(ζ, r))/rsp coincide

with the weighted capacity of a ball (see [Ad]).

If ν is a positive Borel measure on Sn, 1 < p < +∞, 0 < s < n and w

is an Ap-weight, it is introduced in [Ad] the (s, p)-energy of ν with weight

w, which is defined by

(3.7) Ewsp(ν) =

∫

Sn

(Ks(ν)(ζ))
p′w(ζ)−(p′−1) dσ(ζ).

If we write (Ks(ν))
p′ = (Ks(ν))

p′−1Ks(ν), Fubini’s theorem gives that

Ewsp(ν) =

∫

Sn

Uwsp(ν)(ζ) dν(ζ),
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where

Uwsp(ζ) = Ks(w
−1Ks(ν))

p′−1(ζ)

is the weighted nonlinear potential of the measure ν. When w ≡ 1, Wolff’s

theorem (see [HeWo]) gives another representation of the energy, in terms

of the so-called Wolff’s potential.

In the general case, it is introduced in [Ad] a weighted Wolff-type po-

tential of a measure ν as

Ww
sp(ν)(ζ)(3.8)

=

∫ 1

0

(
ν(B(ζ, 1 − r))

(1 − r)n−sp

)p′−1∫
\
B(ζ,1−r)

w−(p′−1)(η) dσ(η)
dr

1 − r
.

In the same paper, it is shown that provided w is an Ap-weight, the following

weighted Wolff-type theorem holds:

(3.9) Ewsp(ν) '

∫

Sn

Ww
sp(ν)(ζ) dν(ζ).

In fact, we have the pointwise estimate Ww
sp(ν)(ζ) ≤ CUwsp(ν)(ζ), and Wolff’s

theorem gives that the converse is true, provided we integrate with respect

to ν.

In [Ad] a weighted extremal theorem for the weighted Riesz capacities

it is also shown, namely, if G ⊂ Sn is open, there exists a positive capacitary

measure νG such that

(i) suppνG ⊂ G.

(ii) νG(G) = Cw
sp(G) = Ewsp(νG).

(iii) Ww
sp(νG)(ζ) ≥ C, for Cw

sp-a.e. ζ ∈ G.

(iv) Ww
sp(νG)(ζ) ≤ C, for any ζ ∈ suppνG.

We now introduce two holomorphic weighted Wolff-type potentials,

which generalize the ones defined in [CohVe1]. These potentials will be used

in the proof of the characterization of the Carleson measures for H p
s (w), for

the case 0 ≤ τ − sp < 1. Let 1 < p < +∞, 0 < s < n/p, and ν be a positive

Borel measure on Sn. For any λ > 0, and z ∈ Bn, we set

Uwλsp (ν)(z) =

∫ 1

0

∫

Sn

(
ν(B(ζ, 1 − r))

(1 − r)n−sp

)p′−1 (1 − r)λ−n

(1 − rzζ)λ
(3.10)

×

(∫
\
B(ζ,1−r)

w−(p′−1)

)
dσ(ζ)

dr

1 − r
,
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and

Vwλsp (ν)(z) =

∫ 1

0

(∫

Sn

(1 − r)λ+sp−n

(1 − rzζ)λ
(3.11)

×

(∫
\
B(ζ,1−r)

w−(p′−1)

) 1
p′−1

dν(ζ)

)p′−1 dr

1 − r
.

Obviously, both potentials are holomorphic functions in the unit ball.

We will see, that if p ≤ 2 the first one is bounded from below by the weighted

Wolff-type potential we have just introduced, whereas if p ≥ 2, the second

one is bounded from below by the same potential.

In the unweighted case, [CohVe1] the proof of the estimates of the holo-

morphic potentials, rely on an extension of Wolff’s theorem. This extension

gives that if 1 < p < +∞, s > 0, 0 < q < +∞, and ν is a positive Borel

measure on Sn, then

∫

Sn

(∫ 1

0

(
ν(B(ζ, t))

tn−s

)q dt
t

)p′/q
dσ(ζ) �

∫

Sn

Ww
sp(ν)(ζ) dν(ζ).

Observe that if the above estimate holds for one q0, it also holds for any

q ≥ q0. The case q = 1 is the integral estimate in Wolff’s theorem, since we

have that

Esp(ν) '

∫

Sn

(∫ 1

0

ν(B(ζ, t))

tn−s
dt

t

)p′
dσ(ζ).

The arguments in [CohVe1] can easily be used to show the following

weighted version of the above theorem. We omit the details of the proof.

Theorem 3.2. Let 1 < p < +∞, w an Ap weight, s > 0, K > 0,

0 < q < +∞, and ν be a positive Borel measure on Sn. Then

∫

Sn

(∫ K

0

(
ν(B(ζ, t))

tn−s

(∫
\
B(ζ,t)

w−(p′−1)(η) dσ(η)

) 1
p′−1

)q dt
t

)p′/q
w(ζ) dσ(ζ)

(3.12)

�

∫

Sn

Ww
sp(ν)(ζ) dν(ζ).

Before we obtain estimates of the Hp
s (w)-norm of the weighted holo-

morphic potentials already introduced, we will give a characterization for

weights satisfying a doubling condition
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Lemma 3.3. Let 1 < p < +∞ and w be an Ap weight on Sn, and

assume that w ∈ Dτ , for some τ > 0. We then have:

(i) For any t ∈ R satisfying that t > τ −n, there exists C > 0 such that

(3.13)

∫ +∞

r

1

xt

∫
\
B(ζ,x)

w
dx

x
≤ C

1

rt

∫
\
B(ζ,r)

w,

r < 1, ζ ∈ Sn.

(ii) For any t ∈ R satisfying that t > τ − n, there exists C > 0 such

that

(3.14)

∫ r

0
xt
(∫

\
B(ζ,x)

w−(p′−1)

)p−1dx

x
≤ Crt

(∫
\
B(ζ,r)

w−(p′−1)

)p−1

,

r < 1, ζ ∈ Sn.

Proof of Lemma 3.3. We begin with the proof of part (i). Let t > τ−n.

Then

∫ +∞

r

1

xt

∫
\
B(ζ,x)

w
dx

x
=
∑

k≥0

∫ 2k+1r

2kr

1

xt

∫
\
B(ζ,x)

w
dx

x

�
∑

k≥0

1

2k(t+n)rt+n
W (B(ζ, 2k+1r)) �

∑

k≥0

1

2k(t+n)rt+n
2kτW (B(ζ, r))

= C
1

rδ

∫
\
B(ζ,r)

w,

since w is in Dτ , and t+ n > τ .

Next we show that (ii) holds. If ζ ∈ Sn and r > 0, the fact that w ∈ Ap

gives that
(∫
\B(ζ,x)w

−(p′−1)
)p−1

'
(∫
\B(ζ,x)w

)−1
, and consequently,

∫ r

0
xt
(∫

\
B(ζ,x)

w−(p′−1)

)p−1dx

x
=
∑

k≥0

∫ 2−k+1r

2−kr
xt
(∫

\
B(ζ,x)

w−(p′−1)

)p−1dx

x

�
∑

k≥0

2−ktrt
1∫

\B(ζ,2−kr)w
�
∑

k≥0

1

2k(t+n)
rt−n2kτW (B(ζ, r))

' rt
(∫

\
B(ζ,r)

w−(p′−1)

)p−1

.
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Remark . In fact, it can be proved that both conditions (i) and (ii) are

in turn equivalent to the fact that the Ap weight is in Dτ .

We can now obtain the estimates on the weighted holomorphic poten-

tials defined in (3.10) and (3.11).

Theorem 3.4. Let 1 < p < +∞, 0 < α < n, w an Ap-weight. Assume

that w is in Dτ for some 0 ≤ τ − sp < 1. We then have:

(1) If 1 < p < 2, there exists 0 < λ < 1 and C > 0 such that for any finite

positive Borel measure ν on Sn the following assertions hold :

a) For any η ∈ Sn,

lim
ρ→1

ReUwλsp (ν)(ρη) ≥ CWwλ
sp (ν)(η).

b) ‖Uwλsp (ν)‖p
Hp

s (w)
≤ CEwsp(ν).

(2) If p ≥ 2, there exists 0 < λ < 1 and C > 0 such that for any finite

positive Borel measure ν on Sn the following assertions hold :

a) For any η ∈ Sn,

lim
ρ→1

ReVwλsp (ν)(ρη) ≥ CWwλ
sp (ν)(η).

b) ‖Vwλsp (ν)‖p
Hp

s (w)
≤ CEwsp(ν).

Proof of Theorem 3.4. We will follow the scheme of [CohVe1] where it

is proved for the unweighted case. The weights introduce new technical

difficulties that require a careful use of the hypothesis Ap and Dτ that

we assume on the weight w. In order to make the proof easier to follow

we sketch some of the arguments in [CohVe1], emphasizing the necessary

changes we need to make in the weighted case.

Let us prove (1). We choose λ such that τ − sp < λ < 1 and define

Uwλsp as in 3.10. Then τ − s < λ+s−τ(2−p)
p−1 . Consequently there exists t

such that τ − s < t < λ+s−τ(2−p)
p−1 . Observe that t + s − n > τ − n and

λ+s−t(p−1)
2−p − n > τ − n.
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We begin now the proof of a). The fact that λ < 1 gives that if ρ < 1,

η ∈ Sn, and C > 0,

ReUwλsp (ρη) �

∫ 1

0

∫

B(η,C(1−r))

(
ν(B(ζ, 1 − r))

(1 − r)n−sp

)p′−1 (1 − r)λ−n

|1 − rρηζ|λ

×

(∫
\
B(ζ,1−r)

w−(p′−1)

)
dσ(ζ)

dr

1 − r
.

If C > 0 has been chosen small enough, we have that for any ζ ∈ B(η, C(1−

r)), B(η, C(1 − r)) ⊂ B(ζ, 1 − r). In addition, |1 − rρηζ| � |1 − rρ|. These

estimates, together with the fact that w−(p′−1) satisfies a doubling condition,

give that the above integral is bounded from below by

C

∫ 1

0

∫

B(η,C(1−r))

(
ν(B(η, C(1 − r)))

(1 − r)n−sp

)p′−1 (1 − r)λ−n

|1 − rρ|λ

×

(∫
\
B(η,1−r)

w−(p′−1)

)
dσ(ζ)

dr

1 − r

≥ C

∫ ρ

0

(
ν(B(η, C(1 − r)))

(1 − r)n−sp

)p′−1 (1 − r)λ

|1 − rρ|λ

(∫
\
B(η,1−r)

w−(p′−1)

)
dr

1 − r

≥ C

∫ ρ

0

(
ν(B(η, C(1 − r)))

(1 − r)n−sp

)p′−1(∫
\
B(η,1−r)

w−(p′−1)

)
dr

1 − r
,

where in last estimate we have used that since r < ρ, 1 − rρ ' 1 − r.

We have proved then

∫ ρ

0

(
ν(B(η, C(1 − r)))

(1 − r)n−sp

)p′−1(∫
\
B(η,1−r)

w−(p′−1)

)
dr

1 − r
≤ C ReUwλsp (ν)(ρη),

and letting ρ→ 1, we obtain a).

In order to obtain the norm estimate, lets us simply write U(z) =

Uwλsp (ν)(z), and prove that for k > s,

‖U‖p
HF p1

s (w)

= |U(0)|p +

∫

Sn

(∫ 1

0
(1 − ρ)k−s|(I +R)kU(ρη)|

dρ

1 − ρ

)p
w(η) dσ(η)

≤ CEwsp(ν).
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But

∫ 1

0
(1 − ρ)k−s|(I +R)kU(ρη)|

dρ

1 − ρ

�

∫ 1

0
(1 − ρ)k−s

∫ 1

0

∫

Sn

(
ν(B(ζ, 1 − r))

(1 − r)n−sp

)p′−1 (1 − r)λ−n

|1 − ρrηζ|λ+k

×

(∫
\
B(ζ,1−r)

w−(p′−1)

)
dσ(ζ)

dr

1 − r

dρ

1 − ρ
� Υ(η),

where

Υ(η) =

∫ 1

0

∫

Sn

(
ν(B(ζ, 1 − r))

(1 − r)n−sp

)p′−1 (1 − r)λ−n

|1 − rηζ|λ+s

×

(∫
\
B(ζ,1−r)

w−(p′−1)

)
dσ(ζ)

dr

1 − r
.

Observe that |U(0)|p ≤ C‖Υ‖pLp(w). Consequently, in order to finish the

proof of the theorem, we just need to show that

(3.15) ‖Υ‖pLp(w) ≤ CEwsp(ν).

Hölder’s inequality with exponent 1
p−1 > 1 gives that

(3.16) Υ(η) ≤ Υ1(η)
p−1Υ2(η)

2−p,

where

Υ1(η) =

∫ 1

0

∫

Sn

ν(B(ζ, 1 − r))

(1 − r)n−s
(1 − r)t−n

|1 − rηζ|t

×

(∫
\
B(ζ,1−r)

w−(p′−1)

)p−1

dσ(ζ)
dr

1 − r
,

and

Υ2(η) =

∫ 1

0

∫

Sn

(
ν(B(ζ, 1 − r))

(1 − r)n−s

)p′ (1 − r)
λ+s−t(p−1)

2−p
−n

|1 − rηζ|
λ+s−t(p−1)

2−p

×

(∫
\
B(ζ,1−r)

w−(p′−1)

)pdσ(ζ)dr

1 − r
.
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We begin estimating the function Υ1. If ζ ∈ B(τ, 1 − r), we have that

B(ζ, 1−r) ⊂ B(τ, C(1−r)), and since w−(p′−1) satisfies a doubling condition,

Υ1(η) �

∫ 1

0
(1 − r)t−2n+s

∫

Sn

∫

B(τ,C(1−r))

dσ(ζ)

|1 − rηζ|t
(3.17)

×

(∫
\
B(τ,1−r)

w−(p′−1)

)p−1dν(τ)dr

1 − r
.

Next, we observe that if ζ ∈ B(τ, C(1 − r)), |1 − rητ | � |1 − rηζ|. Hence,

the above is bounded by

C

∫ 1

0
(1 − r)t−n+s

∫

Sn

(∫
\B(τ,1−r)w

−(p′−1)
)p−1

|1 − rητ |t
dν(τ)

dr

1 − r
.

Since

∫

Sn

(∫
\B(τ,1−r)w

−(p′−1)
)p−1

|1 − rητ |t
dν(τ)

�

∫

Sn

(∫
\
B(τ,1−r)

w−(p′−1)

)p−1 ∫

|1−rητ |≤δ

dδ

δt+1
dν(τ),

the above estimate, together with Fubini’s theorem and the fact that t −

n+ s > τ − n give that Υ1(η) is bounded by

C

∫ 1

0

∫

B(η,δ)
δt−n+s

(∫
\
B(τ,δ)

w−(p′−1)

)p−1

dν(τ)
dδ

δt+1

�

∫ 1

0

(∫
\
B(η,δ)

w−(p′−1)

)p−1 ν(B(η, δ))

δn−s
dδ

δ
,

where we have used the fact that if τ ∈ B(η, δ), then B(τ, δ) ⊂ B(η, Cδ),

for some C > 0 and that w−(p′−1) satisfies a doubling condition.

Applying Hölder’s inequality with exponent 1
(p−1)2

> 1, we deduce that

‖Υ‖Lp(w) �

(∫

Sn

(∫ 1

0

(∫
\
B(η,1−r)

w−(p′−1)

)p−1

(3.18)

×
ν(B(η, δ))

δn−s
dδ

δ

)p′
w dσ

)(p−1)2(∫

Sn

Υ2w

)p(2−p)
.
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Theorem 3.2 with q = 1 gives that the first factor on the right is bounded

by CEwsp(ν)
(p−1)2 .

Next we deal with the integral involving Υ2. We recall that l =
λ+s−t(p−1)

2−p − n > τ − n. Fubini’s theorem gives that

∫

Sn

Υ2w =

∫

Sn

∫ 1

0

(
ν(B(ζ, 1 − r))

(1 − r)n−s

)p′
(1 − r)l

(∫
\
B(ζ,1−r)

w−(p′−1)

)p

×

∫

Sn

w(η) dσ(η)

|1 − rηζ|l+n
dσ(ζ)dr

1 − r
.

But, as before, since l > τ − n,
∫

Sn

w(η) dσ(η)

|1 − rηζ|l+n
≤

C

(1 − r)l

∫
\
B(ζ,1−r)

w.

The above, together with Fubini’s theorem gives that

∫

Sn

Υ2w �

∫ 1

0

∫

Sn

∫
\
B(η,1−r)

(
ν(B(ζ, 1 − r))

(1 − r)n−s

)p′

×

(∫
\
B(ζ,1−r)

w−(p′−1)

)p
dσ(ζ)w(η)

dσ(η)dr

1 − r
.

But if ζ ∈ B(η, 1− r), B(ζ, 1− r) ⊂ B(η, C(1− r)), for some C > 0, and in

consequence the above is bounded by

C

∫

Sn

∫ 1

0

(
ν(B(η, C(1 − r)))

(1 − r)n−s

)p′(∫
\
B(η,1−r)

w−(p′−1)

)p dr

1 − r
w(η) dσ(η).

The change of variables C(1 − r) = y − 1 gives that we can estimate the

previous expression by

C

∫

Sn

∫ 1

0

(
ν(B(η, (1 − y)))

(1 − y)n−s

)p′(∫
\
B(η,1−y)

w−(p′−1)

)p dy

1 − y
w(η) dσ(η)

+ ν(Sn)p
′

(∫

Sn

w− 1
p−1

)p
= I + II .

Theorem 3.2 gives that II � CEwsp(ν), and Theorem 3.2 with q = p′ gives

that I ≤ CEwsp(ν). Consequently,
∫
Sn Υ2w ≤ CEwsp(ν), and plugging this

estimate in (3.18), we deduce that

‖Υ‖pLp(w) � CEwsp(ν)
(p−1)2Ewsp(ν)

p(2−p) ' Ewsp(ν).
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We now sketch the proof of part (2). We choose λ > 0 such that τ−sp <

λ < 1, and define Vwλsp (ν)(z) as in (3.11). Let us simplify the notation and

just write V(z) = Vwλsp (ν)(z). Let ε ∈ R such that τ < ε+ n < λ+ sp.

The proof of a) is analogous to the one in case 1 < p < 2.

For the proof of b), let us consider k > s. It will be enough to prove

the following:

‖V‖p
HF p1

s (w)
(3.19)

= |V(0)|p +

∫

Sn

(∫ 1

0
(1 − ρ)k−s|(I +R)kV(ρζ)|

dρ

1 − ρ

)p
w(ζ) dσ(ζ)

≤ CEwsp(ν).

Let us begin with the estimate |V(0)|p � Ewsp(ν). If p > 2, Hölder’s inequality

with exponent 1
p′−1 > 1, gives that

|V(0)| ≤

(∫ 1

0

∫

Sn

(1 − r)ε
(∫

\
B(ζ,1−r)

w−(p′−1)

) 1
p′−1

dν(ζ)
dr

1 − r

)p′−1

×

(∫ 1

0

(
(1 − r)(p

′−1)(λ+sp−n−ε)
) 1

2−p′ dr

1 − r

)2−p′

� ν(Sn)p
′−1

∫
\
Sn

w−(p′−1).

The case p = 2 is proved similarly. Consequently, for any p ≥ 2,

|V(0)|p � ν(Sn)p
′

(∫
\
Sn

w−(p′−1)

)p
≤ CEwsp(ν),

where the constant C may depend on w.

Following with the estimate of ‖V‖HF p1
s (w), we recall (for example see

[CohVe2], Proposition 1.4) that if k > 0, 0 < λ < 1, and z ∈ Bn,
∣∣∣∣(I +R)k

(∫

Sn

dν(ζ)

(1 − zζ)λ

)p′−1∣∣∣∣ ≤ C

(∫

Sn

dν(ζ)

|1 − zζ|λ

)p′−2 ∫

Sn

dν(ζ)

|1 − zζ|λ+k
.

Plugging this estimate in (3.19) and using that p′ − 2 ≤ 0, we get

|(I +R)kV(ρη)| �

∫ 1

0

∫

1−r<δ, 1−ρ<δ<3

(1 − r)(p
′−1)(λ+sp−n)

(∫
B(η,δ)

(∫
\B(ζ,1−r)w

−(p′−1)
) 1

p′−1
dν(ζ)

)p′−1

δλ+k+1+(p′−2)λ

dδdr

1 − r
.
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Assume first that p > 2. Fubini’s theorem and Hölder’s inequality with

exponent 1
p′−1 > 1, gives that the above is bounded by

∫ 3

1−ρ

(∫

1−r<δ<3
(1 − r)ε

∫

B(η,δ)

(∫
\
B(ζ,1−r)

w−(p′−1)

) 1
p′−1

dν(ζ)
dr

1 − r

)p′−1

(3.20)

×

(∫

1−r<δ<3

(
(1 − r)(λ+sp−n)(p′−1)−ε(p′−1)

δλ+k+1+(p′−2)λ

) 1
2−p′ dr

1 − r

)2−p′

dδ.

Next, Fubini’s theorem and the fact that ε > τ − n give that

∫

1−r<δ
(1 − r)ε

∫

B(η,δ)

(∫
\
B(ζ,1−r)

w−(p′−1)

) 1
p′−1

dν(ζ)
dr

1 − r

�

∫

B(η,δ)
δε
(∫

\
B(ζ,δ)

w−(p′−1)

) 1
p′−1

dν(ζ).

We also have that since λ+ sp− n− ε > 0, (3.20) is bounded by

∫ 3

1−ρ

(∫

B(η,δ)

(∫
\
B(ζ,δ)

w−(p′−1)

) 1
p′−1

dν(ζ)

)p′−1 dδ

δ(n−sp)(p′−1)+k+1
.

For the case p = 2, we obtain the same estimate, applying directly

condition (3.14) on (3.20).

Integrating with respect to ρ, and applying Fubini’s theorem we get
∫ 1

0
(1 − ρ)k−s|(I +R)kV(ρη)|

dρ

1 − ρ

�

∫ 3

0

(∫

B(η,δ)

(∫
\
B(ζ,δ)

w−(p′−1)

) 1
p′−1

dν(ζ)

)p′−1 dδ

δ(n−s)(p
′−1)+1

,

since (n− sp)(p′ − 1) + s = (n− s)(p′ − 1). If τ ∈ B(ζ, δ), and ζ ∈ B(η, δ),

we have that τ ∈ B(η, Cδ). The fact that w−(p′−1) satisfies a doubling

condition, gives that the last integral is bounded by

C

∫ 3

0

(
ν(B(η, δ))

δn−s

)p′−1∫
\
B(η,δ)

w−(p′−1) dδ

δ
.

Applying Theorem 3.2 with exponent q = p′ − 1, we finally obtain that
∫

Sn

(∫ 1

0
(1 − ρ)k−s|(I +R)kV(ρη)|

dρ

ρ

)p
w(η) dσ(η) �

∫

Sn

Ww
sp(ν)(ζ) dν(ζ).
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We can now state the characterization of the weighted Carleson mea-

sures.

Theorem 3.5. Let 1 < p < +∞, 0 < n− sp < 1, w an Ap-weight, and

µ a finite positive Borel measure on Bn. Assume that w is in Dτ for some

0 ≤ τ − sp < 1. We then have that the following statements are equivalent :

(i) ‖Kα(f)‖Lp(dµ) ≤ C‖f‖Lp(w).

(ii) ‖f‖Lp(dµ) ≤ C‖f‖Hp
s (w).

Proof of Theorem 3.5. Let us show first that (i) ⇒ (ii). Theorem 2.13

gives that condition (ii) can be rewritten as

‖Cs(g)‖Lp(dµ) ≤ C‖g‖Lp(w).

This fact together with the estimate |Cs(f)| ≤ CKs(|f |) finishes the proof

of the implication.

Assume now that (ii) holds. Since a measure µ on Bn satisfies (i)

if and only if (see (3.6)) there exists C > 0 such that for any open set

G ⊂ Sn, µ(T (G)) ≤ CCw
sp(G), we will check that this estimate holds. Let

G ⊂ Sn be an open set, and let ν be the extremal measure for Cw
sp(G).

We then have that Ww
sp(ν) ≥ 1 except on a set of Cw

sp-capacity zero, and∫
Sn Ww

sp(ν) dν ≤ CCw
sp(G). Let us check that the first estimate also holds

for a.e. x ∈ G (with respect to Lebesgue measure on Sn). Indeed, if A ⊂ Sn

satisfies that Cw
sp(A) = 0, and ε > 0, let f ≥ 0 be a function such that

Ks(f) ≥ 1 on A and
∫
Sn f

pw ≤ ε. Since Lp(w) ⊂ Lp1(dσ), for some

1 < p1 < p, (see Lemma 2.1) we then have ‖f‖Lp1 (dσ) ≤ C‖f‖Lp(w) ≤ Cε1/p.

Thus Csp1(A) = 0, and in particular |A| = 0.

Following with the proof of the implication consider the holomorphic

function on Bn defined by F (z) = Uwλsp (ν)(z) if 1 < p < 2, F (z) =

Vwλsp (ν)(z), if p ≥ 2 where λ is as in Theorem 3.4. Theorem 3.4 and the fact

that ν is extremal give that

lim
r→1

ReF (rζ) ≥ CWw
sp(ν)(ζ) ≥ C,

for a.e. x ∈ G with respect to Cw
sp, and in consequence, for a.e. x ∈ G with

respect to Lebesgue measure on G. Hence, if P is the Poisson-Szegö kernel

|F (z)| = |P [lim
r→1

F (r · )](z)| ≥ |P [Re lim
r→1

F (r · )](z)| ≥ C,
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for any z ∈ T (G), and since we are assuming that (ii) holds, we obtain

µ(T (E)) ≤

∫

T (E)
|F (z)|p dµ(z) ≤ C‖F‖p

Hp
s (w)

≤ CEwsp(ν) ≤ CCw
sp(G).

We finish with an example which shows that, simmilarly to what hap-

pens if w ≡ 1, if w ∈ Dτ and τ − sp > 1, then the equivalence between (i)

and (ii) in the previous theorem need not to be true.

Proposition 3.6. Let n ≥ 3, p = 2, and τ ≥ 0, 0 < s such that

1 + 2s < τ < 2s + n − 1. Assume also that n < τ < n + 1. Then there

exists w ∈ A2 ∩Dτ and a positive Borel measure µ on Sn such that µ is a

Carleson measure for H2
s (w), but it is not Carleson for Ks[L

2(w)].

Proof of Proposition 3.6. If ε = τ−n, and ζ = (ζ ′, ζn) ∈ Sn, we consider

the weight on Sn defined by w(ζ) = (1 − |ζ ′|2)ε. A calculation gives that

w(z) = (1−|z|2)ε ∈ A2 if and only if −1 < ε < 1, which is our case. We also

have that if ζ ∈ Sn, R > 0 and j ≥ 0, then W (B(ζ, 2jR)) ' 2jτW (B(ζ,R)),

i.e. w ∈ Dτ .

Next, any function in H2
s (w) can be written as

∫
Sn

f(ζ)

(1−zζ)n−s
dσ(ζ), f ∈

L2(w). It is then immediate to check that the restriction to Bn−1 of any

such function can be written as

∫

Bn−1

g(ζ ′)(1 − |ζ ′|2)−ε/2

(1 − z′ζ ′)n−s
dv(ζ ′),

with g ∈ L2(dv). This last space coincides (see for instance [Pe]) with the

Besov space B2
s− 1

2
− ε

2

(Bn−1) = H2
s− 1

2
− ε

2

(Bn−1).

Next, n− 1− (s− 1
2 −

ε
2)2 = τ − 2s > 1, and Proposition 3.1 in [CaOr2]

gives that there exists a positive Borel measure µ on Bn which is Carleson

for H2
s− 1

2
− ε

2

(Sn−1), but it fails to be Carleson for the space Ks− 1
2
− ε

2
[L2(dσ)].

Thus the operator

f −→

∫

Sn−1

f(ζ)

|1 − zζ|n−1−(s− 1
2
− ε

2
)
dσ(ζ),

is not bounded from L2(dσ) to L2(dµ). Duality gives that the operator

g −→

∫

Bn−1

g(z)

|1 − zζ|n−1−(s− 1
2
− ε

2
)
dµ(z)
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is also not bounded from L2(dµ) to L2(dσ). But if g ≥ 0, g ∈ L2(dµ),

Fubini’s theorem gives

∥∥∥∥
∫

Bn−1

g(z)

|1 − zζ|n−1−(s− 1
2
− ε

2
)

∥∥∥∥
2

L2(dσ)

=

∫

Sn−1

(∫

Bn−1

g(z)

|1 − zζ|n−1−(s− 1
2
− ε

2
)
dµ(z)

)2

dσ(ζ)

=

∫

Sn−1

∫

Bn−1

g(z)

|1 − zζ|n−1−(s− 1
2
− ε

2
)
dµ(z)

×

∫

Bn−1

g(w)

|1 − wζ|n−1−(s− 1
2
− ε

2
)
dµ(w)dσ(ζ)

'

∫

Bn−1

∫

Bn−1

g(z)g(w)

|1 − zw|n−1−2(s− 1
2
− ε

2
)
dµ(z)dµ(w),

where the last estimate holds since n − 1 − 2(s − 1
2 − ε

2) = τ − 2s > 0.

Consequently, we have that for the measure µ, it does not hold that for any

g ∈ L2(dµ)

(3.21)

∫

Bn−1

∫

Bn−1

g(z)g(w)

|1 − zw|n−2(s− ε
2
)
dµ(z)dµ(w) ≤ C‖g‖L2(dµ).

We next check that the failure of being a Carleson measure for

Ks[L
2(w)] can be also rewritten in the same terms. An argument simi-

lar to the previous one, gives that µ is not Carleson for Ks[L
2(w)] if and

only if the operator

f −→

∫

Bn−1

f(z)

|1 − yz|n−s
dv(z)

is not bounded from L2(wdv) to L2(dµ). Equivalently, writing f(z) =

h(z)(1 − |z|2)ε/2, this last assertion holds if and only if the operator

f −→

∫

Bn−1

f(z)(1 − |z|2)−ε/2

|1 − yz|n−s
dv(z)

is not bounded from L2(dv) to L2(dµ). But an argument as before, using

duality and Fubini’s theorem, gives that the fact that of the unboundedness

of the operator can be rewritten in terms of (3.21).
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