HEREDITARY LOCAL RINGS

P. M. COHN

To the memory of Tadasi Nakayama

1. Introduction

Many questions about free ideal rings (= firs, cf. [5] and § 2 below) which at present seem difficult become much easier when one restricts attention to local rings. One is then dealing with hereditary local rings, and any such ring is in fact a fir (§2). Our object thus is to describe hereditary local rings. The results on firs in [5] show that such a ring must be a unique factorization domain; in §3 we prove that it must also be rigid (cf. the definition in [3] and $\S 3$ below). More precisely, for a semifir ${ }^{1)} R$ with prime factorization rigidity is necessary and sufficient for R to be a local ring.
§4 gives an example of a right fir (in fact a principal right ideal domain) with prime factorization, which is not left hereditary and hence is not a left fir. Since the example is of a local ring, this provides an example of a rigid unique factorization domain which is a semifir but not a fir.

The final section concerns the centre of a hereditary local ring. If this is not a field, then both the ring and its centre are discrete valuation rings. This improves a result of Northcott [8] who showed that the centre, if not a field, must be a 1 -dimensional regular local ring. The actual result proved in $\S 5$ is rather more general (apart from the stronger conclusion) in that the hypothesis is weaker: we do not require the existence of a central non-unit ($\neq 0$) but merely a 'large' non-unit, and in an integral domain every central non-unit $\neq 0$ is large.

2. Hereditary and semihereditary local rings

Throughout, all rings are associative with 1 , and all modules are unital. We recall that a ring R is said to be p-trivial ($=$ projective-trivial) if there is

[^0]a projective R-module P such that each finitely generated projective R-module has the form P^{n} for a unique integer n. In particular, such a ring has invariant basis number (i.e. any two bases of a free R-module have the same number of elements). An integral domain (not necessarily commutative) with invariant basis number, in which all (finitely generated) right ideals are free, is called a right (semi) fir; ${ }^{17}$ left (semi) firs are defined similarly. In [5] it was shown that every right semifir is a left semifir, so we may simply speak of semifirs. By a local ring we understand as usual a ring in which the sum of two nonunits is a non-unit.

Since a local ring has a skew field as homomorphic image, it certainly has invariant basis number. Further, all projectives are free ${ }^{21}$ and this shows that a local ring must be p-trivial. Now it was proved in [6] (Theorem 2) that any right (or left) semihereditary p-trivial ring R is a total matrix ring over a semifir, $R \cong T_{n}$ say. If $n>1$, the equation $1=e_{11}+\left(1-e_{11}\right)$ in R contradicts the fact that R is local; hence $n=1$ and $R \cong T$ is itself a semifir. Similarly, if R is right hereditary (and local) it is a right fir ([6], Theorem 1) so we obtain

Theorem 1. A right or left semihereditary local ring is a semifir; a right hereditary local ring is a right fir.

In particular this shows that a right hereditary local ring is an integral domain. We recall from [5] that a right fir satisfies the ascending chain condition for principal right ideals and hence that every non-unit has a left factor which is a prime ([5], proof of Theorem 2.8). Moreover, by Theorem 2.8 of [5], every left and right hereditary local ring is a unique factorization domain, (UFD) in the sense of [4]. We return to this result in the next section.

3. Rigid unique factorization domains

We begin with an obvious general remark.
Lemma 1. Let R be a semihereditary local ring. Given $a, b \in R$ such that $a R \cap b R \neq 0$, then $b R \subseteq a R$ or $a R \subseteq b R$.

[^1]Proof. By Theorem 1, R is a semifir and hence $a R+b R=d R$, for some $d \in R$. This means that $a=d a_{0}, b=d b_{0}$ and $a_{0} u-b_{0} v=1$. Since R is a local ring, a_{0} or b_{0} must be a unit, and accordingly, $b R \subseteq a R$ or $a R \subseteq b R$.

If R is a left and right fir, then R is a UFD, by Theorem 2.8 of [5]. More generally, this holds for a semifir in which each non-zero element not a unit can be written as a product of primes. The next theorem gives a criterion for such a ring to be local. We recall the following definition:

A (not necessarily commutative) UFD R is said to be rigid if, for any two prime factorizations of an element a of R :

$$
\begin{equation*}
a=p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{r} \tag{1}
\end{equation*}
$$

there exist units $u_{0}, u_{1}, \ldots, u_{r}\left(u_{0}=u_{r}=1\right)$ such that

$$
q_{i}=u_{i-1}^{-1} p_{i} u_{i}(i=12 \cdots r)
$$

Theorem 2. Let R be a semifir with prime factorization (and hence a UFD). Then R is rigid if and only if it is a local ring.

By the preceding remarks the theorem applies in particular to rings which are left and right firs.

Proof. Let R be a local ring and consider any two prime factorizations (1) of an element a. Then $p_{1} R \cap q_{1} R \neq 0$; since p_{1} is a non-unit and q_{1} a prime, we deduce from Lemma 1 that $p_{1} R \subseteq q_{1} R$, and by symmetry, $q_{1} R \subseteq p_{1} R$. Hence $p_{1} R=q_{1} R$, i.e. $q_{1}=p_{1} u_{1}$ for some unit $u_{1} \in R$. Cancelling p_{1} in (1) we obtain

$$
p_{2} \cdots p_{r}=u_{1} q_{2} \cdots q_{r}
$$

and induction on r shows R to be rigid.
Conversely, let R be rigid; we shall show that R is a local ring by showing that the sum of a non-unit is a unit. Let a be a non-unit and u a unit; since R is a UFD we can write $a=p a_{1}$ where p is a prime. Now we have the identity

$$
\left(1+p a_{1}\right) p=p\left(1+a_{1} p\right) .
$$

If $1+p a_{1}$ were a non-unit, then by rigidity $1+p a_{1}=p b$ for some $b \in R$, whence $1=p\left(b-a_{1}\right)$, which contradicts the fact that p is a non-unit. Hence $1+a$ is a unit, as we wished to show.

Combining this result with Theorem 1, we obtain the
Corollary. A (left or right) semihereditary local ring with prime factorization (and in particular, a left and right hereditary local ring) is a rigid UFD.

4. A principal right ideal domain with prime factorization which is not left hereditary

Let R be a UFD with invariant basis number, which is not a field, and consider R^{N}, the direct product of a countable number of copies of R. We propose to show that R^{N}, as right R-module, cannot be projective. Put $A^{(i)} \cong R$, $A_{n}=\prod_{n+1}^{\infty} A^{(i)}$, then $A_{n} \cong R^{N}$ for $n=1,2 \cdots$. If R^{N} were projective, we would have an equation

$$
\begin{equation*}
A_{1} \oplus B=\sum_{I} \oplus C_{i} \quad\left(C_{i} \cong R\right) \tag{2}
\end{equation*}
$$

where i runs over some index set I. Denote by f_{i} the projection onto C_{i} and take $a \in R$, where a is not zero or a unit. Then $\bigcap_{n} R a^{n}=0$ and hence $\bigcap_{n} C_{i} a^{n}$ $=0$ for each $i \in I$. It follows by a theorem of Chase [2] that there exist integers m, n such that
$f_{i}\left(A_{n} a^{m}\right)=0$ for all but a finite number of $i \in I$.
Since $f_{i}\left(A_{n} a^{m}\right)=f_{i}\left(A_{n}\right) a^{m}$ and a^{m} annihilates no element of C_{i}, we have

$$
\begin{equation*}
f_{i}\left(A_{n}\right)=0 \tag{3}
\end{equation*}
$$

for all but a finite number of $i \in I$. Suppose that (3) holds except when $i=i_{1}, \ldots, i_{k}$ and write $C^{\prime}=\sum_{1}^{k} C_{i,} C^{\prime \prime}=\sum_{j \neq i \nu} C_{j}$ then (2) may be rewritten as

$$
A^{(1)} \oplus \cdots \oplus A^{(n-1)} \oplus A_{n} \oplus B=C^{\prime} \oplus C^{\prime \prime} ;
$$

now (3) shows that $A_{n} \subseteq C^{\prime}$ and it follows that A_{n} is complemented in C^{\prime}, i.e. there exists D such that

$$
\begin{equation*}
A_{n} \oplus D=C^{\prime} . \tag{4}
\end{equation*}
$$

Since $A_{n} \cong R^{N}$, we have $R \oplus A_{n} \cong A_{n}$. Adding R to (4) and remembering that $C^{\prime} \cong R^{k}$, we obtain

$$
R^{k+1} \cong R^{k}
$$

which is impossible in a ring with invariant basis number. Thus we have proved

Theorem 3. If R is any UFD with invariant basis number which is not a field, then R^{N} is not projective.

Corollary. If R is a semifir with prime factorization then R^{N} is not projective.

Let k be any field with an endomorphism σ which is not surjective ${ }^{3 \prime}$, and consider the ring $R=k[[x ; \sigma]]$ of all skew power series, consisting of all infinite series

$$
\sum x^{n} \alpha_{n} \quad\left(\alpha_{n} \in k\right),
$$

with multiplication according to the rule

$$
\alpha x=x \alpha^{\circ} .
$$

The mapping σ can be extended to an endomorphism of R by defining $x^{\sigma}=x$.
It is clear that R is a local ring with maximal ideal $x R$ and is a principal right ideal domain (in fact R is a discrete valuation ring in the sense defined below, §5); moreover, R has prime factorization and so is a rigid UFD. All these facts are easily verified; we shall now show that R is not a left fir, thus in R we have an example of a one-sided fir.

To show that R is not a left fir we must find a left ideal which is not free; now by Theorem 3, Cor., R^{N} is not projective, so it is enough to find a left ideal isomorphic to R^{N}. To obtain such an ideal we need only take a sequence of elements (u_{n}) say, tending to zero, which is left R-free. For then $\sum a_{n} u_{n} \in R$ for all $\left(a_{n}\right) \in R^{v}$ and by freeness, the mapping

$$
\left(a_{n}\right) \rightarrow \sum a_{n} u_{n}
$$

is an isomorphism of left R-modules. Let ρ belong to k but not to k^{σ}. Then we assert that the sequence $\left(x \rho x^{n}\right)$ has the required properties. Clearly it tends to zero, and if

$$
\sum c_{i} x_{\rho} x^{i}=0
$$

then by cancelling a power of x, if possible, we may assume that $c_{0} \neq 0$. Then

$$
\sum x^{i+1} c_{i}^{a^{i+1}} \rho^{\sigma^{i}}=0
$$

Hence $x c_{0}^{\beta} \rho \in R^{\boldsymbol{\gamma}}$, whereas not all coefficients of $x c_{0}^{\pi} \rho$ lie in $k^{\boldsymbol{\beta}}$. This is a con-

[^2]tradiction, and it shows that the elements $x \rho x^{n}$ are left R-free, as asserted.

5. The centre of a hereditary local ring

In [4] it was shown that a rigid UFD which is commutative is necessarily a discrete valuation ring. In general we define a discrete valuation ring (DVR) as an integral domain R (not necessarily commutative) with a prime p such that every non-zero element of R is of the form

$$
p^{r} u(r \geq 0, u \text { a unit }) .
$$

When R is commutative, this reduces to the usual definition. A general DVR is clearly a rigid UFD and it may be verified that a rigid UFD is a DVR if and only if any two primes are right associated.

An element a of an arbitrary ring R is said to be large if $a R$ is a large right ideal in R, i.e. if

$$
a R \cap c \neq 0 \text { for all non-zero right ideals } c .
$$

It is easily verified that in any integral domain the set S of large elements is closed under multiplication and left division. Moreover, in a semifir (or more generally in any weak Bezout ring) the set S of large elements satisfies the generalized Ore condition, hence in this case the ring R admits a ring of right fractions with respect to $S, R S^{-1}$ say, and this ring is again a semifir. We shall omit the (easy) proofs as we do not need these results. In fact, to adjoin inverses of large elements would be a retrograde step, as the next theorem shows.

Theorem 4. Let R be a (left or right) semihereditary local ring with prime factorization. Then R is a discrete valuation ring if and only if it contains a large non-unit.

Proof. Let R be a left or right semihereditary local ring with prime factorization. Then by Theorem $2, R$ is a rigid UFD. Now assume that R contains a large non-unit c, say. Given any prime $p \in R$, we have $c R \cap p R \neq 0$ and hence $c=p c^{\prime}$. Write

$$
\begin{equation*}
c=p^{k} u, \tag{5}
\end{equation*}
$$

where $k \geq 1$ is chosen maximal (clearly k is bounded by the number of factors in a prime decomposition of c). Then u must be a unit, for by (5), \boldsymbol{p} is large
and so $p R \cap u R \neq 0$; if u were not a unit, this would mean (by Lemma 1) that $u=p u^{\prime}$, which, inserted in (5), contradicts the maximality of k. The argument applies to atl primes of R; it shows that all primes are large and hence are right associated. Therefore R is a discrete valuation ring. Conversely, in a DVR, the unique prime is a large non-unit.

The result applies in particular to non-zero centre elements (which in an integral domain are always large), to show that a left and right hereditary local ring with centre not a field is a DVR. But now it is no longer necessary to assume that the ring is a UFD. The precise result is

Theorem 5. Let R be a right hereditary local ring whose centre is not a field. Then R is a discrete valuation ring, and so is its centre.

Proof. Let c be a central element which is not zero or a unit. As before, we can show that for any prime p, we have $c=p c^{\prime}$. Suppose that for every n there exists $u_{n} \in R$ such that

$$
\begin{equation*}
c=p^{n} u_{n} \tag{6}
\end{equation*}
$$

Since c is central, $p^{n} u_{n}=u_{n} p^{n}$ and we have the strictly ascending sequence of right ideals

$$
c R=u_{0} R \subset u_{1} R \subset \cdots
$$

But by Theorem 1, R is a right fir, and this satisfies the ascending chain condition for principal right ideals. Hence (6) cannot hold for all n, and this means that we can again choose k in (5) to be maximal. Then u must be a unit, and as before it follows that all primes are right associated. To complete the proof we need only show that every non-unit $\neq 0$ has a prime factorization. Let $a \in R$ and suppose that for each n there exists a_{n} such that

$$
a=p^{n} a_{n} .
$$

Taking $n=k r$ where k is as in (5) and r is arbitrary, we have

$$
\boldsymbol{a}=\boldsymbol{p}^{k r} \boldsymbol{a}_{k r}=\left(c u^{-1}\right)^{r} a_{k r}=c^{r} u^{-r} \boldsymbol{a}_{k r}=u^{-r} \boldsymbol{a}_{k r} c^{r},
$$

hence

$$
a R \subset u^{-1} a_{k} R \subset u^{-2} a_{2 k} R \subset \cdots
$$

which again gives a contradiction. This shows R to be a DVR. If we now choose c, in the centre of R, so that k in (5) takes its least positive value, then
it is easily seen that every centre element has the form $c^{n} v$, where v is a unit, again in the centre. Hence the centre of R is also a DVR, and the proof is complete.

References

[1] G. Azumaya, Corrections and supplementaries to my paper concerning Krull-RemakSchmidt's theorem, Nagoya Math. J. 1 (1950), 117-124.
[2] S. U. Chase, On direct sums and products of modules, Pacific J. Math. 12 (1962), 847-854.
[3] P. M. Cohn, Factorization in non-commutative power series rings, Proc. Cambridge Phil. Soc. 58 (1962), 452-464.
[4] P. M. Cohn, Noncommutative unique factorization domains, Trans. Amer. Math. Soc. 109 (1963), 313-331.
[5] P. M. Cohn, Free ideal rings, J. Algebra 1 (1964), 47-69.
[6] P. M. Cohn, A remark on total matrix rings over firs, Proc. Cambridge Phil. Soc. 62 (1966) 1-4.
[7] I. Kaplansky, Projective modules, Ann. of Math. 68 (1958), 372-377.
[8] D. G. Northcott, The centre of a hereditary local ring, Proc. Glasgow Math. Association 5 (1962), 101-102.

Queen Mary College,
University of London.

[^0]: Received May 27, 1965.
 ${ }^{1)}$ Semifirs, called 'local firs' in [5] have been renamed here (by analogy with 'semihereditary') to avoid confusion with local rings.

[^1]: ${ }^{2)}$ This is only needed here for finitely generated projectives. The general result (projectives over a local ring are free) was first explicitly proved by Kaplansky [7], but it may be worth noting that this is an immediate consequence of Azumaya's form of the Krull-Schmidt theorem [1].

[^2]: ${ }^{3)}$ It must be injective, since $1^{\sigma}=1$ by definition.

