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1. Introduction

Many questions about free ideal rings ( = firs, cf. [5] and §2 below) which

at present seem difficult become much easier when one restricts attention to

local rings. One is then dealing with hereditary local rings, and any such ring

is in fact a fir (§2). Our object thus is to describe hereditary local rings.

The results on firs in [5] show that such a ring must be a unique factorization

domain; in §3 we prove that it must also be rigid (cf. the definition in [3] and

§3 below). More precisely, for a semifir1* R with prime factorization rigidity

is necessary and sufficient for R to be a local ring.

§4 gives an example of a right fir (in fact a principal right ideal domain)

with prime factorization, which is not left hereditary and hence is not a left

fir. Since the example is of a local ring, this provides an example of a rigid

unique factorization domain which is a semifir but not a fir.

The final section concerns the centre of a hereditary local ring. If this is

not a field, then both the ring and its centre are discrete valuation rings. This

improves a result of Northcott [8] who showed that the centre, if not a field,

must be a 1-dimensίonal regular local ring. The actual result proved in § 5 is

rather more general (apart from the stronger conclusion) in that the hypothesis

is weaker: we do not require the existence of a central non-unit (#0) but

merely a 'large' non-unit, and in an integral domain every central non-unit # 0

is large.

2. Hereditary and semihereditary local rings

Throughout, all rings are associative with 1, and all modules are unital.

We recall that a ring R is said to be p-triυial ( = projective-trivial) if there is
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*> Semiίirs, called 'local firs' in [5] have been renamed here (by analogy with •semi-

hereditary') to avoid confusion with local rings.
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a projective i?-module P such that each finitely generated projective R-moάnle

has the form Pn for a unique integer n. In particular, such a ring has invariant

basis number (i.e. any two bases of a free R-module have the same number of

elements). An integral domain (not necessarily commutative) with invariant

basis number, in which all (finitely generated) right ideals are free, is called

a right (semi) fir,φl) left {semi) firs are defined similarly. In [5] it was shown

that every right semifir is a left semifir, so we may simply speak of semifirs.

By a local ring we understand as usual a ring in which the sum of two non-

units is a non-unit.

Since a local ring has a skew field as homomorphic image, it certainly has

invariant basis number. Further, all projectives are free2' and this shows that

a local ring must be p-trivial Now it was proved in [6] (Theorem 2) that

any right (or left) semihereditary >trivial ring R is a total matrix ring over

a semifir, R=Tn say. If n>l, the equation 1 = en+ (1 — en) in R contradicts

the fact that R is local; hence w = l and R=T is itself a semifir. Similarly,

if R is right hereditary (and local) it is a right fir ([6], Theorem 1) so we

obtain

THEOREM 1. A right or left semihereditary local ring is a semifir; a right

hereditary local ring is a right fir.

In particular this shows that a right hereditary local ring is an integral

domain. We recall from [5] that a right fir satisfies the ascending chain condi-

tion for principal right ideals and hence that every non-unit has a left factor

which is a prime ([5], proof of Theorem 2.8). Moreover, by Theorem 2.8 of

[5], every left and right hereditary local ring is a unique factorization domain,

(UFD) in the sense of [4]. We return to this result in the next section.

3. Rigid unique factorization domains

We begin with an obvious general remark.

LEMM/V 1. Let R be a semihereditary local ring. Given a, b (= R such that

, then bR^aR or aRQ.bR.

2 ) This is only needed here for finitely generated projectives. The general result
(projectives over a local ring are free) was first explicitly proved by Kaplansky [7], but
it may be worth noting that this is an immediate consequence of Azumaya's form of the
Krull-Schmidt theorem [1].
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Proof. By Theorem 1, R is a semifir and hence aR + bR- dR, for some

d^R. This means that a = daOi b^dfa and aou — bQv = 1. Since R is a local

ring, do or*Z>o must be a unit, and accordingly, bR^aR or aR^bR.

If i? is a left and right fir, then R is a UFD, by Theorem 2.8 of [5]. More

generally, this holds for a semifir in which each non-zero element not a unit

can be written as a product of primes. The next theorem gives a criterion

for such a ring to be local. We recall the following definition:

A (not necessarily commutative) UFD R is said to be rigid if, for any two

prime factorizations of an element a of R-

(1) a^pφi - -pr = <M2" * Qr

there exist units w0, uu . . . , ur (uo-ur = l) such that

qi = uT-ιpiUi (i = 12 r).

THEOREM 2. Z#ί R be a semifir with prime factorization {and hence a UFD).

Then R is rigid if and only if it is a local ring.

By the preceding remarks the theorem applies in particular to rings which

are left and right firs.

Proof. Let R be a local ring and consider any two prime factorizations (1)

of an element a. Then piR Π qLR ̂  0 since pi is a non-unit and qι a prime,

we deduce from Lemma 1 that piRQqiR, and by symmetry, qiR^piR. Hence

piR- qiR, i.e. φ -p\U\ for some unit u\ e R. Cancelling pi in (1) we obtain

pi pr — uiqz * qr

and induction on r shows R to be rigid.

Conversely, let R be rigid we shall show that R is a local ring by showing

that the sum of a non-unit is a unit. Let a be a non-unit and w a unit since

R is a UFD we can write a~paγ where j> is a prime. Now we have the

identity

(l + pajp^pd + arf).

If 1 + pai were a non-unit, then by rigidity l+pai-pb for some £ei?, whence

l = ^ ( ^ - β j ) , which contradicts the fact that p is a non-unit. Hence

is a unit, as we wished to show.
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Combining this result with Theorem 1, we obtain the

COROLLARY. A {left or right) semihereditary local ring with prime factori-

zation {and in particular, a left and right hereditary local ring) is a rigid UFD.

4. A principal right ideal domain with prime factorization

which is not left hereditary

Let R be a UFD with invariant basis number, which is not a field, and

consider RN, the direct product of a countable number of copies of R. We

propose to show that RN, as right /̂ -module, cannot be projective. Put A{i) = R,
00

A«=ΠA ( I )

( then An = RN for « = 1, 2 . If RN were projective, we would
n+l

have an equation

(2)

where i runs over some index set /. Denote by // the projection onto d and

take atΞ R, where a is not zero or a unit. Then Π Ran = 0 and hence Π C\an

n n

= 0 for each i <= 7. It follows by a theorem of Chase [2] that there exist

integers ra, n such that
fi(Ana

m) = 0 for all but a finite number of * e / .

Since fiiAna
m) ~fi(An)am and am annihilates no element of d\ we have

(3) fiiAn)=0

for all but a finite number of ι e / . Suppose that (3) holds except when
k

i=ίi, . . . ,4 and write O ^^C^ C" = Σ Cy then (2) may be rewritten as

A ( 1 ) θ Θ A ^ Θ A n θ β ^ C ' θ C " ;

now (3) shows that .A«<=C and it follows that An is complemented in C, i.e.

there exists D such that

(4) AnΘD = Cf.

Since An^i?^, we have /?ΘΛ» = A«. Adding i? to (4) and remembering that

C' = Rk, we obtain

Rk^^R\

which is impossible in a ring with invariant basis number. Thus we have

proved
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THEOREM 3. // R is any UFD with invariant basis number which is not a

field, then RN is not projective.

COROLLARY. // R is a semifir with prime factorization then RN is not pro-

jective.

Let k be any field with an endomorphism o which is not surjective31, and

consider the ring R = kίίx aΎl of all skew power series, consisting of all

infinite series

with multiplication according to the rule

ccx = xa°.

The mapping a can be extended to an endomorphism of R by defining x° = x.

It is clear that R is a local ring with maximal ideal xR and is a principal

right ideal domain (in fact R is a discrete valuation ring in the sense defined

below, §5) moreover, R has prime factorization and so is a rigid UFD. All

these facts are easily verified we shall now show that R is not a left fir, thus

in R we have an example of a one-sided fir.

To show that R is not a left fir we must find a left ideal which is not

free now by Theorem 3, Cor., RN is not projective, so it is enough to find a

left ideal isomorphic to RN. To obtain such an ideal we need only take a

sequence of elements (un) say, tending to zero, which is left iMree. For then

'ΣanUn^ R for all ian)
 e Rs and by freeness, the mapping

(an)->*ΣιanUn

is an isomorphism of left /^-modules. Let p belong to k but not to k°. Then

we assert that the sequence (xpxn) has the required properties. Clearly

it tends to zero, and if

then by cancelling a power of x, if possible, we may assume that cQ ̂  0. Then

X Ci p = 0.

Hence xclp e Rn, whereas not all coefficients of xcop lie in kn. This is a con-

3> It must be injective, since 1" = 1 by definition.
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tradiction, and it shows that the elements xpxn are left i?-free, as asserted.

5. The centre of a hereditary local ring

In [4] it was shown that a rigid UFD which is commutative is necessarily

a discrete valuation ring. In general we define a discrete valuation ring (DVR)

as an integral domain R (not necessarily commutative) with a prime p such

that every non-zero element of R is of the form

pru (r>0, u a unit).

When R is commutative, this reduces to the usual definition. A general DVR

is clearly a rigid UFD and it may be verified that a rigid UFD is a DVR if

and only if any two primes are right associated.

An element a of an arbitrary ring R is said to be large if aR is a large

right ideal in R, i.e. if

aRΓic=*Q for all non-zero right ideals c.

It is easily verified that in any integral domain the set S of large elements is

closed under multiplication and left division. Moreover, in a semifir (or more

generally in any weak Bezout ring) the set S of large elements satisfies the

generalized Ore condition, hence in this case the ring R admits a ring of right

fractions with respect to S, RS'1 say, and this ring is again a semifir. We shall

omit the (easy) proofs as we do not need these results. In fact, to adjoin

inverses of large elements would be a retrograde step, as the next theorem

shows.

THEOREM 4. Let R be a (left or right) semihereditary local ring with prime

factorization. Then R is a discrete valuation ring if and only if it contains a

large non-unit.

Proof. Let R be a left or right semihereditary local ring with prime

factorization. Then by Theorem 2, R is a rigid UFD. Now assume that R

contains a large non-unit c, say. Given any prime p<^R, we have cR^pR^O

and hence c=pcf. Write

(5) c=pku,

where k>l is chosen maximal (clearly k is bounded by the number of factors

in a prime decomposition of c). Then u must be a unit, for by (5), p is large
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and so pRd uR^O; if u were not a unit, this would mean (by Lemma 1) that

u=pu', which, inserted in (5), contradicts the maximality of k. The argument

applies to ail primes of R; it shows that all primes are large and hence are

right associated. Therefore R is a discrete valuation ring. Conversely, in a

DVR, the unique prime is a large non-unit.

The result applies in particular to non-zero centre elements (which in an

integral domain are always large), to show that a left and right hereditary

local ring with centre not a field is a DVR. But now it is no longer necessary

to assume that the ring is a UFD. The precise result is

THEOREM 5. Let R be a right hereditary local ring whose centre is not a

field. Then R is a discrete valuation ring, and so is its centre.

Proof. Let c be a central element which is not zero or a unit. As before,

we can show that for any prime p, we have c =pcf. Suppose that for every

n there exists un^R such that

(6) C=pnUn.

Since c is central, pnun = unp
n and we have the strictly ascending sequence

of right ideals

But by Theorem 1, R is a right fir, and this satisfies the ascending chain con-

dition for principal right ideals. Hence (6) cannot hold for all n, and this means

that we can again choose k in (5) to be maximal. Then u must be a unit, and

as before it follows that all primes are right associated. To complete the proof

we need only show that every non-unit =̂ 0 has a prime factorization. Let a^R

and suppose that for each n there exists an such that

a=pnan.

Taking n = kr where k is as in (5) and r is arbitrary, we have

a =pkrakr = (cu'Ύakr = cru~rakr = u~rakrcr>

hence

which again gives a contradiction. This shows R to be a DVR. If we now

choose c} in the centre of R} so that k in (5) takes its least positive value, then
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it is easily seen that every centre element has the form cnv, where v is a unit,

again in the centre. Hence the centre of R is also a DVR, and the proof is

complete.
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