ON GALOIS EXTENSION OF RINGS

TERUO KANZAKI

To the memory of TADASI NAKAYAMA

1. Introduction. Let Λ be a ring and G a finite group of ring automorphisms of Λ . The totality of elements of Λ which are left invariant by G is a subring of Λ . We call it the G-fixed subring of Λ . Let $\Delta = \Delta(\Lambda, G) = \sum_{\sigma \in G} \bigoplus \Lambda u_{\sigma}$ be the crossed product of Λ and G with trivial factor set, i.e. $\{u_{\sigma}\}$ is a Λ -free basis of Δ and $u_{\sigma}u_{\tau} = u_{\tau\tau}$, $u_{\tau}\lambda = \sigma(\lambda)u_{\tau}$ for $\lambda \in \Lambda$, and let Γ be a subring of the G-fixed subring of Λ which has the same identity as Λ . Then we have a ring homomorphism

$$\delta: \Delta(\Lambda, G) \to \operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$$

defined by $\delta(\lambda u_{\sigma})(x) = \lambda \sigma(x)$, where $\operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$ is the Γ -endomorphism ring of Λ regarded as Γ -right module.

In [4], we generalized the notion of Galois extension, which was first defined by Auslander and Goldman [1] for commutative rings, to non commutative case, and discussed the Galois theory for non commutative rings. Our definition of Galois extension is as follows. A ring Λ is called a *Galois extension* of Γ relative to G if the following conditions are satisfied:

I. Γ is the G-fixed subring of Λ ,

II. Λ is a finitely generated projective Γ -right module,

III. δ is an isomorphism of $\mathcal{A}(\Lambda, G)$ to Hom $\Gamma^{r}(\Lambda, \Lambda)$.

On the other hand, Chase, Harrison and Rosenberg [3] gave another definition of Galois extension, which is equivalent to the above in commutative case, and developed a Galois theory for commutative rings. In order to state other definition, we set $Tr(x) = \sum_{\sigma \in G} \sigma(x)$ for $x \in \Lambda$. Then Λ is called to be a Galois extension of Γ relative to G if the following two conditions are satisfied:

CHR I. $\Gamma = Tr(\Lambda)$.

CHR II. There exist x_1, x_2, \ldots and x_r and y_1, y_2, \ldots, y_r in Λ such that Received February 8, 1965. for $\sigma \in G$ $\sum_{i} x_i \sigma(y_i) = \begin{cases} I, & \text{if } \sigma = 1 \\ 0, & \text{if } \sigma \neq 1. \end{cases}$

In §2, we discuss the relationship between these two definitions of Galois extension and we shall show that if Λ and Γ are algebras over a commutative ring R and Γ is R-separable then they are equivalent to each other. In §3, we shall give an improvement of the Galois theory established in [4] which is also a generalization of the Galois theory in [3] to non commutative case. In §4, for a Galois extension Λ of Γ relative to G, we consider a ring-automorphism ρ of Λ which leaves invariant each element of Γ and we shall show that ρ is an element of G under some assumption.

2. Galois extension. Throughout this section, Λ stands for a ring with identity, G a finite group of ring automorphisms of Λ and Γ a subring of Λ which has the same identity as Λ . We shall call Λ a Galois extension of Γ relative to G if the three condition I, II, III in §1 are satisfied. Λ is regarded as $\Delta(\Lambda, G)$ - left module through δ . Then a right multiplication of an element γ of Γ induces a $\Delta(\Lambda, G)$ - endomorphism of Λ if Γ is a subring of the G-fixed subring of Λ . We shall denote it by γ_r and set $\{\gamma_r | \gamma \in \Gamma\} = \Gamma_r$. Then the condition I is equivalent to

I'.
$$\Gamma_r = \operatorname{Hom}_{\Delta}^{l}(\Lambda, \Lambda).$$

The following lemma is proved in [4].

LEMMA 2.1. Λ is a Galois extension of Γ relative to G if and only if $\Gamma_r = Hom_{\Delta}^{l}(\Lambda, \Lambda)$ and $\Delta(\Lambda, G) = \Lambda u \Lambda$, where $u = \sum_{\sigma \in G} u_{\sigma}$.

LEMMA 2.2. $\Lambda u \Lambda = \Delta(\Lambda, G)$ if and only if the condition CHRII holds.

Proof. Since $\Lambda u\Lambda$ is a two sided ideal of $\Delta(\Lambda, G)$, $\Delta(\Lambda, G) = \Lambda u\Lambda$ if and only if $1 \in \Lambda u\Lambda$. But $1 \in \Lambda u\Lambda$ if and only if there exist $x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_r$ in Λ such that $1 = \sum_{i=1}^r x_i u y_i = \sum_{i=1,\sigma\in G}^r x_i \sigma(y_i) u_{\sigma}$. Thus we obtain this lemma.

PROPOSITION 2.3. $Tr(\Lambda) = Hom_{\Delta}^{l}(\Lambda, \Lambda)$ if and only if Λ is a finitely generated projective Δ -module.

Proof. In Lemma 3 in [4], we obtained the isomorphism κ ; Hom ${}^{l}_{\Delta}(\Lambda, \Delta) \rightarrow u\Lambda$, defined by $\kappa(f) = f(1)$. For the homomorphism γ : Hom ${}^{l}_{\Delta}(\Lambda, \Delta) \rightarrow \text{Hom} {}^{l}_{\Delta}(\Lambda, \Lambda)$ defined by $\gamma(f)(\lambda) = f(\lambda)$ 1, the following diagram is commutative;

where κ' is a monomorphism defined by $\kappa'(f) = f(1)$ for $f \in \operatorname{Hom}_{\Delta}^{l}(\Lambda, \Lambda)$, and γ' is a homomorphism defined by $\gamma'(u\lambda) = (u\lambda)\mathbf{1} = Tr(\lambda)$ for $u\lambda \in u\Lambda$. Since $\operatorname{Im}(\gamma'\kappa) = \operatorname{Im}(\gamma') = Tr(\Lambda)$, $\operatorname{Im}(\kappa') = Tr(\Lambda)$ if and only if γ is an epimorphism. On the other hand, for epimorphism τ : $\operatorname{Hom}_{\Delta}^{l}(\Lambda, \Lambda) \to \operatorname{Hom}_{\Delta}^{l}(\Lambda, \Delta) \otimes_{\Delta}\Lambda$ defined by $\tau(f) = f \otimes 1$, and for the homomorphism μ : $\operatorname{Hom}_{\Delta}^{l}(\Lambda, \Delta) \otimes_{\Delta}\Lambda \to \operatorname{Hom}_{\Delta}^{l}(\Lambda, \Delta)$ defined by $\mu(f \otimes \lambda)(x) = f(x)\lambda$, we have the following commutative diagram:

$$\operatorname{Hom}_{\Delta}^{l}(\Lambda, \Delta) \xrightarrow{\Upsilon} \operatorname{Hom}_{\Delta}^{l}(\Lambda, \Lambda)$$
$$\downarrow^{\tau} \qquad \mu^{\mathcal{A}}$$
$$\operatorname{Hom}_{\Delta}^{l}(\Lambda, \Delta) \otimes_{\Delta} \Lambda$$

Because, for $f \in \text{Hom}_{\Delta}^{l}(\Lambda, \Lambda)$, $\mu\tau(f)(\lambda) = \mu(f \otimes 1)(\lambda) = f(\lambda)\mathbf{1} = \gamma(f)(\lambda)$. Therefore γ is an epimorphism if and only if μ is an epimorphism. But by Proposition A.1 in [2], μ is an epimorphism if and only if Λ is a finitely generated projective Δ -module. Therefore we obtain this proposition.

PROPOSITION 2.4. a) Λ is a Galois extension of Γ relative to G if and only if the condition I and CHR II. are satisfied. b) The condition CHR I. holds if and only if the condition I holds and Λ is a finitely generated projective 4-module.

Proof. a) is obtained in above. b) Since $Tr(\Lambda)$ is a two sided ideal of the G-fixed subring of Λ . $Tr(\Lambda) = \Gamma$ if and only if $Tr(\Lambda)_r = \text{Hom}_{\Lambda}^{l}(\Lambda, \Lambda)$ and $\Gamma_r = \text{Hom}_{\Lambda}^{l}(\Lambda, \Lambda)$. Therefore b) follows from Proposition 2.3.

THEOREM 2.5. Let $\Gamma \subset \Lambda$ be algebras over a commutative ring R, and let Γ be separable over R. Then Λ is a Galois extension of Γ relative to G if and only if the conditions CHR I. and CHR II. hold.

Proof. If Γ is separable over R and Λ is a Galois extension of Γ relative to G, then $\Delta = \operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$ is separable over R and Λ is a finitely generated projective Δ -module by Colrollary 1 in [4]. Therefore by Proposition 2.4 CHR I. and CHR II. hold. The converse follows from Proposition 2.4.

COROLLARY 2.6. (Chase, Harrison and Rosenberg) Let Λ be a commutative ring. Λ is a Galois extension of Γ relative to G if and only if the conditions CHR I. and CHR II. hold.

TERUO KANZAKI

Proof. Setting $\Gamma = R$ in Theorem 2.5 we have this corollary.

3. Galois theory. In this section, we shall improve Theorem 5 in [4] and develope the Galois theory of separable algebra over a commutative ring having the indecomposable center by using the Galois theory of commutative indecomposable ring in [3].

PROPOSITION 3.1. Let $\Gamma \subset \Lambda$ be algebras over a commutative ring R, Λ a Galois extension of Γ ralative to G, and Γ a separable algebra over R. Then, for every subgroup H of G, the H-fixed subring Λ^{H} of Λ is also a separable algebra over R.

Proof. Since Γ is separable over R, by Proposition 4 in [4] $\Delta(A, G)$ is also separable over R. For the decompositions of G with respect to H; $G = H\sigma_1 + \sigma_2$ $H_{\sigma_2} + \cdots + H_{\sigma_r} = \sigma'_1 H + \sigma'_1 H + \cdots + \sigma'_r H, \ \sigma_1 = \sigma'_1 = 1, \ \text{we have} \ \Delta(\Lambda, G) = \sum_{\sigma \in \mathcal{O}} \mathcal{O}(\Lambda, G)$ $\oplus \Lambda u_{\sigma} = \varDelta(\Lambda, H) \oplus \sum_{i=2}^{r} \varDelta(\Lambda, H) u_{\sigma_{i}} \text{ and } \sum_{i=2}^{r} \varDelta(\Lambda, H) u_{\sigma_{i}} = \sum_{i=2}^{r} u_{\sigma_{i}} \varDelta(\Lambda, H). \text{ We shall}$ show that $\Delta(\Lambda, H)$ is an R-separable subalgebra of $\Delta(\Lambda, G)$. Since $\Delta(\Lambda, G)$ is separale over R, $\Delta(\Lambda, G)$ is a $\Delta(\Lambda, G)^e$ -projective module. Now $\Delta(\Lambda, G)^e =$ $\Delta(\Lambda,G) \otimes_{\mathbb{R}} \Delta(\Lambda,G)^0 = \sum_{i,j} \oplus \Delta(\Lambda,H)^e \boldsymbol{u}_{\sigma_i} \otimes \boldsymbol{u}_{\sigma_{j'}}^0, \text{ therefore } \Delta(\Lambda,G) \text{ is a } \Delta(\Lambda,H)^e \text{-pro$ jective module. Since $\Delta(\Lambda, H)$ is a direct summand of $\Delta(\Lambda, G)$ as $\Delta(\Lambda, H)^e$ -module, $\Delta(\Lambda, H)$ is $\Delta(\Lambda, H)^e$ -projective, therefore $\Delta(\Lambda, H)$ is separable over R. On the other hand, Λ is a finitely generated projective Γ -module, hence by Corollary 1 in [4] Λ is a finitely generated projective $\Delta(\Lambda, G)$ -module. Since $\Delta(\Lambda, G)$ is a $\Delta(\Lambda, H)$ -free module, Λ is a finitely generated projective $\Delta(\Lambda, H)$ Therefore by Corollary 1 in [4] $\operatorname{Hom}_{\Delta(\Lambda, H)}(\Lambda, \Lambda) = \Delta^{H}$ is separable -module. over R.

Using Theorem 2.3 in [3] and Theorem 5 in [4], we have

THEOREM 3.2. Let Λ and Γ be separable algebras over a commutative ring R, and suppose that the following conditions are satisfied:

1) The center C of Λ is indecomposable.

2) There is a finite group G of ring automorphisms of Λ such that G induces the group of automorphisms of C isomorphic to G.

3) Γ is the G-fixed subring of Λ .

4) Λ is finitely generated and projective over R.

Then Λ is a Galois extension of Γ relative to G, and there is a 1-1 dual cor-

respondence between subgroups of G and R-separable subalgebra of Λ containing Γ in the usual sense of Galois theory.

Proof. Since Λ is separable and finitely generated projective over R, the center C of Λ is finitely generated projective and separable over R. From Theorem 2.3 in [3], the indecomposable ring C is a Galois extension of the G-fixed subring S of C relative to G. From Theorem 5 in [4], Λ is a Galois extension of Γ relative to G. By Proposition 3.1, for every subgroup H of G the H-fixed subring Λ^H is separable over R, and Λ is a Galois extension of Λ^H relative to H by Theorem 5 in [4]. Conversely, for every separable subalgebra \mathcal{G} over R such that $\Gamma \subset \mathcal{Q} \subset \Lambda$, \mathcal{Q} is separable over S, and Proposition 6 in [4] holds for the indecomposable ring C by Theorem 3.3 in [3], hence by the same argument as in Theorem 5 in [4] we have that Λ is a Galois extension of \mathcal{Q} relative to a subgroup of G. Therefore \mathcal{G} is the fixed subring of Λ by a subgroup of G. Thus we obtain a Galois theory for separable algebra over R.

4. Automorphisms of Galois extension. In this section, we assume that Λ is a central separable algebra over C, G is a finite group of ring automorphisms of Λ which induces the group of automorphisms of C isomorphic to G, and for the G-fixed subring R of C, C is a Galois extension of R relative to G. Then by Theorem 5 in [4] Λ is a Galois extension of Γ relative to G, where Γ is the G-fixed subring of Λ .

LEMMA 4.1. Let C be a ring, M a projective C-module. For any subset x_1 , x_2 , ... x_n in M, in which at least one element x_i is not zero, there exist elements c_1, c_2, \ldots, c_n in C such that at least one of c_i 's is not zero and $\sum_{i=1}^n x_i y_i = 0$ with $y_i \in C$ implies always $\sum_{i=1}^n c_i y_i = 0$.

Proof. we can prove the lemma similarly to Lemma 6 in [4].

PROPOSITION 4.2. Let ρ be a ring automorphism of Λ which leaves invariant each element of Γ . Then we have $\rho = \sum_{\sigma=G} \lambda_{\sigma\sigma}$ where $\{\lambda_{\sigma}\}$ is a family of orthogonal idempotents in the center C, and $1 = \sum_{\sigma \in G} \lambda_{\sigma}$. Furthermore, if $\sigma \neq \tau$ and $\lambda_{\sigma} \neq 0$ $\lambda_{\tau} \neq 0$, then $\sigma^{-1}(\lambda_{\sigma}) \neq \tau^{-1}(\lambda_{\tau})$.

Proof. Since $\rho \in \operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda) \cong \Delta(\Lambda, G) = \sum_{\sigma \in G} \oplus \Lambda u_{\sigma}$, we have $\rho = \sum_{\sigma \in G} \lambda_{\sigma} \sigma$ with $\lambda_{\sigma} \in \Lambda$. For any x in Λ , $\rho \cdot x = \rho(x) \cdot \rho$, therefore $\sum_{\sigma \in G} \lambda_{\sigma} \cdot \sigma(x) \cdot \sigma = (\sum_{\tau \in G} \lambda_{\tau} \tau(x)) \cdot \sigma$

 $(\sum_{\sigma \in G} \lambda_{\sigma\sigma})$, and we obtain

(*) $\lambda_{\sigma\sigma}(x) = \sum_{\tau \in G} \lambda_{\tau}\tau(x)\lambda_{\sigma}$ for $x \in \Lambda$ and $\sigma \in G$.

If x is taken in C, then $\lambda_{\sigma\sigma}(x) = \sum_{\tau \in G} \lambda_{\tau} \lambda_{\sigma} \tau(x)$, therefore $\sum_{\substack{\sigma \neq \tau \\ \tau \in G}} \lambda_{\tau} \lambda_{\sigma} \tau(x) + (\lambda_{\sigma}^2 - \lambda_{\sigma})\sigma(x)$ = 0 for any x in C. By Lemma 4.1 and linearly independence of $\{\sigma\}_{\sigma \in G}$ over C, we obtain $\lambda_{\sigma} = \lambda_{\sigma}^2$ and $\lambda_{\tau} \lambda_{\sigma} = 0$ for $\tau \neq \sigma$. Therefore $\{\lambda_{\sigma}\}$ is a family of orthogonal idempotents and $\sum_{\sigma \in G} \lambda_{\sigma} = 1$ since $\rho(1) = 1$. On the orther hand, from (*) we have for x, y in A, $\lambda_{\sigma\sigma}(xy) = \sum_{\tau \in G} \lambda_{\tau\tau}(xy)\lambda_{\sigma}$, and we have $\lambda_{\sigma} \cdot \sigma(x) \cdot \sigma(y) = \sum_{\tau \in G} \lambda_{\tau}\tau(x)\lambda_{\sigma}\tau(y)$ for any $x \in A$ and $y \in C$. By the same reason as above, we have $\lambda_{\sigma} \cdot \sigma(x) = \lambda_{\sigma}\sigma(x)\lambda_{\sigma}$ and $\lambda_{\tau} \cdot \tau(x) \cdot \lambda_{\sigma} = 0$ for $\tau \neq \sigma$, therefore $\lambda_{\sigma}x = \lambda_{\sigma} \cdot x\lambda_{\sigma}$ for every xin A. On the other hand, for any x in A, $x\lambda_{\sigma} = \sum_{\tau \in G} \lambda_{\tau}x\lambda_{\sigma} = \lambda_{\sigma}x\lambda_{\sigma}$, therefore λ_{σ} is contained in the center C of A. Since $\rho(A) = A$, for any y in Athere exist x in A such that $y = \rho(x) = \sum_{\sigma \in G} \lambda_{\sigma} \cdot \sigma(x)$. Since $\lambda_{\sigma}y = \lambda_{\sigma} \cdot \sigma(x) = \sigma(\sigma^{-1}(\lambda_{\sigma}) \cdot x)$ for each σ in G, it follows that $\sigma^{-1}(\lambda_{\sigma}y) = \sigma^{-1}(\lambda_{\sigma}) \cdot x$ for each $\sigma \in G$. Accordingly, if λ_{σ} and λ_{τ} are non zero and $\sigma \neq \tau$, then $\sigma^{-1}(\lambda_{\tau}) \neq \tau^{-1}(\lambda_{\tau})$. Because, if $\sigma^{-1}(\lambda_{\sigma})$ $= \tau^{-1}(\lambda_{\tau})$ then $\sigma^{-1}(\lambda_{\tau}y) = \tau^{-1}(\lambda_{\tau}y)$. Put $y = \lambda_{\sigma}$, and we have $\sigma^{-1}(\lambda_{\sigma}) = \sigma^{-1}(\lambda_{\sigma}^2) =$ $\tau^{-1}(\lambda_{\tau}\lambda_{\sigma}) = \tau^{-1}(0) = 0$, it is a contradiction.

COROLLARY 4.3. If the center C of Λ is indecomposable, then any Γ -ring automorphism of Λ is contained in G.

PROPOSITION 4.4. If there are orthogonal indecomposable idempotent elements $e_1, e_2 \ldots e_n$ in C such that $\sum_{i=1}^n e_i = 1$, and if there exist $\sigma_1, \sigma_2, \ldots, \sigma_n$ of G such that $\sigma_i^{-1}(e_i) \neq \sigma_j^{-1}(e_j)$ for $i \neq j$, then $\rho = \sum_{i=1}^n e_i \sigma_i$ is a Γ -ring automorphism of Λ .

Proof. ρ is clearly a ring endomorphism, and leaves invariant each element of Γ . Now, we shall show that ρ is an epimorphism of Λ to Λ . Since e_i is indecomposable in C and $\sum_{i=1}^{n} e_i = 1$, $\sigma_j^{-1}(e_i)$ is also indecomposable in C and $\sum_{j=1}^{n} \sigma_i^{-1}(e_j) = 1$ for each i, therefore $\sigma_i^{-1}(e_i)$ is one of $\{e_k\}$. But, $\sigma_i^{-1}(e_i) \neq \sigma_j^{-1}(e_j)$ for $i \neq j$, hence $\{e_1, e_2, \ldots, e_n\} = \{\sigma_1^{-1}(e_1), \sigma_2^{-1}(e_2), \ldots, \sigma_n^{-1}(e_n)\}$. Therefore 1 = $\sum_{i=1}^{n} \sigma_i^{-1}(e_i)$, and $\sigma_i^{-1}(e_i) \cdot \sigma_j^{-1}(e_j) = 0$ for $i \neq j$. For any y in Λ , put $x_i = \sigma_i^{-1}(e_i) \cdot \sigma_i^{-1}(y)$, $i = 1, 2, \ldots, n$, and $x = \sum_{i=1}^{n} x_i$, then $\sigma_j^{-1}(e_j) x_i = 0$ for $i \neq j$, and $\sigma_i^{-1}(e_i) x_i = x_i$. Hence $\rho(x) = \sum_{i=1}^{n} e_i \sigma_i(x) = \sum \sigma_i(\sigma_i^{-1}(e_i)x) = \sum_i \sigma_i(x_i) = \sum_i \sigma_i(\sigma_i^{-1}(e_i)\sigma_i^{-1}(y)) = \sum_{i=1}^{n} e_i y = y$. Thus ρ is an epimorphism.

We shall prove that ρ is a monomorphism. The following proof of this part is due to Professor H. Nagao. If $\rho(x) = 0$, then $\sigma_j^{-1}(\rho(x)) = \sum_{i \neq j} \sigma_j^{-1}(e_i)\sigma_j^{-1}(\sigma_i(x)) + \sigma_j^{-1}(e_j)x = 0$ for each *j*, and $\sigma_j^{-1}(e_j)\sigma_j^{-1}(\rho(x)) = \sigma_j^{-1}(e_j)x = 0$ for $j = 1, 2, \ldots n$, therefore $x = \sum_{j=1}^n \sigma_j^{-1}(e_j)x = 0$. Accordingly, ρ is an automorphism of *A*.

References

- [1] M. Auslander and O. Goldman. The Brauer group of a commutative rings, Trans. Amer. Math. Soc. Vol. 97 (1960), 367-409.
- [2] ----, Maximal order, Trans. Amer. Math. Soc. Vol. 97 (1960), 1-24.
- [3] S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and Galois cohomology of commutative rings. Memoirs Amer. Math. Soc. No. 52 (1965).
- [4] T. Kanzaki, On commutor ring and Galois theory of separable algebras, Osaka J. Math. Vol. 1 (1964), 103-115.

Osaka Gakugei Daigaku