ON MULTIPLY TRANSITIVE GROUPS I

HIROSI NAGAO

Dedicated to the memory of Professor Tadasi Nakayama

The purpose of this paper is to prove the following three theorems which were announced in [2].

Theorem 1. Let G be a quadruply transitive group on $\{1,2, \ldots, n\}$ and H the subgroup of G consisting of all the elements leaving the two letters 1 and 2 invariant. If G is of even degree and H contains a normal subgroup Q which is regular on $\{3,4, \ldots, n\}$, then G is one of the following groups: S_{4}, S_{6} or A_{6}.

Theorem 2. Let G be a quintuply transitive group on $\{1,2, \ldots, n\}$ and H the subgroup of G consisting of all the elements leaving the three letters 1,2 and 3 invariant. If H contains a normal subgroup Q which is regular on \{4, $5, \ldots, n\}$, then G is one of the following groups: $S_{5}, S_{6}, S_{7}, A_{7}$ or M_{12}.

The following theorem is an improvement of a theorem of Wielandt ([4], Satz 1).

Theorem 3. Let G be a k-fold transitive group of degree n. If the outer automorphism group of any simple subgroup of G is solvable, then $k \leq 6$ unless G is S_{n} or A_{n}.

We use standard notations throughout. For a set X let $|X|$ denote the number of elements of X. For a subset X of a group G let $N_{G}(X)$ denote the normalizer of X in G, and the centralizer of X in G is denoted by $C_{G}(X)$.

1. Proof of Theorem 1

We first prove the following lemma which will be used in this and the next sections.

[^0]Lemma ${ }^{11}$. Let V be a vector space over a field and ρ a nilpotent linear transformation of V. If $\rho^{n}=0$ then

$$
\operatorname{dim} V \leq \boldsymbol{n} \operatorname{dim} V_{0},
$$

where $V_{0}=\{v \in V ; \rho v=0\}$.
Proof. We prove the lemma by the induction on n. For $n=1$, the lemma is trivial. Let $W=\rho V$. Then $W \simeq V / V_{0}$. Since $\rho^{n-1} W=0$ we have, by the hypothesis of induction,

$$
\operatorname{dim} W \leq(n-1) \operatorname{dim} W_{0},
$$

where $W_{0}=W \cap V_{0}$. Therefore we have

$$
\begin{aligned}
\operatorname{dim} V & =\operatorname{dim} W+\operatorname{dim} V_{0} . \\
& \leq(n-1) \operatorname{dim} W_{0}+\operatorname{dim} V_{0} \\
& \leq n \operatorname{dim} V_{0} .
\end{aligned}
$$

Proof of Theorem 1. Since Q is regular on $\{3,4, \ldots, n\}$ and n is even, Q is of even order. Now Q is a regular normal subgroup of H which is doubly transitive on $\{3,4, \ldots, n\}$, therefore Q is an elementary abelian subgroup of exponent 2 ([3], 11.3, (a)) and the unique minimal normal subgroup of H ([3], 11.4, 11.5).

Let $s \neq 1$ be an element of Q. We may assume

$$
s=(1): 2)(3,4) \cdots
$$

Since G is quadruply tranistive there is an element x in G such that

$$
x=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & \cdots \\
3 & 4 & 1 & 2 & \cdots
\end{array}\right)
$$

Let $t=x^{-1} s x$. Then

$$
t=(1,2)(3)(4) \cdots
$$

and t fixes only two letters 3 and 4. Since t is in $N_{G}(H)$ and Q is the unique minimal normal subgroup of $H, t^{-1} Q t=Q$ and t induces an automorphism τ of Q. Let Q_{0} be the subgroup of Q consisting of all the elements left invariant by τ. From the regularity of Q, s is in Q_{0}. Let

[^1]$$
r=(1)(2)(3, \alpha) \cdots
$$
be an element in Q which is different from s, then $\alpha \neq 1,2,3,4$. If $\alpha \rightarrow \alpha^{\prime}$ under t then $\alpha^{\prime} \neq \alpha$ and
$$
r^{\tau}=t^{-1} r t=(1)(2)\left(3, a^{\prime}\right) \cdots
$$
is different from r. Thus we have $Q_{0}=\{1, s\}$ and $\left|Q_{0}\right|=2$. Applying Lemma for $\rho=\tau-1$, we have $|Q| \leq 4$, therefore $|Q|=n-2=2$ or $4, n=4$ or 6 . The quadruply transitive group of degree 4 or 6 is clearly S_{4}, A_{6} or S_{6}.

2. Proof of Theorem 2

In the same way as Theorem 1 we have first the following proposition.

Proposition. Let G be a quintuply transitive group on $\{1,2, \ldots, n\}$ and H the subgroup of G consisting of all the elements leaving the three letters 1,2 and 3 invariant. If n is divisible by 3 and H contains a normal subgroup Q which is regular on $\{4,5, \ldots, n\}$, then G is S_{6} or M_{12}.

Proof. Since H is doubly transitive on $\{4,5, \ldots, n\}$, where n is a multiple of 3 , and Q is a regular normal subgroup of H, Q is an elementary abelian subgroup of exponent 3 and the unique minimal normal subgroup of H.

Let $s \neq 1$ be an element of Q. We may assume

$$
s=(1)(2)(3)(4,5,6) \cdots
$$

Since G is quintuply transitive there is an element x in G such that

$$
x=\left(\begin{array}{llllll}
1 & 2 & 4 & 5 & 6 & \cdots \\
4 & 5 & 1 & 2 & 3 & \cdots
\end{array}\right)
$$

Let $t=x^{-1} s x$. If $3 \rightarrow \alpha$ under x then

$$
t=(1,2,3)(4)(5)(\alpha) \cdots
$$

and t fixes only three letters $4,5, \alpha$. Since $t^{-1} H t=H, t$ induces an automorphism $\tau: x \rightarrow t^{-1} x t$ of Q, whose order is 3 . Let Q_{0} be the subgroup of Q consisting of all the elements left invariant by τ. Since Q is regular on $\{4,5, \ldots$, $n\}$ and both s and $s^{\tau}=t^{-1} s t$ take 4 to 5 , we have $s=s^{\tau}, s \in Q_{0}$ and t fixes 6 . Therefore $\alpha=6$. Let

$$
r=(1)(2)(3)(4, \beta, \gamma) \cdots
$$

be an element in Q which is different from s and s^{2}, then $\beta \neq 1,2,3,4,5,6$. If $\beta \rightarrow \beta^{\prime}$ under t, then $\beta \neq \beta^{\prime}$ and

$$
r^{\tau}=t^{-1} r t=(1)(2)(3)\left(4, \beta^{\prime}, \gamma^{\prime}\right) \cdots
$$

is different from r. Thus we have $Q_{0}=\left\{1, s, s^{2}\right\}$ and $\left|Q_{0}\right|=3$. Applying Lemma for $\rho=\tau-1$, we have $|Q| \leq\left|Q_{0}\right|^{3}=27$, since $(\tau-1)^{3}=0$. Therefore $|Q|=n-3=3,9$ or $27, n=6,12$ or 30 . If $n=6, G$ must be S_{6}. It is known that a quadruply transitive group of degree 11 is S_{11}, A_{11} or M_{11} ([1], p. 77). Therefore if $n=12, G$ is one of the groups S_{12}, A_{12} or M_{12}. But among these groups only M_{12} satisfies the assumption. If $n=30$, then $n=2 \cdot 13+4$ and by a theorem of Miller ([1], Theorem 5.7.2) G must be S_{30} or A_{30}. But in both cases G does not satisfy the assumption.

Proof of Theorem 2. Since H is doubly transitive on $\{4,5, \ldots, n\}, \boldsymbol{Q}$ is an elementary abelian subgroup. Let V be the subgroup consisting of all the elements leaving the five letters $1,2,3,4$ and 5 invariant, and let $\Delta=\{1,2,3$, $4,5, \cdots\}$ be the set of all letters left invariant by V. By a theorem of Witt [5] $N=N_{G}(V)$ is quintuply transitive on Δ. Let N^{Δ} be the restriction of N on d. Then the kernel of the natural homomorphism $\varphi: N \rightarrow N^{\Delta}$ is V and we have $N / V \simeq N^{\Delta}$. The permutation group N^{Δ} on Δ is a quintuply transitive group such that only the identity leaves five letters invariant. By a theorem of Jordan ([1], p. 72) N^{Δ} is one of the following groups: S_{5}, S_{6}, A_{7} or M_{12}. Therefore $|\Delta|=5,6,7$ or 12 .

Let $H_{0}=H \cap N$. Then $H_{0}^{\Delta}=\varphi\left(H_{0}\right)$ is the subgroup of N^{Δ} consisting of all the elements leaving the three letters 1,2 and 3 invariant. Let $Q_{0}=Q \cap N$. Since Q is regular on $\{4,5, \ldots, n\}$, there is an element s in Q such that

$$
s=(1)(2)(3)(4,5, \ldots) \cdots
$$

and then, by the regularity of $Q, s \in C_{G}(V), s \in Q_{0}$. Thus $Q_{0} \neq 1$. Q_{0} is isomorphic to $Q_{0}^{\Delta}=\varphi\left(Q_{0}\right)$ and Q_{0}^{Δ} is a normal subgroup of a doubly transitive group H_{0}^{Δ} on $\Delta-\{1,2,3\}$. Therefore Q_{0}^{Δ} is transitive on $\Delta-\{1,2,3\}$ and hence regular on it. Thus we have $\left|Q_{0}^{A}\right|=\left|Q_{0}\right|=|\Delta|-3=2,3,4$ or 9 . Since Q_{0} is a subgroup of the elementary abelian group Q, the exponent of Q must be 2 or 3 . If the exponent is 2 , by Theorem $1, G$ is a transitive extension of S_{4}, S_{6} or A_{6}, therefore G must be one of the groups S_{5}, S_{7} or A_{7}. If the exponent is 3 , by Proposition, G is S_{6} or M_{12}.

3. Proof of Theorem 3

Let X be a 7 -fold transitive group on $\{1,2, \ldots, n\}$, which is different from S_{n} and A_{n}, G the subgroup of X consisting of all the elements leaving the two letters 1 and 2 invariant, and let H be the subgroup consisting of all the elements leaving the five letters $1,2,3,4$ and 5 invariant. The group G is quintuply transitive on $\{3,4, \ldots, n\}$. By Hilfssatz (2) in [4], H contains a normal subgroup which is regular on $\{6,7, \ldots, n\}$. Therefore, by Theorem 2, G is one of the following groups: $S_{5}, S_{6}, S_{7}, A_{7}$ or M_{12}. Since M_{12} has no transitive extension, G is a symmetric or alternating group and hence X is S_{n} or A_{n}. This is a contradiction.

References

[1] M. Hall, The Theory of Groups, Macmillan, New York (1959).
[2] H. Nagao, On a theorem of Wielandt, Proc. Japan Acad., 40, 793-794 (1964).
[3] H. Wielandt, Vorlesungen über Permutationsgruppen, Tübingen (1955).
[4] H. Wielandt, Über den Transitivitätsgrad von Permutationsgruppen, Math. Z. 74, 297298 (1960).
[5] E. Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg, 12, 256-264 (1937).

Osaka City University

[^0]: Received January 18, 1965.

[^1]: ${ }^{1)}$ The lemma of this general form is due to the suggestion by Professor N. Ito. The lemma was first stated in more special form.

