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A left QF-3 ring R is one in which RR> the ring considered as a left module

over itself, can be embedded in a projective infective left R module Q(RR).

QF-3 rings were introduced by Thrall [14] and have been studied and chara-

cterized by a number of authors [5, 8, 9, 12, 13, 15] usually restricted to the

case of algebras over a field. In such a case, the concept of left QF-3 and

right QF-3 coincide.

The study of QF-3 rings and algebras and many other such classes of rings

had its origin in the now classic papers of Nakayama [10, 11]. He was an

outstanding pioneer in algebra for many years, and we acknowledge our great

debt to him and to his many excellent papers.

In this note we shall restrict consideration to the class of rings with minimum

condition in left ideals and within the class we shall give a new characteriza-

tion of left QF-3 rings. Actually, our characterization holds for a more general

class of rings. See the remarks at the end of the note.

Incidently, for rings with minimum codition both on left and on right

ideals, we do not know if the concepts of left QF-3 and right QF-3 coincide as

they do for the case of finite dimensional algebras over fields.

Throughout the paper R will represent a ring with minimum condition on

left ideals and all modules are left R modules. When R appears as a module,

it is as a left module over itself. Hom(Z, Y) will always mean Hom^ίX, Y)

for ^-modules X, Γ.

Our characterization of QF-3 rings is given in terms of certain classes of

modules. A module M is called torsionless if for each m e M, m # 0, there

exists / e Horn(M, R) such that f(m) #0. M is torsionless if there are enough

homomorphisms of M to R to distinguish points of M from 0. The concept
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of a torsionless module was introduced by Bass El] and subsequently used by

a number of authors [6, 7, 16].

It is not hard to see that the class J^f of left torsionless modules is closed

under taking submodules and arbitrary direct products ΠJ. It is not, in

general, closed under taking factors and extensions.

We introduce another class of modules ^ the class of left modules M for

which Hom(M, R) = 0. This is a torsion class in the sense of S. E. Dickson

[3], and it is not hard to see that it is closed under taking factors, extensions,

and arbitrary direct sums. It is not, in general, closed under taking submodules.

The following theorem characterizes left QF-3 rings in terms of the classes

Jgf and JT.

THEOREM. If R is a ring with minimum condition on left ideals, then R

is left QF-3 if and only if

(1) Jz? is closed under extension

(2) ^ is closed under taking submodules

Proof. Let us first assume that R is QF-3 and show that it must satisfy

the condition (1) of the theorem. Suppose O-^A^B-^C-^Oisan exact sequence

with A and C torsionless. Since torsionless modules can be embedded in a

product of copies of the ring [1], we have an exact sequence Q-+A-*κR. Each

R can be embedded in Q(R) a projective injective module and this induces the

embedding 0-+πRR-+πQ(RR). The product of injectives is always injective and

the product of projectives is again projective for rings with minimum condition

[2]. Combining the two above embeddings we can embed A in a projective

injective module and it follows that the minimal injective QiA) for A[4] being

a direct summand of a projective injective is also projective injective. The

same argument shows Q(C) is injective.

The exact diagram

0
i

A -+ B
I

Q{A)

0
I

-> c
Q(C)

can be embedded in the exact commutative diagram
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0 0 0
1 ί I

0 - A - B -> C -*0

by a standard argument [5]. But then β is a submodule of the projective

injective module QlA)-hQ(C) and since project! ves are always torsionless [1]

B, being a submodule of a projective is torsionless. Thus, we have shown that

Jzf is closed under extension.

Now we turn our attention to condition (2). Suppose TΏ.M are R modules

and Hom(M, R) #0. Let / be a non zero homomorphism from M to R. Using

the injectivity of Q(R) we obtain the commutative diagram

0—>Af—> T

i I*
0—> R —>Q(R)

Since Q(R) is assumed to be projective, it is a direct summand of a free

module F. Im g can be considered a submodule of F and since Im^^O, there

is a projection π of F onto i? so that 7r(Im g) ^ 0. Composing g with π (thinking

of Im gΩF) we have a non zero homomorphism in Horn (71, #). Thus we have

shown that i? has condition (2) of the theorem.

Conversely, let us now assume that R satisfies (l) and (2) and we must

show that R is QF-3. Let Q-Q(R) be the minimal injective containing R.

Since Horn (/?, R) #0, it follows from (2) that Horn (Q, R) #0. Let

Γ\ Ker/,
om(ρ,i?)

and note that OQKzβQ. In the following we consider two cases.

Case K^Q. We shall show that this leads to a contradiction. If K*Q, it

follows that KΠ R^0 since Q is an essential extension [4] of R. Again using

condition (2) and the fact that HomiKΠR, R)*0, we conclude that Horn (K,

R)*0. Now let

K= Π Ker /
/SHorn [K, R)

and we see that K'^K. Since we can identify Horn (K, R) with Horn (/£//£',

i?) and the latter has enough homomorphisms to distinguish points of K/Kf
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from 0 we see that K/Kf is torsionless. Using the same argument, it follows

that QIK is also torsionless. From the exact sequence

0 -> K/K' -> QIK1 -* Q/K-* 0

and we use condition (1) to conclude that Q/K' is torsionless.

Now by the natural embedding 0->Hom (Q/K'9 /?)->Hom(Q, R) and the

fact that

Π
/GHoin (

K e r / = 0

we conclude that

Π Ker fςzK'.
oiu (Q, B)

But this latter containment contradicts the condition that K'^K.

We now proceed with the case K = 0. In this case Q is torsionless and we

have an embedding 0->Q-*πR of Q into a product of copies of R. Since 2? has

minimum condition, KR is again projective. But since Q is injective, Q is a

direct summand of nR and is therefore projective. This completes the proof

of the theorem.

In the following we shall give examples to show that the conditions (1)

and (2) of the theorem are independent.

Consider the algebra A of matrices of the form

X

y

z

0

li

0

0

0

V

with entries from a field. It is not hard to show that A has global dimension

1 [6] and therefore submodules of projectives are projective. It follows that

the class Jzf is precisely the class of projective modules. This class is always

closed under extension so that the algebra A satisfies condition (1) of the

theorem.

Now define the following left ideals

iΛf =

X

y

z

0

0

0

0

0

0

0

y

z

0

0

0

0

0

0

0

0

z

0

0

0

0

0

0

where in each case we mean elements of the form indicated, L is an indecoin-
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posable projective left ideal and L/M is simple. It follows that Horn (Z,/M, R)

= 0 for otherwise, using the fact that R has global dimension 1, L/M would

be a non trivial direct summand of L. If / were a non zero homomorphism of

LIN to R, its kernel would have to be either MlN or 0. It could not be the

former, for then it would be a non zero member of Horn (L/M, R). Nor could

it be 0, for in that case L/N would be projective and L - L/NON would decom-

pose. It follows that Hom(L/7V, R) = 0. However, Horn {MlN, R)*0 because

MlN is isomorphic to the left ideal of elements of the form

Thus, the algebra A does not satisfy condition (2) of the theorem.

Let K be a field and KZx, jy], the polynominal algebra in two variables x

and y. Let B be the algebra Kίx, yl/(x2, xy, / ) . We shall show that B

satisfies (2) of the theorem, but not condition (1).

B is a primary algebra and has only one simple module BIN where N is

the radical of B. Given any non zero B module Λf, the non zero semi simple

module MINM has maximal submodules so M has simple factors. B has simple

ideals so there are non zero homomorphisms from M/'NM to B, hence Hom(M,

B) # 0. Thus for this algebra, the class S~ consists only of the zero module

and is clearly closed under taking submodules.

The simple B module S is torsionless, but we shall show that there is an

extension E of S by S which is not torsionless. In the first place, there exist

non split extensions E of S by S, for instance, B/(x) where x is the image of

x in B. Note that there is a unique submodule of E isomorphic to S, for

otherwise E splits into the direct sum of two copies of S We shall show that

every homomorphism from E to B has kernel S (or E). If / were a homo-

morphism which had a kernel other than S or E, then its kernel is zero, the

only other submodule of E.

If Im f&N then Im /*= B because B is the only ideal of B not contained

in or equal to N However, E has dimension 2 over the field and B has dimen-

sion 3, so there can be no epimorphisms from E to B. It follows that Im/ciV.

But this implies for our monomorphism / that Im/=iV since both have dimen-
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sion 2 over the field. It follows that E is isomorphic to N which is the direct

sum of two copies of S contradicting the indecomposability of E. The contra-

diction shows that kernels of homomorphisms from E to B must be S or E and

that E is not torsionless. So our example B fails to satisfy condition (1) of the

theorem.

Remark 1. A hereditary ring always has condition (1) of our theorem as

we remarked about our first example above. It follows that hereditary rings

with minimum coodition are QF-3 if and only if the class J7 is closed under

taking submodules. See [8] for a discussion of hereditary QF-3 rings.

Remark 2. In the proof of our theorem, we used the minimum condition

on left ideals only to show that the product of projectives is again projective.

S. Chase [2] has given a complete characterization of this class of rings with

this property. Our theorem holds in that class of rings, the proof being the

same as the one we give here.
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