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Introduction

The universal character of the primitive logic 3LOl) in the sense that

popular logics such as the lower classical predicate logic LK, the intuitionistic

predicate logic LJ, Johansson's minimal predicate logic LM2), etc. can be faith-

fully interpreted in LO is very remarkable even from the view point of

mechanical proof-checking. Since LO is very simple, deductions in LO could

be mechanized in a simple form if a suitable formalism for LO is found out.

Main purpose of this paper is to introduce a practical formalism for LO,

practical in the sense that it is suitable at least for mechanical proof-checking

business.

I will illustrate our formalism mostly for describing proofs in LO, although

our device would possibly be applied for other purposes.

Our formalism is so designed that we need not define anything concerning

well-formed formulas. Also, it is designed so as to unify IMPLICATION and

UNIVERSAL QUANTIFICATION. Before giving formal exposition, I will

describe the leading idea by illustrating how to express propositions and formal

deductions in LO taking up a simple example.

Let us take up an example proof described in my practical way3).

Proof of U) (y) (R{x, y) - Riy, x)) -* ((x) (y) (z) (R(x, y) -*

(Riy, z)-+R(x, z)))- (x) (y) (R(x,y) -» R(x, x)))i] /A, b.

A) Assume (x) (y) (R(x,y) -* R(y, x))

and (x) (y) (z) (R{x,y) - {R(y, z) - R(x, z))).

h)) (x) (y) (R(xty) - R{xy x)) /bA, be.

Received August 31, 1965.
2> See Ono [1] and [2]. In [2], LO is called PRIMITIVE SYSTEM OF POSITIVE LOGIC.
21 See Johansson [1],
3) See Ono[3]. See also Ono [2], in which the inference rules of LO are given.
4> The meaning of this formal proposition is: -Any symmetric and transitive relation

is reflexive with respect to any object which satisfies R with some object',
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bA) Vuvl R{u, v) (u for x and v for y in R(x,y), and I try to show

R(u, u) i.e. u for x and v for y in R(x9 x).).

bb) R(ut v) ->R{v, u) /A. (u for # and # for y in the first proposition

of A.)

be) R(v, u) /bA, bb.

bd) R(u, v) -> (R(v, u) -+ R{u, u)) /A. (u for #, # for y, and w for z in

the second proposition of A.)

be) R(uf u) /bA, be, bd.

I will explain now, how to express deductions like this. In our formalism,

we use only one category of variables (denoted by small latin letters) together

with a pair of brackets ΐ 'and 'T called here HEAD- and TAIL-BRACKET, re-

spectively, and the usual comma5). I will translate the proof into our formalism

keeping the original configuration so as to make correspondence conspicuous.

R(u, v) is denoted as \_ruv\ (For variables r, « , . . . , wt read Lru wl

V holds for «,. . . ,«;. ') taking r as a predicate variable corresponding to R.

For example, bd is lruυ\ -* (lrvul-+Zruul) which is denoted by ίruvlZrvulίruul.

(For sentences A, . . . , K, L, read A KL Άy . . . , K imply I.1) The second

proposition of A is denoted by xyzLrxylZryzlLrxz]. (For variables x> . . . , z and

a sentence A, read x zA ιA holds for all x, . . . , z.') We express the

special case of the preceeding proposition, u for x, v for y, and u for z, by

xyzZrxyllryzltrxzluvu. (For two variable series of the same length xf . . . , z

and u, . . . , w and a sentence A, read # 2 ^ w *x zA holds for

u, . . . , «/.'6)) So, this sentence is the same as [>^]I>t;&][>&&]. The intro-
5 ) Polish formalism and our formalism seem to be on antipodes in the sense that

Polish formalism seems to avoid brackets or parentheses while ours relies exclusively
on brackets. Our formalism is seemingly similar to the formalism introduced in Fitch
[1], but interpretations are quite different. As for Polish formalism, see Lukasiewicz
and Tar ski [1].

6> I believe, this notation is worth to be explained more thoroughly. One of our
policy in denoting propositions is that we disregard the head-brackets at the top and the
tail-brackets at the end. Hence, x zAu w can be expressed as [x zΛu •• to],
which can be regarded as the expression obtained from lru «;] on replacing the predi-
cate r by the universal proposition x yA. Naturally, I dare not say that any universal
proposition is essentially the same thing as a predicate. However, I dare say that any
predicate is represented by a general rule which can be denoted by a universal proposition
of the form (*)••• {z)A(x,... ,2) in the ordinary notation. Instead of asking whether the
predicate of the general rule (#)••• {z)A(xf . . . , z) holds for «,..., w, we usually ask
whether the general rule holds for «,...,«;. If we admit x zA represent a predicate
of the general"rule x zA, our notation [x zAu w] synchronizes with our notation
lru w] for elementary propositions.

In fact, ambiguous points of the ordinary notations such as (x) (z)A{x, . . . , 2) can
be removed by adopting our notation. So, I believe, this notation should be imported
into the ordinary formalism too.
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ductory index-word standing at the top of each line is followed by double

commas instead of employing a capital letter at its end, when the index-word

introduces propositions of assumption character. Double parentheses after an

index-word are dispensable, since it can be shown by existence of non-void

frame-work7) of it.

Thus our example proof can be expressed by the following sequence of

eight lines:

Lxyίrxylίryxlllxy2ίrxylίryzlίrxzlllxyLrxylίrxxTit a, b,

a,, xylrxyllryx], xyzίrxyjlryzllrxzl,

b, xyLrxylLrxxl, ba, be,

ba,, xy[_rxyluv {i.e. ίruvl),

bb, xyLrxylίryxluv (i.e. Lruv3£rυuJ), a,

be, Lrυul, ba, bb,

bd, xyzίrxyΊLryzlZrxz'Juvu (i.e. ίruv'Jΐ.rvulίruu}), a,

be, ίruuj, ba, be, bd

Even if we describe this proof in a single line deleting explanations enclosed

in the parentheses and without inserting any space between symbols, we can

take out the meaning correctly. Namely, the whole sequence of the symbols

are divided into a sequence of series of symbols denoting index-words or prop-

ositions.

Series of symbols denoting index-words are characterized by that they have

no bracket at all. If we represent series of symbols denoting index-words and

those denoting propositions in the example proof by Iij and Pij (ί-th line, j th

series), respectively, our proof can be denoted by

P01, 702, 703, 710,, P l l , P12, 720, P21, 722, 723, 730,, P31, 740, P41,

742, 750, P51, 752, 753, 760, Pβl, 762, 770, P71, 772, 773, 774

The sequence is divided into eight lines beginning with introductory index-

words except for the first line. Introductory index-words can be taken out

from the above sequence, because the introductory index-words can be charac-

terized as those index-words standing just before propositions.

I will extend our formalism so as to be able to show conversely that any

7) See Ono [2], The class of index-words of the form a\ is called the frame-work
pf the index-word a.
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series of brackets, commas, and variables can be regarded as a proof except

for a few trivial exceptions. The formalism can be established in such way

that we can decide quite mechanically whether any given φroof is valid or not.

In (l), I will extend our formalism so that any series of brackets and

variables makes sense as a proposition as far as it contains at least one bracket

and as an index-word otherwise.

In (2), I will show how to reduce any series of brackets, commas, and

variables to a proof-like figure, taken as a seqμence of linest;each line being a

sequence of index-words and propositions.

In (3), I will describe the primitive logic in such way that we.can decide

whether any proof-like figure as a sequence of lines, is a valid proof in the

primitive logic or not. It is remarkable that we can unify the notions IMPLI-

CATION and UNIVERSAL QUANTIFICATION as well as their inference rules

in our formalism.

(1) Sentence

We employ head- and tail-brackets, a comma, and a series of variables of

the same category. A sequence a of symbols is called PROOF, SENTENCE,

or INDEX according as a contains commas, contains no commas but some

brackets, or contains neither commas nor brackets. The i-th symbol of a is

denoted by cti, and the subsequence of a from the i-th. symbol to the,/-th

symbol i.e. ca : aj is denoted by pcij (i<,j).

Any sentence a is called NORMAL if and only if in every otn the number

of tail-brackets does not exceed the number of head-brackets and,the total

number of tail-brackets is equal to that of head-brackets. Naturally, in any

normal sentence, every bracket can be coupled with its,partner as a pair of

head- and tail-brackets.

Any variable cti in a sentence a is called HEAD-VARIABLE or TAIL-

VARIABLE according as άf is immediately followed by a head- of tail-bracket

in *aί\ respectively, skipping over variables.

Any tail-variable a% of a sequence ot standing just after a head-bracket in

'[* ' without skipping over variables, is called PREDICATE VARIABLE. Vari-

ables other than predicate variables are called OBJECT VARIABLES .̂ We

8) The distinction between predicate and object variables has been introduced so as
to describe our formalism along the line of lower predicate logics,
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distinguish always predicate- and object-variables even when they are denoted

by the same letter. We deal with them as if they are denoted by different

kinds of letters.

Any object variable in a sequence is called QUANTIFYING VARIABLE if

and only if it is a head-variable. Any object variable ca in a sentence a is

called BOUND TO a quantifying variable α; (j<i) if and only if α, and oc^

are denoted by the same letter and the number of head-brackets in ajk exceeds

the number of tail-bracket in the same sequence for any k satisfying j<k<i

as far as it contains any brackets, but no quantifying variable of the same

letter between i th and j-th places satisfies the condition for αy. Any object

variable in a sentence is called BOUND if and only if it is a quantifying variable

or it is bound to a quantifying variable. Otherwise, any object variable in a

sentence is called FREE.

Now, we explain BRACKET-TRANSFORMATION, BRACKET-EQUIVA-

LENCE, SUBSTITUTION, and FORMAL EQUIVALENCE of sentences.

(1.1D) For any sentence cc, any one of V , *al\ and'Let can be transformed

into any other of them. This transformation is called BRACKET-TRANSFOR-

MATION.

(1.2 D) Two sentences are called BRACKET-EQUIVALENT if and only if

the one can be transformed into the other by finite steps of bracket-transformations.

(1.3D) Any normal sentence axβΊyr can be transformed into ad}γ and vice

versa, if δ is the sequence obtained on replacing all the variables x of β by y which

are bound to the quantifying variable x ofxβ, assuming that a is a series of normal

sentences of the form [---], γ is a series of variables, and no quantifying variables

y occur in β. This transformation is called SUBSTITUTION^.

(1.4D) Two sentences are called FORMALLY EQUIVALENT if and only

if the one can be transformed into the other by finite steps of bracket-transformations

and substitutions.

Lastly, I will write down some theorems concerning these notions.

(1.5 T) // two sentences are bracket-equivalent to each other, they are also

formally equivalent.

9) Notice that rjrrjw is not [««] but it is \ru]t for example.
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(1.6T) Any sentence is bracket-equivalent to a normal sentence.

(1.7T) Let a and β be bracket-equivalent sentences. Then, for any variable

cci of a, there is a well-determined variable βj of β which corresponds to ai. Naturally,

cci and βj are denoted by the same letter.

(1.8T) Any substitution transforms any normal sentence into a normal

sentence.

(1.9T) Let a and β be normal sentences formally equivalent to each other,

ai be a head- (or tail-) bracket having the tail- (head-) bracket OCJ as partner in

a, and βk be the bracket corresponding to ai. Then, the partner bracket βι of βk

by the coupling of brackets in the normal sentence β corresponds to OCJ of a.

(1.10T) Let a and β be sentences formally equivalent to each other, and let

ai and βk as well as aj and βι be a pair of corresponding variables of both sentences.

Then, ai is a head-variable, tail-variable, predicate variable, object variable, quantify-

ing variable, bound variable, or free variable in a according as βk is so in β, and

aj is bound to ai in a according as βi is bound to βk in β. In short, notions of

head-variable, tail-variable, predicate variable, object variable, quantifying variable,

bound variable, free variable, and variable being bound to another variable are all

invariant with respect to formal equivalence.

(2) Proof.

Any proof π is divided into a sequence φ of indices and sentences by

commas disregarding the number of successive commas. We delete at first

indices and commas standing at the top of n. Indices standing just before a

sentence or followed by a successive series of commas no less than two are

called INTRODUCTORY INDICES. Other indices are called REFERENCE

INDICES.

The sequence φ of sentences and indices is divided into a sequence λ of

LINES by introductory indices. Each line begins with an introductory index

followed by a series of sentences and a series of reference indices (both series

can be vacant) except for the first line which lacks introductory index. To

unify the forms of lines as possible, I will regard the first line as beginning

with the introductory index being a null series.

It is our policy to disregard the number of successive commas more than

two. Accordingly, replace every series of successive commas more than two
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by double commas. Introductory indices followed by double commas are

called ASSUMPTION INDICES. Lines beginning with assumption indices re-

present assumptions, so delete all reference indices in these lines. Delete also

all reference indices which do not occur as introductory indices.

Now, the sequence of introductory indices must be arranged in the lexi-

cographic order with respect to the order of letters. Even when we are not

given such order of letters beforehand, we can usually settle a possible order

between them (but, in general, not uniquely) so that the introductory indices

of φ are arranged in the lexicographic order with respect to it.

The class of all indices of the form -ηm-Dn whose n stands before ψt in the

alphabetical order is called GROUND OF V01, and the class of all indices of φ of

the form ψι is called FRAME-WORK OF η.

Anyway, we can normalize proofs so that any normalized proof has the

following characteristics:

i) There is a fixed order of letters for variables,

ii) At the top, stands a sentence or sentences unless the proof is reduced to a

null sequence by normalization.

Hi) All the introductory indices are arranged in the lexicographic order.

iv) In any line beginning with an assumption index lies no reference index.

v) In any line beginning with an introductory index other than assumption

indices lies at least one sentence.

(3) Primitive Logic

Let 7r be any normalized proof and λ be the sequence of lines of π. π is

called a VALID PROOF of the sentences of the first line in the primitive logic

LO if and only if every introductory index ξ in λ satisfies the following con-

ditions.

i) The case where the frame-work of ξ is not vacant:

The frame-work of ξ should contain one and only one assumption index

ζm. In the line beginning with f, there should be a single sentence of the

form μoc1 - aka, where μ is a series of variables and α\ . . . , cck, and a are

normal sentences of the form σL- -1, <τ being a series of variables (including

the case k = 0). The reference indices in the line should be ξm and ξn (or ζm

10 > Tn Ono [2], this is called ASSUMPTION OF V.
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only if n coincides with m): The line beginning with ξm should be a sequence

of the form

ξm,, μocιω, . . . , μcc ω,

where ω is a series of the same number of mutually distinct variables as μ

and no variable of ω occurs as free in any line beginning with ξ or beginning

with an index in the ground of ?. In the frame-work of f, there should be an

index ξn such that the line beginning with ξn is a sequence of the forms

ξn, β9 •-. , o r ξnt, β ,

where β is a sentence formally equivalent to μocw for the series μ and ω intro-

duced just before, and' ' represents a sequence of indices. (In the latter

case n coincides with m.)

ii) The case where the frame-work of ξ is vacant.

For any sentence γ in the line beginning with ξ, there should be a sequence

of indices 77, y1, . . . , / in the ground of ξ such that there is a sentence formally

equivalent to μa1 ahu in the line beginning with η, the sentences a1, . . . , ak

are normal ones of the form <£---], for a series a of variables* γ is formally

equivalent to μaω for a series ω of the same number of variables as μ, and there

is a sentence formally equivalent to μaω in some line beginning with an index if.

Theoretically, I could describe the inference rules for LO more simply.

However, our rules described here enable us to write down formal proofs

shorter.

Formal proofs thus far can be easily checked mechanically. Namely, we

can check mechanically whether given proofs are valid or not, In our real

thinking* however, we use skipped description and further rely upon metalogi-

cal understandings. Skipped deductions can be also formalized in our formalism.

For mechanical checking of skipped deductions, we need a programming for

proving any provable sentences. However, we need not decide whether the

proofs are valid or not as a skipped proof. It is enough to give an alarm

mechanically if a certain step can not be followed easily. Programming for

mechanical proofs must be simpler in the primitive logic compared with those

in other logics. Reduction of proofs in the other logics to proofs in the primi-

tive logic can usually be done mechanically. Reduction to the primitive logic

seems practical even for mechanical checking of skipped proofs, since we need



A FORMALISM FOR PRIMITIVE LOGIC AND MECHANICAL PROOF-CHECKING 203

not interpret back into original logics.

Concerning metalogical understanding, I have not to say much. I would

like to point out only that the usage of predicate variables introduced in this

paper may have some connection with the matter.
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