AN APPLICATION OF THE PATH-SPACE TECHNIQUE TO THE THEORY OF TRIADS

YASUTOSHI NOMURA

One of the most powerful tools in homotopy theory is the homotopy groups of a triad introduced by Blakers and Massey in [1]. Our aim here is to develop systematically the formal, elementary aspects of the theory of a generalized triad and the mapping track associated with it. This will be used in §5 to deduce a result (Theorem 5.5) which seems to be closely related to an exact sequence established by Brown [2].

There is an application of our theorem to the realization problem of Whitehead products. In this direction we obtain the following result: given $\theta \in H^{n'+1}(\pi, n; \pi')$ and a pairing $W : \pi' \otimes \pi \to G$ such that the cup-product $\theta \cup \iota$ relative to W lies in the image of $\theta^* : H^{n+n'+1}(\pi', n'+1; G) \to H^{n+n'+1}(\pi, n; G)$, there exists a space whose first invariant is θ and whose Whitehead product pairing is just W, where $\iota \in H^n(\pi, n; \pi)$ is the basic class.

It will be assumed that all spaces and mappings occurring in this paper are taken from the category with base-points, and the notations introduced in [12] will be used without specific reference.

§ 1. The mapping track of a triad

In this paper we shall understand by a *triad* (f:g) a pair of maps $A \xrightarrow{f} Y \xleftarrow{g} B$. For such a triad the following construction is basic:

$$\begin{split} E_{f,g} &= \{ (\textbf{\textit{a}}, \textbf{\textit{b}}, \beta) \in A \times B \times Y^I | f(\textbf{\textit{a}}) = \beta(0), \ g(\textbf{\textit{b}}) = \beta(1) \}, \\ \text{Ker } (f : g) &= \{ (\textbf{\textit{a}}, \textbf{\textit{b}}) \in A \times B | f(\textbf{\textit{a}}) = g(\textbf{\textit{b}}) \}. \end{split}$$

These constructions give rise to the following diagrams:

Received February 14, 1962.

where Ω is the loop functor; the maps are defined by setting $\pi_1(a, b) = a$, $\pi_2(a, b) = b$, $P_1(a, b, \beta) = a$, $P_2(a, b, \beta) = b$, $I(\beta) = (a_0, b_0, \beta)$, and Y^I denotes the space of paths $I = [0, 1] \rightarrow Y$ with CO-topology. We note that (1.1) is commutative and (1.2) is homotopy-commutative.

We shall call $E_{f,g}$ the *mapping track* of a triad (f:g). In case f and g are inclusions this has been considered by Hu [5]. Various specializations of (f:g) yield various spaces. For example, we have

$$EY = \{\beta \in Y^{I} | \beta(0) = y_{0}\}, \qquad \text{for } y_{0} \longrightarrow Y \xleftarrow{1} Y,$$

$$E_{f} = \{(x, \beta) \in X \times EY | f(x) = \beta(1)\}, \qquad \text{for } y_{0} \longrightarrow Y \xleftarrow{f} X,$$

$$Z_{f} = \{(x, \beta) \in X \times Y^{I} | f(x) = \beta(1)\}, \qquad \text{for } Y \xrightarrow{1} Y \xleftarrow{f} X,$$

$$E_{f}^{-} = \{(x, \beta) \in X \times Y^{I} | f(x) = \beta(0), \beta(1) = y_{0}\}, \qquad \text{for } X \xrightarrow{f} Y \longleftarrow y_{0},$$

$$E^{-}Y = \{\beta \in Y^{I} | \beta(1) = y_{0}\}, \qquad \text{for } Y \xrightarrow{1} Y \longleftarrow y_{0},$$

We have furthermore that $\operatorname{Ker}(f:g) = A \cap B$ for inclusions $A \xrightarrow{f} Y$, $B \xrightarrow{g} Y$ and, when g is a fibering, $\operatorname{Ker}(f:g)$ is the fibering *induced* by f from g.

Proposition 1.3. $(a, b, \beta) \rightarrow (b, a, \beta^{-1})$ yields a homeomorphism $E_{f,g} \rightarrow E_{g,f}$.

Theorem 1.4. If g is a fibering then $E_{f,g}$ is homotopically equivalent to the induced fibre space Ker(f:g).

Proof. Let $A: Z_g \to B^I(\lambda: Z_g \to B)$ be, respectively, a (path) lifting function for g (see [12], p. 113). Define \emptyset : Ker $(f:g) \to E_{f,g}$ and $\Psi: E_{f,g} \to \operatorname{Ker}(f:g)$ as follows:

(1.5)
$$\theta(a, b) = (a, b, e_y), y = f(a) = g(b),$$

$$(1.6) \Psi(a, b, \beta) = (a, \lambda(b, \beta)),$$

where e_y is the constant path at y. Since there exists a homotopy between $1_B: B \to B$ and the map $b \to \lambda(b, e_y)$ which moves points along fibres, it follows that $\Psi \Phi \simeq 1$. $\Phi \Psi \simeq 1$ is shown by considering a homotopy given by

$$(a, b, \beta) \rightarrow (a, \Lambda(b, \beta)(t), \beta_{0,t}), \qquad 0 \leq t \leq 1.$$

THEOREM 1.7. The sequence

is exact for any space V in the following sense (cf. Olum [13]):

- (i) $a \in \pi(V, A)$ and $b \in \pi(V, B)$ have the same image in $\pi(V, Y)$ if, and only if, there exists $c \in \pi(V, E_{f,g})$ such that $a = P_{1*}(c)$ and $b = P_{2*}(c)$;
 - (ii) Ker $P_{1*} \cap \text{Ker } P_{2*} = \text{Im } I_*$;
- (iii) d_1 , $d_2 \in \pi(V, \Omega Y)$ satisfy $I_*(d_1) = I_*(d_2)$ if, and only if, there exist $a \in \pi(V, \Omega A)$ and $b \in \pi(V, \Omega B)$ such that $(\Omega f)_*(a) \cdot d_2 = d_1 \cdot (\Omega g)_*(b)$, where the dots denote the group operation in $\pi(V, \Omega Y)$ determined by the loop-multiplication.
- *Proof.* (i) Let h_1 , h_2 represent a, b respectively. If $f \circ h_1 \cong g \circ h_2$ we can find a homotopy H_t , $0 \le t \le 1$, such that $H_0 = f \circ h_1$, $H = g \circ h_2$: then it suffices to define a representative $k: V \to E_{f,g}$ for c as follows:

$$k(v) = (h_1(v), h_2(v), \beta(v)), v \in V,$$

where $\beta(v)$ is the path in Y given by $\beta(v)(t) = H_t(v)$, $0 \le t \le 1$.

- (ii) Let $k \colon V \to E_{f,g}$ be expressed as $k(v) = (h_1(v), h_2(v), \gamma(v)), v \in V$, and let $h_1 \simeq 0$, $h_2 \simeq 0$. We denote by $\alpha(v)$ and $\beta(v)$ the elements of EA and EB determined by the contractions of $h_1(v)$ and $h_2(v)$. Then it is easy to see that $k(v) \simeq I\{f\alpha(v) \cdot \gamma(v) \cdot g\beta(v)^{-1}\}$.
- (iii) Let \overline{d}_1 , \overline{d}_2 : $V \to \Omega Y$ represent d_1 , d_2 respectively, and let H_t : $V \to E_{f,g}$ be such that $H_0 = I\overline{d}_1$ and $H_1 = I\overline{d}_2$. Then we have only to take for a. b the elements represented by P_1H_t and P_2H_t , $0 \le t \le 1$.

THEOREM 1.8. If g is a fibering, then (1.1) induces an exact diagram:

where $J = \Psi \circ I$, $\Psi \colon E_{f,g} \to \text{Ker } (f : g)$ being an equivalence in the proof of Theorem 1.4.

Proof. This follows from Theorems 1.4 and 1.7, since $P_1 = \pi_1 \Psi$ and $P_2 \cong \pi_2 \Psi$.

Proposition 1.9. $P_1: E_{f,g} \to A$, $P_2: E_{f,g} \to B$ and $P_1 \times P_2: E_{f,g} \to A \times B$ are fiberings with fibres E_g , E_f and ΩY respectively.

Proof. A path lifting function Λ for P_1 is defined by setting

$$\Lambda(a, b, \beta, \alpha)(s) = (\alpha(s), b, \beta_s),$$

for $0 \le s \le 1$, $\alpha \in A^1$, $\alpha(1) = a$, in which β_s is a path in Y given by

$$\beta_{s}(t) = \begin{cases} f\alpha(2t+s), & 0 \leq t \leq \frac{1-s}{2}, \\ \beta\left(\frac{2t+s-1}{1+s}\right), & \frac{1-s}{2} \leq t \leq 1. \end{cases}$$

Similarly for P_2 and $P_1 \times P_2$.

§ 2. Transformation between triads

Let the following diagram be given:

$$(2.1) \qquad A \xrightarrow{f} Y \xleftarrow{g} B \\ \psi_1 \downarrow \qquad \varphi \downarrow \qquad \downarrow \psi_2 \\ A' \xrightarrow{f'} Y' \xleftarrow{\sigma'} B'$$

If (2.1) is homotopy-commutative, then we say that (2.1) is a *transformation* from a triad (f : g) to a triad (f' : g'). We call it a *map* if it is strictly commutative.

Let now G_t , H_t , $0 \le t \le 1$, be fixed homotopies such that $G_0 = f'\psi_1$, $G_1 = \varphi f$, $H_0 = g'\psi_2$, $H_1 = \varphi g$. We define $\mathcal{X} = E(\psi_1, \varphi, \psi_2; G, H): E_{f,g} \to E_{f',g'}$ by setting (2.2) $\chi(a, b, \beta) = (\psi_1(a), \psi_2(b), \beta')$

where β' is the path in Y' given by

$$\beta'(s) = \begin{cases} G_{3s}(a), & 0 \le s \le \frac{1}{3}, \\ \varphi \beta(3s-1), & \frac{1}{3} \le s \le \frac{2}{3}, \\ H_{3-3s}(b), & \frac{2}{3} \le s \le 1. \end{cases}$$

For a map (2.1) we shall set $\beta' = \varphi \beta$ in (2.2), and denote simply by $E(\psi_1, \varphi, \psi_2)$.

Further let

$$A' \xrightarrow{f'} Y' \xleftarrow{g'} B'$$

$$\phi'_1 \downarrow \qquad \qquad \downarrow \phi'_2$$

$$A'' \xrightarrow{f''} Y'' \xleftarrow{g''} B''$$

be another transformation with homotopies G'_t , H'_t such that $G'_0 = f'' \phi'_1$, $G'_1 = \varphi' f'$, $H'_0 = g'' \phi'_2$, $H'_1 = \varphi' g'$. Consider the homotopies $(G' \circ G)$, $(H' \circ H)$ which are given by

$$(G' \circ G)_{t}(a) = \begin{cases} G'_{2t}\psi_{1}(a), & 0 \leq t \leq \frac{1}{2}, \\ \varphi'G_{2t-1}(a), & \frac{1}{2} \leq t \leq 1, \end{cases}$$

$$(H' \circ H)_{t}(b) = \begin{cases} H'_{2t}\psi_{2}(b), & 0 \leq t \leq \frac{1}{2}, \\ \varphi'H_{2t-1}(b), & \frac{1}{2} \leq t \leq 1, \end{cases}$$

for $a \in A$, $b \in B$. Then it is immediate to verify

Proposition 2.3. $E(\psi_1'\psi_2, \ \varphi'\varphi, \ \psi_2'\psi_2; \ G'\circ G, \ H'\circ H)$ is homotopic to $E(\psi_1', \ \varphi', \ \psi_2'; \ G', \ H')\circ E(\psi_1, \ \varphi, \ \psi_2; \ G, \ H).$

PROPOSITION 2.4. Let (2.1) be given and let $\varphi \simeq \overline{\varphi}$, $\psi_1 \simeq \overline{\psi}_1$, $\psi_2 \simeq \overline{\psi}_2$. Then there exist homotopies $\overline{G}: f'\overline{\psi}_1 \simeq \overline{\varphi}f$ and $\overline{H}: g'\overline{\psi}_2 \simeq \overline{\varphi}g$ such that $E(\overline{\psi}_1, \overline{\varphi}, \overline{\psi}_2; \overline{G}, \overline{H}) \simeq E(\psi_1, \varphi, \psi_2; G, H)$.

Proof. Let $\varphi^{\tau}: \varphi \simeq \overline{\varphi}, \ \psi_1^{\tau}: \psi_1 \simeq \overline{\psi}_1, \ \psi_2^{\tau}: \psi_2 \simeq \overline{\psi}_2$. Define $G_t^{\tau}: A \to Y'$ by

$$G_t^{\tau} = \begin{cases} f' \circ \psi_1^{\tau - 3t}, & 0 \leq t \leq \frac{\tau}{3}, \\ G_{(3t - \tau)(3 - 2\tau)^{-1}}, & \frac{\tau}{3} \leq t \leq 1 - \frac{\tau}{3}, \\ \varphi^{3t + \tau - 3} \circ f, & 1 - \frac{\tau}{3} \leq t \leq 1, \end{cases}$$

and define H_t similarly. Then $E(\psi_1^{\tau}, \varphi^{\tau}, \psi_2^{\tau}; G_t^{\tau}, H_t^{\tau})$ gives the desired homotopy.

Proposition 2.5. $E(1_A, 1_Y, 1_B; G, H)$ is a homotopy equivalence.

Proof. Let G^- , H^- be defined by $G_t^- = G_{1-t}$, $H_t^- = H_{1-t}$, $0 \le t \le 1$. By

Proposition 2.3 we have $E(1_A, 1_Y, 1_B; G^-, H^-) \circ E(1_A, 1_Y, 1_B; G, H) \cong E(1_A, 1_Y, 1_B; G^- \circ G, H^- \circ H)$. If G_t^{τ} , H_t^{τ} , $0 \le \tau \le 1$, are defined by

$$G_t^{\tau} = egin{cases} G_{1-2\, au t}, & 0 \leq t \leq rac{1}{2}, \ G_{1-2 au(1-t)}, & rac{1}{2} \leq t \leq 1, \end{cases}$$

and similarly for H_t , then we have

$$E(1, 1, 1; G^{-} \circ G, H^{-} \circ H) \cong E(1, 1, 1; f, g)$$

by the homotopy $E(1, 1, 1; G_t^T, H_t^T)$. Since E(1, 1, 1; f, g) is homotopic to the identity map of $E_{f,g}$, it follows that $E(1, 1, 1; G^-, H^-)$ is a left homotopy inverse of E(1, 1, 1; G, H). We see similarly that $E(1, 1, 1; G^-, H^-)$ is a right homotopy inverse, and this completes the proof.

As an immediate consequence of the above three propositions we have

THEOREM 2.6. Let a transformation (2.1) be given, and suppose that vertical maps are homotopy equivalences. Then $E(\psi_1, \varphi, \psi_2; G, H)$ is also an equivalence, that is, $E_{f,g}$ is an invariant object under homotopy equivalences.

Now we see that a transformation (2.1) gives rise to a new map:

(2.7)
$$E_{\psi_{1}} \xrightarrow{\chi_{1}} E_{\varphi} \xleftarrow{\chi_{2}} E_{\psi_{2}} \\ P\psi_{1} \downarrow P\varphi \downarrow \qquad \downarrow P\psi_{2} \\ A \xrightarrow{f} Y \xleftarrow{g} B$$

where $\chi_1 = E(f', f; G)$ and $\chi_2 = E(g', g; H)$. From (2.1) and (2.7) we obtain a sequence

$$(2.8) E_{x_1, x_2} \xrightarrow{E(P\psi_1, P\psi_1, P\psi_2)} E_{f,g} \xrightarrow{E(\psi_1, \varphi, \psi_2; G, H)} E_{f',g'}$$

We shall prove

Proposition 2.9. (2.8) induces, for any space V, an exact sequence

$$\pi(V, E_{\chi_1, \chi_2}) \longrightarrow \pi(V, E_{f,g}) \xrightarrow{\chi_*} \pi(V, E_{f',g'}).$$

Proof. First we shows that $\chi \circ E(P\psi_1, P\varphi, P\psi_2)$ is nullhomotopic. Take any point of E_{χ_1, χ_2} , that is $(a, \alpha', b, \beta', \gamma, \hat{\gamma}) = x \in A \times EA' \times B \times EB' \times Y^I \times (EY')^I$ such that

$$\psi_1(a) = \alpha'(1), \ \psi_2(b) = \beta'(1), \ \varphi_{\gamma}(s) = \tilde{\gamma}(1, s), \ 0 \le s \le 1,$$

$$f(a) = \gamma(0), \ g(b) = \gamma(1), \ \tilde{\gamma}(0, t) = y'_0,$$

$$\widetilde{\gamma}(s, 0) = \begin{cases}
f'\alpha'(2 s), & 0 \le s \le \frac{1}{2}, \\
G_{2 s-1}(a), & \frac{1}{2} \le s \le 1,
\end{cases}$$

$$\widetilde{\gamma}(s, 1) = \begin{cases}
g'\beta'(2 s), & 0 \le s \le \frac{1}{2}, \\
H_{2 s-1}(b), & \frac{1}{2} \le s \le 1.
\end{cases}$$

Therefore

$$\chi \circ E(P\psi_1, P\varphi, P\psi_2)(a, \alpha', b, \beta', \gamma, \tilde{\gamma}) = (\alpha'(1), \beta'(1), \delta),$$

where δ is the path in Y' given by

$$\delta(t) = \begin{cases} G_{3t}(a), & 0 \le t \le \frac{1}{3}, \\ \varphi_{\gamma}(3 \ t - 1), & \frac{1}{3} \le t \le \frac{2}{3}, \\ H_{3-3t}(b), & \frac{2}{3} \le t \le 1. \end{cases}$$

Let $\rho: I \times I \to I \times I$ be a homeomorphism such that $\rho(0 \times I) = 0 \times I$, $\rho(I \times i) = \left[0, \frac{1}{2}\right] \times i$, i = 0 or 1, $\rho\left(1 \times \left[0, \frac{1}{3}\right]\right) = \left[\frac{1}{2}, 1\right] \times 0$, $\rho\left(1 \times \left[\frac{2}{3}, 1\right]\right) = \left[\frac{1}{2}, 1\right] \times 1$, $\rho\left(1 \times \left[\frac{1}{3}, \frac{2}{3}\right]\right) = 1 \times I$ and ρ is linear on the indicated segments. Then it is clear that $(x, \tau) \to (\alpha'(\tau), \beta'(\tau), \widetilde{\gamma}\rho|\tau \times I)$ is a homotopy deforming $x \to (\alpha'(1), \beta'(1), \delta)$ into the constant map.

Conversely, let $k : V \rightarrow E_{f,g}$ be expressed by

$$k(v) = (a(v), b(v), \gamma(v)), \quad v \in V$$

and let $(A_t(v), B_t(v), C_t(v)) : 0 \cong \chi \circ k(v)$. We denote by $\alpha'(v)$ and $\beta'(v)$ the paths determined by $A_t(v)$, $B_t(v)$ respectively, and we define $\tilde{\gamma}(v) : I \times I \to Y'$ by $\tilde{\gamma}(v)(t, s) = C_{t'}(v)(s')$, where $(t', s') = \rho^{-1}(t, s)$. It is obvious that $h : V \to E_{\chi_1, \chi_2}$, given by

$$h(v) = (a(v), \alpha'(v), b(v), \beta'(v), \gamma(v), \widetilde{\gamma}(v)),$$

satisfies $k = E(P\psi_1, P\varphi, P\psi_2) \circ h$. Thus the proof is complete.

Applying the above proposition and Theorem 2.6, and noting that $E_{\Omega f,\Omega g}$ is homeomorphic to $\Omega E_{f,g}$, we reach the final result.

Theorem 2.10. Every transformation (2.1) induces, for any space V, an exact sequence

$$\cdots \xrightarrow{(\Omega \chi)_*} \pi(V, \Omega E_{f',g'}) \longrightarrow \pi(V, E_{\chi_1,\chi_2}) \longrightarrow \pi(V, E_{f,g}) \xrightarrow{\chi_*} \pi(V, E_{f',g'}).$$

Corollary 2.11. Let $A \xrightarrow{f} Y \xleftarrow{g} B$ be a triad and suppose there exists a map $h : A \rightarrow B$ such that $g \circ h = f$. Then the sequence

$$\cdot \cdot \cdot \rightarrow \pi(V, \Omega E_g) \rightarrow \pi(V, E_h) \rightarrow \pi(V, E_f) \rightarrow \pi(V, E_g)$$

is exact.

Proof. Apply Theorem 2.10 to the map

$$\begin{array}{ccc}
y_0 \longrightarrow Y \stackrel{f}{\longleftarrow} A \\
\downarrow & \downarrow \downarrow & \downarrow h \\
y_0 \longrightarrow Y \stackrel{g}{\longleftarrow} B
\end{array}$$

Finally, we prove

Lemma 2.12. For an arbitrary triad $A \xrightarrow{f} Y \xleftarrow{g} B$, there exists a homotopically equivalent triad $A \xrightarrow{j_1} M \xleftarrow{j_2} B$ such that j_1 and j_2 are both inclusions and coffberings.

Proof. It suffices to take for M the mapping cylinder of $f \vee g : A \vee B \rightarrow Y$, j_1 and j_2 being natural inclusions.

§ 3. Some exact sequences

In this section we extend exact sequences established by Massey [9] and Hu [5]. Given a triad $A \xrightarrow{f} Y \xleftarrow{g} B$, let

$$T_{f,g} = \{(\alpha, \beta, \widetilde{\tau}) \in EA \times EB \times EEY | \widetilde{\tau}(s, 1) = f\alpha(s), \ \widetilde{\tau}(1, t) = g\beta(t)\},\$$

$$S_{f,g} = \{(\alpha, \beta) \in EA \times EB | f\alpha(1) = g\beta(1)\}.$$

We observe that $S_{f,g}$ is just E_i for the natural inclusion $i = \pi_1 \times \pi_2$: Ker $(f:g) \to A \times B$. Corresponding to these constructions we consider the following maps:

$$p: T_{f,g} o S_{f,g}$$
 defined by $p(\alpha, \beta, \tilde{\gamma}) = (\alpha, \beta)$,
 $m: S_{f,g} o \Omega Y$ defined by $m(\alpha, \beta) = (f\alpha) \cdot (g\beta)^{-1}$,
 $n: \Omega^2 Y o T_{f,g}$ defined by $n(\tilde{\gamma}) = (e_{a_0}, e_{b_0}, \tilde{\gamma})$,
 $r_1: S_{f,g} o E_{\pi_1}$ defined by $r_1(\alpha, \beta) = (\alpha(1), \beta(1), \alpha)$,
 $r_2: S_{f,g} o E_{\pi_2}$ defined by $r_2(\alpha, \beta) = (\alpha(1), \beta(1), \beta)$.

These maps are obviously imbedded into the following sequences

$$(3.1) \qquad \cdots \xrightarrow{\Omega m} \Omega^2 Y \xrightarrow{n} T_{f,g} \xrightarrow{p} S_{f,g} \xrightarrow{m} \Omega Y,$$

$$(3.2) \qquad \cdots \xrightarrow{\Omega r_1} \Omega E_{\pi_1} \xrightarrow{q_2} \Omega B \xrightarrow{u_2} S_{f,g} \xrightarrow{r_1} E_{\pi_1},$$

$$\cdots \xrightarrow{\Omega r_2} \Omega E_{\pi_2} \xrightarrow{q_1} \Omega A \xrightarrow{u_1} S_{f,g} \xrightarrow{r_2} E_{\pi_2}.$$

in which $u_2: \Omega B \to S_{f,g}$ and $q_2: \Omega E_{\pi_1} \to \Omega B$ are defined by

$$u_2(\beta) = (e_{a_0}, \beta),$$
 $q_2(\alpha, \beta, \widetilde{\alpha}) = \beta^{-1}$ for $\alpha \in \mathcal{Q}A, \beta \in \mathcal{Q}B, \ \widetilde{\alpha} \in \mathcal{Q}EA$ such that $f\alpha = g\beta, \ \widetilde{\alpha}(1, t) = \alpha(t),$

and u_1 and q_1 are similarly defined.

It is easily seen that E_m is homeomorphic to $T_{f,g}$. Thus we have

Proposition 3.3. The sequence (3.1) induces an exact sequence

$$\cdots \xrightarrow{n_*} \pi(V, T_{f,g}) \xrightarrow{p_*} \pi(V, S_{f,g}) \xrightarrow{m_*} \pi(V, \Omega Y).$$

Now we consider $l_1: \Omega B \to E_{r_1}$ and $l_2: \Omega A \to E_{r_2}$ defined by

$$l_1(\beta) = (e_{a_0}, \beta; e_{a_0}, e_{b_0}, \widetilde{e}), l_2(\alpha) = (\alpha, e_{b_0}; e_{a_0}, e_{b_0}, \widetilde{e})$$

where $\tilde{e}: I \times I \rightarrow A$ (or B) is the constant map. Then we prove

Lemma 3.4. l_1 and l_2 are homotopy equivalencs.

Proof. Every point of E_{r_1} is of the form $(\alpha, \beta; \alpha', \beta', \tilde{\gamma}) \in EA \times EB \times EA \times EB \times EEA$, where $f\alpha(1) = g\beta(1), \alpha'(1) = \alpha(1), \beta'(1) = \beta(1), \tilde{\gamma}(s, 1) = \alpha(s), \tilde{\gamma}(1, t) = \alpha'(t)$. We define $h_1: E_{r_1} \to \Omega B$ by

$$h_1(\alpha; \beta; \alpha', \beta', \widetilde{\gamma}) = \beta \cdot (\beta')^{-1}$$

Clearly $h_1 \circ l_1 \cong 1$. $l_1 \circ h_1$ is also deformed into the identity map by the following homotopy:

$$(\alpha, \beta; \alpha', \beta', \widetilde{\gamma}) \rightarrow (\alpha_{\tau}, \beta_{\tau}; \alpha'_{0,\tau}, \beta'_{0,\tau}, \widetilde{\gamma}_{\tau}), \qquad 0 \leq \tau \leq 1,$$

where

$$\alpha_{\tau}(s) = \tilde{\gamma}(s, \tau), \ \tilde{\gamma}_{\tau}(t, s) = \tilde{\gamma}(t, \tau s),$$

$$\beta_{\tau}(s) = \begin{cases} \beta\left(\frac{2s}{1+\tau}\right), & 0 \leq s \leq \frac{1+\tau}{2}, \\ \beta'(\tau + 2 - 2s), & \frac{1+\tau}{2} \leq s \leq 1. \end{cases}$$

By Lemma 3.4 we have

Proposition 3.5. (3.2) induce exact sequences

$$\pi(\,V,\,\,\mathcal{Q}E_{\pi_1}) \xrightarrow{q_{2*}} \pi(\,V,\,\,\mathcal{Q}B) \xrightarrow{u_{2*}} \pi(\,V,\,\,S_{f,\,g}) \xrightarrow{r_{1*}} \pi(\,V,\,\,E_{\pi_1})$$

and

$$\pi(V, \Omega E_{\pi_2}) \xrightarrow{q_{1*}} \pi(V, \Omega A) \xrightarrow{u_{1*}} \pi(V, S_{f,g}) \xrightarrow{r_{2*}} \pi(V, E_{\pi_2})$$

The above Propositions 3.3 and 3.5 may be regarded as an extension of the exact sequences established by Massey [9].

We now observe that (1.1) yields maps $\chi_1 = E(f, \pi_2)$: $E_{\pi_1} \to E_g$ and $\chi_2 = E(g, \pi_1)$: $E_{\pi_2} \to E_f$, and that E_{χ_1} and E_{χ_2} can be identified with $T_{f,g}$. Thus we conclude

Proposition 3.6. The sequences

$$\rightarrow \pi(\ V,\ \mathcal{Q}E_g) \rightarrow \pi(\ V,\ T_{f,\,g}) \rightarrow \pi(\ V,\ E_{\pi_1}) \overset{\chi_{1_*}}{\longrightarrow} \pi(\ V,\ E_g)$$

and

$$\rightarrow \pi(V, \Omega E_f) \rightarrow \pi(V, T_{f,g}) \rightarrow \pi(V, E_{\pi_2}) \xrightarrow{\chi_{2*}} \pi(V, E_f)$$

are exact.

This is a generalization of exact sequences of a usual triad [1].

Finally we prove

Proposion 3.7. Let $A \xrightarrow{f} Y \xleftarrow{g} B$ be a triad in which g is a fibering. Then

- (i) $\gamma_1: E_{\pi_1} \rightarrow E_g$ is a homotopy equivalence:
- (ii) $T_{f,g}$ is contractible;
- (iii) $\chi_2: E_{\pi_2} \rightarrow E_f$ has a right inverse.

Proof. χ_1 is given by $\chi_1(a, b, \alpha) = (b, f\alpha)$ for $(a, b, \alpha) \in A \times B \times EA$ with $f(a) = g(b), \alpha(1) = a$. Let $\lambda : Z_g \to B$ denote a lifting function for g. We define

 $\Gamma_1: E_g \to E_{\pi_1}$ by setting $\Gamma_1(b, \gamma) = (a_0, \lambda(b, \gamma), e_{a_0})$ for $\gamma \in EY$, $g(b) = \gamma(1)$. It follows at once that Γ_1 is a homotopy inverse of \mathcal{I}_1 , which prove (i). (ii) is an immediate consequence of (i) and Proposition 3.6. To prove (iii), consider $\Gamma_2: E_f \to E_{\pi_2}$ which is defined by $\Gamma_2(a, \gamma) = (a, \lambda(b_0, \gamma^{-1}), \Lambda(b_0, \gamma^{-1})^{-1})$, where $\Lambda: Z_g \to B^I$ is the path lifting function with which λ is associated. Clearly $\mathcal{I}_2 \circ \Gamma_2 = 1$, as we wish to prove.

§ 4. Cotriad

In order to dualize the preceding results, we shall call $A \xleftarrow{f} X \xrightarrow{g} B$ a *cotriad* and denote by $\langle f : g \rangle$. Then the argument is quite automatic, but briefly indicated.

With a given cotriad $A \xleftarrow{f} X \xrightarrow{g} B$, we associate the following spaces: $C_{f,g} = \text{the space obtained from } A \cup X \times I \cup B \text{ by the identifications}$

$$(x, 0) = f(x), (x, 1) = g(x), (x_0, s) = (x_0, t), x \in X, s, t \in I$$

Coker $\langle f : g \rangle$ = the space obtained from $A \cup B$ by the identifications

$$f(x) = g(x), x \in X.$$

In case f and g are inclusions Coker $\langle f : g \rangle$ is the union of A and B, and in case g is a cofibering it is the cofiber space induced by f. Further, $C_{f,g}$, which may be called the mapping cylinder of a co-triad $\langle f : g \rangle$, has already appeared in the book of Eilenberg-Steenrod [4], p. 51, G, 4 for inclusions f and g.

We have now the (homotopy-) commutative diagrams

where i_1 , i_2 , I_1 and I_2 are appropriate injections, and Q is the map which pinches $A \cup B$ to a point.

(4.3) (4.2) induces, for any space V, an exact diagram:

Let us now suppose that g is a cofibering with an extension function λ' : $B \to M_g$. Let Φ' : $C_{f,g} \to C_{g}$ coker $\langle f : g \rangle$ and Ψ' : Coker $\langle f : g \rangle \to C_{f,g}$ be the maps defined by

$$\begin{split} \varPhi'(a) = a, \ \varPhi'(b) = b, \ \varPhi'(x, \ s) = f(x) = g(x), \\ \text{for } a \in A, \ b \in B, \ x \in X, \ 0 \leq s \leq 1, \\ \varPsi'(a) = a, \ \varPsi'(b) = \overline{\lambda}'(b) \qquad \text{for } a \in A, \ b \in B, \end{split}$$

where $\bar{\lambda}'$ denotes the composition $B \xrightarrow{\lambda'} M_g \longrightarrow C_f$, g.

- (4.4) The above Φ' and Ψ' are mutually inverse homotopy equivalences.
- (4.5) The following diagram is exact:

We note that this may be considered as a generalization of the Mayer-Vietoris cohomology sequence of a proper triad [4], p. 43.

Let

$$\begin{array}{c}
A \stackrel{f}{\longleftarrow} X \stackrel{g}{\longrightarrow} B \\
\psi_1 \downarrow & \varphi \downarrow & \psi_2 \\
A' \stackrel{f'}{\longleftarrow} X' \stackrel{g'}{\longrightarrow} B'
\end{array}$$

be homotopy-commutative, and let $G_t: f'\varphi \simeq \psi_1 f$ and $H_t: g'\varphi \simeq \psi_2 g$ be homotopies. We define $\chi' = C(\psi_1, \varphi, \psi_2: G, H): C_{f,g} \to C_{f',g'}$ by

$$\mathcal{Z}'(a) = \psi_1(a), \ \mathcal{Z}'(b) = \psi_2(b), \qquad a \in A, \ b \in B, \\
\mathcal{Z}'(x,s) = \begin{cases} G_{1-3s}(x), & 0 \le 3 \ s \le 1, \\ (\varphi(x), \ 3 \ s - 1), & 1 \le 3 \ s \le 2, \\ H_{3s-2}(x), & 2 \le 3 \ s \le 3, \end{cases}$$

(4.6) If ψ_1 , φ and ψ_2 are homotopy equivalences, then so is χ' .

Let $A \leftarrow X \xrightarrow{g} B$ be a cotriad, and let us consider

 $T'_{f,g}$ = the space obtained from $CA \cup CCX \cup CB$ by the identifications:

$$(x, s, 1) = (f(x), s), (x, 1, t) = (g(x), t), x \in X, 0 \le s, t \le 1,$$

 $S'_{f,g}$ = the space obtained from $CA \cup CB$ by the identifications:

$$(f(x), 1) = (g(x), 1), x \in X.$$

Then the following sequences are obviously defined:

$$(4.7) SX \xrightarrow{m'} S'_{f,g} \xrightarrow{p'} T'_{f,g} \xrightarrow{n'} S^2X \longrightarrow \cdots$$

$$(4.8) C_{i_1} \longrightarrow S'_{f,g} \longrightarrow SB \longrightarrow SC_{i_2} \longrightarrow \cdots \text{ and } C_{i_3} \longrightarrow S'_{f,g} \longrightarrow SA \longrightarrow SC_{i_2} \longrightarrow \cdots$$

$$(4.9) C_f \longrightarrow C_{i_2} \longrightarrow T'_{f,g} \longrightarrow SC_f \longrightarrow \cdots \text{ and } C_g \longrightarrow C_{i_1} \longrightarrow T'_{f,g} \longrightarrow SC_g \longrightarrow \cdots$$

It is easy to verify

- (4.10) The above sequences (4.7)-(4.9) induces exact sequences.
- (4.11) Let $A \leftarrow X \xrightarrow{g} B$ be a cotriad in which g is a cofibering. Then
 - (i) $C(f, i_2)$: $C_g \longrightarrow C_{i_1}$ is a homotopy equivalence;
 - (ii) $T'_{f,g}$ is contractible;
 - (iii) $C(g, i_1) : C_f \longrightarrow C_{i_2}$ has a left inverse.

This proposition shows that $\pi(T'_{f,g}, K(\pi, n))$ is an analogue of cohomology groups of a triad (cf. [4], p. 204, Theorem 11.3)

§ 5. Cohomology of induced fibrations

Let $A \xrightarrow{f} Y \xleftarrow{g} B$ be a triad in which all spaces are assumed to be path-connected. We now define

$$\mu$$
, Π_1 : $(E_f \times E_g, \Omega Y \times E_g) \rightarrow (E_{f,g}, E_g)$

by setting

$$\mu(a, \gamma, b, \delta) = (a, b, \gamma \cdot \delta),$$

$$\Pi_1(a, \gamma, b, \delta) = (a, b_0, \gamma)$$

for $(a, \gamma, b, \delta) \in A \times E^- Y \times B \times EY$ with $f(a) = \gamma(0), g(b) = \delta(1)$.

Theorem 5.1. $(\mu^* - \Pi_1^*) \circ P_1^* : H^q(A, a_0) \to H^q(E_f \times E_g, \Omega Y \times E_g)$ is trivial for all $q \ge 0$.

Proof. This is clear, since we have $P_1 \circ \mu(a, \gamma, b, \delta) = a = P_1 \circ \Pi_1(a, \gamma, b, \delta)$. The goal of this section is to prove

Theorem 5.2. Let A be a r-connected space $(r \ge 2)$ with non-degenerate base-point a_0 and let Y be a t-connected space $(t \ge 2)$ with non-degenerate base-point y_0 . Suppose further that E_g is s-connected, $s \ge 1$. Then the sequence

$$H^{q}(A, a_0) \xrightarrow{P_1^*} H^{q}(E_{f,g}, E_g) \xrightarrow{\mu^* - \Pi_1^*} H^{q}(E_{\overline{f}} \times E_g, \Omega Y \times E_g)$$

is exact for $q \le r + s + t + 2$.

Proof. Given a transformation (2.1), we have $\mu \circ (\chi_1 \times \chi_2) \simeq \chi \circ \mu$, $\Pi_1 \circ (\chi_1 \times \chi_2) = \chi \circ \Pi_1$ and $\psi_1 \circ P_1 = P_1 \circ \chi$, where $\chi = E(\psi_1, \varphi, \psi_2; G, H)$, $\chi_1 = E(\psi_1, \varphi, 0; G, 0)$, $\chi_2 = E(0, \varphi, \psi_2; 0, H)$. Therefore we can assume, by Lemma 2.12, that f and g are inclusions.

Let now (Y; A, B) be a usual triad with base-point y_0 . For subspaces K and L of Y, let $E_{K,L}$ denote the space of paths γ in Y such that $\gamma(0) \in K$ and $\gamma(1) \in L$. We shall write μ for multiplication of paths in Y, Π_1 for the projection on the first factor and P_1 , P_2 for the maps taking, respectively, the initial and final point of paths. Let $W = \left\{ \gamma \in E_{A,Y} | \gamma\left(\frac{1}{2}\right) = y_0 \right\}$. We need the following two lemmas:

Lemma 5.3. (a) There exists a neighborhood V_1 of $E_{y_0,B}$ in $E_{A,B}$ such that $E_{y_0,B}$ is a strong deformation retract of V_1 .

- (b) There exists a neighborhood V_2 of ΩY in E_{A, y_0} such that ΩY is a strong deformation retract of V_2 .
- (c) There exists a neighborhood V_3 of W in $E_{A,Y}$ such that $(W, W \cap (E_{A,B} \cup EY))$ is a strong deformation retract of $(V_3, V_3 \cap (E_{A,B} \cup EY))$.

LEMMA 5.4.
$$(E_{A,Y}, E_{A,B} \cup EY \cup W)$$
 is $(r+s+t+3)$ -connected.

The first lemma is easily checked in a manner similar to those in [17] (cf. [15]), and the proof of the second will be postponed later.

Consider now the following commutative diagram

$$H^{q}(A, a_{0}) \xrightarrow{P_{1}^{*}} H^{q}(E_{A,B}, E_{y_{0},B}) \xrightarrow{\mu^{*} - \Pi_{1}^{*}} H^{q}(E_{A,y_{0}} \times E_{y_{0},B}, \mathcal{Q}Y \times E_{y_{0},B})$$

$$P_{1}^{*} \downarrow \wr \wr \qquad \qquad k_{1}^{*} \uparrow \wr \wr \qquad \qquad k_{2}^{*} \uparrow \wr \wr$$

$$H^{q}(E_{A,Y}, EY) \xrightarrow{i^{*}} H^{q}(E_{A,B} \cup EY, EY) \xrightarrow{\mu^{*} - \Pi_{1}^{*}} H^{q}(E_{A,y_{0}} \times E_{y_{0},B} \cup \mathcal{Q}Y \times EY, \mathcal{Q}Y \times EY)$$

$$\delta \downarrow \qquad \qquad \delta \downarrow \qquad \qquad \delta \downarrow$$

$$H^{q+1}(E_{A,Y}, E_{A,B} \cup EY) \xrightarrow{\mu^{*}} H^{q+1}(E_{A,y_{0}} \times EY, E_{A,y_{0}} \times E_{y_{0},B} \cup \mathcal{Q}Y \times EY)$$

$$\parallel \qquad \qquad \qquad \mu^{*} \uparrow \wr \wr$$

$$H^{q+1}(E_{A,Y}; E_{A,B} \cup EY, W) \rightarrow H^{q+1}(E_{A,Y}, E_{A,B} \cup EY) \xrightarrow{j^{*}} H^{q+1}(W, W \cap (E_{A,B} \cup EY)),$$

in which δ are coboundary homomorphisms, i, j, k_1 , k_2 are appropriate inclusions and μ at the right lower corner is a homeomorphism. Since the vertical P_1 is a homotopy equivalence, P_1^* is an isomorphism onto. By Lemma 5.3 and Theorem 11.3 of Eilenberg-Steenrod [4], k_1^* and k_2^* are exision isomorphisms, and moreover we see from Lemma 5.4 that

$$H^{q+1}(E_{A,Y}; E_{A,B} \cup EY, W) \approx H^{q+1}(E_{A,Y}, E_{A,B} \cup EY \cup W) = 0$$

for $q \le r + s + t + 2$.

We next remark that the bottom line is a triadic cohomology sequence of a triad $(E_{A,Y}; E_{A,B} \cup EY, W)$ and hence exact. Take any element $\mathbf{x} \in H^q(E_{A,B}, E_{y_0,B})$ such that $(\mu^* - H_1^*)(\mathbf{x}) = 0$ for $q \le r + s + t + 2$; then $j^* \delta k_1^{*-1}(\mathbf{x}) = 0$. Since j^* is a momomorphism, there exists a $y \in H^q(A, a_0)$ such that $k_1^{*-1}(\mathbf{x}) = i^* P_1^*(y)$, noting that Ker $\delta = \operatorname{Im} i^*$. Thus $\mathbf{x} = P_1^*(y)$ which completes the proof of Theorem 5.2.

Suppose now that there is given a triad $A \xrightarrow{f} Y \xleftarrow{g} B$ such that g is a fibering with fibre F. We denote by $\lambda : Z_g \to B$ a lifting function for g (see [12], p. 113). We define

$$\widetilde{\mu}$$
, $\widetilde{\Pi}_1: (E_f \times F, \Omega Y \times F) \to (\text{Ker}(f:g), F)$

by $\widetilde{\mu}(a, \gamma, b) = (a, \lambda(b, \gamma))$, $\widetilde{\Pi}_1(a, \gamma, b) = (a, \lambda(b_0, \gamma))$ for $a \in A$, $\gamma \in E^-Y$, $b \in B$ with $f(a) = \gamma(0)$, $g(b) = y_0$. In view of Theorem 1.4 we see that these maps correspond to μ , Π_1 in Theorem 5.2. Thus we conclude

Theorem 5.5. Let (f : g) be as above. Suppose further that A, F, Y are respectively r-, s-, t-connected, $r \ge 2$, $s \ge 1$, $t \ge 2$, and that A and Y have non-degenerate base-points. Then the sequence

$$H^{q}(A, a_{0}) \xrightarrow{\pi_{1}^{*}} H^{q}(\operatorname{Ker}(f : g), F) \xrightarrow{\tilde{\mu}^{*} - \tilde{H}_{1}^{*}} H^{q}(E_{f} \times F, \Omega Y \times F)$$

is exact for $q \le r + s + t + 2$.

In case s=t-1, it seems likely that the above theorem gives a geometric version to a part of an exact sequence obtained by E. H. Brown ([2], p. 240). Finally, we shall give a proof of Lemma 5.4.

Proof of Lemma 5.4. Since $P_1 \times P_2$ are both fibre maps in the diagram

exactness of the horizontal line implies $\pi_i(E_{A,Y}; E_{A,B} \cup EY, W) = 0$ for $i \ge 2$. Hence, by considering the homotopy sequence of a tetrad $(E_{A,Y}; E_{A,B} \cup EY \cup W, E_{A,B} \cup EY, W)$, we have

$$\pi_{i+1}(E_{A,Y}, E_{A,B} \cup EY \cup W) \approx \pi_{i+1}(E_{A,Y}; E_{A,B} \cup EY \cup W, E_{A,B} \cup EY, W)$$

 $\approx \pi_{i}(E_{A,B} \cup EY \cup W; E_{A,B} \cup EY, W)$

for $i \ge 2$. But it follows from the Künneth theorem that

$$\pi_i(W, W \cap (E_{A,B} \cup EY)) \approx \pi_i(A \times Y, A \times B \cup v_0 \times Y) = 0$$

for $i \leq r+s+2$, since (A, y_0) is r-connected and $E_{y_0,B} = E_g$ is s-connected. On the other hand $\pi_i(E_{A,B} \cup EY, W \cap (E_{A,B} \cup EY)) \approx \pi_i(E_{A,Y}, W)$ and, moreover, we see that $\gamma \to \gamma \cdot e_y$, $y = \gamma(1)$, yields a homotopy equivalence $((E_{A,Y}, E_{A,y_0}) \to (E_{A,Y}, W)$. Therefore it follows from $(P_2)_* : \pi_i(E_{A,Y}, E_{A,y_0}) \approx \pi_i(Y, y_0)$ that $(E_{A,B} \cup EY, W \cap (E_{A,B} \cup EY))$ is t-connected. Applying the Blakers-Massey theorem [1], we have that $(E_{A,B} \cup EY \cup W; E_{A,B} \cup EY, W)$ is (r+s+t+2)-connected and hence

(5.6)
$$\pi_i(E_{A,Y}, E_{A,B} \cup EY \cup W) = 0$$
 for $3 \le i \le r + s + t + 3$.

Consider now the exact sequence

$$\pi_2(E_{A,Y}) \to \pi_2(E_{A,Y}, E_{A,B} \cup EY \cup W) \to \pi_1(E_{A,B} \cup EY \cup W) \to \pi_1(E_{A,Y})$$

 $\to \pi_1(E_{A,Y}, E_{A,B} \cup EY \cup W) \to 0,$

where $\pi_i(E_{A,Y}) \approx \pi_i(E_{A,Y}, EY) \approx \pi_i(A) = 0$ for $i \leq 2$. Upon noticing that $\pi_1(W) \approx \pi_1(E_{A,Y_0}) \approx \pi_2(Y, A) = 0$ and $\pi_1(E_{A,E}) \approx \pi_1(E_{A,E}, E_{Y_0,E}) \approx \pi_1(A) = 0$, it

follows from van Kampen's theorem [13] that $\pi_1(E_{A,B} \cup EY \cup W) = 0$. $\pi_i(E_{A,Y}, E_{A,B} \cup EY \cup W) = 0$ for i = 1, 2. Combining this with (5.6), we obtain the desired conclusion.

§ 6. Realizability of Whitehead products

In this section we shall state a result which is dual to a theorem of I. M. James [8] as an application of Theorem 5.2. See also [6, 7, 11, 18].

Let $f: X \rightarrow Y$ be a map in which Y possesses a non-degenerate base-point. $\hat{\Psi}: Z_f \rightarrow X$ denote the homotopy equivalence given by $\hat{\Psi}(x, \beta) = x$, $x \in X$, $\beta \in Y^{l}$, $f(x) = \beta(1)$. We set $Pf = \mathcal{V} \mid E_{f}$. Let $l : (E^{-}Y, \Omega Y) \to (Z_{f}, E_{f})$ be the inclusion, $l(\beta) = (x_0, \beta)$, and let $P : (Z_f, E_f) \rightarrow (X, y_0)$ denote the map defined by $P(x, \beta) = \beta(0)$

There is defined the path-multiplication $\mu: E^-Y \times EY \to Y^1$ in an obvious manner. This induces maps $E^-Y \times E_f \to Z_f$ and $\Omega Y \times E_f \to E_f$ which are denoted by the same letter μ . In what follows, we use π_1 , π_2 to denote projections on the first and the second factors respectively.

We have then the following commutative diagram

where $\overline{\nu} = \mu^* - \pi_1^* l^*$, $\nu = \mu^* - \pi_2^* - \pi_1^* (If)^*$, δ are coboundary homomorphisms, and i, j, i_1 , i_2 , i_3 are appropriate injections.

Theorem 6.1. (a) $\overline{\nu} \circ P^* = 0$.

(b) If Y and E_f are respectively r-and s-connected, $r \ge 2$, $s \ge 1$, then P^* : $H^q(Y) \rightarrow H^q(Z_f, E_f)$ is a monomorphism for $q \le r + s + 2$ and the sequence

$$H^{q}(Y) \xrightarrow{P^{*}} H^{q}(Z_{f}, E_{f}) \xrightarrow{\bar{\nu}} H^{q}(E^{-}Y \times E_{f}, \Omega Y \times E_{f})$$

is exact for $q \leq 2r + s + 2$.

(c) δ is monomorphic on Ker i_2^* and Im $\nu \subset \text{Ker } i_2^*$.

The first half of (b) follows from Serre's theorem since P is a fibre map with fibre E_f . (a) and (b) are obtained by applying Theorems 5.1 and 5.2 to a triad $Y \xrightarrow{1} Y \xleftarrow{f} X$. (c) is an immediate consequence of the fact that i_3^* is an isomorphism.

In the sequel assume that all spaces considered have the same homotopy type of a CW-complex. To simplify the notation we do not distinguish between a map and the homotopy class or the cohomology class it represents.

Now we shall take $\theta: K(\pi, n) \to K(\pi', n'+1)$ instead of $f: X \to Y$ in the foregoing consideration, where $2 \le n < n'$, and consider $\phi: E_\theta \to K(G, n+n')$. Let W denote the Whitehead product pairing $\pi' \otimes \pi \to G$ in E_ϕ . We call E_ϕ a space of type (W, θ) . Let $\iota \in H^n(\pi, n; \pi)$, $\iota' \in H^{n'+1}(\pi', n'+1; \pi')$ be basic classes respectively. In these situations it is proven that

LEMMA 6.2. (Meyer [10] and Peterson-Stein [14]) $\nu(\phi) = \pi_1^*({}^1\iota') \cup \pi_2^*(P\theta)^*(\iota)$, where ${}^1\iota'$ denotes the suspension of ι' and the cup-product is with respect to W.

The proof of our result stated in the introduction is based on the following theorem.

THEOREM 6.3. $\delta(\phi) = P^*(\iota') \cup \hat{\mathcal{Y}}^*(\iota) + P^*(\rho)$ for unique $\rho \in H^{n+n'+1}(\pi', n'+1)$; G), where the cup-product is relative to W.

Proof. For convenience we consider the projection $p_2: E^-Y \times E_0 \to E_0$ and the injection $k: \mathcal{Q}Y \times E_0 \to E^-Y \times E_0$, and let $p: (E^-Y, \mathcal{Q}Y) \to (Y, y_0)$ be the fibre map given by $p(\beta) = \beta(0)$. $l_0: E^-Y \to Z_0$ denotes the map determined by $l_0: \mathbb{Q}^* = \mathbb{Q}^* = \mathbb{Q}^* = \mathbb{Q}^*$. Since $l_0^* = \mathbb{Q}^* = \mathbb{Q}^* = \mathbb{Q}^*$, we have $\pi_1^* l^* [P^*(\iota') \cup \mathbb{Q}^* = \mathbb{Q}^*) = 0$. Further,

$$\begin{split} \overline{\nu}\delta(\phi) &= \delta\nu(\phi) = \delta \big[\pi_1^*(^1\iota') \cup \pi_2^*(P\theta)^*(\iota)\big] & \text{by Lemma 6.2,} \\ &= \delta \big[\pi_1^*(^1\iota') \cup k^*p_2^*(P\theta)^*(\iota)\big] \\ &= \delta\pi_1^*(^1\iota') \cup p_2^*(P\theta)^*(\iota) & \text{by [16], (3.2),} \\ &= \pi_1^*\delta(^1\iota') \cup \pi_2^*\hat{\Psi}^*(\iota), & \text{since } i \circ p_2 = \pi_2, \\ &= \pi_1^*p^*(\iota') \cup \pi_2^*\hat{\Psi}^*(\iota) \\ &= \pi_1^*l^*P^*(\iota') \cup \pi_2^*\hat{\Psi}^*(\iota) \\ &= \mu^*P^*(\iota') \cup \mu^*\hat{\Psi}^*(\iota) & \text{by Theorem 6.1 (a),} \\ &= \mu^* \big[P^*(\iota') \cup \hat{\Psi}^*(\iota)\big]. \end{split}$$

This calculation leads to $\bar{\nu}[\delta(\phi) - P^*(\iota') \cup \hat{\mathcal{V}}^*(\iota)] = 0$. Hence, by Theorem 6.1 (b), we see that there exists a unique $\rho \in H^{n+n'+1}(\pi', n'+1; G)$ with the desired property.

THEOREM 6.4. Let $\theta: K(\pi, n) \to K(\pi', n'+1)$, where $2 \le n < n'$, and let $\widetilde{W}: \pi' \otimes \pi \to G$ be a given homomorphism. Let $\theta \cup \epsilon$ denote the cup-product of θ and the basic class of $K(\pi, n)$ relative to \widetilde{W} . Then there exists a space of type (\widetilde{W}, θ) if, and only if, $\theta \cup \epsilon$ is contained in the image of the homomorphism

$$\theta^* : H^{n+n'+1}(\pi', n'+1; G) \to H^{n+n'+1}(\pi, n; G).$$

Proof. Applying $(\hat{\mathscr{V}}^*)^{-1}j^*$ to the formula in Theorem 6.3, we obtain $0=\theta^*(\iota')\cup\iota+\theta^*(\rho)$, i.e., $\theta\cup\iota=-\theta^*(\rho)$, which proves the "only if" part. Conversely, suppose there exists $\rho\in H^{n+n'+1}(\pi',\,n'+1\,;\,G)$ such that $-\theta^*(\rho)=\theta\cup\iota$ rel \tilde{W} . Here "rel \tilde{W} " indicates that the cup-product is to be taken relative to \tilde{W} . This shows that $P^*(\iota')\cup\hat{\mathscr{V}}^*(\iota)$ rel $\tilde{W}+P^*(\rho)$ lies in the kernel of j^* , so that, by exactness of the cohomology sequence of the pair $(Z_\theta,\,E_\theta)$, there is $\phi\in H^{n+n'}(E_\theta)$ such that $\delta(\phi)=P^*(\iota')\cup\hat{\mathscr{V}}^*(\iota)$ rel $\tilde{W}+P^*(\rho)$. We shall show that the space E_ϕ is of type $(\tilde{W},\,\theta)$. Let W denote the Whitehead product pairing in E_ϕ . Now

$$\begin{split} \delta \big[\pi_1^*(^1 \iota') \cup \pi_2^*(P\theta)^*(\iota) & \text{ rel } \widetilde{W} \big] \\ &= \overline{\nu} \big[P^*(\iota') \cup \hat{\mathcal{Y}}^*(\iota) & \text{ rel } \widetilde{W} \big] & \text{from the proof of Th. 6.3,} \\ &= \overline{\nu} \delta(\phi) = \delta \nu(\phi) & \text{by Theorem 6.1, (a),} \\ &= \delta \big[\pi_1^*(^1 \iota') \cup \pi_1^*(P\theta)^*(\iota) & \text{ rel } W \big] & \text{by Lemma 6.2.} \end{split}$$

Therefore, Theorem 6.1, (c), implies $\pi_1^*({}^1\iota') \cup \pi_2^*(P\theta)^*(\iota)$ rel $\widetilde{W} = \pi_1^*({}^1\iota') \cup \pi_2^*(P\theta)^*(\iota)$ rel W. This means that $\widetilde{W} = W$.

COROLLARY 6.5. There always exists a space of type (W, 0).

Corollary 6.6. Under the same notation as in Theorem 6.3, we have $(I\theta)^*(\phi) = {}^1\rho$.

This is deduced by applying $\delta^{-1}l^*$ to the formula in Theorem 6.3, where $\delta: H^{n+n'}(\pi', n'; G) \approx H^{n+n'+1}(E^-K(\pi', n'+1), \Omega K(\pi', n'+1); G)$.

Corollary 6.7. Let $\theta: K(\pi, n) \to K(\pi', 2n)$, $n \ge 2$, and let W_1 , W_2 be, respectively, given pairings $\pi \otimes \pi \to \pi'$, $\pi' \otimes \pi \to G$. Then there exists a space whose first invariant is θ and whose Whitehead product pairings are just W_1 and W_2 , if, and only if, $(\mu^* - \pi_1^* - \pi_2^*)(\theta) = \pi_1^*(\iota) \cup \pi_2^*(\iota)$ rel W_1 and $\theta \cup \iota$

rel $W_2 \in \theta^* H^{3n}(\pi', 2 n; G)$, where $\mu : K(\pi, n) \times K(\pi, n) \to K(\pi, n)$ is the H-structure map.

This follows from a result proved by Copeland [3].

Corollary 6.8. If cat $K(\pi, n) \leq 2$, then there always exists a space of type (W, θ) .

REFERENCES

- [1] A. L. Blakers and W. S. Massey, The homotopy groups of a triad I, Ann. of Math. 53 (1951), 161-205; II, ibid. 55 (1952), 192-201.
- [2] E. H. Brown, Twisted tensor products, I, Ann. of Math. 69 (1959), 223-246.
- [3] A. H. Copeland, On H-spaces with two nontrivial homotopy groups, Proc. Amer. Math. Soc. 8 (1957), 184-191.
- [4] S. Eilenberg and N. E. Steenrod, Foundations of algebaic topology, Princeton, 1952.
- [5] S. T. Hu, Homotopy properties of the space of continuous paths II, Portugaliae Math. 11 (1952), 41-50.
- [6] S. T. Hu, On the realizability of homotopy groups and their operations, Pacific J. of Math. 1 (1951), 583-602.
- [7] K. Iwata and H. Miyazaki, Remarks on the realizability of Whitehead product, Tôhoku Math. J. 12 (1960), 130-138.
- [8] I. M. James, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374-383.
- [9] W. S. Massey, Homotopy groups of triads, Proc. Int. Congress Math., Cambridge, Mass., U.S.A. (1950), 371-382.
- [10] J.-P. Meyer, Whitehead products and Postnikov systems, Amer. J. of Math. 82 (1960), 130-138.
- [11] H. Miyazaki, On realizations of some Whitehead products, Tôhoku Math. J. 12 (1960), 1-30
- [12] Y. Nomura, On mapping sequences, Nagoya Math. J. 17 (1960), 111-145.
- [13] P. Olum, Non-abelian cohomology and van Kampen's theorem, Ann. of Math. 68 (1958), 658-668.
- [14] F. P. Peterson and N. Stein, Secondary cohomology operations: two formulas, Amer. J. of Math. 81 (1959), 281-305.
- [15] D. Puppe, Homotopiemengen und ihre induzierten Abbildungen I, Math. Zeit. 69 (1958), 299-344.
- [16] N. E. Steenrod. Cohomology invariants of mappings, Ann. of Math. 50 (1949), 954-988.
- [17] G. W. Whitehead, On the homology susdension, Ann. of Math. 62 (1955), 254-268.
- [18] J. H. C. Whitehead, On the realizability of homotopy groups, Ann. of Math. 50 (1949), 261-263.

Department of Mathematics Shizuoka University