AN APPLICATION OF THE PATH-SPACE TECHNIQUE TO THE THEORY OF TRIADS

YASUTOSHI NOMURA

One of the most powerful tools in homotopy theory is the homotopy groups of a triad introduced by Blakers and Massey in [1]. Our aim here is to develop systematically the formal, elementary aspects of the theory of a generalized triad and the mapping track associated with it. This will be used in $\S 5$ to deduce a result (Theorem 5.5) which seems to be closely related to an exact sequence established by Brown [2].

There is an application of our theorem to the realization problem of Whitehead products. In this direction we obtain the following result: given $\theta \in H^{n^{\prime+1}}\left(\pi, n ; \pi^{\prime}\right)$ and a pairing $W: \pi^{\prime} \otimes \pi \rightarrow G$ such that the cup-product $\theta \cup$ c relative to W lies in the image of $\theta^{*}: H^{n+n^{\prime}+1}\left(\pi^{\prime}, n^{\prime}+1 ; G\right) \rightarrow H^{n+n^{\prime}+1}(\pi$, $n ; G$), there exists a space whose first invariant is θ and whose Whitehead product pairing is just W, where $\iota \in H^{n}(\pi, n ; \pi)$ is the basic class.

It will be assumed that all spaces and mappings occurring in this paper are taken from the category with base-points, and the notations introduced in [12] will be used without specific reference.

§ 1. The mapping track of a triad

In this paper we shall understand by a $\operatorname{triad}(f: g)$ a pair of maps $A \xrightarrow{f} Y \stackrel{g}{\leftrightarrows} B$. For such a triad the following construction is basic:

$$
\begin{aligned}
& E_{f, g}=\left\{(a, b, \beta) \in A \times B \times Y^{I} \mid f(a)=\beta(0), g(b)=\beta(1)\right\}, \\
& \operatorname{Ker}(f: g)=\{(a, b) \in A \times B \mid f(a)=g(b)\} .
\end{aligned}
$$

These constructions give rise to the following diagrams:

Received February 14, 1962.

where Ω is the loop functor; the maps are defined by setting $\pi_{1}(a, b)=a$, $\pi_{2}(a, b)=b, P_{1}(a, b, \beta)=a, P_{2}(a, b, \beta)=b, I(\beta)=\left(a_{0}, b_{0}, \beta\right)$, and Y^{I} denotes the space of paths $I=[0,1] \rightarrow Y$ with CO-topology. We note that (1.1) is commutative and (1.2) is homotopy-commutative.

We shall call $E_{f, g}$ the mapping track of a triad $(f: g)$. In case f and g are inclusions this has been considered by Hu [5]. Various specializations of ($f: g$) yield various spaces. For example, we have

$$
\begin{array}{ll}
E Y=\left\{\beta \in Y^{I} \mid \beta(0)=y_{0}\right\}, & \text { for } y_{0} \longrightarrow Y \leftarrow Y, \\
E_{f}=\{(x, \beta) \in X \times E Y \mid f(x)=\beta(1)\}, & \text { for } y_{0} \longrightarrow Y \longleftarrow X, \\
Z_{f}=\left\{(x, \beta) \in X \times Y^{I} \mid f(x)=\beta(1)\right\}, & \text { for } Y \xrightarrow{1} Y \longleftarrow X, \\
E_{f}^{-}=\left\{(x, \beta) \in X \times Y^{I} \mid f(x)=\beta(0), \beta(1)=y_{0}\right\}, & \text { for } X \xrightarrow{f} Y \longleftarrow y_{0}, \\
E^{-} Y=\left\{\beta \in Y^{I} \mid \beta(1)=y_{0}\right\}, & \text { for } Y \xrightarrow[\longrightarrow]{ } Y \longleftarrow y_{0},
\end{array}
$$

We have furthermore that $\operatorname{Ker}(f: g)=A \cap B$ for inclusions $A \xrightarrow{f} Y, B \xrightarrow{g} Y$ and, when g is a fibering, $\operatorname{Ker}(f: g)$ is the fibering induced by f from g.

Proposition 1.3. $(a, b, \beta) \rightarrow\left(b, a, \beta^{-1}\right)$ yields a homeomorphism $E_{f, g} \rightarrow E_{g, f}$.
Theorem 1.4. If g is a fibering then $E_{f, g}$ is homotopically equivalent to the induced fibre space $\operatorname{Ker}(f: g)$.

Proof. Let $A: Z_{g} \rightarrow B^{l}\left(\lambda: Z_{g} \rightarrow B\right)$ be, respectively, a (path) lifting function for g (see [12], p. 113). Define $\varnothing: \operatorname{Ker}(f: g) \rightarrow E_{f, g}$ and $\Psi: E_{f, g} \rightarrow \operatorname{Ker}(f: g)$ as follows:

$$
\begin{align*}
& \mathscr{T}(a, b)=\left(a, b, e_{y}\right), y=f(a)=g(b), \tag{1.5}\\
& \Psi(a, b, \beta)=(a, \lambda(b, \beta)), \tag{1.6}
\end{align*}
$$

where e_{y} is the constant path at y. Since there exists a homotopy between $1_{B}: B \rightarrow B$ and the map $b \rightarrow \lambda\left(b, e_{y}\right)$ which moves points along fibres, it follows that $\Psi \Phi \simeq 1$. $D \Psi \simeq 1$ is shown by considering a homotopy given by

$$
(a, b, \beta) \rightarrow\left(a, A(b, \beta)(t), \beta_{0, t}\right), \quad 0 \leqq t \leqq 1
$$

Theorem 1.7. The sequence

is exact for any space V in the following sense (cf. Olum [13]):
(i) $a \in \pi(V, A)$ and $b \in \pi(V, B)$ have the same image in $\pi(V, Y)$ if, and only if, there exists $c \in \pi\left(V, E_{f, g}\right)$ such that $a=P_{1 *}(c)$ and $b=P_{2 *}(c)$;
(ii) $\operatorname{Ker} P_{1 *} \cap \operatorname{Ker} P_{2 *}=\operatorname{Im} I_{*}$;
(iii) $d_{1}, d_{2} \in \pi(V, \Omega Y)$ satisfy $I_{*}\left(d_{1}\right)=I_{*}\left(d_{2}\right)$ if, and only if, there exist $a \in \pi(V, \Omega A)$ and $b \in \pi(V, \Omega B)$ such that $(\Omega f)_{*}(a) \cdot d_{2}=d_{1} \cdot(\Omega g)_{*}(b)$, where the dots denote the group operation in $\pi(V, \Omega Y)$ determined by the loop-multiplication.

Proof. (i) Let h_{1}, h_{2} represent a, b respectively. If $f \circ h_{1} \simeq g \circ h_{2}$ we can find a homotopy $H_{t}, 0 \leqq t \leqq 1$, such that $H_{0}=f \circ h_{1}, H=g \circ h_{2}$: then it suffices to define a representative $k: V \rightarrow E_{f, g}$ for c as follows:

$$
k(v)=\left(h_{1}(v), h_{2}(v), \beta(v)\right), \quad v \in V,
$$

where $\beta(v)$ is the path in Y given by $\beta(v)(t)=H_{t}(v), 0 \leqq t \leqq 1$.
(ii) Let $k: V \rightarrow E_{f, g}$ be expressed as $k(v)=\left(h_{1}(v), h_{2}(v), \gamma(v)\right), v \in V$, and let $h_{1} \simeq 0, h_{2} \simeq 0$. We denote by $\alpha(v)$ and $\beta(v)$ the elements of $E A$ and $E B$ determined by the contractions of $h_{1}(v)$ and $h_{2}(v)$. Then it is easy to see that $k(v) \simeq I\left\{f \alpha(v) \cdot \gamma(v) \cdot g \beta(v)^{-1}\right\}$.
(iii) Let $\bar{d}_{1}, \bar{d}_{2}: V \rightarrow \Omega Y$ represent d_{1}, d_{2} respectively, and let $H_{t}: V \rightarrow E_{f, g}$ be such that $H_{0}=I \bar{d}_{1}$ and $H_{1}=I \bar{d}_{2}$. Then we have only to take for a. b the elements represented by $P_{1} H_{t}$ and $P_{2} H_{t}, 0 \leqq t \leqq 1$.

Theorem 1.8. If g is a fibering, then (1.1) induces an exact diagram:

where $J=\Psi \circ I, \Psi: E_{f, g} \rightarrow \operatorname{Ker}(f: g)$ being an equivalence in the proof of Theorem 1.4.

Proof. This follows from Theorems 1.4 and 1.7, since $P_{1}=\pi_{1} \Psi$ and $P_{2} \simeq \pi_{2} \Psi$.
Proposition 1.9. $P_{1}: E_{f, g} \rightarrow A, P_{2}: E_{f, g} \rightarrow B$ and $P_{1} \times P_{2}: E_{f, g} \rightarrow A \times B$ are fiberings with fibres E_{g}, E_{f}^{-}and ΩY respectively.

Proof. A path lifting function Λ for P_{1} is defined by setting

$$
\Lambda(a, b, \beta, \alpha)(s)=\left(\alpha(s), b, \beta_{s}\right),
$$

for $0 \leqq s \leqq 1, \alpha \in A^{\prime}, \alpha(1)=a$, in which β_{s} is a path in Y given by

$$
\beta_{s}(t)= \begin{cases}f \alpha(2 t+s), & 0 \leqq t \leqq \frac{1-s}{2}, \\ \beta\left(\frac{2 t+s-1}{1+s}\right), & \frac{1-s}{2} \leqq t \leqq 1\end{cases}
$$

Similarly for P_{2} and $P_{1} \times P_{2}$.

§ 2. Transformation between triads

Let the following diagram be given:

If (2.1) is homotopy-commutative, then we say that (2.1) is a transformation from a triad $(f: g)$ to a triad $\left(f^{\prime}: g^{\prime}\right)$. We call it a map if it is strictly commutative.

Let now $G_{t}, H_{t}, 0 \leqq t \leqq 1$, be fixed homotopies such that $G_{0}=f^{\prime} \psi_{1}, G_{1}=\varphi f$, $H_{0}=g^{\prime} \psi_{2}, H_{1}=\varphi g$. We define $\%=E\left(\psi_{1}, \varphi, \psi_{2} ; G, H\right): E_{f, g \rightarrow E_{f^{\prime}, g^{\prime}} \text { by setting }}$

$$
\begin{equation*}
\chi(a, b, \beta)=\left(\psi_{1}(a), \psi_{2}(b), \beta^{\prime}\right) \tag{2.2}
\end{equation*}
$$

where β^{\prime} is the path in Y^{\prime} given by

$$
\beta^{\prime}(s)= \begin{cases}G_{3} s(a), & 0 \leqq s \leqq \frac{1}{3} \\ \varphi \beta(3 s-1), & \frac{1}{3} \leqq s \leqq \frac{2}{3} \\ H_{3-3 s}(b), & \frac{2}{3} \leqq s \leqq 1\end{cases}
$$

For a map (2.1) we shall set $\beta^{\prime}=\varphi \beta$ in (2.2), and denote simply by $E\left(\psi_{1}, \varphi\right.$, ψ_{2}).

Further let

be another transformation with homotopies $G_{t}^{\prime}, H_{t}^{\prime}$ such that $G_{0}^{\prime}=f^{\prime \prime} \psi_{1}^{\prime}$, $G_{1}^{\prime}=\varphi^{\prime} f^{\prime}, H_{0}^{\prime}=g^{\prime \prime} \psi_{2}^{\prime}, H_{1}^{\prime}=\varphi^{\prime} g^{\prime}$. Consider the homotopies $\left(G^{\prime} \circ G\right),\left(H^{\prime} \circ H\right)$ which are given by

$$
\begin{aligned}
& \left(G^{\prime} \circ G\right)_{t}(a)= \begin{cases}G_{2 t}^{\prime} \psi_{1}(a), & 0 \leqq t \leqq \frac{1}{2}, \\
\varphi^{\prime} G_{2 t-1}(a), & \frac{1}{2} \leqq t \leqq 1,\end{cases} \\
& \left(H^{\prime} \circ H\right)_{t}(b)= \begin{cases}H_{2 t}^{\prime} \psi_{2}(b), & 0 \leqq t \leqq \frac{1}{2}, \\
\varphi^{\prime} H_{2 t-1}(b), & \frac{1}{2} \leqq t \leqq 1,\end{cases}
\end{aligned}
$$

for $a \in A, b \in B$. Then it is immediate to verify
Proposition 2.3. $E\left(\psi_{1}^{\prime} \psi_{2}, \varphi^{\prime} \varphi, \psi_{2}^{\prime} \psi_{2} ; G^{\circ} \circ G, H^{\prime} \circ H\right)$ is homotopic to $E\left(\psi_{1}^{\prime}, \varphi^{\prime}\right.$, $\left.\psi_{2}^{\prime} ; G^{\prime}, H^{\prime}\right) \circ E\left(\psi_{1}, \varphi, \psi_{2} ; G, H\right)$.

Proposition 2.4. Let (2.1) be given and let $\varphi \simeq \bar{\varphi}, \psi_{1} \simeq \bar{\psi}_{1}, \psi_{2} \simeq \bar{\psi}_{2}$. Then there exist homotopies $\bar{G}: f^{\prime} \bar{\psi}_{1} \simeq \bar{\varphi} f$ and $\bar{H}: g^{\prime} \bar{\psi}_{2} \simeq \bar{\varphi} g$ such that $E\left(\bar{\psi}_{1}, \bar{\varphi}, \bar{\psi}_{2}\right.$; $\bar{G}, \bar{H}) \simeq E\left(\psi_{1}, \varphi, \psi_{2} ; G, H\right)$.

Proof. Let $\varphi^{\tau}: \varphi \simeq \bar{\varphi}, \psi_{1}^{\tau}: \psi_{1} \simeq \bar{\psi}_{1}, \psi_{2}^{\tau}: \psi_{2} \simeq \bar{\psi}_{2}$. Define $G_{t}^{\tau}: A \rightarrow Y^{\prime}$ by

$$
G_{t}^{\tau}= \begin{cases}f^{\prime} \circ \phi_{1}^{\tau-3 t}, & 0 \leqq t \leqq \frac{\tau}{3}, \\ G_{(3 t-\tau)(3-2 \tau)-1}, & \frac{\tau}{3} \leqq t \leqq 1-\frac{\tau}{3}, \\ \varphi^{3 t+\tau-3} \circ f, & 1-\frac{\tau}{3} \leqq t \leqq 1,\end{cases}
$$

and define H_{t} similarly. Then $E\left(\psi_{1}^{\tau}, \varphi^{\tau}, \psi_{2}^{\tau} ; G_{t}^{\tau}, H_{t}^{\tau}\right)$ gives the desired homotopy.
Proposition 2.5. $E\left(1_{A}, 1_{Y}, 1_{B} ; G, H\right)$ is a homotopy equivalence.
Proof. Let G^{-}, H^{-}be defined by $G_{t}^{-}=G_{1-t}, H_{t}^{-}=H_{1-t}, 0 \leqq t \leqq 1$. By

Proposition 2.3 we have $E\left(1_{A}, 1_{Y}, 1_{B} ; G^{-}, H^{-}\right) \circ E\left(1_{A}, 1_{Y}, 1_{B} ; G, H\right) \simeq E\left(1_{A}\right.$, $\left.1_{Y}, 1_{B} ; G^{-} \circ G, H^{-} \circ H\right)$. If $G_{t}^{\tau}, H_{t}^{\tau}, 0 \leqq \tau \leqq 1$, are defined by

$$
G_{t}^{\tau}=\left\{\begin{array}{lc}
G_{1-2} \tau t, & 0 \leqq t \leqq \frac{1}{2}, \\
G_{1-2 \tau(1-t)}, & \frac{1}{2} \leqq t \leqq 1
\end{array}\right.
$$

and similarly for H_{t}, then we have

$$
E\left(1,1,1 ; G^{-} \circ G, H^{-} \circ H\right) \simeq E(1,1,1 ; f, g)
$$

by the homotopy $E\left(1,1,1 ; G_{t}^{\tau}, H_{t}^{\tau}\right)$. Since $E(1,1,1 ; f, g)$ is homotopic to the identity map of $E_{f, g}$, it follows that $E\left(1,1,1 ; G^{-}, H^{-}\right)$is a left homotopy inverse of $E(1,1,1 ; G, H)$. We see similarly that $E\left(1,1,1 ; G^{-}, H^{-}\right)$is a right homotopy inverse, and this completes the proof.

As an immediate consequence of the above three propositions we have
Theorem 2.6. Let a transformation (2.1) be given, and suppose that vertical maps are homotopy equivalences. Then $E\left(\psi_{1}, \varphi, \psi_{2} ; G, H\right)$ is also an equivalence, that is, $E_{f, g}$ is an invariant object under homotopy equivalences.

Now we see that a transformation (2.1) gives rise to a new map:

where $\chi_{1}=E\left(f^{\prime}, f ; G\right)$ and $\chi_{2}=E\left(g^{\prime}, g ; H\right)$. From (2.1) and (2.7) we obtain a sequence

$$
\begin{equation*}
E_{x_{1}, x_{2}} \xrightarrow{E\left(P \psi_{1}, P \psi, P \psi_{2}\right)} E_{f, g} \xrightarrow{E\left(\psi_{1}, \varphi, \psi_{2} ; G, H\right)} E_{f^{\prime}, g^{\prime}} \tag{2.8}
\end{equation*}
$$

We shall prove
Proposition 2.9. (2.8) induces, for any space V, an exact sequence

$$
\pi\left(V, E_{\chi_{1}, x_{2}}\right) \longrightarrow \pi\left(V, E_{f, g}\right) \xrightarrow{\chi_{*}} \pi\left(V, E_{f, g^{\prime}}\right) .
$$

Proof. First we shows that $\chi \circ E\left(P \psi_{1}, P \varphi, P \psi_{2}\right)$ is nullhomotopic. Take any point of $E_{\chi_{1}, \chi_{2}}$, that is ($\left.a, \alpha^{\prime}, b, \beta^{\prime}, r, \tilde{\gamma}\right)=x \in A \times E A^{\prime} \times B \times E B^{\prime} \times Y^{I} \times\left(E Y^{\prime}\right)^{I}$ such that

$$
\begin{gathered}
\psi_{1}(a)=\alpha^{\prime}(1), \psi_{2}(b)=\beta^{\prime}(1), \varphi_{r}(s)=\widetilde{\gamma}(1, s), 0 \leqq s \leqq 1, \\
f(a)=\gamma(0), g(b)=\gamma(1), \widetilde{r}(0, t)=y_{0}^{\prime}, \\
\widetilde{\gamma}(s, 0)= \begin{cases}f^{\prime} \alpha^{\prime}(2 s), & 0 \leqq s \leqq \frac{1}{2}, \\
G_{2 s-1}(a), & \frac{1}{2} \leqq s \leqq 1,\end{cases} \\
\widetilde{\gamma}(s, 1)= \begin{cases}g^{\prime} \beta^{\prime}(2 s), & 0 \leqq s \leqq \frac{1}{2}, \\
H_{2 s-1}(b), & \frac{1}{2} \leqq s \leqq 1 .\end{cases}
\end{gathered}
$$

Therefore

$$
\chi \circ E\left(P \psi_{1}, P \varphi, P \psi_{2}\right)\left(a, \alpha^{\prime}, b, \beta^{\prime}, \gamma, \tilde{\gamma}\right)=\left(\alpha^{\prime}(1), \beta^{\prime}(1), \delta\right),
$$

where δ is the path in Y^{\prime} given by

$$
\delta(t)= \begin{cases}G_{3}(a), & 0 \leqq t \leqq \frac{1}{3} \\ \varphi_{r}(3 t-1), & \frac{1}{3} \leqq t \leqq \frac{2}{3} \\ H_{3-3} t(b), & \frac{2}{3} \leqq t \leqq 1\end{cases}
$$

Let $\rho: I \times I \rightarrow I \times I$ be a homeomorphism such that $\rho(0 \times I)=0 \times I, \rho(I \times i)=$ $\left[0, \frac{1}{2}\right] \times i, i=0$ or $1, \rho\left(1 \times\left[0, \frac{1}{3}\right]\right)=\left[\frac{1}{2}, 1\right] \times 0, \rho\left(1 \times\left[\frac{2}{3}, 1\right]\right)=\left[\frac{1}{2}, 1\right]$ $\times 1, \rho\left(1 \times\left[\frac{1}{3}, \frac{2}{3}\right]\right)=1 \times I$ and ρ is linear on the indicated segments. Then it is clear that $(x, \tau) \rightarrow\left(\alpha^{\prime}(\tau), \beta^{\prime}(\tau), \tilde{\gamma} \rho \mid \tau \times I\right)$ is a homotopy deforming $x \rightarrow$ ($\left.\alpha^{\prime}(1), \beta^{\prime}(1), \delta\right)$ into the constant map.

Conversely, let $k: V \rightarrow E_{f, g}$ be expressed by

$$
k(v)=(a(v), b(v), \gamma(v)), \quad v \in V
$$

and let $\left(A_{t}(v), B_{t}(v), C_{t}(v)\right): 0 \simeq \chi \circ k(v)$. We denote by $\alpha^{\prime}(v)$ and $\beta^{\prime}(v)$ the paths determined by $A_{t}(v), B_{t}(v)$ respectively, and we define $\widetilde{\gamma}(v): I \times I \rightarrow Y^{\prime}$ by $\widetilde{\gamma}(v)(t, s)=C_{t}(v)\left(s^{\prime}\right)$, where $\left(t^{\prime}, s^{\prime}\right)=\rho^{-1}(t, s)$. It is obvious that $h: V \rightarrow E_{x_{1}, x_{2}}$, given by

$$
h(v)=\left(a(v), \alpha^{\prime}(v), b(v), \beta^{\prime}(v), \gamma(v), \tilde{\gamma}(v)\right),
$$

satisfies $k=E\left(P \psi_{1}, P \varphi, P \psi_{2}\right) \circ h$. Thus the proof is complete.

Applying the above proposition and Theorem 2.6, and noting that $E_{\Omega f, g_{g}}$ is homeomorphic to $\Omega E_{f, g}$, we reach the final result.

Theorem 2.10. Every transformation (2.1) induces, for any space V, an exact sequence

$$
\ldots \xrightarrow{(\Omega \chi)} \pi\left(V, \Omega E_{f^{\prime}, g^{\prime}}\right) \longrightarrow \pi\left(V, E_{\chi_{1}, \chi_{2}}\right) \longrightarrow \pi\left(V, E_{f, g}\right) \xrightarrow{\chi_{*}} \pi\left(V, E_{f^{\prime}, g^{\prime}}\right) .
$$

Corollary 2.11. Let $A \xrightarrow{f} Y \stackrel{g}{\leftarrow} B$ be a triad and suppose there exists a map $h: A \rightarrow B$ such that $g \circ h=f$. Then the sequence

$$
\cdots \rightarrow \pi\left(V, \Omega E_{g}\right) \rightarrow \pi\left(V, E_{h}\right) \rightarrow \pi\left(V, E_{f}\right) \rightarrow \pi\left(V, E_{g}\right)
$$

is exact.
Proof. Apply Theorem 2.10 to the map

Finally, we prove
Lemma 2.12. For an arbitrary triad $A \xrightarrow{f} Y \stackrel{g}{-} B$, there exists a homotopically equivalent triad $A \xrightarrow{j_{1}} M \stackrel{j_{2}}{\hookrightarrow} B$ such that j_{1} and j_{2} are both inclusions and cofberings.

Proof. It suffices to take for M the mapping cylinder of $f \vee g: A \vee B \rightarrow Y$, j_{1} and j_{2} being natural inclusions.

§ 3. Some exact sequences

In this section we extend exact sequences established by Massey [9] and Hu [5]. Given a triad $A \xrightarrow{f} Y \stackrel{g}{\leftarrow} B$, let

$$
\begin{aligned}
& T_{f, g}=\{(\alpha, \beta, \tilde{\gamma}) \in E A \times E B \times E E Y \mid \tilde{\gamma}(s, 1)=f \alpha(s), \widetilde{\gamma}(1, t)=g \beta(t)\}, \\
& S_{f, g}=\{(\alpha, \beta) \in E A \times E B \mid f \alpha(1)=g \beta(1)\} .
\end{aligned}
$$

We observe that $S_{f, g}$ is just E_{i} for the natural inclusion $i=\pi_{1} \times \pi_{2}: \operatorname{Ker}(f: g)$ $\rightarrow A \times B$. Corresponding to these constructions we consider the following maps:
$p: T_{f, g} \rightarrow S_{f, g}$ defined by $p(\alpha, \beta, \tilde{\gamma})=(\alpha, \beta)$,
$m: S_{f, g \rightarrow \Omega} Y$ defined by $m(\alpha, \beta)=(f \alpha) \cdot(g \beta)^{-1}$,
$n: \Omega^{2} Y \rightarrow T_{f, g}$ defined by $n(\tilde{\gamma})=\left(e_{a_{0}}, e_{b_{0}}, \tilde{\gamma}\right)$,
$r_{1}: S_{f, g \rightarrow} \rightarrow E_{\pi_{1}}$ defined by $r_{1}(\alpha, \beta)=(\alpha(1), \beta(1), \alpha)$,
$r_{2}: S_{f, g} \rightarrow E_{\pi_{2}}$ defined by $r_{2}(\alpha, \beta)=(\alpha(1), \beta(1), \beta)$.
These maps are obviously imbedded into the following sequences

$$
\begin{align*}
& \cdots \xrightarrow{\Omega m} \Omega^{2} Y \xrightarrow{n} T_{f, g} \xrightarrow{p} S_{f, g} \xrightarrow{m} \Omega Y, \tag{3.1}\\
& \cdots \xrightarrow{\Omega r_{1}} \Omega E_{\pi_{1}} \xrightarrow{q_{2}} \Omega B \xrightarrow{u_{2}} S_{f, g} \xrightarrow{r_{1}} E_{\pi_{1}}, \tag{3.2}\\
& \cdots \xrightarrow{\Omega r_{2}} \Omega E_{\pi_{2}} \xrightarrow{q_{1}} \Omega A \xrightarrow{u_{1}} S_{f, g} \xrightarrow{r_{2}} E_{\pi_{2}},
\end{align*}
$$

in which $u_{2}: \Omega B \rightarrow S_{f, g}$ and $q_{2}: \Omega E_{\pi_{1}} \rightarrow \Omega B$ are defined by

$$
\begin{array}{ll}
u_{2}(\beta)=\left(e_{a_{0}}, \beta\right), & \\
q_{2}(\alpha, \beta, \tilde{\alpha})=\beta^{-1} & \text { for } \alpha \in \Omega A, \beta \in \Omega B, \tilde{\alpha} \in \Omega E A \\
& \text { such that } f \alpha=g \beta, \widetilde{\alpha}(1, t)=\alpha(t),
\end{array}
$$

and u_{1} and q_{1} are similarly defined.
It is easily seen that E_{m} is homeomorphic to $T_{f, g}$. Thus we have
Proposition 3.3. The sequence (3.1) induces an exact sequence

$$
\cdots \xrightarrow{n_{*}} \pi\left(V, T_{f, g}\right) \xrightarrow{p_{*}} \pi\left(V, S_{f, g}\right) \xrightarrow{m_{*}} \pi(V, \Omega Y) .
$$

Now we consider $l_{1}: \Omega B \rightarrow E_{r_{1}}$ and $l_{2}: \Omega A \rightarrow E_{r_{2}}$ defined by

$$
l_{1}(\beta)=\left(e_{a_{0}}, \beta ; e_{a_{0}}, e_{b_{0}}, \widetilde{e}\right), l_{2}(\alpha)=\left(\alpha, e_{b_{0}} ; e_{a_{0}}, e_{b_{0}}, \widetilde{e}\right)
$$

where $\widetilde{e}: I \times I \rightarrow A$ (or B) is the constant map. Then we prove
Lemma 3.4. l_{1} and l_{2} are homotopy equivalencs.
Proof. Every point of $E_{r_{1}}$ is of the form $\left(\alpha, \beta ; \alpha^{\prime}, \beta^{\prime}, \tilde{\gamma}\right) \in E A \times$ $E B \times E A \times E B \times E E A$, where $f \alpha(1)=g \beta(1), \alpha^{\prime}(1)=\alpha(1), \beta^{\prime}(1)=\beta(1), \tilde{\gamma}(s, 1)$ $=\alpha(s), \tilde{\gamma}(1, t)=\alpha^{\prime}(t)$. We define $h_{1}: E_{r_{1} \rightarrow \Omega B}$ by

$$
h_{1}\left(\alpha ; \beta ; \alpha^{\prime}, \beta^{\prime}, \tilde{\gamma}\right)=\beta \cdot\left(\beta^{\prime}\right)^{-1} .
$$

Clearly $h_{1} \circ l_{1} \simeq 1 . \quad l_{1} \circ h_{1}$ is also deformed into the identity map by the following homotopy :

$$
\left(\alpha, \beta ; \alpha^{\prime}, \beta^{\prime}, \tilde{\gamma}\right) \rightarrow\left(\alpha_{\tau}, \beta_{\tau} ; \alpha_{0, \tau}^{\prime}, \beta_{0, \tau}^{\prime}, \widetilde{\gamma}_{\tau}\right), \quad 0 \leqq \tau \leqq 1,
$$

where

$$
\begin{aligned}
& \alpha_{-}(s)=\widetilde{\gamma}(s, \tau), \widetilde{\gamma}_{\tau}(t, s)=\widetilde{\gamma}(t, \tau s), \\
& \beta_{\tau}(s)= \begin{cases}\beta\left(\frac{2 s}{1+\tau}\right), & 0 \leqq s \leqq \frac{1+\tau}{2}, \\
\beta^{\prime}(\tau+2-2 s), & \frac{1+\tau}{2} \leqq s \leqq 1 .\end{cases}
\end{aligned}
$$

By Lemma 3.4 we have
Proposition 3.5. (3.2) induce exact sequences

$$
\pi\left(V, \Omega E_{\pi_{1}}\right) \xrightarrow{q_{2} *} \pi(V, \Omega B) \xrightarrow{u_{2 *}} \pi\left(V, S_{f, g}\right) \xrightarrow{r_{1 *}} \pi\left(V, E_{\pi_{1}}\right)
$$

and

$$
\pi\left(V, \Omega E_{\pi_{2}}\right) \xrightarrow{q_{1 *}} \pi(V, \Omega A) \xrightarrow{u_{1 *}} \pi\left(V, S_{f, g}\right) \xrightarrow{r_{2 *}} \pi\left(V, E_{\pi_{2}}\right)
$$

The above Propositions 3.3 and 3.5 may be regarded as an extension of the exact sequences established by Massey [9].

We now observe that (1.1) yields maps $\chi_{1}=E\left(f, \pi_{2}\right): E_{\pi_{1}} \rightarrow E_{g}$ and $\%_{2}=E\left(g, \pi_{1}\right): E_{\pi_{2}} \rightarrow E_{f}$, and that $E_{\chi_{1}}$ and $E_{\chi_{2}}$ can be identified with $T_{f, g}$. Thus we conclude

Proposition 3.6. The sequences

$$
\rightarrow \pi\left(V, \Omega E_{g}\right) \rightarrow \pi\left(V, T_{f, g}\right) \rightarrow \pi\left(V, E_{\pi_{1}}\right) \xrightarrow{\chi_{1 *}} \pi\left(V, E_{g}\right)
$$

and

$$
\rightarrow \pi\left(V, \Omega E_{f}\right) \rightarrow \pi\left(V, T_{f^{\prime}, g}\right) \rightarrow \pi\left(V, E_{\pi_{2}}\right) \xrightarrow{\chi_{2 *}} \pi\left(V, E_{f}\right)
$$

are exact.

This is a generalization of exact sequences of a usual triad [1].
Finally we prove
Proposion 3.7. Let $A \xrightarrow{f} Y \stackrel{g}{\leftarrow} B$ be a triad in which g is a fibering. Then
(i) $\gamma_{1}: E_{\pi_{1}} \rightarrow E_{g}$ is a homotopy equivalence :
(ii) $T_{f, g}$ is contractible;
(iii) $\chi_{2}: E_{\pi_{2}} \rightarrow E_{f}$ has a right inverse.

Proof. χ_{1} is given by $\chi_{1}(a, b, \alpha)=(b, f \alpha)$ for $(a, b, \alpha) \in A \times B \times E A$ with $f(a)=g(b), \alpha(1)=a$. Let $\lambda: Z_{g} \rightarrow B$ denote a lifting function for g. We define
$\Gamma_{1}: E_{g} \rightarrow E_{\pi_{1}}$ by setting $\Gamma_{1}(b, \gamma)=\left(a_{0}, \lambda(b, \gamma), e_{a_{0}}\right)$ for $\gamma \in E Y, g(b)=\gamma(1)$. It follows at once that Γ_{1} is a homotopy inverse of γ_{1}, which prove (i). (ii) is an immediate consequence of (i) and Proposition 3.6. To prove (iii), consider $\Gamma_{2}: E_{f} \rightarrow E_{\pi_{2}}$ which is defined by $\Gamma_{2}(a, \gamma)=\left(a, \lambda\left(b_{0}, \gamma^{-1}\right), \Lambda\left(b_{0}, \gamma^{-1}\right)^{-1}\right)$, where $\Lambda: Z_{g} \rightarrow B^{l}$ is the path lifting function with which λ is associated. Clearly $\%_{2} \circ \Gamma_{2}=1$, as we wish to prove.

§ 4. Cotriad

In order to dualize the preceding results, we shall call $A \stackrel{f}{\longleftrightarrow} X \xrightarrow{g} B$ a cotriad and denote by $\langle f: g\rangle$. Then the argument is quite automatic, but briefly indicated.

With a given cotriad $A \stackrel{f}{\longleftrightarrow} X \xrightarrow{g} B$, we associate the following spaces:
$C_{f, g}=$ the space obtained from $A \cup X \times I \cup B$ by the identifications

$$
(x, 0)=f(x),(x, 1)=g(x),\left(x_{0}, s\right)=\left(x_{0}, t\right), x \in X, s, t \in I
$$

Coker $\langle f: g\rangle=$ the space obtained from $A \cup B$ by the identifications

$$
f(x)=g(x), x \in X
$$

In case f and g are inclusions Coker $\langle f: g\rangle$ is the union of A and B, and in case g is a cofibering it is the cofiber space induced by f. Further, $C_{f, g}$, which may be called the mapping cylinder of a co-triad $\langle f: g\rangle$, has already appeared in the book of Eilenberg-Steenrod [4], p. 51, G, 4 for inclusions f and g.

We have now the (homotopy-) commutative diagrams

where i_{1}, i_{2}, I_{1} and I_{2} are appropriate injections, and Q is the map which pinches $A \cup B$ to a point.
(4.3) (4.2) induces, for any space V, an exact diagram :

Let us now suppose that g is a cofibering with an extension function λ^{\prime} : $B \rightarrow M_{g}$. Let $\mathscr{D}^{\prime}: C_{f, g} \rightarrow$ Coker $\langle f: g\rangle$ and $\Psi^{\prime}:$ Coker $\langle f: g\rangle \rightarrow C_{f, g}$ be the maps defined by

$$
\begin{array}{ll}
D^{\prime}(a)=a, \Phi^{\prime}(b)=b, \Phi^{\prime}(x, s)=f(x)=g(x), \\
& \text { for } a \in A, b \in B, x \in X, 0 \leqq s \leqq 1, \\
Y^{\prime}(a)=a, Y^{\prime}(b)=\overline{\lambda^{\prime}}(b) & \text { for } a \in A, b \in B,
\end{array}
$$

where $\bar{\lambda}^{\prime}$ denotes the composition $B \xrightarrow{\lambda^{\prime}} M_{g} \longrightarrow C_{f}, g$.
(4.4) The above \mathscr{D}^{\prime} and Ψ^{\prime} are mutually inverse homotopy equivalences.
(4.5) The following diagram is exact:

We note that this may be considered as a generalization of the MayerVietoris cohomology sequence of a proper triad [4], p. 43.

Let

be homotopy-commutative, and let $G_{t}: f^{\prime} \varphi \simeq \psi_{1} f$ and $H_{t}: g^{\prime} \varphi \simeq \psi_{2} g$ be homotopies. We define $\chi^{\prime}=C\left(\psi_{1}, \varphi, \psi_{2}: G, H\right): C_{f, g} \rightarrow C_{f^{\prime}, g^{\prime}}$ by

$$
\begin{aligned}
& \chi^{\prime}(a)=\psi_{1}(a), \chi^{\prime}(b)=\psi_{2}(b), \quad a \subseteq A, b \subseteq B, \\
& \chi^{\prime}(x, s)= \begin{cases}G_{1-3}(x), & 0 \leqq 3 s \leqq 1 \\
(\varphi(x), 3 s-1), & 1 \leqq 3 s \leqq 2 \\
H_{3 s-2}(x), & 2 \leqq 3 s \leqq 3\end{cases}
\end{aligned}
$$

(4.6) If ψ_{1}, φ and ψ_{2} are homotopy equivalences, then so is $\%^{\prime}$.

Let $A \stackrel{f}{\leftarrow} X \xrightarrow{g} B$ be a cotriad, and let us consider
$T_{f, g}^{\prime}=$ the space obtained from $C A \cup C C X \cup C B$ by the identifications:

$$
(x, s, 1)=(f(x), s),(x, 1, t)=(g(x), t), x \in X, 0 \leqq s, t \leqq 1
$$

$S_{f, g}^{\prime}=$ the space obtained from $C A \cup C B$ by the identifications:

$$
(f(x), 1)=(g(x), 1), x \in X
$$

Then the following sequences are obviously defined:

$$
\begin{equation*}
S X \xrightarrow{m^{\prime}} S^{\prime} f, g \xrightarrow{p^{\prime}} T_{f, g}^{\prime} \xrightarrow{n^{\prime}} S^{2} X \longrightarrow \tag{4.7}
\end{equation*}
$$

(4.8) $\quad C_{i_{1}} \longrightarrow S_{f, g}^{\prime} \longrightarrow S B \longrightarrow S C_{i_{1}} \longrightarrow \cdot \cdot$ and $C_{i_{2}} \longrightarrow S_{f, g}^{\prime} \longrightarrow S A \longrightarrow S C_{i_{2}} \longrightarrow \cdots$

$$
\begin{equation*}
C_{f} \longrightarrow C_{i_{2}} \longrightarrow T_{f, g}^{\prime} \longrightarrow S C_{f} \longrightarrow \cdots \text { and } C_{g} \longrightarrow C_{i_{1}} \longrightarrow T_{f, g}^{\prime} \longrightarrow S C_{g} \longrightarrow \cdots \tag{4.9}
\end{equation*}
$$

It is easy to verify
(4.10) The above sequences (4.7)-(4.9) induces exact sequences.
(4.11) Let $A \stackrel{f}{\longleftrightarrow} X^{g} \xrightarrow{g} B$ be a cotriad in which g is a cofibering. Then
(i) $C\left(f, i_{2}\right): C_{g} \longrightarrow C_{i_{1}}$ is a homotopy equivalence;
(ii) $T_{f, g}^{\prime}$ is contractible ;
(iii) $C\left(g, i_{1}\right): C_{f} \longrightarrow C_{i_{2}}$ has a left inverse.

This proposition shows that $\pi\left(T_{f, g}^{\prime}, K(\pi, n)\right)$ is an analogue of cohomology groups of a triad (cf. [4], p. 204, Theorem 11.3)

§ 5. Cohomology of induced fibrations

Let $A \xrightarrow{f} Y \stackrel{g}{\leftarrow} B$ be a triad in which all spaces are assumed to be pathconnected. We now define

$$
\mu, \Pi_{1}:\left(E_{f}^{-} \times E_{g}, \Omega Y \times E_{g}\right) \rightarrow\left(E_{f, g}, E_{g}\right)
$$

by setting

$$
\begin{aligned}
& \mu(a, \gamma, b, \delta)=(a, b, \gamma \cdot \delta) \\
& \Pi_{1}(a, \gamma, b, \delta)=\left(a, b_{0}, \gamma\right)
\end{aligned}
$$

for $(a, \gamma, b, \delta) \in A \times E^{-} Y \times B \times E Y$ with $f(a)=\gamma(0), g(b)=\delta(1)$.
Theorem 5.1. $\left(\mu^{*}-\Pi_{1}^{*}\right) \circ P_{1}^{*}: H^{q}\left(A, a_{0}\right) \rightarrow H^{q}\left(E_{f}^{-} \times E_{g}, \Omega Y \times E_{g}\right)$ is trivial for all $q \geqq 0$.

Proof. This is clear, since we have $P_{1} \circ \mu(a, \gamma, b, \delta)=a=P_{1} \circ \Pi_{1}(a, \gamma, b, \delta)$.
The goal of this section is to prove
Theorem 5.2. Let A be a r-connected space ($r \geqq 2$) with non-degenerate base-point a_{0} and let Y be a t-connected space ($t \geqq 2$) with non-degenerate basepoint y_{0}. Suppose further that E_{g} is s-connected, $s \geqq 1$. Then the sequence

$$
H^{q}\left(A, a_{0}\right) \xrightarrow{P_{1}^{*}} H^{q}\left(E_{f, g}, E_{g} \xrightarrow{\mu^{*}-\Pi_{1}^{*}} H^{q}\left(E_{f}^{-} \times E_{g}, \Omega Y \times E_{g}\right)\right.
$$

is exact for $q \leqq r+s+t+2$.
Proof. Given a transformation (2.1), we have $\mu^{\circ}\left(\%_{1} \times \%_{2}\right) \simeq \chi_{\circ} \mu, \Pi_{1} \circ\left(\%_{1} \times \%_{2}\right)$ $=\chi \circ \Pi_{1}$ and $\psi_{1} \circ P_{1}=P_{1} \circ \%$, where $\%=E\left(\psi_{1}, \varphi, \psi_{2} ; G, H\right), \chi_{1}=E\left(\psi_{1}, \varphi, 0 ; G, 0\right)$, $\psi_{2}=E\left(0, \varphi, \psi_{2} ; 0, H\right)$. Therefore we can assume, by Lemma 2.12, that f and g are inclusions.

Let now ($Y ; A, B$) be a usual triad with base-point y_{0}. For subspaces K and L of Y, let $E_{K, L}$ denote the space of paths γ in Y such that $\gamma(0) \in K$ and $\gamma(1) \in L$. We shall write μ for multiplication of paths in Y, Π_{1} for the projection on the first factor and P_{1}, P_{2} for the maps taking, respectively, the initial and final point of paths. Let $W=\left\{r \in E_{A, r} \left\lvert\, r\left(\frac{1}{2}\right)=y_{0}\right.\right\}$. We need the following two lemmas:

Lemma 5.3. (a) There exists a neighborhood V_{1} of $E_{y_{0}, B}$ in $E_{A, B}$ such that $E_{y_{0}, B}$ is a strong deformation retract of V_{1}.
(b) There exists a neighborhood V_{2} of ΩY in $E_{A, y_{0}}$ such that ΩY is a strong deformation retract of V_{2}.
(c) There exists a neighborhood V_{3} of W in $E_{A, Y}$ such that ($W, W \cap\left(E_{A, B}\right.$ $\cup E Y)$) is a strong deformation retract of $\left(V_{3}, V_{3} \cap\left(E_{A, B} \cup E Y\right)\right)$.

Lemma 5.4. ($\left.E_{A, Y}, E_{A, B} \cup E Y \cup W\right)$ is $(r+s+t+3)$-connected.
The first lemma is easily checked in a manner similar to those in [17] (cf. [15]), and the proof of the second will be postponed later.

Consider now the following commutative diagram

$$
\begin{aligned}
& H^{q}\left(A, a_{0}\right) \xrightarrow{P_{1}^{*}} H^{q}\left(E_{A, B}, E_{y_{0}, B}\right) \xrightarrow{\mu^{*}-\Pi_{1}^{*}} H^{q}\left(E_{A, y_{0}} \times E_{y_{0}, B}, \Omega Y \times E_{y_{0}, B}\right) \\
& P_{1}^{*} \downarrow \backslash i^{*} \quad k_{1}^{*} \uparrow \text { 亿 } \quad \mu^{*}-\Pi_{1}^{*} \quad k_{2}^{*} \uparrow \text { 亿 } \\
& H^{q}\left(E_{A, Y}, E Y\right) \xrightarrow{i_{1}^{*}} H^{q}\left(E_{A, B} \cup E Y, E Y\right) \xrightarrow{\mu_{1}^{*}-\Pi_{1}^{*}} H^{q}\left(E_{A, y_{0}} \times E_{y_{0}, B}^{k_{2}^{*}} \cup \Omega Y \times E Y, \Omega Y \times E Y\right) \\
& H^{\alpha+1}\left(E_{A, Y}, E_{A, B} \cup E Y\right) \xrightarrow{\mu^{*}} H^{q+1}\left(E_{A, y_{0}} \times E Y, E_{A, y_{0}} \times E_{y_{0}, B} \cup \Omega Y \times E Y\right) \\
& H^{q+1}\left(E_{A, Y} ; E_{A, B} \cup E Y, W\right) \rightarrow H^{q+1}\left(E_{A, Y}, E_{A, B} \cup E Y\right) \xrightarrow{j^{*}} \xrightarrow[\mu^{*} \uparrow \backslash]{H^{q+1}}\left(W, W \cap\left(E_{A, B} \cup E Y\right)\right),
\end{aligned}
$$

in which δ are coboundary homomorphisms，i, j, k_{1}, k_{2} are appropriate inclusions and μ at the right lower corner is a homeomorphism．Since the vertical P_{1} is a homotopy equivalence，P_{1}^{*} is an isomorphism onto．By Lemma 5.3 and Theorem 11.3 of Eilenberg－Steenrod［4］，k_{1}^{*} and k_{2}^{*} are exision isomorphisms， and moreover we see from Lemma 5.4 that

$$
H^{q+1}\left(E_{A, Y} ; E_{A, B} \cup E Y, W\right) \approx H^{q+1}\left(E_{A, Y}, E_{A, B} \cup E Y \cup W\right)=0
$$

for $q \leqq r+s+t+2$ ．
We next remark that the bottom line is a triadic cohomology sequence of a triad $\left(E_{A, Y} ; E_{A, B} \cup E Y, W\right)$ and hence exact．Take any element $x \in H^{q}\left(E_{A, B}\right.$, $\left.E_{y_{0}, B}\right)$ such that $\left(\mu^{*}-\Pi_{1}^{*}\right)(x)=0$ for $q \leqq r+s+t+2$ ；then $j^{*} \delta k_{1}^{*-1}(x)=0$ ． Since j^{*} is a momomorphism，there exists a $y \in H^{q}\left(A, a_{0}\right)$ such that $k_{1}^{*-1}(x)=$ $i^{*} P_{1}^{*}(y)$ ，noting that $\operatorname{Ker} \delta=\operatorname{Im} i^{*}$ ．Thus $x=P_{1}^{*}(y)$ which completes the proof of Theorem 5．2．
 fibering with fibre F ．We denote by $\lambda: Z_{g} \rightarrow B$ a lifting function for g（see ［12］，p．113）．We define

$$
\widetilde{\mu}, \widetilde{\Pi}_{1}:\left(E_{f}^{-} \times F, \Omega Y \times F\right) \rightarrow(\operatorname{Ker}(f: g), F)
$$

by $\widetilde{\mu}(a, \gamma, b)=(a, \lambda(b, \gamma)), \widetilde{\Pi}_{1}(a, \gamma, b)=\left(a, \lambda\left(b_{0}, \gamma\right)\right)$ for $a \in A, \gamma \in E^{-} Y, b \in B$ with $f(a)=\gamma(0), g(b)=y_{0}$ ．In view of Theorem 1.4 we see that these maps correspond to μ, Π_{1} in Theorem 5．2．Thus we conclude

Theorem 5．5．Let $(f: g)$ be as above．Suppose further that A, F, Y are respectively r－，s－，t－connected，$r \geqq 2, s \geqq 1, t \geqq 2$ ，and that A and Y have non－ degenerate base－points．Then the sequence

$$
H^{q}\left(A, a_{0}\right) \xrightarrow{\pi_{1}^{*}} H^{q}(\operatorname{Ker}(f: g), F) \xrightarrow{\tilde{\mu}^{*}-\widetilde{\Pi}_{1}^{*}} H^{q}\left(E_{f}^{-} \times F, \Omega Y \times F\right)
$$

is exact for $q \leqq r+s+t+2$.
In case $s=t-1$, it seems likely that the above theorem gives a geometric version to a part of an exact sequence obtained by E. H. Brown ([2], p. 240).

Finally, we shall give a proof of Lemma 5.4.
Proof of Lemma 5.4. Since $P_{1} \times P_{2}$ are both fibre maps in the diagram

$$
\begin{aligned}
& \cdots \rightarrow \pi_{i}\left(W, W \cap\left(E_{A, B} \cup E Y\right)\right) \xrightarrow{j^{*}} \pi_{i}\left(E_{A, Y}, E_{A, B} \cup E Y\right) \rightarrow \cdots \\
& \begin{array}{c}
\left(P_{1} \times P_{2}\right)_{*} \\
\pi_{i}\left(A \times Y, A \times B \cup y_{0} \times Y\right)
\end{array}
\end{aligned}
$$

exactness of the horizontal line implies $\pi_{i}\left(E_{A, Y} ; E_{A, B} \cup E Y, W\right)=0$ for $i \geqq 2$. Hence, by considering the homotopy sequence of a tetrad ($E_{A, Y} ; E_{A, B} \cup E Y \cup W$, $\left.E_{A, B} \cup E Y, W\right)$, we have

$$
\begin{aligned}
\pi_{i+1}\left(E_{A, Y}, E_{A, B} \cup E Y \cup W\right) & \approx \pi_{i+1}\left(E_{A, Y} ; E_{A, B} \cup E Y \cup W, E_{A, B} \cup E Y, W\right) \\
& \approx \pi_{i}\left(E_{A, B} \cup E Y \cup W ; E_{A, B} \cup E Y, W\right)
\end{aligned}
$$

for $i \geqq 2$. But it follows from the Künneth theorem that

$$
\pi_{i}\left(W, W \cap\left(E_{A, B} \cup E Y\right)\right) \approx \pi_{i}\left(A \times Y, A \times B \cup y_{0} \times Y\right)=0
$$

for $i \leqq r+s+2$, since $\left(A, y_{0}\right)$ is r-connected and $E_{y_{0}, B}=E_{g}$ is s-connected. On the other hand $\pi_{i}\left(E_{A, B} \cup E Y, W \cap\left(E_{A, B} \cup E Y\right)\right) \approx \pi_{i}\left(E_{A, r}, W\right)$ and, moreover, we see that $\gamma \rightarrow \gamma \cdot e_{y}, y=\gamma(1)$, yields a homotopy equivalence $\left(\left(E_{A, Y}, E_{A, y_{0}}\right) \rightarrow\right.$ $\left(E_{A, Y}, W\right)$. Therefore it follows from $\left(P_{2}\right)_{*}: \pi_{i}\left(E_{A, Y}, E_{A, y_{0}}\right) \approx \pi_{i}\left(Y, y_{0}\right)$ that $\left(E_{A, B} \cup E Y, W \cap\left(E_{A, B} \cup E Y\right)\right)$ is t-connected. Applying the Blakers-Massey theorem [1], we have that ($\left.E_{A, B} \cup E Y \cup W ; E_{A, B} \cup E Y, W\right)$ is $(r+s+t+2)$. connected and hence

$$
\begin{equation*}
\pi_{i}\left(E_{A, Y}, E_{A, B} \cup E Y \cup W\right)=0 \quad \text { for } 3 \leqq i \leqq r+s+t+3 . \tag{5.6}
\end{equation*}
$$

Consider now the exact sequence

$$
\begin{aligned}
& \pi_{2}\left(E_{A, Y}\right) \rightarrow \pi_{2}\left(E_{A, Y}, E_{A, B} \cup E Y \cup W\right) \rightarrow \pi_{1}\left(E_{A, B} \cup E Y \cup W\right) \rightarrow \pi_{1}\left(E_{A, Y}\right) \\
& \rightarrow \pi_{1}\left(E_{A, Y}, E_{A, B} \cup E Y \cup W\right) \rightarrow 0,
\end{aligned}
$$

where $\pi_{i}\left(E_{A, Y}\right) \approx \pi_{i}\left(E_{A, Y}, E Y\right) \approx \pi_{i}(A)=0$ for $i \leqq 2$. Upon noticing that $\pi_{1}(W) \approx \pi_{1}\left(E_{A, y_{0}}\right) \approx \pi_{2}(Y, A)=0$ and $\pi_{1}\left(E_{A, B}\right) \approx \pi_{1}\left(E_{A, B}, E_{y_{0}, B}\right) \approx \pi_{1}(A)=0$, it
follows from van Kampen's theorem [13] that $\pi_{1}\left(E_{A, B} \cup E Y \cup W\right)=0$. Hence $\pi_{i}\left(E_{A, Y}, E_{A, B} \cup E Y \cup W\right)=0$ for $i=1$, 2. Combining this with (5.6), we obtain the desired conclusion.

§ 6. Realizability of Whitehead products

In this section we shall state a result which is dual to a theorem of I. M. James [8] as an application of Theorem 5.2. See also [6, 7, 11, 18].

Let $f: X \rightarrow Y$ be a map in which Y possesses a non-degenerate base-point. $\hat{\Psi}: Z_{f \rightarrow X}$ denote the homotopy equivalence given by $\dot{\Psi}(x, \beta)=x, x \in X$, $\beta \in Y^{l}, f(x)=\beta(1)$. We set $P f=\Psi \mid E_{f}$. Let $l:\left(E^{-} Y, \Omega Y\right) \rightarrow\left(Z_{f}, E_{f}\right)$ be the inclusion, $l(\beta)=\left(x_{0}, \beta\right)$, and let $P:\left(Z_{f}, E_{f}\right) \rightarrow\left(X, y_{0}\right)$ denote the map defined by $P(x, \beta)=\beta(0)$

There is defined the path-multiplication $\mu: E^{-} Y \times E Y \rightarrow Y^{1}$ in an obvious manner. This induces maps $E^{-} Y \times E_{f} \rightarrow Z_{f}$ and $\Omega Y \times E_{f} \rightarrow E_{f}$ which are denoted by the same letter μ. In what follows, we use π_{1}, π_{2} to denote projections on the first and the second factors respectively.

We have then the following commutative diagram

$$
\begin{aligned}
& H^{q}\left(E^{-} Y \times E_{f}, \Omega Y \times E_{f}\right) \stackrel{\delta}{\leftarrow} H^{q-1}\left(\Omega Y \times E_{f}\right) \stackrel{H_{2}^{q-1}\left(E_{f}\right)}{i_{2}^{*}} \stackrel{i_{2}^{*}}{\stackrel{i}{\approx}} H^{i_{3}^{*-1}}\left(E^{-} Y \times E_{f}\right) \\
& \uparrow_{\bar{\nu}} \\
& \uparrow \nu \\
& H^{q}\left(E_{f}\right) \stackrel{i^{*}}{\leftarrow} H^{q}\left(Z_{f}\right) \stackrel{j^{*}}{\leftarrow} H^{q}\left(Z_{f}, E_{f}\right) \stackrel{\delta}{\longleftarrow} H^{q-1}\left(E_{f}\right) \\
& (P f)^{*} \backslash \backslash \hat{\Psi}^{*} \hat{f}^{*} P^{*} \\
& H^{q}(X) \stackrel{f^{*}}{\leftarrow} H^{q}(Y)
\end{aligned}
$$

where $\bar{\nu}=\mu^{*}-\pi_{1}^{*} l^{*}, \nu=\mu^{*}-\pi_{2}^{*}-\pi_{1}^{*}(I f)^{*}, \delta$ are coboundary homomorphisms, and $i, j, i_{1}, i_{2}, i_{3}$ are appropriate injections.

Theorem 6.1. (a) $\bar{\nu} \circ P^{*}=0$.
(b) If Y and E_{f} are respectively r-and s-connected, $r \geqq 2, s \geqq 1$, then P^{*} : $H^{q}(Y) \rightarrow H^{q}\left(Z_{f}, E_{f}\right)$ is a monomorphism for $q \leqq r+s+2$ and the sequence

$$
H^{q}(Y) \xrightarrow{P^{*}} H^{q}\left(Z_{f}, E_{f}\right) \xrightarrow{\bar{\sim}} H^{q}\left(E^{-} Y \times E_{f}, \Omega Y \times E_{f}\right)
$$

is exact for $q \leqq 2 r+s+2$.
(c) δ is monomorphic on $\operatorname{Ker} i_{2}^{*}$ and $\operatorname{Im} \nu \subset \operatorname{Ker} i_{2}^{*}$.

The first half of (b) follows from Serre's theorem since P is a fibre map with fibre E_{f}. (a) and (b) are obtained by applying Theorems 5.1 and 5.2 to a triad $Y \xrightarrow{1} Y \stackrel{f}{\longleftrightarrow} X . \quad(c)$ is an immediate consequence of the fact that i_{3}^{*} is an isomorphism.

In the sequel assume that all spaces considered have the same homotopy type of a CW-complex. To simplify the notation we do not distinguish between a map and the homotopy class or the cohomology class it represents.

Now we shall take $\theta: K(\pi, n) \rightarrow K\left(\pi^{\prime}, n^{\prime}+1\right)$ instead of $f: X \rightarrow Y$ in the foregoing consideration, where $2 \leqq n<n^{\prime}$, and consider $\phi: E_{\theta} \rightarrow K\left(G, n+n^{\prime}\right)$. Let W denote the Whitehead product pairing $\pi^{\prime} \otimes \pi \rightarrow G$ in E_{ϕ}. We call E_{ϕ} a space of type (W, θ). Let $\iota \in H^{n}(\pi, n ; \pi), \iota^{\prime} \in H^{n^{\prime+1}}\left(\pi^{\prime}, n^{\prime}+1 ; \pi^{\prime}\right)$ be basic classes respectively. In these situations it is proven that

Lemma 6.2. (Meyer [10] and Peterson-Stein [14]) $\nu(\phi)=\pi_{1}^{*}\left({ }^{1} \epsilon^{\prime}\right) \cup \pi_{2}^{*}(P \theta)^{*}(\epsilon)$, where ${ }^{1}{ }^{\prime}$ denotes the suspension of ι^{\prime} and the cup-product is with respect to W.

The proof of our result stated in the introduction is based on the following theorem.

Theorem 6.3. $\delta(\phi)=P^{*}\left(\epsilon^{\prime}\right) \cup \hat{\Psi}^{*}(\epsilon)+P^{*}(\rho)$ for unique $\rho \in H^{n+n^{\prime}+1}\left(\pi^{\prime}\right.$, $\left.n^{\prime}+1 ; G\right)$, where the cup-product is relative to W.

Proof. For convenience we consider the projection $p_{2}: E^{-} Y \times E_{\theta} \rightarrow E_{\theta}$ and the injection $k: \Omega Y \times E_{\theta} \rightarrow E^{-} Y \times E_{0}$, and let $p:\left(E^{-} Y, \Omega Y\right) \rightarrow\left(Y, y_{0}\right)$ be the fibre map given by $p(\beta)=\beta(0) . \quad l_{0}: E^{-} Y \rightarrow Z_{9}$ denotes the map determined by l. Since $l_{0}^{*} \hat{\Psi}^{*}(\varsigma)=0$, we have $\pi_{1}^{*} l^{*}\left[P^{*}\left(\iota^{\prime}\right) \cup \hat{T}^{*}(\varsigma)\right]=0$. Further,

$$
\begin{aligned}
& \bar{\nu} \delta(\phi)=\delta \nu(\phi)=\delta\left[\pi_{1}^{*}\left({ }^{1} \iota^{\prime}\right) \cup \pi_{2}^{*}(P \theta)^{*}(\epsilon)\right] \quad \text { by Lemma 6.2, } \\
& =\delta\left[\pi_{1}^{*}\left({ }^{1} \iota^{\prime}\right) \cup k^{*} p_{2}^{*}(P \theta)^{*}(\epsilon)\right] \\
& =\delta \pi_{1}^{*}\left({ }^{1} \iota^{\prime}\right) \cup p_{2}^{*}(P \theta)^{*}(\varsigma) \quad \text { by [16], (3.2), } \\
& =\pi_{1}^{*} \delta\left(^{1}{ }^{\prime}\right) \cup \pi_{2}^{*} \hat{\Psi}^{*}(\iota), \quad \text { since } i \circ p_{2}=\pi_{2} \text {, } \\
& =\pi_{1}^{*} p^{*}\left(\iota^{\prime}\right) \cup \pi_{2}^{*} \hat{T}^{*}(\iota) \\
& =\pi_{1}^{*} l^{*} P^{*}\left(\iota^{\prime}\right) \cup \pi_{2}^{*} \hat{\Psi}^{*}(\iota) \\
& =\mu^{*} P^{*}\left(\iota^{\prime}\right) \cup \mu^{*} \hat{T}^{*}(\ell) \quad \text { by Theorem } 6.1(a) \text {, } \\
& =\mu^{*}\left[P^{*}\left(\iota^{\prime}\right) \cup \hat{\Psi}^{*}(\ell)\right] \text {. }
\end{aligned}
$$

This calculation leads to $\bar{\nu}\left[\delta(\phi)-P^{*}\left(\iota^{\prime}\right) \cup \hat{T}^{*}(\epsilon)\right]=0$. Hence, by Theorem 6.1 (b), we see that there exists a unique $\rho \in H^{n+n^{\prime}+1}\left(\pi^{\prime}, n^{\prime}+1 ; G\right)$ with the desired property.

Theorem 6.4. Let $\theta: K(\pi, n) \rightarrow K\left(\pi^{\prime}, n^{\prime}+1\right)$, where $2 \leqq n<n^{\prime}$, and let \tilde{W} : $\pi^{\prime} \otimes \pi \rightarrow G$ be a given homomorphism. Let $\theta \cup$ c denote the cup-product of θ and the basic class of $K(\pi, n)$ relative to \tilde{W}. Then there exists a space of type (\widetilde{W}, θ) if, and only if, $\theta \cup$: is contained in the image of the homomorphism

$$
\theta^{*}: H^{n+n^{\prime}+1}\left(\pi^{\prime}, n^{\prime}+1 ; G\right) \rightarrow H^{n+n^{\prime}+1}(\pi, n ; G) .
$$

Proof. Applying $\left(\hat{\Psi}^{*}\right)^{-1} j^{*}$ to the formula in Theorem 6.3, we obtain $0=\theta^{*}\left(\iota^{\prime}\right) \cup \iota+\theta^{*}(\rho)$, i.e., $\theta \cup \iota=-\theta^{*}(\rho)$, which proves the "only if" part. Conversely, suppose there exists $\rho \in H^{n+n^{\prime}+1}\left(\pi^{\prime}, n^{\prime}+1 ; G\right)$ such that $-\theta^{*}(\rho)$ $=\theta \cup$ \& rel \widetilde{W}. Here "rel \widetilde{W} " indicates that the cup-product is to be taken relative to \widetilde{W}. This shows that $P^{*}\left(\iota^{\prime}\right) \cup \hat{\Psi}^{*}(\iota)$ rel $\widetilde{W}+P^{*}(\rho)$ lies in the kernel of j^{*}, so that, by exactness of the cohomology sequence of the pair $\left(Z_{\theta}, E_{\theta}\right)$, there is $\phi \in H^{n+n^{\prime}}\left(E_{\theta}\right)$ such that $\delta(\phi)=P^{*}\left(\iota^{\prime}\right) \cup \dot{\psi}^{*}(\iota)$ rel $\hat{W}+P^{*}(\rho)$. We shall show that the space E_{ϕ} is of type (\tilde{W}, θ). Let W denote the Whitehead product pairng in E_{ϕ}. Now

$$
\begin{array}{rlr}
\delta & {\left[\pi_{1}^{*}\left({ }^{1} \iota^{\prime}\right) \cup \pi_{2}^{*}(P \theta)^{*}(\ell) \text { rel } \widetilde{W}\right]} \\
& =\bar{\nu}\left[P^{*}\left(\iota^{\prime}\right) \cup \hat{Y}^{*}(\ell) \text { rel } \widetilde{W}\right] \quad \text { from the proof of Th. 6.3, } \\
& =\bar{\nu} \delta(\phi)=\delta \nu(\phi) & \text { by Theorem 6.1, (a), } \\
& \left.=\delta\left[\pi_{1}^{*}{ }^{1} \iota^{\prime}\right) \cup \pi_{2}^{*}(P \theta)^{*}(\iota) \text { rel } W\right] \quad & \text { by Lemma 6.2. }
\end{array}
$$

Therefore, Theorem 6.1, (c), implies $\pi_{1}^{*}\left({ }^{1} \iota^{\prime}\right) \cup \pi_{2}^{*}(P \theta)^{*}(\varsigma)$ rel $\widetilde{W}=\pi_{1}^{*}\left({ }^{1} \iota^{\prime}\right) \cup$ $\pi_{2}^{*}(P \theta)^{*}(\iota)$ rel W. This means that $\tilde{W}=W$.

Corollary 6.5. There always exists a space of type ($W, 0$).
Corollary 6.6. Under the same notation as in Theorem 6.3, we have $(I \theta)^{*}(\phi)={ }^{1} \rho$.

This is deduced by applying $\delta^{-1} l^{*}$ to the formula in Theorem 6.3, where $\delta: H^{n+n^{\prime}}\left(\pi^{\prime}, n^{\prime} ; G\right) \approx H^{n+n^{\prime}+1}\left(E^{-} K\left(\pi^{\prime}, n^{\prime}+1\right), \Omega K\left(\pi^{\prime}, n^{\prime}+1\right) ; G\right)$.

Corollary 6.7. Let $\theta: K(\pi, n) \rightarrow K\left(\pi^{\prime}, 2 n\right), n \geqq 2$, and let W_{1}, W_{2} be, respectively, given pairings $\pi \otimes \pi \rightarrow \pi^{\prime}, \pi^{\prime} \otimes \pi \rightarrow G$. Then there exists a space whose first invariant is θ and whose Whitehead product pairings are just W_{1} and W_{2}, if, and only if, $\left(\mu^{*}-\pi_{1}^{*}-\pi_{2}^{*}\right)(\theta)=\pi_{1}^{*}(\iota) \cup \pi_{2}^{*}(\ell)$ rel W_{1} and $\theta \cup \iota$
rel $W_{2} \in \theta^{*} H^{3 n}\left(\pi^{\prime}, 2 n ; G\right)$, where $\mu: K(\pi, n) \times K(\pi, n) \rightarrow K$, π) is the H-structure $m a p$.

This follows from a result proved by Copeland [3].
Corollary 6.8. If cat $K(\pi, n) \leqq 2$, then there always exists a space of type (W, θ).

References

[1] A. L. Blakers and W. S. Massey, The homotopy groups of a triad I, Ann. of Math. 53 (1951), 161-205; II, ibid. 55 (1952), 192-201.
[2] E. H. Brown, Twisted tensor products, I, Ann. of Math. 69 (1959), 223-246.
[3] A. H. Copeland, On H-spaces with two nontrivial homotopy groups, Proc. Amer. Math. Soc. 8 (1957), 184-191.
[4] S. Eilenberg and N. E. Steenrod, Foundations of algebaic topology, Princeton, 1952.
[5] S. T. Hu, Homotopy properties of the space of continuous paths II, Portugaliae Math. 11 (1952), 41-50.
[6] S. T. Hu, On the realizability of homotopy groups and their operations, Pacific J. of Math. 1 (1951), 583-602.
[7] K. Iwata and H. Miyazaki, Remarks on the realizability of Whitehead product, Tôhoku Math. J. 12 (1960), 130-138.
[8] I. M. James, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374-383.
[9] W. S. Massey, Homotopy groups of triads, Proc. Int. Congress Math., Cambridge, Mass., U.S.A. (1950), 371-382.
[10] J.-P. Meyer, Whitehead products and Postnikov systems, Amer. J. of Math. 82 (1960), 130-138.
[11] H. Miyazaki, On realizations of some Whitehead products, Tôhoku Math. J. 12 (1960), 1-30.
[12] Y. Nomura, On mapping sequences, Nagoya Math. J. 17 (1960), 111-145.
[13] P. Olum, Non-abelian cohomology and van Kampen's theorem, Ann. of Math. 68 (1958), 658-668.
[14] F. P. Peterson and N. Stein, Secondary cohomology operations: two formulas, Amer. J. of Math. $\mathbf{8 1}$ (1959), 281-305.
[15] D. Puppe, Homotopiemengen und ihre induzierten Abbildungen I, Math. Zeit. 69 (1958), 299-344.
[16] N. E. Steenrod, Cohomology invariants of mappings, Ann. of Math. 50 (1949), 954-988.
[17] G. W. Whitehead, On the homology susdension, Ann. of Math. 62 (1955), 254-268.
[18] J. H. C. Whitehead, On the realizability of homotopy groups, Ann. of Math. 50 (1949), 261-263.

Department of Mathematics

Shizuoka University

