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NON-STANDARD ARITHMETIC1)

ABRAHAM ROBINSON

1. Introduction. The natural numbers play a part in the formulation of

logical syntax inasmuch as they are used to count the symbols in a sentence,

or the sentences in a proof, etc. In the present paper, we shall study an

infinitary logical calculus which is based on replacing the ordinary natural

numbers in the capacity just mentioned, by a non-standard model of arithmetic.

(Compare refs. 3, 5, 6 for some other logical calculi of infinitary nature).

Thus, our calculus will include formulae of length n for any natural number

n, finite or infinite, in the chosen non-standard model of arithmetic. Evidently,

the study of such formulae can be of interest only if we introduce concepts

which are beyond the power of expression of the notions borrowed from the

standard case. It turns out that the concept of truth in a model, when defined

by means of Skolem functions has this character and involves a curious

phenomenon which is analogous to one first pointed out by H. Steinhaus and

J. Mycielski for another kind of infinitary language. Thus, while in the standard

predicate calculus the negation of a sentence in prenex normal form is reduced

to prenex normal form by changing the type of the quantifiers and by shifting

the sign of negation, this procedure is not legitimate when truth is defined in

this way in our calculus.

The plan of this paper is as follows. In the second section we detail two

auxiliary results which are used later. One of them is a generalization, due to

Craig (ref. 1), of Beth's theorem on definitions. The second result is Tarski's

well known theorem on the non-definability of the set of elementary sentences

that are true in arithmetic. The proof of this theorem by means of a non-
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standard model of arithmetic leads up to the main subject of the paper. In

the third section, we introduce the non-standard language which forms the

main subject of this paper, and discuss its syntactical properties. Finally,

sections 4 - 6 deal with two types of truth definition for our non-standard

language, and their interrelations.

The present paper may thus be regarded as a study of one of the implica-

tions of the existence of non-standard models of arithmetic. However, it is

not intended as a mere exercise in the use of this concept. In order to ap-

preciate this, notice that in the usual investigations of problems of incom-

pleteness and non-categoricity these phenomena are regarded as properties of

certain axiGmatic systems, which are detected when the systems in question
are investigated from a metamathematical point of view in which arithmetic is
supposedly absolute. By introducing non-standard arithmetic already at the
stage of the construction of the sentences of the object language, we emphasize

the fact that the notion of arithmetic may be relative even at the metama-

thematical level. However, we do not escape the convenient assumption that

at the back of all our investigations there is some system of arithmetic which

is absolute.

In the sequel, we shall refer to the Lower predicate calculus without going

into the details of the particular version to be used here. In fact, our general

arguments apply equally to the various standard versions of the calculus.

However, for the sake of definiteness we mention here that we shall envisage a

language in which the relation or function symbols do not determine the number

of their places. Thus, the same relation symbol may be used, in different

connections, to denote both binary and ternary relations. Round brackets are

used to enclose the arguments of a relation or of a function, or to enclose a

quantifier, while square brackets serve to determine the syntactical grouping.

Finally, no quantifier shall contain a variable that is already quantified in its

scope.

2. Auxiliary results. Let L be an elementary language (a language of the

Lower predicate calculus) whose set of extralogical constants comprises (symbols

for) relations, individual constants, and functions. Let X be a sentence in L

which contains an w-place relation R, n>0, and in addition a number of other

extralogical constants which constitute a set S. Suppose that S is divided into
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two subsets Si and S> such that Si contains at least one w-place relation, m>0.

Let X' be the sentence obtained from X by replacing the elements of S>, as

well as R, by distinct extralogical constants of the same kind which were not

contained in X. Thus, R is replaced by an w-place relation Rf and S2 is

replaced by a set which will be called S2. We may indicate the connection

between X and X' by writing

, S2, R), X'^F(Su Sί, R')

The following result, due to W. Craig iref. 1) is a generalization of Beth's

theorem on definitions

2.1. THEOREM. Suppose that

2.2. H Λ I ' D Π V ^ ) ' -(Vxn)lR(xu . . . ,xn)=R{xι ,*»)]]

Then there exists a predicate {wff) Q(x\, . . . , # * ) whose set of extralogical

constants belongs to Si such that

2 . 3 . [-Z3[(V^) Λ\rxn)lR=QI\.

Next, consider an elementary language N whose extralogical constants are the

relation of identity, I(x, jy) — i.e. x -y —, the individual constant 0, and the

functions o(x, y), πix, y) — i.e. x+y, xy —, as well as the successor function,

which will be denoted by φ(x). A familiar procedure of arithmetization

associates with every atomic symbol, term, wff, and sentence of N a Godel

number such that the set S of Gδdel numbers of sentences of N is definable

in N i.e. is given by a predicate of N (and is, moreover, recursive). Let V be

the set of Godel numbers of sentences of iV which are true for the natural

numbers. Then

2.4. THEOREM (Tarski). V is not definable in N.

Proof. Let x, y and z be three arbitrary but definite variables in N. Let

P be the set of predicates R{χy y) in iV which contain no free variables other

than x and y and which do not contain z. Let Q be the set of predicates

Six, y) which are of the form

2.5. Rix, y)/\(y/z)lU3w)I(a(z, w), y)l^

where R(x, y) belongs to P. Thus S(x, y) states, in a different notation, that
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y = μzR(x, z). The relation between the Gδdel number of any element of P

and the corresponding element of Q is recursive.

By the length of a formula R(x, y) we mean the number of its atomic

symbols, including brackets, connectives, quantifiers, variables, and extralogical

constants, separate occurrences being counted separately. The predicate A(wy ί),

"w is the Godel number of some formula and t is the length of that formula",

is recursive and may be represented as a predicate in N. The same applies

to the predicate B(ιv, t), "tv is the Godel number of some formula whose

length does not exceed t". Finally, let C{u, v, iv, t) be the predicate "w is

the Godel number of some element R(x, y) of P and u and v are natural

numbers, and t is the Gδdel number of the formula obtained by substituting

the numerals of u and v in the predicate S(x, y) which is given by 2. 5." Then

C(u, υ, w, t) is again recursive and may be taken to be formalized as a

predicate in N.

Let Mo be the system of (non-negative) natural numbers, and suppose,

contrary to the assertion of Theorem 2.4 that the set of Godel numbers of

sentences of N which are true in Mo is given by a predicate T(z) in N. Then

the following sentence is true in Mo,

2.6. (\ru)(Vs)(3v){\fw)(yft)ZB(tv, s)/\C(u, v, w, f) => - TU)]

This sentence states, informally, that for any given natural numbers u and

s there exists a natural number v such that for all elements R(x> y) of P whose

length does not exceed s, z — v is not the smallest number which satisfies

R(u, z). The truth of this sentence in Mo follows immediately from the fact

that the number of elements of P of length not greater than a given natural

number, is finite.

Let M be any non-standard strong model of arithmetic, i.e. a model of V

which is a proper extension of Mo. Let a be an infinite (non-standard)

element of M. Then the intersection of all elementary submodels of M which

include a is known to be a strong non-standard model of arithmetic, which

will be denoted by Mo(a) (ref. 4). For every element b of MQ(G) there exists

a predicate Rb(xf y) of P such that for the corresponding element Sb(x, y) of

Q (see 2.5 above), the sentence S&(a, b) holds in MQ(a). (Note that the passage

from a number to the corresponding numeral is indicated by bold face print.)
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Now let c be any infinite element of Moia). Since 2.6 holds in Mo(a) it follows

that the sentence

2.7. (3v)(y/w){yt)LB(wf c)ΛC(a, v, w,

also holds in that structure. Hence, for some element b of

2.8. (Vw){Vt)lB(w, c)AC(a, b, w

Let #ό(#> 3>) be the predicate introduced above. The length of Rb(x, y) is a

natural number in the ordinary sense, d say, which is smaller than c in Mo(a).

Let n be the Gδdel number of Rb(x, yϊ then Bin, c) is true in Mo(a), and the

same applies to the sentence

(Vf )[5(n, c) A C(a, b, n, ί) 3 - Γ(*U

in view of 2. 7, and hence to

2.9. (Vf)CC(a, b, n, ί)=>

On the other hand, let m be the Gδdel number of Sz>(a, b) then the sentence

[C(a, b, n, m)ΛΓ(m)] holds in Aloia), by the definition of Rb(x,y). It follows

that

2.10. (3f)[C(a, b, n, ί )ΛΓ( ί ) ]

holds in M0(a) and this contradicts 2.9. The proof of 2.4 is now complete.

While the above method involves as much arithmetization as any other

proof, we were able to avoid the introduction of diagonal arguments by the

use of non-standard models. Nevertheless, it may be said that there is a

certain relation between our method and the Berry paradox. Essentially, the

scope of the method includes GδdeΓs incompleteness theorem since this is a

consequence of Tarski's theorem, given certain ancillary considerations.

Let W{x) be a predicate of iV which defines the set of Godel numbers of

sentences of N, and let M be any non-standard strong model of arithmetic.

Since W(χ) is satisfied in Mo by an infinite and hence unbounded set of elements,

the same is true in relation to M. It follows that Wix) holds in M for certain

infinite elements. Now there exists a recursive predicate S(xt y, t), "* is the

Gδdel number of the ytn element of the wff whose Gδdel number is x%\ which

may be taken to be formalized within N. The following sentence then holds
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in Mo and hence in M.

2.11. (Vx)(Vy)(Vz)(3w)ZA(x, y) ί\Q(z, y)^>S(x, z,

In this sentence, A(x, y) signifies "y is the length of the formula whose Gδdel

number is x", as before, and Q(z, y) has been introduced to denote the order

relation Ov)E(σ(z, v), y) or, briefly, z<y. Since there is no uniform bound

to the length of the wff of N there exist infinite elements a and b of M such

that the sentence A (a, b) holds in M. This sentence states, formally, that a

is the Gδdel number of a wff of length b. This is something more than a

purely formal statement since we can actually recover the ordered set of "Gόdel

numbers of atomic symbols" which constitute the wff defined by a. Indeed,

2.11 shows that for any element c of M which does not exceed b there exists

an element d of M which is the "Gδdel number of the cth element of a". If d

is finite then it corresponds to one of the original atomic symbols and there is

no need to use quotation marks. This will certainly be the case when c is the

Gδdel number of a connective, or of a bracket, or of a quantifier. However, if

d is infinite then we have to regard it as the Gδdel number of a new atomic

symbol. In order to realize these ideas systematically, it seems advantageous

not to limit oneself to the language N, which describes arithmetic but to carry

out the extension of the original finitary language within a more general

framework. This will be done in the next section.

3. Construction of a non standard language. Let U be a set of individuals,

of a cardinal which is greater than or equal to 2̂ °, and otherwise arbitrary

(unless and until it is defined more closely for a particular purpose). Suppose

that distinct symbols have been assigned to all individuals of £/, to all relations

on U, and to all functions defined on U. Without fear of confusion we denote

the corresponding structure again by U. In particular, the symbol I(x, y) will

be taken to correspond to the relation of identity in U. Let K be the set of

all sentences of the Lower predicate calculus which are formulated in terms of

these extralogical constants and which hold in U. Select a countable subset UΌ

of U, and let R0(x) be the relation which determines UQ, i.e. which holds in U

precisely for the elements of UQ. Let a be an individual constant outside the

vocabulary of K. Consider the set K'=*KU Rϋ(a) U {~~I(a, b»)} where Λv varies

over all elements of U. Then a familiar argument shows that Kf is consistent
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and hence posesses a model, IP say. IP is a proper extesion of U since it

contains a (or an element denoted by a), and a is different from the elements

of Mo since it satisfies {-^Ka, &v)} and from the elements of U-UQ since it

satisfies RQ(a). It is not difficult to see that I(x,y) may be supposed to denote

the identity also in IP.

CP is a model of K. To every set and relation in U there corresponds a

set or relation in IP which satisfies the same predicates in the language of K.

Let R(x) be a predicate of this kind and let S and S' be the sets determined

by R(x) in U and IP respectively. If S is empty then S' also is empty since

the sentence (V#)[^7v?(#)] belongs to K. Suppose next that S contains a finite

and positive number of elements, n>0. Then the sentence (3XL) ( 3tfΛ)(Vy)

IRU^/K ί\R(xn)/\R{y)^I(xι, y) V V/l*Λ> jO] holds in U and hence

in IP. Thus S' cannot contain more than n different elements. Since S' is an

extension of S it follows that S' coincides with S.

Suppose next that S is precisely countable. Then there exists a relation

J(χ, y) which defines a one-to-one correspondence between S and Uo in U.

Let Ul be the set defined by R0(x) in IP. Then /(*, y) defines a one-to-one

correspondence between S' and £/{ in IP. In particular, for some element b of

S', /(&, ύθ holds in U1. But tf does not belong to C7Ό and so 6 cannot belong

to S'. Thus, S' is a proper extension of S.

Finally, if S is an arbitrary infinite subset of U then it contains a countable

subset, So say. If S' and S[ are the corresponding subsets of U then S'^SΌ and

Sί - So is not empty. But SΌ^S= So and so S' - S^Sί - So, i.e. Sf is a proper

extension of S.

Summing up we find that infinite sets are extended on passing from U to

IP while finite subsets remain unchanged. Now let M be any structure whose

domain of individuals, D, is a subset of U. The relations and functions of M

are not in themselves relations and functions of U since they are defined only

on D. However any function, e.g. φ(x, y) which is defined on D can be

extended—usually in many different ways—to a function φι(x, y) which is

defined on U. A similar statement applies to the relations which are defined

on D. Suppose then that for every relation and function of M we have selected

an extension to the whole of U. Let R(x) be the relation which defines D in

U. For every sentence X which is defined in M we may then construct the
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sentence Xi which is obtained from X by replacing every (symbol for a) rela-

tion or function in M by the (symbol for) the corresponding extension to U

and by relativizing the result with respect to R(x) (for the operation of

relativization, see e.g. ref 7). Then Xt holds in U if and only if X holds in M.

Let H be the set of all sentences X which are defined and hold in M and

let Hi be the set of corresponding sentences Xi. Then Hi^K and so the

sentences of Hi hold in U. Let D' be the subset of Uf which is determined

by R{x) in Uf. By restricting the relations and functions of Hi in Uf to D'

we then obtain a structure M which is an extension of M and a model of H.

M' is thus an elementary extension of M. It is actually independent of the

particular choice of the extended relations and functions.

Select a countable subset Do of U and choose functions σ(x, y) and πix, y)

(i.e. x-\-y and xy) on Do in such a way that Do is turned into a standard model

of arithmetic Mo ("the" natural numbers). Let M[ be the corresponding

structure in IP. Then M[ also is a strong model of arithmetic and since the

underlying domain of individuals D[ must be a proper extension of Do, M[ is a

non-standard strong model of arithmetic.

We now suppose that certain subsets of U are regarded as the constituents

of a language L of the first order predicate calculus. That is to say, there

are certain disjoint sets of individuals of U, of adequate cardinal numbers, which

serve as brackets, commas, connectives (^-, Λ, and V), quantifiers (V and 3),

variables, individual constants, relations, and functions of L. Since they are

individuals of U, the relations of L will, in general, be distinct from the symbols

which denote relations of U. Moreover, the relations of L will certainly be

different from the relations of U since the latter are sets of ^-tuples of elements

of U. Accordingly, we shall call these individuals of U, L-relations, and we

shall similarly refer to L-variables, L-connectives, etc.

Going farther, we suppose that the terms and well-ordered formulae (wff)

of L also constitute subsets of U ("L-terms", L-wff"). To regard terms and

wff, including sentences, as individuals in a certain domain is entirely in keeping

with the axiomatic approach to the syntax of a formal language. Thus, we

have in U one-place relations Qv(x)> "x is an L-variable", Qc(x), "x is an L-

connective", Q/{χ), "x is an L-wff", Qs{χ), "x is an L-sentence", etc. Various

connections which exist between these relations are then expressed by sentences
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of K, for example

Again, there exists a relation Six, v, z) in U which states that x is an L-wff

and y is a natural number (an element of ft) and z is the yth atomic symbol

(Z-bracket, X-relation, L-variable, etc.) in X Then the following sentences

belong to K.

3.1. (V2)(Vw)[SU,;y, z)/\S(x,y, w)^I(

3.2. {Vx)(Vy)ll(Vu)(Vv)lS(x, u, v) = S(yy u, v)

The second sentence involves the tacit assumption, which is usually taken for

granted, that a sentence is determined completely by its sequence of atomic

symbols. We note that any discussion of the question how to relate different

occurrences of the same symbol is entirely redundant in the present approach.

Passing to U\ we see that the relations which in U define the various sets

of L-symbols and Z-formulae, define corresponding sets in U'. If the original

sets are finite, as is the case for the connectives and for the quantifiers, then

they remain unchanged on passing to U1. If the original set is infinite, as is

the case for the sentences, then the corresponding set in U' is a proper extension

of it. The extended language will be denoted by Lf and, accordingly, we shall

refer to its variables, connectives, and so on, as L1-variables, Z/ connectives, etc.

Now let F and F1 be the sets of L-wff and of ZΛwff, respectively. Then F^U,

FΌ.U1 and F is a proper subset of P. Every element a of Ff determines a

certain ordered set of atomic symbols in the sense that for every element n of

D' (i.e. for every natural number in Uf) which does not exceed a particular

m e D' — the length of a — there is a unique L'-atomic symbol b such that

S{a,n,b) holds in U\ where S(x,y,z) is the relation introduced above Cb is

the nth atomic symbol of a"). We know that such m and b exist because this

fact is expressed by an elementary sentence which holds in U.

The set of ZΛwff and more particularly, of L'-sentences, is quite varied.

Thus, for every non-standard natural number / in U' there exists an ZΛsentence

whose length exceeds /. That this is so can be deduced immediately from the

existence of sentences of unbounded length in U. Again, if L includes rela-

tions of n places for all natural numbers n, then L' will include relations whose

number of places, n, is infinite, more precisely n is an infinite element of Mi
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On the other hand, we cannot assign the elements of an infinitely long wff in

the present sense arbitrarily even in cases where this would appear to yield a

formula which is intuitively meaningful, as will be shown presently.

We recall that the order type of any non-standard model of arithmetic can

be expressed in the form α?-f (*ω + ω)θ where θ is some dense order type without

first or last element (compare ref. 2). It follows that if m is an infinite

element of M' then the ordered set of elements of Mf which are smaller than

or equal to m is of order type ω + (*ω + ω)θf + *<D where 0' is again dense

without first or last element. Accordingly the ordered sequence of any ZΛwff

which is of infinite length possesses an order type of this kind.

To continue, we require some simple facts concerning finite partial sequences.

By a finite partial sequence a we mean any function whose domain is a finite

set of natural numbers and whose range is included in a given set, G. By the

length of a we mean the greatest element in the domain of σ plus 1. The

length of the empty sequence (sequence with empty domain) shall be zero, by

definition.

The number of non-empty finite partial sequences with range in U is equal

to the cardinal of U. Accordingly these sequences can be indexed in U in the

following sense. There exists a subset / of U and a three place relation

N(x,y, z) on U such that x is an element of / and y is a natural number (an

element of Mo) and such that the following conditions are satisfied

3.3. Ofx)(\ry)(Vz)(\rw)lN(x,yfz)/\N(x,y,w)=>I(z,w)l

3.4. (\fx)(3y)(Vz)(Vw)lMx,z,w)^>Q(z,y)l

3.5. (V*)(V^)[[(V*)(VH;)[M#, Z, w)=N(y, z, ) )

Of these, 3. 3 states that, for given x, N(χ, yy z) defines z as a function of y, 3. 4

affirms that the domain of any such function is bounded by a natural number

y (where Q(z,y) denotes the relation z<y between natural numbers, as before)

and 3. 5 ensures that no two different elements of / define the same function.

Morever, we suppose that as x varies over the elements of / all finite

partial sequences with values in U occur as functions defined by N{x, y, z).

It is evident that this condition can be satisfied (in many ways) by a suitable

choice of / and N, but it does not correspond to any sentence in K.

Suppose that / is determined by a relation Qu(x) in U. Let G be any
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subset of U then we may obtain all finite partial sequences with values in G

by restricting / to a suitable subset, JG say. Let QQ(X) be the relation which

determines JG then we may define a corresponding three place relation Noix.y, z)

by

3.6. NG(x, y, z) = QG(x)ΛN(x, y, z).

We note that as a consequence of our stated assumptions the sentence

3.7. (V*)[[(3y)(3z)N(xf y, z)l = QυixΏ

belongs to K. (We have excluded the empty sequence from the indexing,

otherwise the equivalence in 3.7 would have to be replaced by an implication.)

Accodingly, / is determined completely by N(x, y, z). Similarly, for any GQC7,

Jo is determined by NG.

Passing to U\ we find that Qσ(x) determines a subset /' of CP which

contains / as a proper subset. Any element a of / then defines a partial

sequence with domain in M[ by means of the predicate N(a, y, z). Indeed,

this predicate defines z as a function of y in view of 3.3, such that the

arguments are in M[ by virtue of an earlier condition. Moreover, in view of

3.4, the domain of the sequence is bounded by some element of M[. Any

function which is defined in this way by some N(a, y, z) will be called a

pseudo-finite partial sequence. Notice that the set of pseudo-finite partial

sequences in IP does not depend on the particular choice of N(x, y} z) (which

implies a definite choice for /). Indeed, suppose that we have chosen two

different relations on U, N\{xy y, z) and N2{x, y, z), with corresponding index

sets /i and J2 in such a way that all the conditions laid down for N and / are

satisfied by M and /i and by Ni and /2, respectively. Let Qι(x) and Q2(x)

determine the sets /i and J2, respectively. Then if a belongs to /i, NΛa, y, z)

defines a non-empty finite partial sequence in U. But this sequence must occur

also for some value of the first argument in N2(x, y, t). Accordingly, the

sentences

x, y, z)=N2(w, y,

and

(VxKQzix) ^l{3w)l(Vy){Vz)lN2(x, y, z) = NΛw, y, 2)]]]]

hold in U and hence belong to K. Thus, the two sentences hold also in IP and
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this shows that the sets of pseudo-finite partial sequences defined by Λ/Ί and

M coincide. The set of non-empty finite partial sequences in U will be denoted

by Σ and the set of non-empty pse.udo-finite partial sequences in U' by Σf.

We shall imagine that the index set / has been fixed once and for all. A

sequence will be said to be total if its domain contains with every number

also all smaller numbers. Such sequences form subsets 2Ό and Σ[ of Σ and Σ'

respectively.

Now let T be the set of L-sentences, T^U, and let Στ be the subset of

ΣQ whose elements take values in Γ, i.e. which are finite partial sequences of

L-sentences. Let JT^J be the corresponding index set. Then the rule which

assigns to every non-empty finite total sequence of L-sentences, a = (p§, . . . ypn)

the L-sentence

3.8. q = lp*Mpi\lp2t\ ' * Λ/>«] ' •]

defines a function ψ on Στ, where q = ψ(t) if t is the index of a in /. ψ can

be represented by a relation Qψ(x, y) which holds if x is the index of the

sequence a = (A> >Pn) and y is given by 3.8. Passing to U' we see that

Qψ{x, y) assigns a sentence also to every non-empty pseudo-finite total sequence.

We note that if in 3.8 we count the symbols from left to right, beginning

with 0, then the places with index =ΞO(3) are filled with left brackets, those

with index =1(3) by sentences, and those with index =2(3) by the connective

of conjunction, up to the place with index 3 n - 1. The place with index 3 n

is filled by the last sentence, pn. This is followed by n right brackets. Thus,

the length of q is 4 n + 1 .

Let n be an infinite natural number in Mj and let a and b be two distinct

L-sentences. It would then appear to be intuitively possible to define a particular

L'-sentence r of length 4 n + 1 which is a repeated conjunction of the sentences

a and b simply by substituting in s and q (see 3.8) the sentence a for pi, i

finite and the sentence b for pi, i infinite, i<n. This is indeed a well-defined

ordered set of atomic symbols, of length 4 n +1 as we can see from the detailed

description given in the preceding paragraph. However, it is not an L'-sentence.

For if r were an L'-sentence then the sentences which fill the places with index

3&+1 in r, 0< k< n — l would constitute a pseudo-finite total sequence p of

length n such that the elements of the sequence are equal to a for all finite
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subscripts and to b for all infinite subscripts. Such a sequence p cannot belong

to Σ[. For, using an argument which can easily be formalized, p satisfies the

condition that its 0th element is a and that whenever an element of p equals

a the next element, if any, is also equal to a. Hence by the axiom of induction

which holds in U1, if pGi1! then all elements of p are equal to a> contrary to

construction. Thus, there is no L'-sentence of the kind described above.

The deductive calculus of the language L' will be discussed only briefly.

We take for granted the deductive calculus of the language L. More particularly,

we take it that there exists a subset To of the set of sentences T which is

constituted by the L-axioms. An L-proof is a non-empty finite total sequence

of L-sentences such that every element of the sequence is either an L-axiom

of it is deducible from one or two earlier elements of the sequence as an

immediate consequence in accordance with the usual rules of the lower predicate

calculus. Thus, the proofs constitute a subset ΣP of Στ. Let JP be the subset

of / whose elements induce the elements of ΣP and let QAx) be the relation

on U which determines JP.

An L-sentence is provable if it is an element of some L-proof. Thus, " z

is provable" corresponds to the predicate (Bx)(3y)lQP(x) /\N(x, y, z)l. The

set of provable sentences in U will be denoted by TP.

More generally, if A is a set of L-sentences in U, which is given by a

relation QA(x), then we define an A proof as a non-empty finite total sequence

of L-sentences such that every element of the sequence is either an L-axiom

or an element of A or it is deducible from one or two earlier elements of the

sequence as an immediate consequence. For given A, the A-proofs constitute

a subset ΣA of Στ. Let JA be the subset of / whose elements index the elements

of ΣA and let QA(x) be the relation on U which determines JA. An L-sentence

is A-provable if it is an element of some A-proof. Thus, "2 is A-provable" is

given by (3x)(3y)ZQA(x) AN(x, y, z)]. The set of A-provable sentences will

be denoted by TA.

The predicate QP{x) defines in Uf a set of L'-sentences, TP which is an

extension of TP. The elements of T'P will be said to be L'-provable. An

L-sentence which is not L provable is not L'-provable either. On the other

hand if T[ is the set of L'-axioms (corresponding to the set To in U) then it

can be shown that not all sentences which are L'-provable are deducible from



96 ABRAHAM ROBINSON

To by the rules of the lower predicate calculus. Indeed, since for any natural

number n there exist L-provable sentences which cannot be proved in less

than n steps, or more precisely which do not occur in proofs of length <n, it

follows that there exist L-provable sentences which do not occur in any proof

of finite length.

More generally, let A' be any set of L'-sentences. Then we define the set

TΆ of //-sentences which are A'-provable in the following way. Among the

subsets of B' of A1 there are some which are defined by relations that occur

already in U, i.e. which correspond to sets of L-sentences B in U. Among

these subsets Bf of A1 there are, for example, all finite subsets of A1. For any

B which corresponds to such a Bf there exists a relation RB(z) which determines

the .B-provable sentences in U. RB{z) determines a set Tf

B in υ\ Then TΆ' is

by definition the union of all such sets. In particular, if the original A1 is

itself a set which corresponds to a set of L-sentences, A, then TΆ' corresponds,

in IP to the set of A-provable sentences in U.

4. Semantics of a non-standard language. In the remainder of this paper,

we shall be concerned with the semantics of the non-standard language Ώ in

an extension IP of U. For this purpose, we first have to discuss the notion

of a truth definition in the standard language L within the framework of the

set U.

Let M be a structure whose domain of individuals, D, is a subset of U,

with a set of relations P(M) and a set of functions F(M). Let R{χ) be the

relation which determines D in U. As discussed in detail at the beginning of

the preceding section, the elements of P(M) and of F(M) are not, in general,

defined on U, but the sentences about M which involve the elements of PlM)

and F(M) can be related to sentences about U by means of the operation of

relativization with respect to R(χ).

We now wish to use the language L in order to describe the structure M.

For this purpose, we first introduce correspondences between the individuals

of D and some L-individuals between the relations of P(M) and some L-

relations; and between the functions of F(M) and some L-functions. It will

be assumed that a sufficient number of L-symbols is available for this purpose.

Let Qic(x) be the relation which determines the set of L-individuals in £/,

and suppose that a correspondence between the elements of D and a set of
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L-individuals is provided by a relation C(x,y) on U which satisfies the following

conditions.

4.1.

4.2. (V*)(Vy)(V2)[CU y)/\C(x, z)^I(y, z)]9

4.3. (Vx){\fy)(Vz)lC(y, x)

4.4.

The sentences 4.1-4.4 state, briefly, that C<#, /^ establishes a one-to-one

correspondence between D and a set of L-individuals. The set of L-individuals

which corresponds to individuals of M will be denoted by G. It is given by

the predicate (3x)C(xt y).

The correspondence between the elements of R(M) and a set of L-relations

is expressed in a way which is rather different. We suppose that for every

element R(xi, . . . , xn) of P(M), n>0, we are given an L-relation r and an

(n + Ό-place relation on ΓJ, SR(y0, ylf . . . , yn) such that different L-relations

correspond to different elements of R(M) and such that the sentences

4.5. (V*i) •(V^ί)(Vyi) ( V ^ ) [ C U , > Ί ) Λ ΛC(*Λ, Λ ) i >

, . . - , xn) =SR(r,yu . . . ,yn)

all belong to K. Let Gp be the set of L-relations which are employed in this

way.

Similarly, we suppose that there is a one-to-one correspondence between

the elements of F(M) and a certain subset GF of the set of L-functions such

that for every function φ(χu . . . , xn) & F(M) and the corresponding g^GF

there exists an (w + 2)-place relation S^(yOy yly . . . ,yn+0 on U for which

4.6. (V*i) (V#»)(V*»+1)(Vyi) - - - (V)>M)(Vj;n+1)[CU, yj Λ Λ

= SAg, yu . . . ,,yΛ, ^«+1)]]

belongs to K.

We do not exclude the possibility that the set of L-individuals, G, coincides

with the set of individuals of M, D, and that at the same time, the relation

C(x, y) coincides with the restriction of the relation of identity I(x, y) to D.

Even if this is not the case from the outset we may, if we wish, define a

structure M* isomorphic to M which possesses that property. Thus, if R is a
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relation of M then we choose the corresponding relation of M* on the set of

individuals G as the relation which satisfies

4.7. (V*,) -(V*Λ)(Yyi) -(VyJCCU, yi) Λ AC(xn> yn) =

. . , χn)^>R*(yu . . . , yn)ll

In other words, /^(.yi, . . . ,yn) is coextensive with the predicate Sa(r, Vi, . . ., jy«).

The corresponding functions of M* may be defined in a similar way.

We also observe that while the correspondences between the elements of

D, R(M), and F(M), and G, GE and GF> respectively, have to be fixed in order

to make the semantical interpretation of an L-sentence in M definite, the

particular choice of SR and S^ is irrelevant.

Let Gτ be the set of all L-sentences whose atomic symbols include no

extralogical constants other than those belonging to GU GnΌ GF. Since we

are at the moment dealing with the language L which is based on standard

arithmetic it is not difficult to reformulate the usual procedure for the determina-

tion of the truth or falsehood of a sentence of Gτ with respect to the structure

M within the present framework.

Employing the usual terminology, we call a sentence atomic if it does not

involve any connectives or quantifiers and hence does not involve any variables.

Disregarding the brackets and commas, an atomic sentence consists of a

relation which is followed by a sequence of terms. The terms themselves are

not atomic symbols but are given by sequences of functions and of individuals

combined according to certain definite rules. Let the atomic L-sentence a<=Gτ

be indicated by the expression r(tu . . . ,tn) where r is an L-relation and

ίj, . . . , tn are L-terms. By virtue of 4. β every term U corresponds to an

individual bi of D and, again by means of the correspondence r itself corresponds

to a relation R. We now ask whether R(bu . . . , bn) holds in M. As it stands

this question does not refer directly to the structure U, but as explained

earlier all sentences about M can be reduced to sentences about U. Thus,

finally, we say that a holds in My or is true in M if and only if R(bu . . , bn)

holds in M. The truth values of all other sentences of Gτ in M are now

determined by means of the conditions that a negation is true in M iff the

original L-sentence is not true in M, a disjunction is true in M iff at least one

of its disjuncts is true, etc. together with the usual conditions for the quanti-
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fixations. Note that the connection between L-sentence and its negation, or of

two L-sentences and their disjunction is given by two and three place relations

defined on U, e.g. Nix, y) "x, y are L-sentences and y is the negation of x".

The relation between x and y can be analyzed further by means of the strings

of atomic symbols which define any L-sentence but this is not necessary for

our present purpose. Let the set of all L-sentences which hold in M according

to this definition be denoted by GM and let Qτ(x) and QΛx) be the relations

of U which determine Gτ and GM) respectively.

On passing to Z7', the structure M is transformed into a structure Mf which

is an extension of M and that all sentences (in the ordinary sense) which are

defined and hold in Λf, hold also in M' (i.e. Mf is an elementary extension of

Λf). We now define that the set of L'-sentences which hold in M1 according

to the internal truth definition (or briefly, internally) is the set Gf

Λΐ which is

determined by the relation QM(x) in U', Among the elements of G'M are the

L-sentences of GM which correspond in a natural way to the sentences (in the

ordinary sense) that hold in M. Beyond that, G'M contains also a wide variety

of additional sentences including sentences of infinite length. All the ordinary

rules of semantics which were mentioned above still hold in the present case.

Thus, the negation of an L'-sentence holds in M1 iff the sentence does not hold

in M', a conjunction holds in M1 iff both conjuncts hold in that structure, a

disjunction holds in M' iff at least one of the disjuncts holds in M'. If qix)

is an L'-wff with a single free variable and with extralogical constants in C

Cp C'F then (3x)qix) (or, more precisely, the L'-sentence which is obtained

from q(x) by existential quantification) holds in W iff q(a) holds in M' for at

least one a^bf and (Vx)q(x) holds in M1 iff q(a) holds in M1 for all a^b'.

Now let GQ be the set of L-predicates (L-wff with at least one free variable)

whose extralogical constants belong to G U GP U GF. Such an L-predicate is

said to be denned in M. Let (XQ, xu . . . , xn) be the finite total sequence of

variables of an element q of GQ, taken in their order of first occurrence from

left to right. Let Σo(M) be the set of all finite total sequences in U whose

elements belong to M and let HM be the subset of / which indexes the elements

of ΣQ(M). Let RQ{x) and H(x) be the relations which determine the sets GQ

and HM in U.

Then the set GQ which is determined by Rg{x) in U' is precisely the set
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of all //-predicates which are defined in M\ i.e. whose set of extralogical

constants belongs to G' U Gf

P U G'F. Similarly, the set H'M' defined by H(x) in

IP indexes the set Σ[{M') of all pseudo-finite total sequences in IP whose

elements belong to Mf.

The condition "x is an L-predicate which is defined in M and y is the

index of an element a of Σ0(M) whose length equals the number of free

variables of x, and z is the L-sentence resulting from the substitution of the

elements of a in their given order for the free variables of x" can be expressed

by a relation W(x, y, z) in U. Then W(x, y, z) has a corresponding meaning

in U', where the number of free variables in a given predicate may now be

infinite. In either U or IP, if x is an L-(or ZΛ) predicate which is defined in

M(Mf) and y is the index of an element a of Σ0(M) (or Σ'0{Mf)) then the

corresponding z is an L-(or L'-) sentence which is defined in M (or M'). In

particular, if q is an element of G'Q and the number of variables in q is infinite,

then these variables constitute a pseudo-finite total sequence ζ = (#a, Xu . - . , xn)-

The substitution of an element a = (α0, #i, . . . , «n) of ^(MM for £ yields an

Z'-sentence which is defined in M'. Conversely, it is not difficult to see that

if a is an ordered set of elements of Mf whose order type is the same as that

of ξ, and if the substitution of the elements of a for the corresponding elements

of ξ in q yields an L'-sentence then a belongs to Σ'Q{M'). For given n, the

elements of Σ[(M') of length n + 1 are divided into two classes according as

the result of the substitution does or does not hold in M1. Accordingly, q

defines a kind of infinitary pseudo-relation in M' which is defined for some but

not all ordered sets of elements of M1 which have the order type of ξ.

5. Skolem operators and the external truth definition. To continue we

require some auxiliary considerations which yield a modified version of Henkin's

notion of generalized quantifiers (ref. 3). We shall be concerned only with

linearly ordered quantification.

Let S be an ordered set which is partitioned into two subsets, Si and Sz

(Thus, SiUS2 = S, SiΠS2 = 0). Let Φι and Φ2 be two sets of functions which

are defined in Si and S2 respectively and which take values in a given set A.

By a Skolem operator we mean a function ψ whose domain is Φ\ and whose

values belong to Φ2 (i.e. a mapping from the functions of Φ\ to functions of Φz)
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in such a way that if g = ψ(f) and k^ψ(h) and f(sι) = h(sχ) for all elements

si of Si which precede any particular s > G S2 in the given ordering of S, then

g(s2) = k(s2).

Thus, if X is a sentence in prenex normal form in the Lower predicate

calculus,

u . yXn-ι)

where, for i = 0, . . . , w — 1 the quantifier <// quantifies the variable χ lt and

where Z does not contain any quantifiers, let S be the ordered set (0, 1, . . . ,

n — 1), and let Si and S* be the subsets of S whose elements are, respectively,

the subscripts of the universal and of the existential quantifiers of X. Suppose

that X holds in a structure M with domain of individuals A. Then, corre-

sponding to every existential quantifier in X, we may define a Skolem (or

Herbrand) function of the preceding universally quantified variables in such a

way that the introduction of these functions into Z yields a true sentence for

all values of the remaining arguments of Z. For example, if X= (V#0)(3#ι)

(V#2)( 3XZ)Z(XQ, XU Xiy AΓ3) holds in' M then there are Skolem function φ(xa)t

ψzixo, ΛΓ2), such that Z(ΛΓ0, 0I(#O), #2, ψΛxoy X2)) holds in M for all values of the

arguments ΛΓ0, XΊ in A. Defining S= (0, 1, 2, 3), Si = (0, 2), S2 = (1, 3), Φι as

the set of all functions on 0, 2 and taking values in A, Φ2 as the set of all

functions on 1, 3 and taking values in A, we may regard the mapping (xo, X2)

-*(0i(#o), 03(#o, X2)) as a Skolem operator. The same is true for general X,

as above. Conversely (at first disregarding the question whether the substitu-

tion of the Skolem functions makes the matrix true universally) any Skolem

operator from the set of functions of elements of A defined on Si into the set

of functions of elements of A defined on S2 yields a set of Skolem functions.

Accordingly, we may say that a sentence X as above holds in a structure M

if and only if there exists a Skolem operator which satisfies the condition just

described.

We now consider these notions in connection with the language L. Let /

be an index set for all partial finite sequences in U as before, except that in

the present section we shall for convenience suppose that / includes an index

for the empty sequence. Let #1 and a% be indexes for two disjoint finite total

sequences of natural numbers (elements of Mo) σι and at. The number of

such pairs, (σu σ >), is countable. Let Φ% be the set of all finite partial sequences
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whose domain is oi and whose values are L-individuals, i = 1, 2. Then the

cardinal of both Φ\ and Φ2 is not greater than (and, except for empty a is

equal to) the cardinal of the set of all L-individuals, λ say. We shall now

suppose that the cardinal of U is not less than 2\ Since the number of Skolem

operators from Φι to Φ-ι does not exceed 2λ, it follows that there exists a set

/φ in U which indexes the Skolem operators. Various relations may now be

associated with /φ. For example, there exists a relation Aψ(#, y, z, u, v, w)

which signifies "x and y are indexes of disjoint finite total sequences of natural

numbers as above, a\ and σ2 say, z is the index of a Skolem operator as defined,

from sequences with domain σi and values in the set of L-individuals to

sequences with domain σ2 and values in the set of Z-individuals, u is the index

of a particular partial sequence of L-individuals with domain au v is a natural

number which is an element of <r2, and w is the value of ψ(t) for the argument

υ."

Let X be any sentence. By a prefix of X we mean any sequence of

quantifiers Q such that X = QZ where Z may contain further quantifiers. We

may consider the same notion also for L-sentences. Accordingly, there exists

a relation Qpr(ty x,y) which has the following significance. "t is an L-sentence

which possesses a prefix π such that x is the index of the sequence of (finite)

ordinal numbers which correspond to universal quantifiers in π and y is the

index of the sequence of ordinal numbers which correspond to existential

quantifiers in π" Thus if t begins with four quantifiers of which the 0th and

2nd are universal and the 1st and 3rd are existential as in the particular

example given above then x is the index of the sequence (0, 2) and y is the

index of the sequence (1, 3). Then the following relation is closely connected

with A«,. " ί is an L-sentence and QpΛt, x, y) holds, and z is the index of a

Skolem operator ψ from sequences with domain σι to sequences with domain &ι.

Moreover, u is the index of a particular finite partial sequence of L-individuals

r, and v is the L-sentence resulting from the substitution of the elements of τ

for the variables corresponding to o\ and of the elements of ψ(τ) for the

variables which correspond to <72> in the L-wff which results from the deletion

of 7τ." We denote this relation by B^(t, x, y, z, u, v). Observe that in the

present context we find it convenient to introduce the Skolem operator as an

operation between sequences of L-symbols, and not of individuals of any
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particular model.

Let G be any sentence of L-individuals. We shall presently make use of a

relativized version of B*, to be denoted by B^G(t, x, y, z, u, v) which is to

hold if BΛt, x, y, z, u, v) holds and if moreover u is the index of a sequence

of Z-individuals which belong to G, and ψ (with index z) transforms all sequences

with elements in G into sequences with elements in G. Let QQ(x) be the

relation which determines G in U, and let RG(x, u) signify that the values of τ

(determined by u) are in G and the domain of r is ax (given by x).

Let GT be the set of Z-sentences which are defined in a structure M ac-

cording to some correspondence between L-symbols and individuals, relations,

and functors of M as explained in the previous chapter. Suppose that G is the

set of Z-individuals which correspond to individuals of M, determined by Qβ(x),

and let GM be the set of all Z-sentences which hold in Λf, determined by QM(x),

as before. Then the following sentence holds in U

5.1. (Vt)(Vx)(Vy)lQPΛt, x, y)^LQM(t) ~ί(3z)(y/u)(Vv)ίίR0(x7 u)/\

t, x,y, z, u,

5.1 may be regarded as a formal statement of the fact that the truth of a

sentence in a given model can be expressed in terms of the existence of ap-

propriate Skolem functions as described in detail at the beginning of this

section for the case of a sentence in prenex normal form. Passing to U\ we

see that 5.1 still expresses a certain connection between a structure M' in U'

as introduced in section 3 and the set of //-sentences which are defined in U'

according to given correspondences between ZΛsymbols and individuals, rela-

tions, or functors of M'. However, we have to bear in mind that the sets of

sequences which occur in the definition of a Skolem operator in U' are confined

to sequences of pseudo-finite character. On the other hand, the notion of

substitution retains its meaning.

So far we have relied on the passage from U to U' not only in the formula-

tion of the non-standard language Lf but also in its model — theoretic interpre-

tation. We shall now introduce an alternative truth definition which relies

directly on the notion of Skolem functions. It will be convenient to formulate

this new concept only for a certain subset of the set of L'-sentences whose

elements have a relatively simple structure. While it would not be hard to
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widen the scope of our definition somewhat, it might be difficult to extend it

to the set of all //-sentences.

For given U and U\ and a language L' in Uf, we define subsets of Z/-terms,

ZΛatomic formulae, etc. as follows.

An L'-term will be called simple if it represents the result of a finite

number of applications of functors with a finite number of arguments. An ZΛ

atomic formula is simple if it consists of an //-relation with a finite number

of arguments filled by simple L'-terms. In this connection, the word finite is

to be interpreted in the absolute sense so that simple terms and relations are

constructed from their atomic symbols exactly as in the standard lower predicate

calculus.

Simple L'-wff are defined inductively as follows. An L'-atomic formula is

a simple L'-wff. The negation of a simple L'-wff is simple. An L'-wff which

is obtained from a set of simple L'-wff by repeated conjunction alone is simple.

An L'-wff which is obtained from a set of simple L'-wff by repeated disjunction

alone is simple. Finally, an L'-wff which is obtained from a simple L'-wff by

repeated quantification is simple. Note that the last three operations may

involve an infinite number of conjunctions, or disjunctions, or quantifications,

and that both universal and existential quantification may appear in the same

operation of repeated quantification.

Every simple L'-wff which is obtained by negation determines uniquely the

L'-wff from which it is obtained. Every simple L'-wff which is obtained by

conjunction determines uniquely a sequence of simple L'-wff from which it is

obtained by repeated conjunction and which are not themselves conjunctions.

A corresponding fact holds for disjunctions. Every simple L'-wff which is

obtained by quantification determines uniquely a simple L'-wff from which it is

obtained by repeated quantification and which is not itself obtained by quanti-

fication. The truth of all these statements follows from the fact that they

hold for the sentences of L in U and can be transferred to the sentences of L'

in U1.

The rank of a simple L'-wff which is an atomic L'-wff is, by definition, 0.

The rank of a simple L'-wff which is obtained by negation from a simple L'-

wff of rank n is, by definition, n + 1. The rank of a simple L'-wff which is

pbtained by repeated conjunction from the particular sequence of L'-wff
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mentioned in the preceding sequence is, by definition of rank n + 1 if all the

elements of the sequence are of rank not exceeding n and at least one of them

is of rank n. A similar definition is introduced for disjunctions. Finally, if a

simple ZΛwff is obtained by repeated quantification from a simple L'-wff which

is not itself obtained by quantification, and which is of rank n then the rank

of the quantified L'-wff is again defined to be n -t- 1. These definitions assign

unique ranks to the elements of a subset Ω of the set of simple L'-wff. The

elements of Ω will be said to be simple L'-wff of finite rank.

Now let M be a structure in the standard sense of the lower predicate calculus,

i.e. with finitary relations and functors (if any) but not necessarily contained

in either U or UK A one-to-one correspondence between the individuals,

relations, and functors of M and some L'-individuals, L'-relations, and L'-functors

(constituting sets G't G'B, G'F) then determines a set of elements of Ω which

are defined in M, i.e. those simple L'-atomic formulae whose L'-individuals, etc.,

belong to the correspondence, and all other simple L'-wff of finite rank that

are constructed from them by a finite number of negations and of repeated

conjunctions, disjunctions, and quantifications. The set of these elements of Ω

will be denoted by Ωw.

The external truth definition for sentences of Ωw with respect to the

structure M (for the given correspondence of atomic symbols) will now be

introduced in the following way.

For elements of Ωw which are of rank 0 we use the standard truth defini-

tion. That is to say if a sentence of Ωw which is of rank 0 is of the form

r(au . . . , an) where r is an L'-relation and αx, . . . , β* are L'-individuals then

r(au . . . , tf«) is true (or holds) in M externally if and only if the corresponding

ίj-tuple of individuals of M belongs to the relation of M that corresponds to r.

If the sentence is of the form r(tu . . . , tn) where th . . . , tn are L'-terms

without variables then we first evaluate these terms, i.e. we replace them by

L'-individuals which correspond to the functional values of th . . . , tn in M

and then proceed as before.

Suppose now that we have already assigned external truth values to all

sentences of Ωw of rank <n where n is a positive integer. Let a be any

sentence of Ωw which is of rank n. If n is a conjunction then, as explained

above, a is obtained by repeated conjunction from a specific sequence of Ωw-



106 ABRAHAM ROBINSON

sentences which are not conjunctions and which are of rank <n — l. If and

only if all these are true in M externally, then we define that a is true in M

externally. Similarly, if a is a disjunction then we define that a is true

externally if and only if at least one of the elements of the corresponding

sequence is true externally. If a is a negation, of an ^-sentence, b say, then

a is true externally if and only if b is not true externally.

Finally, suppose that a is obtained by repeated quantification from an

element of Ωw which is not itself obtained by quantification, b say, where b is

a predicate not a sentence. We may symbolize the connection between a and

b briefly by a-qb where q indicates a finite or infinite sequence of quantifiers.

The quantified variables in q constitute an ordered set of length n, where n is

a finite or infinite natural number. The natural numbers whose places in q

are occupied by universal and existential quantifiers respectively (beginning

with 0) constitute two disjoint sets of natural numbers in Mi ax and <j2 say.

Let Φi be the set of all partial pseudo-finite sequences of elements of Gf with

domain <//, i = 1, 2. Let Ψ be the set of all Skolem operators from Φx to Φ2,

where the underlying set ax U at is ordered as in Mi Then we shall say that

a is true in M externally if there exists a Skolem operator φ e Ψ such that if

we substitute the individuals of the set (φlt ψ(φi)) for the corresponding free

variables of b then we obtain an ίVsentence (of rank n-ϊ) which is true in

M externally. In this connection, we recall that the set of pseudo-finite

sequences is defined by means of an index set f in U'. On the other hand,

we have not restricted Ψ by the stipulation that its elements be given by some

index set. It might appear at first sight that this procedure is somewhat

arbitrary. However, in actual fact we only introduce the restriction on the

elements of Φx and Φ2 (i.e. to pseudo-finite sequences) in order to ensure that

the result of substituting (φlt ψ(φχ)) for the free variables of b yields an ZΛ

sentence at all. In fact, it can be shown without difficulty that this last condi-

tion is entirely equivalent to the above restriction on the elements of Φι and

Φ2. We shall see presently that it implies no corresponding restriction on the

elements of Ψ.

This completes our definition of external truth. It is not difficult to verify

that if we substitute sentences of Qw for the propositional variables in any

tautology of the standard propositional calculus then we obtain a sentence
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which holds in M externally. Similarly if we substitute an element of Ωw

with a simple free variable for the predicate variable F in one of the formulae

liVx) Fix)l'DF(a) or F{a) =>[(3*)FU)] then we obtain a sentence of Ωw which

holds in M externally (provided we obtain a wff at all as usual). Finally, it is

not difficult to verify that the modus ponens and the two rules of deduction

of the predicate calculus also lead from sentences of Ωw which are true in M

externally to sentences of the same kind. Accordingly, we may say that the

external truth definition is a reasonable one. We might further suspect that

it actually coincides with the interior truth definition in cases where both

definitions are applicable. Thus, let M1 be a structure in IP which corresponds

to some structure in Z7and let Gτ be the set of Z/ sentences defined in M according

to some given correspondences between Z/ symbols and individuals, relations,

and functions of Λf', as in section 3. By the same correspondences, the subset

GT of Gτ which consists of the simple //-sentences of finite rank in Gτ is

defined in M' according to the rules of the present section. It is not difficult

to see that if a sentence of GT does not involve any quantifiers then it holds

in Mr according to the external truth definition if and only if it holds in M'

according to the internal truth definition.

Indeed, for a simple //-sentence of rank 0, a, the external truth definition

is the same as for the standard predicate calculus and, since 4. 5 and 4.6 hold

also in IP, the internal truth definition for a (whose relations and functions

are finitary) also is the same as for the standard predicate calculus. It follows

that the two definitions coincide in this case.

Supposing that we have already proved our assertion for sentences of rank

smaller than n, where n>0, let a be a simple L'-sentence of rank n which

does not involve any quantifiers. If a is obtained by conjunction, then (see

above) it is a repeated conjunction of a set of L'-sentences of rank <n which

are not themselves conjunctions.

According to the external truth definition, a is true in M1 if and only if

all the elements of the set of conjuncts just mentioned are true in M1. Now

this is a condition which holds in U and can be formulated as a sentence of

K and, accordingly, holds also in ZP. It follows that the external and internal

truth definitions for a coincide. The argument is similar for disjunctions and

rather simpler for negations.



iόβ ABRAHAM ROBINSON

Now suppose that the //-sentence a has been obtained from a simple ZΛ

sentence b of finite rank by (possibly, infinitely repeated) quantification, where

b is free of quantifiers. Within U} if an L-senteuce in prenex normal form

holds in a structure M then there exists a corresponding Skolem operator ψ.

This fact can be formulated as a sentence of K and, accordingly, holds also in

U1. We conclude that if a holds in M1 according to the internal truth defini-

tion, then it holds in Mr also according to the external truth definition. The

converse does not follow in this way since we have admitted Skolem operators

in U1 which are not necessarily indexed in U1. More precisely, we shall show

in the next section that the internal and external truth definitions do not

coincide in all cases.

6, Discrepancy between internal and external t ruth definitions. Let Ube

the structure considered throughout this paper and let Mt be the selected

standard model of the natural numbers and L the standard Lower predicate

calculus within U, as before. K being again the set of all sentences

which are defined and hold in U, let H be the set of sentences of K which do

not include any individual constants. Let W be any model of H. We claim

that W contains a partial structure, WQ) which is isomorphic to U.

Indeed, for any element a of U, K includes a relation Ra(x) which holds

only for a. Thus the sentences

6.1. Ra(a),

6.2. (3x)Ra(x),

6.3.

belong to K. 6. 2 and 6. 3 belong also to H and, accordingly hold in W. It is

easy to see that we may impose the condition that I(x, y) is the relation of

identity also in W without limiting the validity of our argument. Let Wo be

the partial structure of W which consists of all elements b in W for which

there exists an a in U such that Ra(b) holds in W. This establishes a one-to-

one correspondence C* a<^>£ between the elements of U and the elements of

Wo. We are going to show that C establishes an isomorphism between U and

Wo.

Let R(xh . . . , xn) be any relation in U and let au . . , an be a set of
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elements of U. Then R(ah . . . , an) holds in U if and only if the sentence

6.4. (Vtfx) WXnKRaAXl) A NRaSXn)

belongs to ϋf and hence to H. Let «i <H> fc under the correspondence C then

Λ,,(&) holds in W. Thus if /?Ui, . . . , an) holds in U, then 6.4 belongs to H

and so /?(A, . . . , bn) holds in Wo. Conversely, if R(bi, . . . , bn) holds in Wo

then 6. 4 holds in i / and so R{ax, . . . , an) holds in U. This shows that C is

an isomorphic correspondence with respect to the relations of the two structures

and a similar argument applies with respect to the functions. It follows that

if we identify the bi with the corresponding aι then we may regard W as an

extension of U, and a model of K.

Let S0*(ΛΓ, y, z) and P*{x, y, z) be two relations which determine addition

and multiplication within the set of natural numbers in U, M*. More precisely,

we shall suppose that S0*(<z, b, c) holds if and only if a, b, c belong to Mf and

a-\-b-cy and Pf{a, b, c) holds if and only if a, b, c belong to Mf and ab = c.

In particular, So*(«, b, c) and P*{a, b, c) do not hold if at least one of a, b, c

is outside M o . Also, let I?(x, y) coincide with the relation of identity /*(#,jy)

on Mo*, while /0*(α, b) does not hold if at least one of the constants a, b is

outside Mo*. Thus / * ( # , a) holds only for element a of Mt.

In section 2 above, we considered a model of the natural numbers, Mo,

which included the relation of identity I(x,y) and the functions a(x,y), πix,y)

and φ(x), i.e. x+y, xy and #' = x -h 1. It is not difficult to show, and is usually

taken for granted, that we may replace the three functions just mentioned by

two three-place predicates, Six, yy z) and P(xt y, z)y which stand for x+y -z

and xy = z. Thus, every relation Q(xίf . . . , xn) within the domain of natural

numbers which is definable in the Lower predicate calculus in terms of the

relation of identity, I(x, y) and the functions σ, π and <ρ, is definable also in

terms of /, S and P. This applies to the model of the natural numbers, Mo,

as introduced in section 2, i.e. without reference to any structure U which

includes Mo. Suppose however, that M o coincides with Mo* as above. In that

case the relations /, S, P are obtained by restricting /<*, So*, Po* to Mo*.

Let Q(xi, . . . , Xn), n>l, be any relation which constitutes a subset of

Mo = Mo* (i.e. which holds for the w-tuples of a certain set of natural numbers).

Then we claim that Q is definable in terms of /, S, and P if and only if it is
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definable in terms of 70, Po and So (with reference to U).

To prove our assertion we denote by RQ{X) the relation which defines M<Γ

within U. Thus, Rf(a) holds in U precisely when a belongs to Mf. Let

Q(xu . . , Xn) be a predicate which is defined in Mo = Mf in terms of the

relations 7, S, and P (without reference to U), and let Qixu • , Xn) be

obtained from ζ) by relativizing that predicate with respect to Rf and by

replacing 7, S, P everywhere by If, So*, Po*, respectively. Let aίt . . . , an be

elements of Mo. Then (?(tfi, . . . , an) holds in Mo if and only if Qo(ah . . . ,

tfn) holds in U. It follows that the predicate 6. 5 T(xu . . . , xn) = R(xi) Λ •

AR(xn) ΛQ*(#i, . . . , # « ) determines the same set as ζ), where T is interpreted

with reference to U. Now (V*)[/?0*U) = / ί ( ^ Λ)] holds in £/. It follows that

if T*(xι, . . . , Xn) is obtained from T(jclf . . . , xn) by substituting I*{χ, x)

everywhere for Rf(x) then T* defines the same set as T. Thus T* is defined

in terms of 7<f, So*, Po* and determines the same set within U as Q determines

in Mo, without reference to U.

To prove the converse, we introduce a relation of order 0, F*("False")

which does not hold in Uy by definition. Let F be the restriction of F* to Mo.

Thus, F is defined but does not hold in Mo. Let Q*(#i, . . . , χn), w>l, be a

predicate which is formulated in terms of 70*, So*, Pf and which defines a

subset of Mf (the space of points (au . . . , an) with e/eM0) when Mo = Mί"

is regarded as a partial structure of £Λ It will be sufficient to consider only

0* which are in prenex normal form,

6.6. Q * U i , . . . , # « ) =<7i<?2- 'Qk Z(xi, . . . ,Xn, yι, . ,yk)

where Z does not contain any quantifiers and where Qi quantifies jy, , ι' = l,

We define the predicates OO(AΓI, . . . , xn, yi, . - , ^ ) ,

Qi(^i, . . . , Xn, yi, . . ,jyjfe-i), . . , QΛ(^I, . . , ffn) as follows.

6 . 7 . Qoixi, . . . , Xn, yu - - . , ^ ) = 2 ' ( ^ i > , #«> ^ i , . . . ,yk).

vSupposing that Qj (xu . . . , xn, yu . ,̂ *-y) has been defined already, 0<j<ky

we distinguish two cases.

If Qk-j is an existential quantifier, Qk-j ~ Oyk-j) then we put



NON-STANDARD ARITHMETIC 111

6.8. Q +iUi, . . . ,xn, yu . . . ,.yft-y-i)

f(χι, . . . , χn, yu . - ,^-y-i)]]

where (?/ is obtained from ζ)y by replacing every atomic formula in Qj which

contains yk-j by Fo*. If Qk-j is a universal quantifier, Qk-j = (Yy&-y), we put

6.9. QmU, . . . , xn, yu . . ,yk-j-i)

[ Q / U i , . . , X n , y i , . . . , y k - j ) Λ Q / U i , . . . , # » , j y i , . . . , ^ - y - i ) J

where 0 / is defined as before.

Taking the former case, we observe that the sentence

6.10. (V*i) -(V*Λ) •(yy*-y-1)[(3^-y)βyU1 > . . . , xn, yu .". . , ̂ -y) =

βy+iUi, . . . , χn, yu - . . ,^-y-i)

holds in U. Indeed, the sentence

6.11. (V*i) (V**) {Vyk-j-i)ll(3yk-j)QΛχu . . - , xn, yu . . . ,yu-j) =

is a theorem of the Lower predicate calculus. But

O/Ui, . . . tχn, yu . ,yk-j)l

holds in U since any atomic sentence of Qj that contains an individual a which

is in U but outside Mf, cannot hold in U. It follows, by the rules of the

Lower predicate calculus that the sentences

(V*i) (V*«) {Vyk-j-i)(3yk-j)ίl~Rΐ(yk-j) A

Qj(xu . . . , xn, yu . . .,yk-j)Ί = Qfixu > Xn, yu . . , yk-j-iΏ

and

6.12. (VΛΓi). . ΛVxn). . .

also hold in U. Combining 6.12 with 6.11, we obtain 6.10.

Suppose now that Qk-j is a universal quantifier, qk-j= (Vyk-j). In that

case, similar considerations show that

6.13. (V*i) (Vxn) Wyk-j-i)LZ(Vyk-j)Qj(χi, . . . , χn, yu . . , ^-y ) ]

Ξ Qi+iί^i, . . . , Xn, yu . ,yk-j-i)l

holds in ί/. Thus, in either case,
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6.14. (VΛΓI) (V*n) * (Vyk-j-i)ULqh-jQAxi, . . . , Xn, yu . - • , J>*-./)]

sQ/+i(*i, . . . , # « , .Vx, . . . . ^ - y - i ) ] holds in £7. Applying 6.14 for .7 = 0, 1,

. . . , k — 1 and taking into account 6.7, we conclude that (VΛΓI) (Vxn)

. . . , xn, yi, . . . ,yu) =

i.e. 6.15. (V*) (V*»)[©*U, . . . , xn) = Qk(xu , Xn)l holds in Z7.

Next, we define another sequence of predicates, TQ{XU . . , %n, yu »

i, . . . , xn) by

6.16. ToUi, . . . , Xn, yu . . . , J>*) = Z(xu . - . , xn, yi, . . . , yk) and by

6.17. Tj*i(xu . . . , # * , jvi, . . . ,yk-j-ι) = Qk-jίTj(xh . . . , # « , J Ί , . . . , yu-j) t\

Tf(xu - . . ,xn,yι, . . . , y k - j - i Ώ

for 0 < / < & - l , where T/ is obtained from Tj by replacing every atomic

formula in Tj which contains yu-j by Ft.

By considering successive j , j = 0, 1, . . . , k, we see that Qj(xι, . . . , xn,

yu " - , yk-j-i) is obtained by relativizing the predicate Tj{χh . . . , xn, yu . . ,

yk-j-i) with respect to R?(x). It follows that the predicate T(xu . . . , xn)

which is obtained from Tk(xι> . . . , # * ) by replacing /*, So*, P*, Ft everywhere

by 7, S, P, F, respectively, holds in MQ for any au . . . , an in Mo if and only

if Qk(xι, , ̂ n) holds in £7, i.e. by 6.15, if and only if Q*(au - - . , Λ«) holds

in TJ. T(xu . . , Xn) is not as yet the required predicate since it contains, in

addition to 7, S, P, the relation F. However, replacing F everywhere in

T(xL, . . . , ΛΓn) by (VΛΓ)[7(Λ:, ΛΓ) Λ -^I(X, ΛΓ)] we obtain a predicate Q(#i, . . . , xn)

which is obtained in terms of 7, S, and P and which holds in Mϋ without

reference to U if and only if Q*(χu . . . , # » ) holds in TJ. This completes the

proof of our assertion.

With TJ and MQ = Mo* as before, let L be the Lower predicate calculus

within U as introduced in seetion 3. Suppose that a set G of Z-individuals is

in one-to-one correspondence with the elements of Mo and let j t s, and p be

L-relations which correspond to the relations I(x> y), Six, y, z) and P(x, y, z)

in Mo, respectively. Thus, in the notation of section 4 with M= Mo, GR = 0', s, p)

while Gi? is empty. Putting it in a less formal way, we may say that j , s, and

p, denote the respective relations in Mo. Let GiV be the set of L-wff formulated

in terms of these L-symbols and let Gτ be the set of L-sentences which belong

to Giv. Let Gp be the set of elements of GT which are in prenex normal form
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and such that the matrix (the quantifier-free part of the sentence) is in Boolean

normal form as a conjunction of disjunctions of atomic sentences and of nega-

tions of such sentences. Let G$ be the set of elements of Gτ which hold in

Mo and let Gp be the corresponding subset of Gp.

We may map the wff of Gw on a subset S,v of Mo = M* by the familiar

process of arithmetization. Then Sw is recursive. Let ST) SPί Sί, S* be the

sets of natural numbers which correspond to Gr> Gp, G*, and Gp respectively

in this mapping. Then Sr and Jp also are recursive. Moreover, since there is

a recursive procedure for transforming any given sentence in prenex normal

form with a matrix in Boolean normal form, there exists a recusive number-

theoretic relation K(xt y) such that the first argument determines the second

argument — i.e. (V#)(VjO (\fz) LK(x, y) Λ K(x, z) ̂ >I(y, z)~] — and such that for

every element a of Sr there exists an element b of SP for which K(a, b) holds.

Moreover, K(a, b) holds only if a is in Sτ and b is in SF and a and b are the

Godel numbers of equivalent sentences. Since K(x,y) is recursive, it is definable

in terms of the relations /, S, and P.

Let VAx) and VP(χ) be the relations which determine the sets S* and Sp

in Mo, without reference to U. Then

6.18. (Vx)lVAx) = (Ξy)lK(x, y) Λ VP(y)J\

holds in Mo. By Tarski's theorem (2.4 above), Vτ(x) cannot be expressed in

terms of the operations of addition, multiplication and succession and as

remarked earlier, this is equivalent to the fact that VAx) cannot be expressed

in terms of /, S and P. On the other hand, K(x, y) can be so expressed.

Hence, by 6.18, VP(x) cannot be expressed in terms of the relations /, S and

P. Combining this conclusion with the result of the previous argument we

obtain

6.19. THEOREM. SP, regarded as a subset of U, is not defined by any predicate

which is formulated in terms of the relations I?(x, y), So*(#, y, 2), P0*(x y, z)

alone.

As before, let // be the set of all sentences which are defined in terms of

the relations of U but without individual constants, and which hold in U. In

particular, H contains sentences which involve the relation It{x,y), Sf(x, y, z),

P*(x, y, z) and VP{χ). Let Hf be obtained from H by replacing all relations
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of H except I*, So*, Po*, by distinct new relations. In particular, let VP(x) be

the relation which replaces VP(x). We are going to prove

6.20. THEOREM. The set H = H]J H' U {( 3x)l~~lVP{x) = VP(x)J\} is consistent.

Proof. Suppose on the contrary that H* is contradictory. Then

6.21. HUH'b(Vx)ίVP(x) = VF(x)l

In 6.21, we may replace H and H1 by finite subsets Hi and H2 of H and H1

respectively. Moreover—if necessary by adding a number of sentences— we may

suppose that H2 is obtained by replacing the relations of H, except 70*, So*, Po*

by the new relations of H'. Let X be the conjunction of the sentences of Hγ

then the conjunction of the sentences of H2, H
f say is obtained from X in the

same manner. Thus, X e £Γ, I ' e ί ί ' and

6.22. XΠX'b(Vx)tVp(x) = V'Ax)3.

Theorem 2.1 now implies that there exists a predicate Q(x) which is defined

in terms of 70*, So* and Po* alone, such that

6.23. XbCκfx)ίVP(X) =.©(*)!

But X^H holds in U and so 6.23 entails that VP(x) is expressible in terms

of 7o*, So*, P*. This contradicts 6.19 and proves 6. 20.

Let £7* be a model of H*. U* contains a model of arithmetic, Mo, which

is defined in terms of 1*, So*, P*. Mo cannot be the standard model since in

that model (Vx)LVP(x) = VP{χ)~_\. We denote by Ux the structure which is

obtained from £7* by taking into account only the relations of H> and by U[

the corresponding structure which takes into account only the relations of H'.

Then Ui and U[ are models of H and H1 respectively. They have in common

the non-standard model of arithmetic, Mo, which is a proper extension of the

standard model of arithmetic Mo in U. Thus the theory of sections 2-5 applies

to both Uι and U[. The sets which constitute the Lower predicate calculus

within U\ and Ui respectively, need not coincide. However, if Guv and G[w

are the sets which correspond to Gw in Ux and U[ respectively then there is

a natural one-to-one correspondence between Guv and G[w in the Godel num-

bering of their elements. That is to say if o e f t w and af e G[ w then we

define a<->qf if a and a( have the same Godel numbers in Mo. This cor-
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respondence is an isomorphism in the sense that if a<-^af then a and a1 possess

the same length / (where / is an element of Mo). Moreover, the nth atomic

symbols of a and a' either are the "same" logical constants other than variables,

or variables with the same Godel numbers, or they denote the same extralogical

constants (relations, natural numbers). The sentences of Guv are mapped on

the sentences of G[w under this correspondence, Gir<->Glr, and the same ap-

plies to the sentences in prenex normal form, GιP<->G[P.

Now let G*F and GIF be the sets of sentences in prenex normal form within

the Lower predicate calculi of U and U\ respectively which hold in Mo. Let

A and Af be the sets of Godel numbers of Gtp and G*Pi then A and A1 consist

of the elements of Mo which satisfy VP(χ) and VP(x), respectively. Z7* is a

model of ff* and so the sentence (3x)l ~IVP( x) = V'P(x)J\ holds in U*. Thus,

there exists an element m of Z7* such that -*-ZVP(m) = VP(m)l holds in U*.

It follows that either VP(m) holds in U* and VP(m) does not hold in £7* or

VP does not hold in C7* and VP(m) holds in U*. Clearly, it does not restrict

the generality of our considerations to suppose that the former case applies.

m is the Godel number of sentences a and a' within the Lower predicate

calculi of UΊ and U[ respectively. Then a <-» a\ and so a and a1 are "isomorphic"

in the sense detailed above. The sentence a holds in Mo, since VP(m) holds

in £7*. a belongs to Gip, which includes G*P as a subset and so a1 belongs to

G[p. But a1 does not belong to G?r since VP(m) does not hold in £/*, and so

a' does not belong to G*y either.

Let & and &' be the negations of a and #' within the Lower predicate

calculi of U and Uf, respectively, then b<^b'. Let c be obtained from b by the

standard transformation of the negation of a sentence in prenex normal form

into a sentence in prenex normal form, i.e. by changing the type of the

quantifier of b, existential to universal and vice versa, while the sign of nega-

tion is shifted to the front of the matrix of b. We shall say, briefly, that c is

obtained from a by negation and normalization. Thus, if cf is similarly obtained

from af by negation and normalization then c<r>c'.

a holds in Mo and so b and c are defined but do not hold in Mo, all

according to the internal truth definition. On the other hand, af is defined but

does not hold in Mo and so b1 and cf hold in Mo, again according to the internal

truth definition,
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Now all sentences in prenex normal form with matrices in Boolean normal

form are simple formulae in the sense introduced in section 5, of ranks not

exceeding 4. Accordingly, we may apply the external truth definition to the

sentences of GLP and G[P. Since corresponding sentences of GlP and G\P are

given by the same Gδdel numbers and are isomorphic in the sense explained

above, it will be seen that corresponding elements of G1P and G[p either both

hold or both do not hold in Mo- But a holds in Mo according to the external

truth definition. Similarly, c1 holds in Mo according to the internal truth defini-

tion and so both c and cf hold in M> according to the external truth definition.

b and bf are the negations of a and a1 respectively, and so these sentences do

not hold in Mo according to the external truth definition either.

Disregarding the relations which were introduced on passing from H to H'

and recalling that our structure £/* is also a model of Ky we thus obtain the

following theorem.

6.24. THEOREM. There exists a model U'r of K including a model of

arithmetic Mo, and three sentences a, b, c> in the Lower predicate calculus L*

within C7* such that the following conditions are satisfied, a is an L*-sentence

in prenex normal form with a matrix in Boolean normal form b is obtained

from a by negation and c is obtained from b by normalization accordingly, c

is again in prenex normal form. The sentence a holds in Mo according to the

internal truth definition, and the sentences b and c do not hold in Mo according

to that definition. The sentences a and c hold in Mo according to the external

truth definition and the sentence b does not hold in Mo according to that

definition.

Our argument was based on the assumption that V(a) holds in £7* while

Vf(a) does not hold in that structure. If the opposite is true we only have to

interchange the roles of Uι and U[.

Theorem 6.24 shows that a particular sentence (i.e. c) may well be true

in Mo according to the external truth definition but false according to the

internal truth definition. Moreover, whereas our intuition which is derived

from the finite case, would indicate that b and c (which is obtained from b by

normalization) must be true simultaneously, the opposite applies if we adopt

the external truth definition, As mentioned in the introduction, an analogus
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phenomenon was noticed by H. Steinhaus and J. Micielski for certain sequences

of quantifiers of order type ω. No such sequences are possible in our calculus

and it is not clear whether the connection between the two phenomena is more

than superficial.

We may make our result somewhat more precise by imposing certain

conditions on the form of the prefix in a. Thus, every sentence in prenex

normal form is equivalent to another sentence in prenex normal form in which

the quantifiers alternate. For example in ordinary notation, (V#)(Vjy)( 3z)(3w)

Q(x, y, z, w), where Q is free of quantifiers, is equivalent to (V#)Ow)(Vjy)( 3z)

(Vz;)(3«)LQiXy y, z, w) A I(u, u) A I(v, #)] where I(uy u) and Kv, v) need be

included only if we wish to avoid empty quantification. Accordingly, we may

restrict the sets Gp, G? which were employed in the proof of 6.24 to sentences

in whose prefix the quantifier alternate. This leads to conclusion that the

sentences a and c in 6.24 may also be supposed to be of this type.

In the external truth definition we combine laws of formation which are

based on non-standard arithmetic with a standard semantical approach. As a

result we may employ a n on-standard language Lf even in order to describe

the standard system of natural numbers, Mo. This contrasts with previous

efforts to penetrate into the world of non-standard arithmetic by employing

the standard Lower predicate calculus in order to discuss a non-standard model

of arithmetic.
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