A REMARK ON DECOMPOSITIONS OF THE PERMUTATION REPRESENTATION OF A PERMUTATION GROUP

TOSIRO TSUZUKU

To Richard Brauer on the occasion of his 60th birthday

Let \mathbb{S} be a permutation group on n-letters $\underline{1}, 2, \ldots, n$. Let \mathbb{G}_{1} be the subgroup of $(\mathbb{B}$ fixing suitable one letter, say 1 . For any element G of \mathfrak{B}, a non-singular matrix $G^{*}=\left(g_{i j}\right)$ of degree n is defined by the equation

$$
\left(\begin{array}{c}
1^{G} \tag{1}\\
\cdot \\
\cdot \\
\cdot \\
\underline{n}^{G}
\end{array}\right)=G^{*}\left(\begin{array}{c}
\underline{1} \\
\cdot \\
\cdot \\
\underline{n}
\end{array}\right) .
$$

Since $g_{i j}^{\prime} s$ are 0 or 1 , we may assume that G^{*} is a matrix whose coefficients are in an arbitrary unitary ring K. Then if for any element G of $\mathbb{\$}$ we take the mapping $G \rightarrow G^{*}$, this mapping will be a representation P_{K} of $(\mathbb{S}$ by the nonsingular $n \times n$ matrices over K. By the formula (1) the representation P_{K} is also the representation of \mathbb{B} induced by the identity representation of \mathscr{G}_{1} over K. We call P_{K} the permutation representation of \mathbb{B} over K. If K is a field of characteristic 0 (more generally, if the characteristic of K does not divide the order of (\mathbb{S}), then it is well known that \mathbb{B} is a doubly transitive group when and only when P_{K} is directly decomposed into two irreducible constituents (see [2]). Now in the present note we consider decompositions of the permutation representation P_{K} of $(\mathcal{S}$ over an arbitrary unitary ring K, instead of such a field of characteristic 0 .

Theorem 1. Assume that $(\mathbb{S}$ is a doubly transitive group.
i) Ij n is an inversible element of K (e.g. K is a field whose characteristic does not divide n), then P_{K} is directly decomposed into two indecomposable
constituents and one of them is the identity representation.
ii) If n is not an inversible element of K (e.g. K is rational integer ring or a field whose characteristic divides n), then P_{K} is a indecomposable representation.

Proof. Let M_{K} be the representation module of \mathbb{B} corresponding to P_{K}. Then we may suppose that M_{K} has a basis $\underline{1}, \underline{2}, \ldots, \underline{n}$ over K and, for any element G of \mathfrak{G}, G^{*} operates on this basis such that $\underset{i}{\rightarrow} \underline{i}^{G}$. If M_{K} is directly decomposed into a certain number of (B)-submodules of M_{K}, say M_{1}, \ldots, M_{r}, then we have, for $u \in M$ uniquely, $u=\sum_{i=1}^{r} u_{i}, u_{i} \in M_{i}$ and the mappings δ_{i} : $u \rightarrow u_{i}, i=1, \ldots, n$, are idempotent (6 -endomorphisms of M_{K} such that

$$
\begin{equation*}
\delta_{i} \delta_{j}=0 \quad \text { for } i \neq j \text { and } \sum_{i=1}^{r} \delta_{i}=\text { identity } . \tag{2}
\end{equation*}
$$

Conversely, if there exist idempotent (B-endomorphisms $\delta_{1}, \ldots, \delta_{r}$ of M_{K} satisfying the relations (2), then it is easy to see that M_{K} is directly decomposed into $r \mathscr{G}$-submodules of M_{K}. Therefore, in order to determine the direct decomposition of M_{K}, we need only to look for idempotent (8 -endomorphisms of M_{K} satisfying the relations (2). Let δ be a ($\left(\mathbb{S}\right.$-endomorphism of M_{K} and put $\underline{i}^{\delta}=\sum_{j=1}^{n} \lambda_{i j} \underline{j}$. Since $\underline{i}^{\boldsymbol{i} G}=\underline{i}^{i \delta \delta}$ for any element G of \mathscr{G}, we have $\sum_{j=1}^{r} \lambda_{i j} \underline{j}^{G}=\sum \lambda_{i} \sigma_{j} \underline{\jmath}$, hence $\lambda_{i j}=\lambda_{i G_{J} G}$ for any element G of \mathbb{C} and for any integers $1 \leqq i, j \leqq n$. Since \mathfrak{B} is doubly transitive it is easy to see that $\lambda_{11}=\cdots=\lambda_{n n}(=\lambda)$ and $\lambda_{i j}=\lambda_{k_{1}}(=\mu)$ if $i \neq j$ and $k \neq 1$. Hence we have

$$
\left(\begin{array}{c}
1^{\delta} \\
\cdot \\
\cdot \\
\cdot \\
n^{\delta}
\end{array}\right)=\Delta(\delta)\left(\begin{array}{l}
1 \\
\cdot \\
\cdot \\
\cdot \\
n
\end{array}\right) \text { where } \Delta(\delta)=\left(\begin{array}{cccccc}
\lambda & \mu & \cdot & \cdot & \cdot \\
\mu & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & & \cdot & \cdot & \cdot \\
\cdot & & & \cdot & \mu \\
\mu & \cdot & \cdot & \cdot & \mu
\end{array}\right)
$$

If δ is a idempotent \mathscr{B}-endomorphism of M_{K}, i.e. $\delta^{2}=\delta$, then

$$
\Delta!\delta)=\Delta(\delta)^{2}=\left(\begin{array}{ll}
\lambda^{2}+(n-1) \mu^{2} & \\
& 2 \lambda \mu+(n-2) \mu^{2} \\
2 \lambda \mu+(n-2) \mu^{2} & \\
\lambda^{2}+(n-1) \mu^{2}
\end{array}\right),
$$

therefore we have the equations $\lambda=\lambda^{2}+(n-1) \mu^{2}, \mu=2 \lambda \mu+(n-2) \mu^{2}$. From these equations we see that $\lambda=\mu=0, \lambda=\mu$ and $\lambda n=1, \lambda=1$ and $\mu=0$, or $\lambda=\mu+1$ and $n \lambda=n-1$. Hence if n is not a inversible element of K then we
have no non trivial idempotent (5)-endomorphisms of M_{K} and if n is a inversible element of K then there exist exactly two non trivial (3)-endomorphisms δ_{1}, δ_{2} of M_{K} where

$$
\Delta\left(\delta_{1}\right)=\left(\begin{array}{lll}
\frac{1}{n} & & \frac{1}{n} \\
\cdot & \cdot & \\
\frac{1}{n} & \cdot & \frac{1}{n}
\end{array}\right) \text { and } \Delta\left(\delta_{2}\right)=\left(\begin{array}{ccc}
\frac{n-1}{n} & & \\
& \cdot & -\frac{1}{n} \\
-\frac{1}{n} & & \\
& & \frac{n-1}{n}
\end{array}\right)
$$

It is easy to see that $\delta_{1} \delta_{2}=\delta_{2} \delta_{1}=0 \delta_{1}+\delta_{2}=$ identity and $M_{K}^{\delta}=k \sum_{i=1}^{n} i$. The proof is complete.

It seems to us of interest to determine irreducible constituents of M_{K}. When $\mathbb{\$}$ is the symmetic groups, H. K. Farahat determined irreducible constituents of M_{K} (see [1]). Using Farahat's method we can prove a following theorem.

Theorem 2. Let $\mathbb{(S}$ be a triply transitive group. If K is a field whose charasteristic p divides n and does not divide the order of \mathscr{B}_{1} then, for the (3-m)dule M_{K}, we have a composition series $M_{K} \supset M_{1} \supset M_{2} \supset 0$ where $\operatorname{dim}_{K} M_{2}$ $=\operatorname{dim}_{K} M_{K} / M_{1}=1$.

Proof. Put $M_{1}=\sum_{i=2}^{n} K(i-1)$ and $M_{2}=K \sum_{i=1}^{n} i$. Then M_{1}, M_{2} are (6 -submodules of M_{K} and, by our assumption $p \mid n, M_{1} \supset M_{2}$ and $\operatorname{dim}_{K} M_{2}=\operatorname{dim}_{\kappa} M_{K} / M_{1}=1$. Put $M_{1}{ }^{*}=\sum_{i=2}^{n} K \underline{\underline{l}}$. Then, since $\underline{1}^{G}=\underline{1}$ for any element G of \mathscr{G}_{1}, we see that $M_{1}{ }^{*}$ is a \mathfrak{B}_{1}-module and there is a \mathfrak{B}_{1}-isomorphism θ of M_{1} onto $M_{1}{ }^{*}$, for which $\theta(i-1)=\underline{i}$. Furthermore, since $n \cdot 1=0$ in K, θ carries M_{2} onto $M_{2}{ }^{*}=K \sum_{i=2}^{n} \underline{i}$. It follows that θ induces a \mathscr{G}_{1}-isomorphism of the factor module M_{1} / M_{2} onto the factor module $M_{1}{ }^{*} / M_{2}{ }^{*}$. Since p does not divide the order of \mathbb{G}_{1} and \mathbb{G}_{1} is doubly transitive, $M_{1}{ }^{*} / M_{2}{ }^{*}$ is a irreducible \mathbb{B}_{1}-module. It follows that M_{1} / M_{2} is a irreducible $\left(\$_{1}\right.$-module. Hence M_{1} / M_{2} is a irreducible (5)-module. The proof is complete.

References

[1] H. K. Farahat, On the natural representation of the symmetric groups, Proc. Glasgow Math, Assoc. 5 (1962), 121-136.
[2] G. Frobenius, Über die Charaktere der mehrfach transitiven Gruppe, Sitzungsber, Preuss. Akad. (1904), 558-571.

Mathematical Institute

Nagoya University

