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Let © be a permutation group on w-letters 1, 2, . . . >n . Let ©i be the

subgroup of © fixing suitable one letter, say 1. For any element G of ©, a

non-singular matrix G* = (gij) of degree n is defined by the equation

(1)

Π

Since gjjs are 0 or 1, we may assume that G* is a matrix whose coefficients are

in an arbitrary unitary ring K. Then if for any element G of © we take the

mapping G -> G*, this mapping will be a representation Pκ of ® by the non-

singular n x n matrices over K. By the formula (1) the representation Pκ is

also the representation of © induced by the identity representation of ©i over

K. We call Pκ the permutation representation of © over K. If K is a field of

characteristic 0 (more generally, if the characteristic of K does not divide the

order of ©), then it is well known that © is a doubly transitive group when

and only when Pκ is directly decomposed into two irreducible constituents (see

[2]). Now in the present note we consider decompositions of the permutation

representation Pκ of @ over an arbitrary unitary ring K, instead of such a field

of characteristic 0.

THEOREM 1. Assume that © is a doubly transitive group.

i) If n is an inversible element of K {e.g. K is a field whose characteristic

does not divide n), then Pκ is directly decomposed into two indecomposable
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constituents and one of them is the identity representation.

it) If n is not an inversible element of K (e.g. K is rational integer ring or

a field whose characteristic divides n\ then PK is a indecomposable representation.

Proof. Let Mκ be the representation module of © corresponding to Pκ.

Then we may suppose that Mκ has a basis 1, 2, . . . , w over K and, for any

element G of ©, G* operates on this basis such that i-+f. If Mκ is directly

decomposed into a certain number of ©-submodules of MK, say Mi, . . . , Mr,
r

then we have, for u^M uniquely, u-^ΣiW, Ui^M- and the mappings 5, :
ι = l

u -»uu i = 1, , n, are idempotent ©-endomorphisms of MK such that

δi δj = 0 for i ̂  j and Σ 5, = identity.(2)

Conversely, if there exist idempotent ®-endomorphisms δh . . . , δr of MK

satisfying the relations (2), then it is easy to see that Mκ is directly decomposed

into r ©-submodules of Mκ> Therefore, in order to determine the direct

decomposition of MK, we need only to look for idempotent (S-endomorphisms

of Mκ satisfying the relations (2). Let δ be a ®-endomorphism of Mκ and put

ίδ = ΣUί./\7. Since i*G = ?* for any element G of ®, we have
3=1 J = l

hence λij = λiGjo for any element G of S and for any integers l^i, j^n.

Since © is doubly transitive it is easy to see that λπ = =^Wn( = λ) and

= μ) if i*j and k^ί. Hence we have

• μ

where

If δ is a idempotent ©-endomorphism of MK, i.e. <f = δ, then

2λμ+(n-2)μ2

therefore we have the equations A = A2 -+ (n - l)μ2, μ = 2λμ+{n — 2)μi. From

these equations we see that λ = μ = 0, Λ = μ and ŵ = 1, ^ = 1 and μ = 0, or

λ = /i + 1 and nλ — n — 1. Hence if w is not a inversible element of K then we



PERMUTATION REPRESENTATION OF A PERMUTATION GROUP 81

1
n

1
n

1
n

1
n

and J(δ2 ) =

w —
n

1

have no non trivial idempotent (S-endomorphisms of MK. and if n is a inversible

element of K then there exist exactly two non trivial ©-endomorphisms δh δ*

of Mκ where

1_
n

n-1

It is easy to see that διδ2 = δ2δt = 0 £i -f- c>2 = identity and M^ = &Σ*. The proof

is complete.

It seems to us of interest to determine irreducible constituents of Mκ

When © is the symmetic groups, H. K. Farahat determined irreducible con-

stituents of MK (see [1]). Using Farahat's method we can prove a following

theorem.

THEOREM 2. Let % be a triply transitive group. If K is a field whose

characteristic p divides n and does not divide the order of ©i then, for the

^-module MK, we have a composition series MK ^ Mi 3 M2 3 0 where

= dim*; MKIMI = 1.

Proof. Put Mi = *ΣK(i - 1) and M2 = K'Σi. Then Mi, M2 are ©-submodules

of MK and, by our assumption p\n, Λ f p i l ^ and dim* M2 = diπu- MKIMI = 1.

Put Mi* = Σ ^ ϊ Then, since 1^ = 1 for any element G of ©i, we see that Mi*

is a ©i-module and there is a ©risomorphism θ of Mi onto Mi*, for which
n

β(i-l) = j . Fur thermore, since # l = 0 in K, θ carries M2 onto M 2* = ^ Σ i
i = 2

It follows that ^ induces a ©risomorphism of the factor module M\!M2 onto

the factor module Mi*/M2*. Since p does not divide the order of ®i and ®i is

doubly transitive, Mi*/M2* is a irreducible © rmodule. It follows that MJM2 is

a irreducible ©j-module. Hence MjM2 is a irreducible ©-module. The proof is

complete.
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