A PROOF OF BRAUER'S THEOREM ON GENERALIZED DECOMPOSITION NUMBERS

HIROSI NAGAO

To Professor RICHARD BRAUER on the occasion of his 60th birthday

In [3] R. Brauer gave a proof of his theorem on generalized decomposition numbers which was first announced in [1], and a simplification of it has been made by K. Iizuka [5]. In this note we shall show that the theorem may be proved from another point of view by using some results obtained by J. A. Green in [4].

After stating some results by Green and Osima in the first and second sections we first prove a theorem on characters (Theorem 1) and by using the theorem we prove Brauer's theorem in the fourth section.

1. The algebra $Z(\mathfrak{G}:\mathfrak{H})$

Let \mathfrak{G} be a finite group. We consider the group ring $\Gamma(\mathfrak{G})$ of \mathfrak{G} over the ring \mathfrak{o} of \mathfrak{p} -adic integers, where \mathfrak{p} is a prime ideal divisor of a fixed prime p in some algebraic number field.

If G is any element of \mathfrak{G} , γ any element of $\Gamma(\mathfrak{G})$, write $\gamma^{G} = G^{-1}\gamma G$. Then for a subgroup \mathfrak{H} of \mathfrak{G} the set

$$Z(\mathfrak{G} : \mathfrak{H}) = \{ \gamma \in \Gamma(\mathfrak{G}) : \gamma^H = \gamma \text{ for all } H \in \mathfrak{H} \}$$

is a subalgebra of $\Gamma(\mathfrak{G})$. Let $\mathfrak{L}_1, \mathfrak{L}_2, \ldots, \mathfrak{L}_s$ be the classes of \mathfrak{F} -conjugate elements in \mathfrak{G} , where two elements X and Y of \mathfrak{G} are called \mathfrak{F} -conjugate if there exists an element H in \mathfrak{F} such that $Y = X^H$. If L_1, L_2, \ldots, L_s denote the sums of the elements in $\mathfrak{L}_1, \mathfrak{L}_2, \ldots, \mathfrak{L}_s$ respectively, these sums form an obasis of $Z(\mathfrak{G} : \mathfrak{F})$.

For a fixed \mathfrak{G} -conjugacy class $\mathfrak{L}_{\mathfrak{a}}$, a Sylow p-subgroup of the normalizer $\mathfrak{N}\mathfrak{F}(U_{\mathfrak{a}})$ of some element $U_{\mathfrak{a}} \in \mathfrak{L}_{\mathfrak{a}}$ in \mathfrak{F} is called the p-defect group of $\mathfrak{L}_{\mathfrak{a}}$, and is

Received by Journal of Mathematics, Osaka City University, December 13, 1962; Transfered to Nagoya Mathematical Journal January 29, 1963.

denoted by \mathfrak{P}_{α} . It is determined up to \mathfrak{H} -conjugacy.

Let \mathfrak{P} be a *p*-subgroup of \mathfrak{H} and $I(\mathfrak{P})$ the set of those $\alpha \in \{1, 2, \ldots, s\}$ such that $\mathfrak{P}_{\alpha} \leq \mathfrak{P}$, i.e. $\mathfrak{P}_{\alpha} \leq H^{-1}\mathfrak{P}H$ for some $H \in \mathfrak{H}$. The set of all $z \in Z(\mathfrak{G} : \mathfrak{H})$ of the form

$$z \equiv \sum_{\alpha \in I(\mathfrak{P})} a_{\alpha} L_{\alpha} \mod \mathfrak{P}Z(\mathfrak{G} : \mathfrak{H}) \qquad (a_{\alpha} \in \mathfrak{o})$$

is denoted by $Z_{\mathfrak{P}}(\mathfrak{G} : \mathfrak{H})$.

LEMMA 1 (Osima [6], Green [4], Lemma 3.2 c). If \mathfrak{P} is a p-subgroup of \mathfrak{H} , then $Z_{\mathfrak{P}}(\mathfrak{G}:\mathfrak{H})$ is an ideal of $Z(\mathfrak{G}:\mathfrak{H})$.

2. Characters

If a right $\Gamma(\mathfrak{G})$ -module M is free and finitely generated over $\mathfrak{0}$ and unitary, i.e. m1 = m for all $m \in M$, we call M a *representation module of* \mathfrak{G} over $\mathfrak{0}$ or \mathfrak{G} -representation module for short. A \mathfrak{G} -representation module M has an $\mathfrak{0}$ basis, and hence a matrix representation is associated with M. The character of the matrix representation associated with M is denoted by χ_M .

A \mathfrak{G} -representation module M is said to be \mathfrak{F} -projective if M is a direct summand of the induced module $N \otimes_{\Gamma(\mathfrak{F})} \Gamma(\mathfrak{G})$ of some \mathfrak{F} -representation module N.

LEMMA 2 (Green [4], Lemma 4.1 a). Let \mathfrak{H} be a subgroup of \mathfrak{G} , \mathfrak{H} a psubgroup of \mathfrak{H} and let M be a \mathfrak{G} -representation module. If e is an idempotent in $Z_{\mathfrak{H}}(\mathfrak{G} : \mathfrak{H})$, then \mathfrak{H} -representation module Me is \mathfrak{H} -projective.

If for an element X of $\bigotimes X = PV = VP$, where P has order a power of p and V has order prime to p, P and V are called *p*-factor and *p*-regular factor of X, respectively. The following is one of the main theorems by Green in [4].

LEMMA 3 (Green [4], Theorem 3). Let \mathfrak{P} be a p-subgroup of \mathfrak{S} and M a \mathfrak{S} -representation module. If M is \mathfrak{P} -projective and the p-factor of an element X does not lie in any conjugate of \mathfrak{P} , then

 $\chi_{\mathbf{M}}(X)=0.$

3. Brauer homomorphisms

Let \mathfrak{P} be a given *p*-subgroup of \mathfrak{G} and let \mathfrak{H} be a subgroup such that $\mathfrak{PC}(\mathfrak{P}) \leq \mathfrak{H} \leq \mathfrak{N}(\mathfrak{P})$, where $\mathfrak{C}(\mathfrak{P})$ and $\mathfrak{N}(\mathfrak{P})$ are the centralizer and normalizer

of \mathfrak{P} , respectively. For a \mathfrak{G} -conjugacy class \mathfrak{R}_{α} , let $\mathfrak{R}'_{\alpha} = \mathfrak{R}_{\alpha} \cap \mathfrak{T}(\mathfrak{P})$ and $\mathfrak{R}''_{\alpha} = \mathfrak{R}_{\alpha} - \mathfrak{R}'_{\alpha}$. Denote by K'_{α} , K''_{α} the sums of the elements in \mathfrak{R}'_{α} , \mathfrak{R}''_{α} , respectively. Then \mathfrak{R}'_{α} and \mathfrak{R}''_{α} are collections of \mathfrak{P} -conjugacy classes, and hence K'_{α} and K''_{α} are in $Z(\mathfrak{G} : \mathfrak{H})$. Each \mathfrak{P} -conjugacy class in \mathfrak{R}''_{α} has the defect group \mathfrak{Q} such that $\mathfrak{P} \neq \mathfrak{Q}$.

Let $Z(\mathfrak{G})$ be the center of $\Gamma(\mathfrak{G})$ and $Z^*(\mathfrak{G})$ the residue algebra $Z(\mathfrak{G})/\mathfrak{p}Z(\mathfrak{G})$. Then Brauer [2] has shown that the linear mapping $s^* : Z^*(\mathfrak{G}) \to Z^*(\mathfrak{G})$ which is defined by $s^*(K_{\alpha}) = K'_{\alpha}$ is an algebra homomorphism. We shall call this the Brauer homomorphism.

Let *E* be an idempotent in $Z(\mathfrak{G})$ and E^* the image of *E* under the natural mapping $Z(\mathfrak{G}) \to Z^*(\mathfrak{G})$. As is well known, the idempotent $s^*(E^*)$ in $Z^*(\mathfrak{G})$ can be lifted to an idempotent *e* of $Z(\mathfrak{G})$, i.e. $e^* = s^*(E^*)$. Now, we consider the situation where \mathfrak{P} is the cyclic subgroup generated by an element *P* of order a power of p and \mathfrak{G} is the centralizer $\mathfrak{G}(\mathfrak{P}) = \mathfrak{N}(P)$ of \mathfrak{P} . Then we have

THEOREM 1. Let P be an element of order a power of p, E an idempotent of $Z(\mathfrak{G})$ and let e be the idempotent of $Z(\mathfrak{N}(P))$ such that $s^*(E^*) = e^*$, where $s^* : Z^*(\mathfrak{G}) \to Z^*(\mathfrak{N}(P))$ is the Brauer homomorphism. If M is a \mathfrak{G} -representation module such that ME = M, then for any p-regular element V in $\mathfrak{N}(P)$, we have

$$\chi_{\mathfrak{M}}(PV) = \chi_{\mathfrak{M}e}(PV).$$

Proof. If $E = \sum_{\alpha} b_{\alpha} K_{\alpha}$ then

$$\boldsymbol{e} \equiv \sum_{\alpha} b_{\alpha} K'_{\alpha} \quad \text{mod } \mathfrak{p} Z(\mathfrak{G} : \mathfrak{N}(P)),$$

therefore

$$E - e \equiv \sum_{\alpha} b_{\alpha} K_{\alpha}^{\prime \prime} \mod \mathfrak{p} Z(\mathfrak{G} : \mathfrak{N}(P)).$$

Since each $\mathfrak{N}(P)$ -conjugacy class in \mathfrak{R}''_{α} has the defect group \mathfrak{Q} such that $P \notin \mathfrak{Q}$, E-e lies in the ideal

$$\Lambda = \sum_{P \notin \mathfrak{Q}} Z_{\mathfrak{Q}}(\mathfrak{G} : \mathfrak{N}(P))$$

of $Z(\mathfrak{G} : \mathfrak{N}(P))$, where the sum is over all p-subgroups \mathfrak{O} of $\mathfrak{N}(P)$ which do not contain P. Let f = E(E - e). Then $f \in A$, and E e and f are mutually orthogonal idempotents such that E = Ee + f. Since E e and f commute with all elements of $\mathfrak{N}(P)$, *MEe* and *Mf* are $\mathfrak{N}(P)$ -representation modules. By the

HIROSI NAGAO

assumption ME = M, therefore M is the direct sum of two $\Re(P)$ -submodules MEe = Me and Mf;

$$M = Me \oplus Mf.$$

Let $f = \sum f_i$, where $\{f_i\}$ is a set of mutually orthogonal primitive idempotents in $Z(\mathfrak{G} : \mathfrak{N}(P))$. Since $f_i = f_i f \in \Lambda$, by a theorem of Rosenberg (cf. Green [4], Lemma 3.3 a) there is a *p*-subgroup \mathfrak{Q}_i of $\mathfrak{N}(P)$ such that $P \notin \mathfrak{Q}_i$ and $f_i \in \mathbb{Z}_{\mathfrak{Q}_i}(\mathfrak{G} : \mathfrak{N}(P))$, and then Mf_i is \mathfrak{Q}_i -projective by Lemma 2. For any *p*-regular element V of $\mathfrak{N}(P)$, the *p*-factor of PV is P and P does not lie in any subgroup $\mathfrak{N}(P)$ -conjugate to \mathfrak{Q}_i , therefore by Lemma 3 $\chi_{Mf_i}(PV) = 0$. Since

$$Mf = Mf_1 \oplus \cdots \oplus Mf_r$$
,

 $\chi_{Mf}(PV) = 0$, and hence $\chi_{M}(PV) = \chi_{Me}(PV)$.

4. Proof of Brauer's theorem

Let $\{\chi_i\}$ be the set of absolutely irreducible ordinary characters of \mathfrak{G} , P an element of order a power of p and let $\{\tilde{\varphi}_j\}$ be the set of absolutely irreducible ordinary characters of $\mathfrak{N}(P)$. Let

(1)
$$\chi_i | \mathfrak{N}(P) = \sum_{i} r_{ij} \widetilde{\chi}_j$$

be the decomposition of the restriction of χ_i to $\mathfrak{N}(P)$, and let

(2)
$$\widetilde{\chi}_j = \sum_{\mu} \widetilde{d}_{j\mu} \widetilde{\varphi}_{\mu}$$

be the *p*-modular decomposition of $\tilde{\chi}_j$, where the $\tilde{\varphi}_{\mu}$ are the irreducible *p*-modular characters of $\mathfrak{N}(P)$ and the $\tilde{d}_{j\mu}$ are the decomposition numbers of $\mathfrak{N}(P)$. Since *P* is in the center of $\mathfrak{N}(P)$

(3)
$$\widetilde{\chi}_j(PV) = \varepsilon_j \widetilde{\chi}_j(V) = \sum_{\mu} \varepsilon_j \widetilde{d}_{j\mu} \widetilde{\varphi}_{\mu}(V)$$

for any *p*-regular element V in $\Re(P)$, where $\varepsilon_j = \frac{\widetilde{\chi}_j(P)}{\widetilde{\chi}_j(1)}$. From (1), (2) and (3)

$$\chi_i(PV) = \sum_{\mu} d^P_{i\mu} \widetilde{\varphi}_{\mu}(V)$$

for any *p*-regular element V of $\mathfrak{N}(P)$, where $d_{i\mu}^P = \sum_j r_{ij} \varepsilon_j \widetilde{d}_{j\mu}$. The $d_{i\mu}^P$ are called the generalized decomposition numbers of \mathfrak{G} .

Now suppose that o contains a primitive g-th root of unity, where g is the

order of \mathfrak{G} . Let *E* be a primitive idempotent of $Z(\mathfrak{G})$. Any χ_i is the character of some representation module M_i of \mathfrak{G} over \mathfrak{o} . If $M_i E = M_i$ then we say that χ_i belongs to the *p*-block *B* associated with *E*.

Let e be the idempotent in $Z(\mathfrak{N}(P))$ such that $e^* = s^*(E^*)$, where $s^* : Z^*(\mathfrak{S}) \to Z^*(\mathfrak{N}(P))$ is the Brauer homomorphism. If \tilde{B} is the set of $\tilde{\chi}_j$ such that the associated representation medule \tilde{M}_j of $\mathfrak{N}(P)$ over \mathfrak{o} satisfies $\tilde{M}_j e = \tilde{M}_j$, then \tilde{B} is a collection of p-blocks of $\mathfrak{N}(P)$. We shall also denote by \tilde{B} the set of p-modular characters $\tilde{\varphi}_{\mu}$ of $\mathfrak{N}(P)$ such that $\tilde{d}_{j\mu} \neq 0$ for some $\tilde{\chi}_j \in \tilde{B}$. Then the Brauer's theorem reads as follows:

THEOREM 2. If χ_i belongs to a p-block B of \mathfrak{G} , then the generalized decomposition numbers $d_{i\mu}^{p}$ can be different from zero only for $\tilde{\varphi}_{\mu}$ which belongs to \tilde{B} .

Proof. Let V be any p-regular element of $\mathfrak{N}(P)$. Let

$$\chi_i = \sum_j' r_{ij} \widetilde{\chi}_j + \sum_k'' r_{ik} \widetilde{\chi}_k,$$

where the sum \sum' is over all $\tilde{\chi}_j$ in \tilde{B} and the sum \sum'' is over all other $\tilde{\chi}_k$. Then from Theorem 1 we have

$$\chi_i(PV) = \sum_j' r_{ij} \widetilde{\chi}_j(PV)$$

= $\sum_\mu' d^P_{i\mu} \widetilde{\varphi}_\mu(V),$

where μ ranges over the suffices such that $\tilde{\varphi}_{\mu} \in \tilde{B}$. Since the $\tilde{\varphi}_{\mu}$ are linearly independent, we have the therem.

References

- R. Brauer, On blocks of characters of groups of finite order, II, Proc. Nat. Acad. Sci. U.S.A. 32, 215-219 (1946).
- [2] R. Brauer, Zur Darstellunstheorie der Gruppen endlicher Ordnung, Math. Z. 63, 406-444 (1956).
- [3] R. Brauer, Zur Darstellugstherie der Gruppen endlicher Ordnung, II, Math. Z. 72, 25-46 (1959).
- [4] J. A. Green, Brocks of modular representations, Math. Z. 79, 100-115 (1962).
- [5] K. Iizuka, On Brauer's theorem on sections in the theory of blocks of group characters, Math. Z. 75, 299-304 (1961).
- [6] M. Osima, Notes on blocks of group characters, Math. J. Okayama Univ. 4, 175-188 (1955).

Osaka City University