A PROOF OF BRAUER'S THEOREM ON GENERALIZED DECOMPOSITION NUMBERS

HIROSI NAGAO

To Professor Richard Brauer on the occasion of his 60th birthday

In [3] R. Brauer gave a proof of his theorem on generalized decomposition numbers which was first announced in [1], and a simplification of it has been made by K. Iizuka [5]. In this note we shall show that the theorem may be proved from another point of view by using some results obtained by J. A. Green in [4].

After stating some results by Green and Osima in the first and second sections we first prove a theorem on characters (Theorem 1) and by using the theorem we prove Brauer's theorem in the fourth section.

1. The algebra $Z\left(\mathbb{(\$)}: \mathfrak{J}^{\prime}\right)$

Let \mathbb{S} be a finite group. We consider the group ring $I(\mathbb{S})$ of \mathscr{G} over the ring \mathfrak{D} of \mathfrak{p}-adic integers, where \mathfrak{p} is a prime ideal divisor of a fixed prime p in some algebraic number field.

If G is any element of $\left(\mathbb{G}, \gamma\right.$ any element of $\Gamma(\mathbb{\$})$, write $\gamma^{G}=G^{-1} \gamma G$. Then for a subgroup $\mathfrak{~}$ of \mathbb{E} the set

$$
Z(\mathfrak{S}: \mathfrak{I})=\left\{\gamma \in \Gamma(\mathfrak{B}): \gamma^{H}=\gamma \text { for all } H \in \mathfrak{S g}\right\}
$$

is a subalgebra of $\Gamma(\mathbb{S})$. Let $\mathfrak{R}_{1}, \mathfrak{R}_{2}, \ldots, \mathfrak{R}_{s}$ be the classes of \mathfrak{y}^{2}-conjugate elements in \mathfrak{G}, where two elements X and Y of $\mathfrak{C S}$ are called \mathfrak{S}-conjugate if there exists an element H in \mathfrak{F} such that $Y=X^{H}$. If $L_{1}, L_{2}, \ldots, L_{s}$ denote the sums of the elements in $\mathfrak{R}_{1}, \mathfrak{R}_{2}, \ldots, \mathfrak{Q}_{s}$ respectively, these sums form an \mathfrak{D} basis of $Z(\mathbb{C}: \mathfrak{F})$.

For a fixed \mathfrak{N}-conjugacy class \mathfrak{Q}_{α}, a Sylow p-subgroup of the normalizer $\mathfrak{T} \mathfrak{F}\left(U_{\alpha}\right)$ of some element $U_{\alpha} \in \mathfrak{R}_{\alpha}$ in \mathfrak{F} is called the p-defect group of $\mathfrak{\Omega}_{\alpha}$, and is

[^0]denoted by \mathfrak{F}_{α}. It is determined up to $\mathfrak{\$}$-conjugacy.
Let \mathfrak{P} be a p-subgroup of $\mathfrak{F g}$ and $I(\mathfrak{F})$ the set of those $\alpha \in\{1,2, \ldots, s\}$ such that $\mathfrak{F}_{a} \leq \mathfrak{F}$, i.e. $\mathfrak{\beta}_{a} \leq H^{-1} \mathfrak{B} H$ for some $H \in \mathfrak{S}$. The set of all $z \in Z\left(\mathfrak{B}: \mathscr{S}_{\text {g }}\right)$ of the form
$$
z \equiv \sum_{\alpha \in I(\mathfrak{F})} a_{\alpha} L_{\alpha} \bmod p Z(\mathscr{F}: \mathfrak{S}) \quad\left(a_{\alpha} \in \mathfrak{o}\right)
$$
is denoted by $Z_{\mathfrak{F}}(\mathfrak{F}: \mathfrak{I})$.
Lemma 1 (Osima [6], Green [4], Lemma 3.2 c). If \mathfrak{F} is a p-subgroup of $\mathfrak{~}$, then $Z_{\mathfrak{F}}(\mathfrak{G}: \mathfrak{5})$ is an ideal of $Z(\mathscr{G}: \mathfrak{5})$.

2. Characters

If a right $\Gamma(\mathbb{B})$-module M is free and finitely generated over \mathfrak{o} and unitary, i.e. $m 1=m$ for all $m \in M$, we call M a representation module of \mathscr{B} over \mathfrak{o} or (8-representation module for short. A © \mathfrak{S}-representation module M has an 0 basis, and hence a matrix representation is associated with M. The character of the matrix representation associated with M is denoted by χ_{m}.

A (\mathfrak{B}-representation module M is said to be \mathfrak{N}-projective if M is a direct summand of the induced module $N \otimes_{\Gamma(\mathfrak{F})} \Gamma(\mathscr{S})$ of some $\mathfrak{5}$-representation module N.

Lemma 2 (Green [4], Lemma 4.1 a). Let \mathfrak{F} be a subgroup of $\mathfrak{B}, \mathfrak{F}$ a p. subgroup of 5 and let M be a \mathfrak{G}-representation module. If e is an idempotent in $Z_{\mathfrak{F}}(\mathfrak{S}: \mathfrak{g})$, then $\mathfrak{\xi}$-representation module $M e$ is \mathfrak{P}-projective.

If for an element X of $\mathbb{B} X=P V=V P$, where P has order a power of p and V has order prime to p, P and V are called p-factor and p-regular factor of X, respectively. The following is one of the main theorems by Green in [4].

Lemma 3 (Green [4], Theorem 3). Let is be a p-subgroup of © and Ma (S-representation module. If M is \mathfrak{P}-projective and the p-factor of an element X does not lie in any conjugate of \mathfrak{P}, then

$$
\chi_{m}(X)=0 .
$$

3. Brauer homomorphisms

Let \mathfrak{F} be a given p-subgroup of $\mathbb{8}$ and let \mathscr{J} be a subgroup such that $\mathfrak{P C}(\mathfrak{F}) \leq \mathfrak{N} \leq \mathfrak{M}(\mathfrak{P})$, where $\mathfrak{S}(\mathfrak{F})$ and $\mathfrak{M}(\mathfrak{F})$ are the centralizer and normalizer
of \mathfrak{F}, respectively. For a ($\left(5\right.$-conjugacy class \Re_{α}, let $\Re_{\alpha}^{\prime}=\Omega_{\alpha} \cap \mathfrak{S}(\mathfrak{F})$ and $\Omega_{\alpha}^{\prime \prime}=\Omega_{\alpha}$ - Ω_{α}^{\prime}. Denote by $K_{\alpha}^{\prime}, K_{\alpha}^{\prime \prime}$ the sums of the elements in Ω_{α}^{\prime}, $\Omega_{\alpha}^{\prime \prime}$, respectively. Then Ω_{α}^{\prime} and $\Omega_{\alpha}^{\prime \prime}$ are collections of \mathfrak{J}-conjugacy classes, and hence K_{α}^{\prime} and $K_{\alpha}^{\prime \prime}$ are in $Z(\mathfrak{F}: \mathfrak{I})$. Each \mathfrak{F}-conjugacy class in $\Re_{\alpha}^{\prime \prime}$ has the defect group \mathfrak{Q} such that $\mathfrak{B} \neq 0$ 。

Let $Z(\mathbb{B})$ be the center of $\Gamma(\mathbb{B})$ and $Z^{*}(\mathbb{B})$ the residue algebra $Z(\mathbb{B}) / \mathrm{p} Z(\mathbb{B})$. Then Brauer [2] has shown that the linear mapping $s^{*}: Z^{*}(\mathbb{S}) \rightarrow Z^{*}(\mathfrak{J})$ which is defined by $s^{*}\left(K_{\alpha}\right)=K_{\alpha}^{\prime}$ is an algebra homomorphism. We shall call this the Brauer homomorphism.

Let E be an idempotent in $Z(\mathbb{B})$ and E^{*} the image of E under the natural mapping $Z(\mathbb{(\$)}) \rightarrow Z^{*}(\mathbb{B})$. As is well known, the idempotent $s^{*}\left(E^{*}\right)$ in $Z^{*}(\mathfrak{g})$ can be lifted to an idempotent e of $Z(\mathfrak{\xi})$, i.e. $e^{*}=s^{*}\left(E^{*}\right)$. Now, we consider the situation where \mathfrak{P} is the cyclic subgroup generated by an element P of order a power of p and \mathfrak{F} is the centralizer $\mathfrak{C}(\mathfrak{P})=\mathfrak{R}(P)$ of \mathfrak{P}. Then we have

Theorem 1. Let P be an element of order a power of p, E an idempotent of $Z(\mathbb{B})$ and let e be the idempotent of $Z(\mathfrak{N}(P))$ such that $s^{*}\left(E^{*}\right)=e^{*}$, where $s^{*}: Z^{*}(\mathbb{B}) \rightarrow Z^{*}(\Re(P))$ is the Brauer homomorphism. If M is a \mathfrak{G}-representation module such that $M E=M$, then for any pregular element V in $\Re(P)$, we have

$$
\chi_{M}(P V)=\chi_{m e}(P V) .
$$

Proof. If $E=\sum_{\alpha} b_{\alpha} K_{\alpha}$ then

$$
\boldsymbol{e} \equiv \sum_{\alpha} b_{\alpha} K_{\alpha}^{\prime} \quad \bmod p Z(\mathscr{B}: \Re(P)),
$$

therefore

$$
E-e \equiv \sum_{\alpha} b_{\alpha} K_{\alpha}^{\prime \prime} \quad \bmod \mathfrak{p} Z(\mathcal{S}: \mathfrak{R}(P)) .
$$

Since each $\mathfrak{R}(P)$-conjugacy class in $\Omega_{\alpha}^{\prime \prime}$ has the defect group $\mathfrak{\Omega}$ such that $P \notin \Omega$, $E-e$ lies in the ideal

$$
\Lambda=\sum_{P \notin \mathbb{Q}} Z_{\mathfrak{Q}}(\mathbb{G}: \mathfrak{R}(P))
$$

of $Z(\mathbb{K}: \mathfrak{M}(P)$), where the sum is over all p-subgroups \mathfrak{Q} of $\mathfrak{R}(P)$ which do not contain P. Let $f=E(E-\boldsymbol{e})$. Then $f \in \Lambda$, and $E e$ and f are mutually orthogonal idempotents such that $E=E e+f$. Since $\mathrm{E} e$ and f commute with all elements of $\mathfrak{N}(P)$, MEe and $M f$ are $\mathfrak{N}(P)$-representation modules. By the
assumption $M E=M$, therefore M is the direct sum of two $\Re(P)$-submodules $M E e=M e$ and $M f ;$

$$
M=M e \oplus M f
$$

Let $f=\sum f_{i}$, where $\left\{f_{i}\right\}$ is a set of mutually orthogonal primitive idempotents in $Z\left(\mathbb{B}: \mathfrak{M}(P)\right.$). Since $f_{i}=f_{i} f \in \Lambda$, by a theorem of Rosenberg (cf. Green [4], Lemma 3.3 a) there is a p-subgroup \mathfrak{Q}_{i} of $\mathfrak{R}(P)$ such that $P \notin \mathfrak{\Omega}_{i}$ and $f_{i} \in$ $Z \mathfrak{Q}_{i}(\mathbb{S}: \mathfrak{R}(P))$, and then $M f_{i}$ is \mathfrak{Q}_{i}-projective by Lemma 2. For any p-regular element V of $\mathfrak{\Omega}(P)$, the p factor of $P V$ is P and P does not lie in any subgroup $\mathfrak{R}(P)$-conjugate to \mathfrak{Q}_{i}, therefore by Lemma $3 \chi_{M f_{i}}(P V)=0$. Since

$$
M f=M f_{1} \oplus \cdots \oplus M f_{r}
$$

$\chi_{M f}(P V)=0$, and hence $\chi_{M}(P V)=\chi_{m e}(P V)$.

4. Proof of Brauer's theorem

Let $\left\{\chi_{i}\right\}$ be the set of absolutely irreducible ordinary characters of $(\mathbb{B}, P$ an element of order a power of p and let $\left\{\tilde{\varphi}_{j}\right\}$ be the set of absolutely irreducible ordinary characters of $\mathfrak{R}(P)$. Let

$$
\begin{equation*}
\chi_{i} \mid \Re(P)=\sum_{j} r_{i j} \tilde{\chi}_{j} \tag{1}
\end{equation*}
$$

be the decomposition of the restriction of χ_{i} to $\Re(P)$, and let

$$
\begin{equation*}
\tilde{\chi}_{j}=\sum_{\mu} \widetilde{d}_{j \mu} \widetilde{\varphi}_{\mu} \tag{2}
\end{equation*}
$$

be the p-modular decomposition of $\tilde{\chi}_{j}$, where the $\tilde{\varphi}_{\mu}$ are the irreducible p modular characters of $\mathfrak{R}(P)$ and the $\tilde{d}_{j \mu}$ are the decomposition numbers of $\mathfrak{R}(P)$. Since P is in the center of $\mathfrak{R}(P)$

$$
\begin{equation*}
\tilde{\chi}_{j}(P V)=\varepsilon_{j} \widetilde{\chi}_{j}(V)=\sum_{\mu} \varepsilon_{j} \tilde{d}_{j \mu} \tilde{\varphi}_{\mu}(V) \tag{3}
\end{equation*}
$$

 (3)

$$
\chi_{i}(P V)=\sum_{\mu} d_{i \mu}^{P} \tilde{\varphi}_{\mu}(V)
$$

for any p-regular element V of $\Re(P)$, where $d_{i \mu}^{P}=\sum_{j} r_{i j} \varepsilon_{j} \tilde{d}_{j \mu}$. The $d_{i j}^{P}$ are called the generalized decomposition numbers of $(\mathbb{B}$.

Now suppose that 0 contains a primitive g-th root of unity, where g is the
order of \mathbb{B}. Let E be a primitive idempotent of $Z(\mathbb{B})$. Any χ_{i} is the character of some representation module M_{i} of \mathscr{F} over \mathfrak{n}. If $M_{i} E=M_{i}$ then we say that χ_{i} belongs to the p-block B associated with E.

Let e be the idempotent in $Z\left(\Re(P)\right.$) such that $e^{*}=s^{*}\left(E^{*}\right)$, where $s^{*}: Z^{*}(\mathbb{B})$ $\rightarrow Z^{*}(\Re(P))$ is the Brauer homomorphism. If \hat{B} is the set of $\tilde{\chi}_{j}$ such that the associated representation medule \tilde{M}_{j} of $\Re(P)$ over 0 satisfies $\tilde{M}_{j} e=\widetilde{M}_{j}$, then \widetilde{B} is a collection of p-blocks of $\Re(P)$. We shall also denote by \widehat{B} the set of p modular characters $\widetilde{\varphi}_{\mu}$ of $\Re(P)$ such that $\tilde{d}_{j \mu} \neq 0$ for some $\hat{\chi}_{j} \in \widetilde{B}$. Then the Brauer's theorem reads as follows:

Theorem 2. If χ_{i} belongs to a p-block B of \mathbb{G}, then the generalized decomposition numbers $d_{i \mu}^{P}$ can be different from zero only for $\widetilde{\varphi}_{\mu}$ which belongs to \widetilde{B}.

Proof. Let V be any p-regular element of $\Re(P)$. Let

$$
\chi_{i}=\sum_{j}^{\prime} r_{i j} \tilde{\chi}_{j}+\sum_{k}{ }^{\prime \prime} r_{i k} \tilde{\chi}_{k},
$$

where the sum Σ^{\prime} is over all $\tilde{\chi}_{j}$ in \widetilde{B} and the sum $\Sigma^{\prime \prime}$ is over all other $\tilde{\chi}_{k}$. Then from Theorem 1 we have

$$
\begin{aligned}
\gamma_{i}(P V) & =\sum_{j}^{\prime} r_{i j} \tilde{\chi}_{j}(P V) \\
& =\sum_{\mu}^{\prime} d_{i \mu}^{P} \tilde{\varphi}_{\mu}(V),
\end{aligned}
$$

where μ ranges over the suffices such that $\widetilde{\varphi}_{\mu} \in \widetilde{B}$. Since the $\tilde{\varphi}_{\mu}$ are linearly independent, we have the therem.

References

[1] R. Brauer, On blocks of characters of groups of finite order, II, Proc. Nat. Acad. Sci. U.S.A. 32, 215-219 (1946).
[2] R. Brauer, Zur Darstellunstheorie der Gruppen endlicher Ordnung, Math. Z. 63, 406444 (1956).
[3] R. Brauer, Zur Darstellugstherie der Gruppen endlicher Ordnung, II, Math. Z. 72, 25-46 (1959).
[4] J. A. Green, Brocks of modular representations, Math. Z. 79, 100-115 (1962).
[5] K. Iizuka, On Brauer's theorem on sections in the theory of blocks of group characters, Math. Z. 75, 299-304 (1961).
[6] M. Osima, Notes on blocks of group characters, Math. J. Okayama Univ. 4, 175-188 (1955).

Osaka City University

[^0]: Received by Journal of Mathematics, Osaka City Univereity, December 13, 1962; Transfered to Nagoya Mathematical Jounal January 29, 1963.

