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Introduction

Let H be a normal subgroup of a finite group G, and let C be an (absolutely)

irreducible character of H. In [7], Clifford studied the irreducible characters

X of G whose restrictions to H contain C as a constituent. First he reduced

this question to the same question in the so-called inertial subgroup S of C in

Gf and secondly he described the situation in S in terms of certain projective

characters of S/H. In section 8 of [10], Mackey generalized these results to

the situation where all the characters concerned are projective.

Fong proved analogues of both of Clifford's results, in which the characters

of G are taken not individually, but in ^-blocks for a prime p. In both of these

theorems (Theorems (2 B) and (2 D) of [8]), it is assumed that the order of

H is not divisible by p.

In section 1, we generalize Fong's first result for arbitrary blocks B and

normal subgroups H, by defining an inertial subgroup S in G for each block

B of H. We show in Theorem 1 that if the restriction to H of any character

of B contains a character of B, then the structure of B is identical with that

of a corresponding block B' of S, and the characters of B are induced by those

of Bf. In effect, this reduces the whole problem to the case where all the

constituents of the restrictions of the characters of B lie in a single block of H.

In sections 2 to 4, we study the second question. The group S/H is no

longer appropriate when p divides the order of H, since reduction to S/H

alters the defect group of the block and thereby destroys the block structure

and we must produce a specially constructed group which will have simpler
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16 W. F. REYNOLDS

structure than S, while retaining the structure of our block. We have suc-

ceeded in doing this in the case where the defect group D of B is normal in

G and H is its centralizer. (The study of such blocks was begun by Brauer in

[3], section 9.) The group M which we construct has a normal i>-Sylow group,

isomorphic to D (see Theorem 6).

In section 5, we apply this reduction to settle, in the case of a normal

defect group, some questions which were raised by Brauer in [2]: Theorem 9

gives a connection between the degrees of the characters of B and the structure

of D, and Theorem 11 gives a bound on the Cartan invariants of B.

Theorem 9 was independently proved bv M. Suzuki I wish to thank him

for communicating his proof to me.

Notation. G will always be a group of finite order g, and p will be a fixed

prime number. We denote by v the exponential valuation of the rational field

determined by p, normalized so that v{p) = 1. Ω is a finite algebraic number

field containing the g-th roots of unity Ω* is the residue class field with

respect to a prime divisor p of p in Ω. The (distinct nonequivalent) absolutely

irreducible representations of G, ordinary and modular, can be written in Ω

and Ω* respectively we shall suppose them so written, in definite matricial

forms. We shall often suppress the adjective "irreducible".

Each ^>-block B of G is considered here as a set of ordinary irreducible

characters, although we shall also make use of the irreducible modular chara-

cters of B. If Xj^B, the height of Xj is the non-negative integer v(Xj{l)) -

v(G\ D), where the p-group D is a defect group of B (see [3]). We shall

pass freely between a representation and its character: for example, we shall

sometimes consider B as a set of representations, and speak of the heights of

these representations.

1. Blocks and Induced Characters

Let H be any normal subgroup of G. Then each element x of G permutes

the elements y of H by

(1) y-*yx ~χ~γyχ,

and permutes the irreducible characters C of H by C -> ζx, where

(2) ζx(y)=ζ(xyχ-1).
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Characters C and C* so related are called G-associates. For each C, {x^G:

ζx = ζ} is a subgroup of G, containing H, called the inertia! group of C in G.

The permutations C-+Cx induce a representation of G by permutations

B ~>BX of the ^-blocks of H, by section 1 of [8]. Denote the systems of

transitivity of this permutation representation by Si, and let Ti be the union

of those blocks which are elements of S'i thus Ti is a set of irreducible

characters of H,

For each i, let T, consist of those irreducible characters Xj of G such that

some irreducible constituent of the restriction Zy \ H of Zy to if is in 7\. By

Lemma (IB) of [8], the sets TV are disjoint: that is, all the constituents of

Xj\H are in the same Ti) and each Ti is a union of ^-blocks of G. We denote

the set of those blocks whose union is Ti by J?7,- the same lemma shows that

this agrees with Fong's definition of J?i.

Now restrict attention to a fixed Ti = T (dropping subscripts i), and to a

fixed S ς f . We call the group

(3) S = {X<ΞG: BX = B)

the inertial group of B in G; its index (G : S) is the number of blocks in S'.

Take a maximal set {Cm} of characters of B such that no two are G-as-

sociates. By Theorem 1 of [7] we can write T as a disjoint union U Fm,

where Fm consists of all irreducible characters Xj of G such that Xj ] H contains

Cm. Let Sm be the inertial group of ζm in G. In section 2 of [7], Clifford sets

up a 1-1 correspondence between the characters Zy of Fm and all the irreducible

characters ξj of Sm such that ξj\H contains ζm, in which Zy = ςy. Here ξj

denotes the character of G induced by the character ξj of the subgroup Sm

of G.

For any x<=G such that Cm^B, BX = B. This implies that Sm<^S, and

that {Cm) is also a maximal set of non-S-associate characters of B. If we

define V to consist of the irreducible characters Zy of S such that Zy IH contains

some character of S, then we have V = UFi, analogously to the above, and

there is a 1-1 correspondence between the 7} e Fm and the same £/ as before,

in which Xj = ςy.

We can combine these 1-1 correspondences to obtain a 1-1 correspondence

Xj between Fm and K*, in which (Zy)G = (£y)G =ξf = Xj. We have, in fact,
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established a 1-1 correspondence between T and T1 in which %j = C/Jj)G. Let

S* be the set of those blocks which make up V.

The modular characters of the blocks of J?7 may be called the modular

characters of T; they are the modular characters φk such that φk\H contains

some modular character of B. Since Clifford's results hold in the modular

case, our argument adapts to this case to give a 1-1 correspondence φk^Φ'k

between the modular characters of T and those of T\ in which φk = (φk)G

The part (d'jk) of the decomposition matrix (see [3] and [5]) of S belonging

to the blocks in ^' is expressed by the equations

where the %) and φk are the ordinary and modular characters of T7, and where

the relation holds for ^-regular elements. Inducing to G yields

lj = Uj)G = (Έd'jkφk)
G =

J

This means that {d'jk) is also the part (djk) of the decomposition matrix of G

belonging to the blocks in ^. The corresponding statement for the Cartan

matrix (cui) follows, since Cki = *Σjdjkdji.

Since the Cartan matrices determine the blocks by section 8 of [5], the

characters (both ordinary and modular) of each block Bx e J ^ correspond to

those of a block 5 ' e ^ 7 ' , and conversely. Since J, (l) = (G : S)Xj(l), B~ and

Bx have the same defect. In fact, the argument of Lemma (2 A) of [8] ap-

plies almost verbatim to show that each defect group of B~ is also one for Z?τ.

Finally, the height of Xj in Bx is the same as the height of l) in B~.

We summarize in the following theorem, which generalizes Fong's Theorem

(2 B).

THEOREM 1. Let B~ be a block of G, and let H be a normal subgroup of G.

Then there exists a group S, H^S^G, and a block B'-z of S, such that:

(a) the irreducible characters, both ordinary and modular, of Bτ are in 1-1

correspondence with those of B'z, the correspondence being obtained by induction

from S to G;

{b) Bx and B~ have the same decomposition matrix, and the same Cartan

matrix
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(c) Bτ and Bf

τ have a defect group in common;

id) all the irreducible co?istituents of the restrictions to H of the characters

of Bτ lie in a single block B of H.

We can also show that Br

τ and Bτ stand in the relation defined by Brauer

in section 2 of [4]. This is included in the following general result, which is

independent of the assumptions of this section.

THEOREM 2. Let Bf be a block of a subgroup S of a group G, such that B'

contains some character 7J such that Z = (X')G is irreducible. Then (B')G is

defined (in the notation of [4]), and ^ G (B')G.

Proof. If ω' and ω are the characters of the class-algebras of S and G

over Ω corresponding to X' and 7 respectively, it follows from the definitions

that

ω(Ka) = ΣΣ

where KΛ and K!ι are arbitrary conjugate classes of G and S respectively.

Taking this relation modulo j>, we get the result.

2. Defect Group in Center

We begin our study of blocks with normal defect group by considering the

case where the defect group is in the center of the group. (In this section, the

field Ω in which all elements and representations lie is to contain the (H : 1)-

roots of unity.)

Assume that B is a ^-block of a group H such that the defect group A of

B is contained in the center of H. The normal i>-subgroup A lies in the kernel

of every irreducible modular representation $k of H (by (9 D) of [3D), so that

these can be considered as modular representations of HI A. They are parti-

tioned into ^-blocks in the same way for H as for HI A, as can be seen by

making use of (2G) of reference [4]. Now B contains some $ such that ẑ (deg

ft) =p(H)-p(A) where deg $ is the degree of ft, by (6 A) of [3]; taken on

H/A,?y belongs to a block of defect 0, by (2 G) of [4]. By the properties of

such blocks, this is the only modular representation in B; and there is an

ordinary representation 3 in B such that 3* = ft- Here we write 3 with matrix

coefficients which are locally integral at p, and 3* is obtained by reducing
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these coefficients modulo p. Denote the characters of 3 and g, on H, by C and

φ respectively.

Since C belongs to a block of defect 0 of Hi A, it vanishes for all p- singular

elements of Hi A. In terms of H, this means that

(4) ζ(x) = 0 if XZΞH, xP$A,

where we write the factorization of x into a ^-element xp and a ^-regular

element xr as #=. x^^r = #/-#/>.

For the character Cy of any representation 3y in B (taking C = Ci), we have

(5) Cj{x) =djψ(x) = djζ(x) if ΛΓ is ^-regular,

since ψ is the only modular character in B; the positive integers dj are the

decomposition numbers of B. For x such that #/>eA, 3y(#) = 3y(#i>)3y(#r)

= ωy(*/,)3yUr), where ωj is a character of the abelian group A, depending on

3y. By (5),

xr) =

whenever Xp e A.

Now apply the orthogonality relations on H, setting (H ' 1) = h :

If we denote the two terms on the right by syi and sy2, (4) implies that 0<syi

^ W 2 = d} = l- sj2, hence Jy = 1, sj2 - 0. That is,

fωy(^)C(r) if
(6) ζj(x) = j

Ό if

If we denote all the characters of A by ωy, 1 < i < (A : 1), (6) shows that

each ωy is associated with at most one character of B. Let / consist of those

indices / such that the function ζj on H defined by (6) is actually a character

of B. Then the principal indecomposable character Φ corresponding to φ is

given by Φ = ΣyejdjCy = ΣJ/&/Cj, whence Φ\A = C(l)Σy<=jωy (see section 3 of

[3]). But 0 vanishes for all ^-singular elements, so that Φ\ A is a multiple of

the regular representation of A. Comparing these expressions, we see that

all indices from 1 to (A : 1) are in /. This completes the proof of the follow-

ing theorem.
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THEOREM 3. Let B be a block of a finite group H, ivhose defect group A is

contained in the center of H. Then B contains just one modular character

and (A: 1) ordinary characters, all of the same degree. Each of the ordinary

characters is associated with a character of A by the equations (6).

Since Cj{x) = ψ(x) for ^-regular x, we can write 3/ with locally integral

coefficients in such a way that 3/ = 3* - $•

We shall need the following form of Theorem 3 for projective representa-

tions. (See [1], [11], [12] for background on projective representations.)

THEOREM 4. Let AQ be a p-subgroup of the center of a finite group X, and

let e be a factor set of X/Ao whose values are roots of unity of orders prime

to p. Let sϊ) be an irreducible projective representation of X/ΆQ with factor set

e, written with locally integral coefficients, such that v{deg Y) = v(X: AQ). Then

for each linear character α% of AQ, there exists a projective representation %-

of X for ε, with locally integral coefficients, such that ?)* = ?)/ and %-1 AQ is a

multiple of ω^ .

Observe that we regard D as a representation of X, and ε as a factor set

of X by inflation, without special mention. For the trivial factor set this

theorem becomes a restatement of Theorem 3 in a form which avoids mention-

ing blocks. We can assume that εx, y = 1 whenever either x or y lies in AQ.

Proof. We reduce this to Theorem 3 by the classical method of Schur (see

[1], and also page 274 of [8]). Let E be the character group of the multipli-

cative cyclic group generated by the factor set ε E is cyclic of order prime

to p. For any elements x, y of X, let mx,y<=E be the character such that

έ-*(εχ,y)ι\ then m = {mx,y} is a factor set of X with values in E. Using

extension theory (see [13]), let H be the extension of E by X with this factor

set and trivial action; the elements of H may be written (e, x), where e^E,

# e X The elements (1, a), a^AQ, form a subgroup A of the center of H

(since e is trivial on Ao), isomorphic to AQ. A character ωj of A is denned

by ω;(l, a) — ωOj{a) and the equation S(e, x) — e{ε) tyix) defines an ordinary

representation 3 of H, which can be regarded as belonging to a block of HI A

of defect 0. Now Theorem 3 provides us with a representation Sj of H such

that 3f = 3* and 3/1 A is a multiple of ωj. The required % is then defined by
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3. Normal Defect Group: Analysis

In this section, we shall analyze the representations in a block whose defect

group is normal. The information so obtained will be the basis for the con-

structions of the following section.

Let D be a normal ^-subgroup of G. Denote the centralizer of D by 77,

and the center of D by A; then A = D Π H, and H and A are normal in G.

By (11 B) of [3], there is a 1-1 correspondence between the blocks B of G

with defect group D and the families of G-associates of these characters C in

blocks of defect 0 of Hi A such that pλ (S : DH), where S/A is the inertial

group of C in G/A. (This restatement uses the isomorphism of DHlD with

Hi A.) In addition, D must be the maximal normal /^-subgroup of G in order

for any blocks with normal defect group D to exist, since this subgroup is

contained in the defect group of every block of G.

Henceforth, we assume that we have a block B with normal defect group

D; we study it along with a corresponding C and S, as just defined. We can

regard C as a character of H. Since A is contained in the center of H, (2 G)

of [4] tells us that C belongs to a block B of H with defect group A, and

Theorem 3 shows that the characters of B have the form d, one for each

character ωι of A. Here C = Ci corresponds to the 1-character of A.

Choose a maximal set {ωm} of non-G-associate characters of A. Then by

(6), {Cm) is a maximal set of non-G-associate characters of B. Let Sm be the

inertial group of ζm in G, as in section 1. Then Sm is the intersection of S — Si

with the inertial group of ωm in G. Since C yields the only modular character

of B, S is the inertial group of B in G, defined in (3).

In the terminology of section 1, β ε j where S ε J ; this follows from

equation (11.11) of [3], and it enables us to study the corresponding block

Bf <= J^' instead of B. B is actually the only block in J?, by the following

argument. For any Bτ e S?\ let 7y be an arbitrary character of B'τ. Since

ϊj\H contains some ζm C(l) --= Cm(l) |7, (1) by [7], whence *(#(1)) > *(ζ(Ό)

= v(DH : Z)) = J>(S : £>), so that the defect of B'x does not exceed v{D : 1).

But since i) is contained in all defect groups for blocks of S, D is the defect

group for B'τ and hence for Bx also. But we have previously accounted for all

blocks with defect group D, and none of them except B is in ^ therefore

(7) JΓ
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Accordingly, ^ ' = {£'}, B = U Fm, and B1 = UFk

Since SlH has normal Sylow subgroup DH/H, there exists a subgroup if

of S with S= (DH)K, H=DHΓ\K, by a theorem of Schur (see [13], p. 132).

Then S = DK, and DdK= DΠ DHΓί K= DΠH= A.

Let us regard S as an extension of the abelian group A by S" = S/A. For

each ^ G S , choose a representative sσ e S. Since SΓ = Z5/£\ 1 = Z5 Π K where

23 = DM, K = K/A, we can suppose that

(8) Sδκ^sδsκ

when δ e D , ^ G | , and that Si = 1. For any a e A and < ; ε S set

(9) ασ = αSσ.

Then for any a, r e S ,

(10) SoSχ = rσ,τSστ,

where r = {rσ,τ} is a factor set of S with values in A: that is,

(11) rσ,τraτ,υ = rχ,υra,τυ f θ Γ <7, Γ, l> <Ξ S .

For <y, r e S m = Sm/Λ, set (pm)o,τ = ωm(rσ, τ ) . Since Sm is contained in the

inertial group of ωm, (11) yields (|θm)σ,τ(pm)στ,z; = (pm)τ,v(pm)o,τv for <;, r, L>eSm

That is, ρm= {{pm)σ,χ} is a factor set of Ŝ z with trivial action, the values

being roots of unity in Ω whose orders are powers of p. For a^A, σ<=Sm,

set φm(asσ) = ωm(a). Then ψm(asabsτ) = ψm(aba Vσ.τSστ) = ωm(abσ Vσ,τ) =

ωm(β)com(^)ωm(rσ,τ) = (pm)σ,τψm(asσ)ψmibs-z), so that ^ m is a projectίve repre-

sentation of SOT of degree 1, with factor set Pm1. Here pm is regarded as a

factor set of Sm, by inflation as usual, we do not indicate this inflation

explicitly.

From now on, we shall work in terms of representations rather than the

corresponding characters. By the remark following Theorem 5, we suppose

that Sm = 3*, where Sm is the representation of H corresponding to ζm>

By section 3 of [7] (cf. [10]), there must exist1' a projective representation

of Sm whose restriction to H is Sm, and whose factor set, which we shall call

em, is inflated from Sm/H. In order to compute εm in terms of e = εi (see (14)),

we first restrict attention to K. We can assume that the values taken on by

K are roots of unity in Ω, of orders prime to p (see [1]).
υ At this point, and later on, we may have to replace Ω by a finite extension of Ω,

since [7] uses an algebraically closed field. But in fact these extensions can be avoided,

as the addendum at the end of this paper shows.
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Let $ be a projective representation of K, whose factor set is the restriction

ε~Ί# of ε"1 to if, such that φ | f f = 3 , and such that ?) has locally integral

coefficients. Let Jm^ A be the kernel of ωm, and let /fm = Sm Π if. Then all

commutators U:" 1^" 1^, α e A , 5£ ifm, are in Jm, so that A/Jm is contained in the

center of Km/Jm. Since z/(deg ?)) ~v{Km A), we can apply Theorem 4 to

2) I /&n, regarded as a projective representation oί X— KmIJm, to find that Km

has a projective representation $ m with factor set ε~ι\Km, such that tym\A is a

multiple of ωm, and such that 9)m = $* I Km- Then $ m | H is equivalent to 8™,

and we may suppose that tym \ H = gm.

We extend φ m to Sm by the following steps. First, write tym - (ψm\Km)%m,

where %m is a projective representation of Km with factor set (ε~1\Km)(pm\Km)

which can also be regarded as a projective representation of Km = Km IA. This

can be seen by section 8 of [10], or directly. (For finite groups, the topological

assumptions of [10] are vacuously satisfied, and the restriction to unitary

representations is unnecessary.) Secondly, since Sm — DKm, 1 = D Π Km, we

have a natural isomorphism of Sm/D with Km', use this to carry over ~t)m to

Sm/D. Thirdly, inflate to Sm', this yields an extension of the original %)m, for

which we retain the same symbol. Finally, set *Qm = ψmtym on Sm- This gives

a projective representation ?)m of Sm, related to its restriction on Km by

y)m(asδ<) =y)m<asK) where o e A , δ e S , K G Z W . Modularly, ?)« = ?)*IS«.

The factor set of ^)m is readily seen to be (ε^lKm) μm, where μm can be

defined as a factor set on Sm by

(βm)δκ,r\ = (βm)δκ,Ίλ(βm)κ, λ = ωm(^δκ,τλ^fc,"λ)

for o, r^B, /c, iefm. Now for any δ jGD, «, i e f , we have by (8) and

( 1 0 ) rδκ,rλ = ssκSτχs^riKλ = SsS^SrSxS^ser.y w h e r e w e s e t γ1 = γκ~\ S i n c e rκ.ι&A

and Sδϊ! ̂  D,

Qδκ9 Tλ = ̂ δK, TλίίΛ = 5δ 5K 5τ Sχ S*χ r \ j ^

Since Z) commutes elementwise with H, the last expression shows that qsκ,rλ

does not change if we multiply K and λ by elements of Ή^HlA. Therefore

# = {<7σ,τ}, which is a factor set of ΪΓ with values in A under the same action

as for r (since D acts trivially on A), is inflated from a factor set of S/H (or

S/H), under the action of S/S" on A defined by
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(12) aσ* = ά°

(cf. (9)) . Since

(13) (μm)σ,τ = ωm(qσ,x), σ,τ^Sm,

μm is inflated from a factor set of SmlH with values in Ω and trivial action.

Therefore

(14) εm= (ε\Sm)μm

is inflated from Sm/H, and ξ)m is an extension of 3m, with factor set εm1.

Theorem 3 of [7] sets up a 1-1 correspondence between the representa-

tions 36/ corresponding to all the Xj^Fm (that is, all representations of S whose

restrictions to H contain 3m) and all projective representations %• of Sm/H

with factor set εm, such that

Here we treat 91/ as a projective representation of Sm> so that the tensor

product tym x 9ί/ is an ordinary representation of Sm> which is induced to S to

yield 36/. We can suppose that 91/ has locally integral coefficients. By Theorem

1, we also have 36/ = (9)mx Sly)*, for %j<=Fm.

Now consider the situation in i2*. 91/ is a modular projective representation

of Sm/H, whose factor set εm is obtained by reducing εm modulo p. By (14),

em = ε*lSm, since the values of μm are roots of unity of p power orders. By

(15),

where the meaning of and reason for the last relation are as follows. (2f/)s

is the modular projective representation of S with factor set ε* induced by

91/ (see [10], [11], [12] for definition). The symbol - indicates that the modular

representations of S which it joins have the same irreducible constituents and

multiplicities. That this is true is basically a consequence of the Frobenius

reciprocity theorem and the orthogonality relations a proof can be constructed

in the following way. Express everything in terms of modular projective

characters, with the factor sets ε and ε\Sm, whose values are roots of unity in

Ω of orders prime to p. Extend each such character by defining its values

for ^-singular elements to be zero, and express it as a rational linear combina-
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tion of irreducible projective characters in Ω with the same factor set. By

linearity, it now suffices to prove the corresponding statement for irreducible

projective characters in Ω. But this follows from Theorem 4. 6 of [10]. (Cf.

[11], and equation (4) of [6].)

The irreducible modular representations ^Ή which are in Bf are precisely

those such that $k\H contains 3*. Since the inertial group of the character of

3* is S and since Clifford's results still hold in the modular case, we have a

1-1 correspondence between these $k and all the irreducible modular pro-

jective representations 35& of S/H with factor set e* (or, as we may say, the

ε*-representations of S/H) in which §ϋ> = ?)* x 33&. In B, the corresponding

equation is $k = (?)* x 33*)*.

Since 31/ can be regarded as a projective representation of Sm/H, we can

write formally

(16) (W)s

for some non-negative integers djk. Combining our results, we find that

Using all values of m, this shows that the numbers djk are precisely the

decomposition numbers for B( = U F'm, and hence also for B, in agreement with

the notation of section 1.

4. Normal Defect Group: Construction

In the previous section, we defined a factor set q of S/H with values in

A, under the action defined by (12). Let U be the extension of A by Έ/Ή

defined by this action and factor set. We may write the elements of U as

ordered pairs u= (a, aH)y where c e A and <τe S". Denote the subgroup {(a,

Ή)} by A0; and let i be the natural isomorphism of Έ/Ή onto U/A°. The

elements (a, δH), 5 G A form a subgroup DQ of U isomorphic to D under the

mapping (a, dΉ)-+asδ, since q\D = s\D. Since iUJH/H) = D*/A\ we have the

isomorphisms 17/D°= S/DH^S/DH, so that DQ is a normal ^-Sylow subgroup

of U. A ^-complement in U is then given by L°= {(1, KΉ) : κ^K}=K/H:

thus U=D°L\ 1 = DOΠL0. The action of L° on D° by conjugation can be

computed straightforwardly; it corresponds in the natural way to the action
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of K/H on D in S. Hence it follows that D° contains its own centralizer in U,

namely Λ°. Thus the structure of U is analogous to that of S, but is more

definite the analogues of H and K are A0 and K° = A°L° respectively.

The factor set ε, regarded as a factor set of S ///, can be carried over by

i to a factor set ε° of U/A°, which can then be inflated to U. In the same

way, we can use εm and μm to define factor sets im and μm of SJH, where

i(~Sm/Ή) = Sm/A° (cf. (13)). The equation ψ°m(a, aH) = ωm(a) defines a projective

representation of Sm with factor set (μm)"1. Then ψm\A° = ωm corresponds to

ωm under the natural isomorphism of A and A0.

We now study the ε°-representations 36° of U in analogy with the study of

the representations of B in section 3. Since ε°|A° is trivial, the 36} can be

distributed among disjoint sets Fm according to which ωm is contained in 36}

note that there is no question of blocks in this definition. The inertial group of

ω°m in U is Sm, even with respect to ε° in the sense of Mackey ([10], Theorem

8.1). Then Theorem 8.4 of [10] gives a 1-1 correspondence between the

aejeFm and all the representations 91° of Sm/A° for εm= (ε°\Sm)μm, in which

(17) 365=(^a5Λ

the induction being with respect to ε°. We can suppose that 9ίj has been

obtained from the %• of (15) by means of i. Thus we have a 1-1 correspondence

36/<->X/ between Fm and Fm, hence between the ordinary representations of B

and all the ε°-representations of S.

The (ε° ̂ -representations γ$\ of f/all have kernels containing A0, as we see by

generalizing (9 D) of [3] to the projective case—cf. the construction of M below.

Thus we can suppose that $1, as an (ε°) ̂ representation of U/A°, corresponds

to 58& under i. This gives a 1-1 correspondence 3^<->§L

Applying i to (16) yields ((9ίy)*)c7~Σfe^δfc Since the values of ψm are all

>power roots of unity, (ψm)* = 1*, so that (36})* = {(%})*)ϋ ̂ -'Σkdjkftl where the

djk are again the decomposition numbers of B. We have proved the following

theorem.

THEOREM 5. Let B be a block of a group G, with normal defect group D.

Then there exists a group U and a factor set ε° of Ut whose values are roots

of unity of orders prime to p, such that:

(a) the ordinary representations of B are in 1-1 correspondence ivith the
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ε*-representations of U, the modular representations of B are in 1-1 corre-

spondence with the (e)*-representations of U, and corresponding representations

have proportional degrees and equal heights;

(b) the decomposition matrix and Cartan matrix for B are the same as

those for the ε°-representations of Ul

(c) U has a normal Sylow subgroup D° isomorphic to D, and D* contains its

own centralizer I

id) U/D° = S/DH, where S and H were defined in section 3.

This theorem can be interpreted as meaning that just as the part of G

outside S can be removed without changing the structure of B, so the "part

between A and H" can be removed if we allow the introduction of a factor set.

We now reformulate Theorem 5 so as to eliminate the use of projective

representations, just as in the proof of Theorem 4. Let E be the character

group of the cyclic group generated by ε°. For any elements u} v of Uy let

nu,υ^E be the character such that {e)ι-> (ε°U)V)
1 then n-{nu,v) is a factor

set of U in E. Let M be the extension of E by U with this factor set and

trivial action; the elements of M may be written (e, u) = (e> (a, aH))y where

e e E. E is in the center of U, and is cyclic of order prime to p. By defining

ϋ'j(e, u) = e{t)H){u)y we set up a 1-1 correspondence between the ε°-representa-

tions 36} of U and a certain set T" of ordinary irreducible representations ϋ'j

of M\ and £/' is in T" if and only if the linear character of E contained in

ϋ'j IE can be identified with ε° under the canonical isomorphism between an

abelian group and the character group of its character group. (For consistent

notation, Tff should really be defined as a set of characters.) There is a

similar correspondence for modular representations. Together these corre-

spondences preserve decomposition numbers; so T" is actually a block B" of

M.

To study the structure of M, let π be the natural homomorphism of M

onto U. Let H" = π~\AQ). Since n\D is trivial, π~\DQ) is a direct product

D"x E= D"Hμ, where D" is a normal Sylow subgroup of M. D" Π H" is the

center A" of D", and π~1(LQ)=Lff is a ^-complement; π~\K*) = K" = A"L".

Since J3", like every block of M, has the normal Sylow group D" as its defect

group, the theory of section 3 applies to Bn. We need not go into detail, but

simply remark that M plays the role of S as well as of G, that our notation
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for subgroups indicates their roles, and that the group corresponding to U is

U itself (up to isomorphism). This completes the proof of the following

reduction theorem for the structure of blocks with normal defect group.

THEOREM 6. Let B be a block of a group G, with normal defect group D.

Then there exists a group M and a block B" of M such that:

{a) the representations, both ordinary and modular, of B are in a 1-1

correspondence with those of B", and corresponding representations have pro-

portional degrees and equal heights;

(b) the decomposition matrix and Carton matrix for B are the same as

forB";

(c) D is isomorphic to the defect group Dn of B", D" is a normal Sylow

subgroup of My and the centralizer of D" has form H" = A" x E, where A11 is the

center of D" and E is a cyclic subgroup of the center of M;

(d) M/D"H" = S/DH.

5. Applications of the Construction

The following theorem treats a situation midway between that of section

2 and that of sections 3 and 4.

THEOREM 7. Let G be a group of form DH, where D is the defect group of

a block of G, and H is ihe centralizer of D in G. Then there is a 1-1 corre-

spondence between the representations 58/ of B and all the representations $/ of

D, in which corresponding representations have proportional degrees. B contains

just one modular representation.

Proof. D is normal in G, so that we can use the terminology of sections

3 and 4. Here S^DH, K^H, and ε is trivial. Therefore U=D°^D, and we

can identify U with D. Theorem 5 then gives the result.

Explicitly, a short computation based on equations (15) and (17) shows

that ?βι(aSδSκ)-3m{sκ) xtyjiass) in our usual notations. From this it is not

hard to show that for * e DH we have, as a generalization of (6),

(18) *Mf
(θ if xpΦ D,

where θι and θ\ are the characters of 55/ and SSί respectively. Theorem 7 is

less deep than Theorems 5 and 6, since the proofs of these collapse considerably
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in the case G — DH. An alternate proof of Theorem 7 can be constructed

along the lines of the proof of Theorem 3, considering DH as a homomorphic

image of the abstract direct product of the groups D and H. We now return

to the general case.

THEOREM 8. Let B be a block of G with normal defect group D. Then the

height of each representation 36y in B is equal to v{άeg 58/), where 58? is any

irreducible constituent of 36/1D.

Proof. If 36/ = (36})G, if Sz is a constituent of 36}|Zλtf, and if Rι is the

inertial group in S of the character of 58/, then by [7] 36} is induced from a

representation of Rι which is a tensor product of two projective representations,

one of them being an extension of 58/, and the other being a projective repre-

sentation of Rι/DH. A theorem of Schur (see [9]) tells us that the degree of

the last divides ( β : DH), whence v(άeg 36}) = zΛdeg 58/). Since dίj and 36} have

the same height, the result follows from Theorem 7.

As an immediate corollary, we have the following result.

THEOREM 9. If B has normal defect group D, then B contains representa-

tions of positive height if and only if D is nonabelian.

THEOREM 10. If the block B of G has normal defect group D, the repre-

sentations of G/D in B are all modularly irreducible and of height 0. Taken

modularly, they all remain distincty and they yield all the irreducible modular

representations of B.

Proof. We can reduce at once to the situation in S. Every irreducible

modular representation $*, in B1 has D in its kernel, and hence is a modular

constituent of some 36} in B1 whose kernel contains D. Every such representa-

tion 36} has height 0 by Theorem 8; this means that v{άeg 36}) = v(S : D), so

that 36} is in a block of S/D of defect 0. Then all such 36} are modularly

irreducible, and yield distinct modular representations, as required.

The above theorems actually depend only on Theorems 1 and 7. We

conclude with a result whose proof uses Theorem 6 more fully.

THEOREM 11. If B has normal defect group D, then each Cartan invariant

cm of B satisfies Cki< (D : 1).
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Proof. By Theorem 6, we need only prove this for the group M. But M

contains the ^-complement L", and therefore the result is given by Theorems

8 and 9 of [5].

REFERENCES

[ 1 ] K. Asano and K. Shoda, Zur Theorie der Darstellungen einer endlichen Gruppe

durch Kollineationen, Compositio Mathematica vol. 2 (1935), pp. 230-240.

[ 2 ] R. Brauer, Number theoretical investigations on groups of finite order, Proceedings of

the International Symposium on Algebraic Number Theory, Tokyo, 1956, pp. 55-62.

[ 3 ] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung. I, Math. Zeit.

vol. 63 (1956), pp. 406-444.

[ 4 ] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung. II, Math. Zeit.

vol. 72 (1959), pp. 25-46.

[ 5 ] R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. vol.

42 (1941), pp. 556-590.

[ 6 ] R. Brauer and J. Tate, On the characters of finite groups, Ann. of Math. vol. 62

(1955), pp. 1-7.

[ 7 ] A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. vol.

38 (1937), pp. 533-550.

[ 8 ] P. Fong, On the characters of ^-solvable groups, Trans. Amer. Math. Soc. vol. 98

(1961), pp. 263-284.

[ 9 ] N. Ito, On the degrees of irreducible representations of a finite group, Nagoya Math.

J. vol. 3 (1951), pp. 5-6.

[10] G. W. Mackey, Unitary representations of group extensions. I, Acta Mathematica

vol. 99 (1958), pp. 265-311.

[11] H. Nagao, On the theory of representation of finite groups, Osaka Math. J. vol. 3

(1951), pp. 11-20.

[12] M. Osima, On the representations of groups of finite order, Math. J. of Okayama

Univ. vol. 1 (1952), pp. 33-61.

[13] H. Zassenhaus, The Theory of Groups, New York, 1949.

Addendum: It is possible to carry out the constructions of sections 3 and

4 in any finite algebraic number field Ω containing the #-th roots of unity

without enlarging this field. The proof of this depends upon the following

theorem, whose proof I shall publish elsewhere.

THEOREM. Let H be a normal subgroup of a group G of finite order g, and

let ε be a complex-valued factor set on G/H. Then ε is equivalent to a factor

set ε' on G/H whose values are g-th roots of unity, and such that for each

group Gu H^Gi^G, every (e'ld)-representation of Gι can be written in the

field of the gth roots of unity. If furthermore p is a prime which does not
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divide (G : H), and if g=zpagr with (p, gr) = 1, then we can suppose that the

values of εf are gr-th roots of unity.

If we apply this theorem to K at the point in section 3 where the ?)m | Km

have just been constructed in an extension field of Ω, we can replace ε by εf

and then write $ m | Km in Ω. Note however that this replacement may increase

the multiplicative order of ε, and with it the order of M in section 4. Standard

methods (see in particular p. 223 of N. Jacobson, Lectures on Abstract Algebra,

vol. 2, New York, 1953) then let us take ςQm\Km locally integral in Ω and

$£ I Km = ?)* I Km. The construction of φOT on Sm then proceeds in Ω.

The representation D«x% in (15) is similar to a representation in Ω whose

restriction to ϋΓ is 3mx/; the latter representation has form $mx9ίy with %j

in Ω, and we can replace 2iy by 9iy without any further change in the factor

sets. A similar argument works for 33*. Then the constructions of sections 3

and 4 can be completed with all representations written in Ω and its residue

class field Ω*.
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