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Let G be a group and H a subgroup of G. With a left G-module M, rela-

tive cohomology groups Hn{G, H, M) of G on M, relative to ϋ/, have been

defined by Adamson [1] and may be expressed as Ext[<?, H) (Z, M) in the notation

of relative homological algebra of Hochschild [2], where Z denotes the G-module

of rational integers (acted by G trivially). Regarding M as a right G-module,

Tori?'H)(M", Z) are similarly relative homology groups Hn(G, H, M). In case

H is of finite index in G, Hochschild [2] defines further negative-dimensional

relative homology and cohomology groups. He then remarks that these com-

plete relative homology and cohomology structures are separate (contrary to

the absolute case ϋ Γ = l ) . Indeed he exhibits an example of G, H, M (with H

even normal in G) such that Hn(G, H, M) = 0 for every w = 0, ± 1 , ± 2 , . . .

and Hn(G, Ή, M) is a group of order 2 for every w = 0, ± 1, ± 2, . . . . This,

however, does not exclude the possibility that negative-dimensional relative

homology groups H-n(G, H, M) are in close relationship with positive-dimen-

sional relative cohomology groups on some G-module N other than M. In fact,

in case H is a normal subgroup of G, we have H~n(G, H, M) ^ H-n(G/H, MH)

~ Hn'1(G/Hi MH) (where MB denotes as usual the residue-module of M with

respect to the submodule generated by the elements of form u-hu (u&M,

H<EΞH) and this is isomorphic to Hn~ι{GlHf NH) ^ Hn~HG, H, N) if MH is

G-isomorphic to NH (where NH is the submodule of N consisting of all elements

of N left invariant by H)\ this holds not only for n > 0 but for all n = 0, ± 1 ,

± 2, . . .. Now we want to show that a similar phenomenon prevails also in

case of a non-normal subgroup H,

Thus5 let H be a subgroup of finite index in a group G and Ko be the

largest normal subgroup of G contained in H, i.e. the intersection of all conju-

gates of H in G. For G modules M and Λτ, we consider the following condition :
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(A) There exists a G-homomorphism /r0 of M into N such that /r0 induces

a (G-) isomorphism of MKQ onto iVA°, and, moreover, we have

H-\K/Kθ9 Mκo)=H°(K/Ko, Mκ0)=0 for every subgroup K of H

which is an intersection of conjugates of H in G.

This condition may also be formulated as follows:

(A') There exists a G-homomorphism κ0 of M into TV such that KQ induces

a (G-) isomorphism of MKQ onto Nκ° and for every subgroup K of H

which is an intersection of conjugates of H in G the homomorphism

κ(K) of M into N defined by

(1) κ{K)u = Σ pκou (κ<=Af),

p running over a representative system of cosets of KQ in K,

induces an isomorphism of Mκ onto Nκ.

Indeed, the endomorphism v -> Σ P# (v^Nκ°) of iVx° induces a monomor-

phism (resp. an epimorphism) of (NKo)[Kικo) to (jV*°)(A7*o) =iVK if and only if

HXK/KO, NK°) = 0 (resp. H~HK/KOi Nκ°)=0). Combining this consideration

with G-isomorphism of MKQ and Nκ° induced by κ0) we see the equivalence of

the conditions (A), {Af) readily.

We want also to note that if (A) (or (A1)) is the case and if K is an

intersection of non-void set of conjugates of H in G, which is not necessarily

a subgroup of H, the homomorphism of M into N defined by the same formula

as (1) induces an isomorphism of MK onto Nκ, as follows readily from the G-

isomorphism property of κo by an easy conjugation consideration. With this

generalized significance of κ(K), we observe also that if K, L are two intersec-

tions of non-void sets of conjugates of H in G and if L D K then

(2) κ(L)= Σ pκ(K),
L3p r.modiv

p running over a representative system of right cosets of K in L. We have also

(3) κ(σKα~ι) = ακ{K)α~\

Now, with the condition (A) (or (AΊ) we assert

THEOREM.^ Let H be α subgroup of finite index in α group G. For G-

l) The theorem will be applied in a subsequent paper to a study of fundamental exact
ssquences in homology and cohomology of finite groups. Cf. remark at the end.
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modules My N} suppose that the condition (A) {07% equivalently, (A')) is satisfied.

Then

Hn(G, H, M)-H-n-\G, H, N)

for all nWίO. More precisaly, if Σ X i is the standard complete complex G rela-

tive to Hy the complexes ΣM(g>c?^«, Σ H o m G ( I - n - i , N) with respective differ-

entiations d, δ are isomorphic by an isomorphism mapping M®GXn onto

Homσ(X-Λ-i, N).

Proof Relative homology and cohomology groups #«(G, H M), Hn{G, H\

M), with H of finite index in G, are defined most conveniently by means of

the standard complete complex of (G, H), i.e. the exact sequence

dι do d-i d-2
(4) — > Xi —>xo — > X-i — > X-i — >

in which each Xn with n^O is the G-module having the totality of (n + D-

tuples {ΰoHy σχHf . . . , σnH) of right ί/ cosets in G as Z-basis and the map

dn : Xn -> Xn-u M > 0, is defined by (linearity and)

<JnH) =

while X_w, n > 0, is the G-module Homz(Xw^i, Z) dual to Xn-i and the map

9_M : X-n -> JYLrt-i, w^O, is dual of dn+i, and further, the map do : Xo -> JYΊ is

the combination of the coefficient sum homomorphism Xo -* Z and its dual

Z-*X-i\ all the modules Xn, ^ § 0 , are (G, //)-projective, all the maps dn,

w§0, are G-homomorphic, and the sequence is (G, H)-exact, in the sense of

Hochschild [2]. We observe also that each Xn is in fact G-isomorphic to its

dual X-n-ι (and is, hence, (G, #)-injective too); for n^O the isomorphism is

given by associating (*<,//, . . . , anH) with the element {σoH, . . . , σnH) of

Hom2 (Xn, Z) which maps (σoH, . . . , anH) into 1 but other (n + D-tuples to 0.

(Relative) cohomology groups Hn{G, H; N), w§0, on a G-module iV is

defined by the sequence

d a d

) Xo, N) <— Homo (X-u N)

r U-2, N) <—

while (relative) homology groups Hn(G, Hi M), « § 0 , on a G-module M is

defined by the sequence
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d d a d
(6) —>M®GXι—->M®GX*—->M®GX-ι—>M®0X-2 ,

both sequences being derived from (4) in natural manner. As X-n-i is

Honiz (Xn, Z) (and is in fact isomorphic to Xn itself) we have an G-isomorphism

v : N®zXn^ttomz(X-n-u N)

where υ®x (z; e iV, x^X) in the left-hand side is mapped to the element

v(v ® x) of the right-hand side such that v(v ® x)f = (fx)v for / e X-n-i

-UomziXy Z)\ the map is not only (G-)homomorphic but isomorphic since

Xn has an (independent) finite Z-basis. Hence we have an isomorphism, denoted

also by v,

(7) (N®zXn)G~H.omQ{X~n-u N).

Now, we first consider the case n>Q. There is a system of (n + 1)-tuples

(8) 5= (σoH, σiH, . . . , anH), sf = (σ[Hy σ[H, . . . , σnH), . . .

such that for every (n-\-1)-tuple t = (roi7, ri//, . . . , rw/7) there is one, and only

one, among them, say s(μ), from which the given (w-fl)-typle t is obtained by

the operation of an element of G, thus ί = rs(μ) ( : ε G ) ; here τ^uσl^'1 r.mod

a{oμ)Hσ{

o

μ)~\ =τiσ[μri r.mod ^ i ^ ^ " " 1 , . . . , and r is determined uniquely up to

r. mod σ^Hσ^'1 Π ^ ^ ^ ί ^ " 1 Π Π σ^Hσ^'1. We see readily that every

element of the tensor product iW<S>σXί is expressed in a form

(9) u®σs + u'®os'+ - ' ' (u, u\ . . . eΛf).

Here the classes in the residue-modules Mκ> Mκ>, . . . of the elements u, uf, . . . ,

respectively, are uniquely determined, where we put

(10) K^σoHσ;1 Π σiHσT1 (Λ - - Γ\ onHon\ K' = a[Ha[~x Π a[Ha[^ Π — Π

OnHύn t

for brevity.

Now, let tc — κ(K), tz! = κ(Kf), . . . be the homomorphisms of Λf into iV

which are described in the condition (A') of our theorem and thus in particular

induce isomorphisms MK^,NK, MK>^NK\ . . . respectively. We associate with

(9) the element

(ID Σ p(κu)®ps+ Σ p'(«V)®p's'+ ••
pr.niodi p'r.modiϊ.'

of N®zXn, where in the first sum p runs over a representative system of right
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cosets modulo K in G, in the second sum p* runs over a representative system

of right cosets modulo K! in G, and so on. This element (11) of N®zXn is

independent of the choices of these representative systems of cosets, as follows

from the definitions of K, K, etc., and is, moreover, determined uniquely by the

element (9), irrespective of the special choices of elements u, u\ . . . from their

classes in Mκ> Mκ<, . . ,.2J The former of the last remarks entails that (11)

belongs in fact to {N®zXn)
G Thus, by (9) -> (11) we obtain a homomorphism

φ: M®aXn->(N®zXn)σ.

We contend that this homomorphism is an isomorphism. Thus, suppose that

(11) is 0. Since {ps}, {p's'h . . are altogether the set of distinct (w-b 1)-tuples,

this implies that each single term in the sum (11) is 0, i.e. p{κu) = 0 for every

p r. mod K, etc. It follows then that u, u\ * * . belong to the kernels of tc, κ\

. . . , i.e. to the 0-classes in MK, MK>> . . . , respectively. This implies however

that the element (9) is 0, showing that ψ is monomorphic,

To prove further that φ is epimorphic, consider any element of (N®zXn)β,

which we can express in a form

(12) Σ v{?) ®ps + Σ vf{?t) ® p'sf +
& K ' d J K : '

(t/p\ v'i9'\ . . . <ΞΛ0; we assume that the unit element 1 appears in each of

the representative systems {p}> {p1}, . , .. From its invariance by the elements

of K we deduce that va) belongs to Nκ. Its invariance by p implies v(9) = pv{i\

Similarly we have vf{1)^Nκ\ vf{?Ί = pfv'a\ etc. The elements va\ vf(l\ . . .

of Nκ, Nκ\ . . . may be expressed as KU, K'U\ . . with w, u', . . . e M . So

the element (12) assumes a form (11) and is contained in the image of M®GXn

by ψ. This proves that φ is an isomorphism.

In case n < 0 we consider {σoH, . . . , amH) (m— -n-l) in place of

(σoH, . . . ) and obtain similarly an isomorphism ψ: M®GXn^ (N®Xn)
Q*

Before proceeding further, we observe that in deriving (11) from (9), to

define φ, we need not assume that s, s\ . . . in (9) are the specific (Λ + 1)-

tuples in (8). Thus we consider (9) to be an arbitrary expression of a given

element of M®zXn, in which s} sf, . . . are allowed to be any (w+l)-tuples of

right cosets of H in G, and shov/ that the element (11) is determined uniquely

2 ) We shall soon observe that the element (9) is independent of the choice of sf s\
. . . . Indeed it is determined by the element (9) itself, irrespective of its special form.
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by the given element (9) itself, independent of its particular form (9). Indeed,

since any other similar expression for the same element (9) is devived from

(9) by addition of differences like u0os- ou®Qas iup to trivial rules like

cancelling equal terms with opposite signatures), we have only to prove the

equality Σ p{κu)®ps~ Σ pάiziou) ® piσs, where K-OZHOQ1Γ\ ΠpnHpn1

pr.mod K pir.modKi

(s=(<r<)H, . . . , onH)), Kί^σHσ'1, κ = κ(K), κx = ιc(K). But this is certainly

the case since κx = κ{oKa"x) = σκ(K)a~1, as was observed before, and p^a runs

over a representative system of right cosets modulo K, in G, when pt runs over

a such of right cosets modulo K\ = oKσ'1. A similar remark holds also in case

n < 0 .

Now we consider the diagram

X_n.u N)

(13) *1 [^
MΘaXn-i > (N®zXn-i)G^ttomG(X-n, N)

where the horizontal arrows are the isomorphisms ψ defined above.

We contend that the diagram is commutative. First consider the case wfe

and consider an element u®Gs of M®QX (5= (σQH, - . . , anH)). We have

. . , σi-iH, σi+iH, . . . , anH) e M®QXn-i.
i = 0

By our above remark aboμt ψ, we have

Σ p p 9 ^ , u x , , ^ )
f> r. m o d iC./

w h e r e Ki = K{σo, . . . , 0 7 ^ , <;/+1, , . . , < ; „ ) ^σoHσo1^ . . . Γλύi-^HύTliCΛΰi+iHσjli

Γ\ ΓionHσή1 and *,- = «(#/). This element ^O(w®βs)) of (iVtguAΓn-i)0 is

associated by *, (7), with the element of Hom<? (X-«, iV) mapping {τiH, . . . ,

(X».i, 2) to

(14) ij(~"l) 2 J 5 ( T 1 H , . . . , T , i H ) , ( p O 0 H > . . . , p O £ - i H
t = 0 p r. mod ΛΓ/

(Kronecker δ's). On the other hand, we have

ρ ρ y ,
p r. mod /c

which corresponds by v to the element of Hom^ (l- n -i, N) mapping {~oH, rιH>

. . . , TnH) S X-n-l — H o m ; ? (Xn, Z) tO Σ δ(-0H,... ,-cnH),(pσoR,..., pσnH)β(tCll) & N.
p r. mod A'
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Its image by the coboundary operation δ is the element of Homo(X-n, N) which

maps {riϋΓ, . . . , rni/>Gl-n = Homz(In-i, Z) to

n

(15) 2_j Σ ( ~~ I ) 1 Σ δ(τίH,...,τiΐ/,oH, τitιϊϊ,...,τnH),<?<;ΰH)..>,?anH)p(κU) €Ξ N,
p r. mocί K ϊ = 0 o r . mod H

since 3{riff, . . . . τnH} = Σ ( - 1 ) ' Σ {nH, . . . , nH, aH, τi+1H, rnH).

In the summation Σ for fixed p, i in (15) the only effective term is the one
σ r. mod H

with oH = paiH, and (15) may be rewritten as

2J Σ ( " ~ lY δ{τίHt...yχnH), (
r. mod £ » = 0

(16)

Now, for each i we have Ki D K and

by (2). Thus (14) is in fact equal to (16) whence to (15), which shows that

the diagram (13) is commutative.

Next consider the case n < 0. Set m = - # > 1 . With s~{σιHi...,amH)

we have

βs)= Σ ( - Ό f ' « ® G Σ {*#, . - . , ύiH, σH, σi+1Hf . . . , <;«/?>,
< = 0 σr.tnod//

wi

s)) = Σ ( - i ) i Σ Σ o(κou)

where Λ:σ = aHσ'1 Π aiHσΐ1 Γ\ - -fΛamHσZ1 and κa = tc(Kσ). Thus

is associated, by z>, with the element of HomG (Xn, iV) mapping (ro-ff, nf?, . . . ,

tθ

rn
(17) ^ j ( — 1 ) ^ j ^ j 5(τ0H,...,τw//),(pσ1ίf,...,pσ//>pf7j4.1//f ...,pσ7HH) β\fCΰ U)

< = 0 or. modi/ ρr.niod#<j

In the summation Σ for fixed i, σ in (17) the only effective terms are the
p r . mod Kσ

ones with paH^riH. Hence (17) may be rewritten as

m

(18) Σ ( ~" 1)* Σ Σ 8(x0H,...,ri-lH,xi+}H,...,xmH),(?o1Ht...,?imB)P(fCoU)
Ϊ - 0 σr.modίf τ i Jϊσ""13p r.mod Ka

m
= Σ Σ 5(τD//,...,τe _1f/, Tf+!»,..., τmϊ/), (?n1H,...^σmH)β(κ:σU).

i -0 p r .mod A'σ

On the other hand, we have, with K ~ a\Ha^1 ίV Γ\σmHσ7n\
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ψ(u®Gs) — Σ p{κu)®p{σχHi . . . ,

and this corresponds by υ to the element of HomQ (Xm-u N) mapping

to

Σ # ( τ 1 H , . . . , τ m H ) , ( p σ 1 f f , ..,f>
d KΣ

p r . mod K

Hence d(v{ψ(u®Qs))) is the element of Hom<? (Xm, N) mapping (r0H> τiH,

. . . , TmH) tO

m

(19) Σ ( ""I)' Σ δ(τ0H,...,ii-ιH,xH.1H, . ,-zmH),{?°lH,...ί?vmH)P(κu).
i = 0 p r. mod K

But, since κw= Σ β(tcou), for each <?, the right-hand side of (18) coincides
KΞ3ρ r. mod X<j

with (19). This proves the commutativity of (13) for n <0.

We finally consider the case n = 0. For s-iaoH) we have

G Σ { } ® Σ
σ r. mod H σ r mod H

= Σ a
c r. mod H

φ(d(u®os))= Σ Σ
or.mod if pr.modH

with fc^κ(H). Hence p<p(d(u®G$)) is the element of Homα(JYΌ, N) which

maps (if) G Xo onto

(20) Σ Σ {plDUDpiica^u) = Σ ^"1w.

σ r. mod ff p r. mod H σi.woάH

On the other hand, we have

ψ(u®os) = φ{u®0{σoH)) = fU'^Θβί-H)) = Σ p{κσϊ1u)®p{H),
pr.modH

and vψ(u®os) is the element of Hom^X-i, JV) mapping {rff} e X-i onto

Σ {rH}(pH)p(/cί;ί"1w)τ(Λ:ί;J"1w). Hence δvψiu® Gs) is the element of
p r . mod H

Homα(X0, N) mapping (H) onto
(21) Σ rUtfβ"1*).

t r . mod H

Here, since AT = Σ PKQ with tcβ = tc{K)f KQ being the intersection of all conju-
J/3p mod JfiCβ

gates of H in G, the sum (21) is equal to Σ aκaaiλut and this is in turn equal
o r . m o d JK"o

to Σ σa^Kou- Σ aκaut as KQ is a G-homomorphism. Similarly the right-

hand side of (20) is equal to Σ Σ κ*pauι = Σ fco<?u~ Σ
σr.modβ" ff3p mod Kj omodJίo <3 mod Ĵ o
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Thus (20) and (21) are equal and this proves the commutativity of (13) for

w = 0."

The isomorphism of φ and the commutativity of (3) shows that the com-

plexes 'ΣMΘoXny ΣHomG(I-ίί-i, N) with differentiations 9, δ are isomorphic,

as was asserted.

Remark. If H is (not only of finite index in G but) of finite order and if

H'\K, M) = H\K, M) = 0 for every subgroup K of H which is an intersection

of conjugates of H in K, then the condition (A) (or equivalently (A1)) is satis-

fied with N = M. For, we have then in particular H~\Kϋi M) = H°(K0, M) - 0,

which implies that the G-endomorphism ΛT0 of M defined by κ0 u = Σ P^ induces

an isomorphism of Mx0 onto Mκ\ and furthermore A:(UL) defined by (1) with

our /co, just defined, induces an isomorphism of Mκ onto Mκ

t because of

H~\K, M) = H°(K, M) =0, for each K.

The application alluded to in the foot-note 1) will be under this stronger

assumption.
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