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Let A be a ring with unit. If A is a left Λ-module, the dimension of A

(notation: l.dimΛ A) is defined to be the least integer n for which there exists

an exact sequence

0—>Xn—» . . . ~->Xo—» A—>0

where the left /1-modules Xo, . . . , Xn are projective. If no such sequence

exists for any n, then 1. dimΛ A = oo. The left global dimension of A is

1. g\. dim A - sup 1. dimΛ A

where A ranges over all left Λ-moduIes. The condition 1. dimΛ A < n is equivalent

with Ext* (A, C ) = 0 for all left Λ-modules C. The condition \.g\. aim A<n

is equivalent with Ext* = 0. Similar definitions and theorems hold for right

Λ-modules.

In the first section of this paper it is shown that the global dimension of

A is completely determined by the dimensions of the cyclic modules over A9

i.e., the modules generated by a single element. In the next section the notion

of weak global dimension of A (notation: w. gl. dim/1) is introduced, and using

the previous result it is proven that if A is both left and right Noetherian, then

1. gl. dim A = w. gl. dim A = r. gl. dim A.

The rest of the paper, which is independent of the first two sections, is

devoted to a study of the global dimension of semi-primary rings. The prin-

cipal result here is that 1. dimΛΓ= l.gl.dim/1 = w. gl. dim Λ = r.gl.dim/l = r.dimΛΓ,

where Γ= A/N, N being the radical of A.

The definitions and notations employed in this paper are based on those
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introduced by H. Cartan and S. Eilenberg in [1].

§ 1. Global dimension and ideals

THEOREM 1. For each ring A we have

(a) 1. gl. dim A = sup 1. dimΛ B
B

(b) = sup 1. dimΛ All
i

where B ranges over all left Λ-modules generated by a single element and /

ranges over all left ideals of A.

If further A is not semi-simple (i.e., 1.gl.dim A>0), then

(c) 1. gl. dim A = 1 + sup 1. dimΛ /.
I

The equivalence of (a) and (b) is obvious. From [ l ; I, 4.2] we deduce that

A is semi-simple if and only if All is projective for all left idea3s / of A. It

follows from this and III IV, 2.3], which we state below without proof as Pro-

position 2, that (b) implies (c).

PROPOSITION 2. If 0—>A'—>A—>Aff—>0 is an exact sequence of left yl-

modules with A projective and A" not projective, then 1. dimΛ A" = 1 •+• 1. dimΛ A'.

Therefore in order to prove Theorem 1, it suffices to prove statement (a)

of Theorem 1. This proof is based on

PROPSITION 3. Let A be a left /1-module, / a non-empty well-ordered set

and (Ai)ie/ a family of submodules of A such that if i, j e / and i *= j , then

Ai % Aj. If U Ai = A and 1. dinu (Ail A\) *g n for all % e / where A\ = U Aj,
ί'ez j < i

then 1. dinu A = n.

Proof. The proof is by induction on n. If n = 0, then for all / e / we have

1. dim (Ai/A'i) <== 0. Therefore each Ai/Ai is projective. This implies that each

of the exact sequences

0 —> A'i —> Ai—+ AilA'i —>0

splits. Thus there exist submodules d of Ai such that

(i) Ai = A'i + d (direct sum),

Ui) each d is ispmorphic to Ail A'i and therefore is projective.

From (i) and the hypothesis that A = U Ai, it follows that A = Σ C ; (direct

sum).
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From (ii) we have that A is projective, since by [1 I, 2.1] the direct sum of

projective modules is projective. Therefore 3. dimΛ A = 0 and the proposition is

established in the case n — 0.

Suppose n > 0 and the proposition has been established for n - 1 . Also,

suppose ].dimA(Ai/At) =n for all ie /. Let F be the free Λ-module generated

by the elements of A and Fi (respectively Fi) the free Λ-module generated by

the elements of Ai (respectively Ai). Further, let R = Ker (F—> A) and define

Ri=F, n /?, i?; = K π #.

From the relations Ai ϋ Aί , F, 2 Fί, #, 2 #ί and the exact sequences

0—> Ri—> Fi—> Ai—>0

o—> R'i—>F; —> A —>O,

it follows that the sequences

0—

are exact for all / e /. Each Fι/Fj is a free yl-module and therefore projective,

since each Fi is generated by a subset of a basis for F/. Therefore by Pro-

position 2 we have l.dimΛ (Ri/Ri) £n-l. It can easily be established that the

family (/?,-)»ez has the properties that /, jGl and i^j implies that Ri^Rj,

R=URi and /?!= U/?y. Thus by the induction hypothesis 3.dim R£n-1.
i e z i < i

Since the sequence

0—>i?—>F—>A—>0

is exact, it follows from Proposition 2 that 1. dim AA ύ. 1 + 1. dimΛ R ^ n.

We now prove (a) of Theorem 1.

Let A be an arbitrary yl-module. Well order the elements x% of A and

denote by A% (respectively Ai) the submodule of A generated by Xj for j =Ξ Z

(respectively ./ < i). Then Ail Ai is either 0 or generated by the single element

xu Therefore 1. dim {AilAi) = n, where n - sup l.dim-B, B ranging over all
B

left yl-modules generated by a single element. Since the family (AiO/ez of

submodules satisfies the hypothesis of Proposition 3, it follows that I. dim A<=n.

Therefore 1. gl. dim Λ ^ n. But by definition 1. gl. dim Λ^n. Therefore

1. g\. dim Λ = n, which completes the proof of Theorem 1.

§ 2. Global dimension of Noetherian rings

Let A be a left yl-module. In addition to 1. diπuA we introduce (see Cl
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VI, Exer. 3]) the weak left dimension of A as follows:

- 1 ^ w. I. dimΛ A ^ co9

where w. 1. diπu A < n if and only if Tori (C, A) = 0 for all right Λ-modules

C. For a right Λ-module C we define w. r. dimΛC similarly.

We introduce the weak global dimension of A as follows:

0 = w. gl. dim Λ^ co9

where w. gl. dim A < n if and only if Tor« = 0.

For the weak global dimension there is no distinction between "left" and

''right" dimension. Indeed, we have

w. gl. dim A = sup w. 1. dimΛ A
A

= sup w. r. dimΛ C
c

where A ranges over all left Λ-modules while C ranges over all right Λ-modules.

Since the functors Tor« commute with direct limits, we may restrict A (res-

pectively C) to range over finitely generated left (respectively right) Λ-modules.

THEOREM 4. If the ring A is left Noetherian, then

1. gl. dim A = w. gl. dim A.

Similarly, if A is right Noetherian, then

r. g\. dim A = w. gl. dim A.

Proof. By Theorem 1 we have

1. g\. dim A - sup I. dimΛ A
A

where A ranges over all finitely generated left Λ-modules. Since A is left

Noetherian, we have by [1 VI, Exer. 3] that

1. dimΛ A = w. 3. diπu A

for each finitely generated left yl-module A. This yields the conclusion.

COROLLARY 5. If A is both left and right Noetherian, then

1. gl. dim A = w. gl. dim A = r. gl. dim A.

This common value will be denoted by gl. dim A
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§ 3. Semi-primary rings

Before discussing semi-primary rings, we prove the following general lemma.

LEMMA 6.2) Let A be an arbitrary ring, N a nilpotent left ideal in A, and T

a (covariant or contravariant) half exact functor defined for all left Λ-modules.

If T(A) = 0 for each left Λ-module such that NA = 0, then Γ=0.

Proof. Suppose the lemma is false. Then there is a left Λ-module A such

that T(A)=*FO. Since iV is nilpotent, there is a maximal index k^O such that

T(NkA)*0 (where N° = A). Consider the exact sequence

0—>Nk+1A—>NkA—>NkA/Nk+xA—>0.

Since T(Nk+1A) = 0 = T(NkA/Nk+1A) and T is half exact, we have T(NkA) = 0.

This contradiction proves the lemma.

Let A be a ring (with unit). We say A is semi-primary if there is a two-

sided nilpotent ideal N of A, which we call the radical of A, such that Γ= Λ/N

is semi-simple. It is clear that if A is semi-primary, its radical is unique.

PROPOSITION 7. Let A be semi-primary, with radical N, and let Γ-AIN.

Then for each left Λ-module A the following conditions are equivalent:

(a) Tor£(Γ? A ) = 0

(b) Tor£ (C, A) =0 for every simple right Λ-module C

(c) w.l. dimΛ A < n

(d) Extl (A, Γ) =0

(e) Extl (A, C) = 0 for every simple left yl-module C

(f) l.dimΔA<w.

Proof. (a)=>(b). If C is a simple right /1-module, then C is a direct

summand of Γ. Since Tor commutes with direct sums in either variable,

Tor£(C, A) is a direct summand of Tor*(Λ, A). Therefore if ΎoήiΓ, A) =0,

then Tori(C, A) = 0.

(b)==>(c). Consider a right /ί-module 5 such that BN=0. Since 5 can

be considered a right module over the semi-simple ring Γ, we have that B is

semi-simple, i.e., B is the direct sum of simple right Λ-modules. Now, Tor

commutes with direct sum and (b) states that Tornί£? A ) = 0 for all simple

right Λ-modules C. Thus ΎoήiB, A) =0 for any B such that BN=0. Since

2 ) This is a generalization of [2, Proposition 3].
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, A) is a half exact functor, we deduce from Lemma 6 that Ύor£(B, A) = 0

for all right Λ-modules B.

(c)H>(d). By [ l ; VI, 5.1] we have

Ext^U, Homz(£, Γ))»Hom*(Tor£UB, A), T)

where B is an arbitrary right Λ-module and T = R/Z, the additive group of real

numbers reduced modulo the integers. Since (c) implies Torn(B, A)=0. we

have Ext£(A, Homz(B, D ) = 0.

Now choose Z? = Homz(Γ, T), which we consider a right Γ-module (and

therefore a right Λ-module) by defining (fn)(ΐ2) =Anr*) for a l l / e Hom2(Γ, T)

and ri? Ϊ2 G Γ. Since Γ is semi-simple, the left Γ-module Homz{B, T) is semi-

simple and thus every submodule of Ή.omz(B, T) is a direct summand. The

Γ-monomorphism φ : Γ—»Hom*(.B, T), defined by φ(r)/=Ar) for all / ε B ,

r & Γ, shows that Γ is isomorphic to a submodule and therefore to a dirct

summand of Homz(B, T). Since Ext commutes with finite direct sum on the

second variable and Ext^(^? Homz(B, T)) = 0, we have ExtJ(A, Γ) =0.

(d)=>(e). Same argument as that used to prove (a)=>(b) with the functor

ΈxtKA, ) substituted for Tor£( ,A).

(e)=>(f)- Consider a left Λ-module B such that NB = 0. Then 5 can be

considered a left Γ-module. Since Γ is semi-simple, J5 is semi-simple, i.e.,

B^s Σ C i , direct sum of simple Γ-modules Cf. Now ΣCV is a submodule and

therefore a direct summand of the Γ-module ΠC, , the direct product of the C*.

Thus ExtliA, Σ C , ) is a direct summand of Ext^(A? ΠC, ). But Ext£(A, ΠC, )

= ΠExt^A, C/) = 0. Thus Extί(A, B) = 0 for all 5 such that NB = 0. Since

ExtKA, ) is a half exact functor, we deduce from Lemma 6 that ExtJJC-A, #) = 0

for all left Λ-modules B, i.e., 1. dim A < n

(f)=)(a). This follows immediately from the general proposition that

1. dimΛ A ^. w. 1. dimΛ A (see [1 VI, Exer. 3]).

As an immediate consequence of this proposition we have.

COROLLARY 8. If Λ is a semi-primary ring and A is s left Λ-module, then

w. 1. dimΛ A = 1. dimΛ A.

Similarly, if A is a right Λ-module, then

w. r. dimΛ A = r. dimΛ A.
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From Corollary 8 we conclude.

COROLLARY 9. If A is a semi-primary ring, then

1. gl. dim A = w. g\. dim A = r. gl dim A.

This common value we designate by gl. dim A.

PROPOSITION 10. For each left Λ-module A, the following conditions are

equivalent:

(a) Ext£(Γ, A)=0

(b) Ext£(C, A) = 0 for every simple left Λ-module C

(c) 1. inj. dimΛ A < n.

Proof. (a)HHb). The same argument can be employed as was used in

Proposition 7 to prove that (d) + (e), but applied to the first variable instead

of the second variable.

(b)=>(c). Consider a left Λ-module B such that NB = 0. Then, as we

have seen before, β ~ Σ C * , the direct sum of simple left Λ-modules d. Now

Eχt£(ΣC, , A)τzΠExtl(Ci, A). Therefore, since (b) states that Ext^Cf, A ) = 0

for all i, we have Ext£(£, A) ^ 0 for all B such that NB = 0. Since Extjji , A)

is a half exact functor, we deduce from Lemma 6 that Ext,"(J5, A) =0 for all

left Λ-modules B, i.e., 3. inj. dimΛ A < n.

(c)=Ma). This follows from the definition of the left injective dimension

of a module. (See [1 VI, 2.1a].)

COROLLARY 11. If A is a semi-primary ring with radical N and Γ=A/N,

then

(a) gl. dim A = 1. inj. dimΛ Γ

(b) =l.dimΛΓ

(c) = l + I.dimAiV

(d) = sup 1. diπuC

(e) =sup 1. inj.dimΛC
c

where C ranges over all simple left Λ-modules. Also, (a) - (c) hold with

"left" replaced by "right."

Proof, (a). If A is a left Λ-module we have by Proposition 7, (d) and (f),
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that 1. dimΛ A^l inj.dimΛΓ. Thus gl. dim Λk*l. inj. dimΛ Γ. But by [1 VI, 2.6]

we have gl. dim Λ ̂  1. inj. dimΛ Γ. Therefore g\. dim A = 1. inj. dimΛ Γ.

(b). If A is a left Λ-module we have by Proposition 10, (a) and (c), that

1. inj. dimΛ A ^ 1. dimΛ Γ. Therefore gl. dim A ̂  1. dimΛ Γ. But by definition gl. dim A

^l.dimΛΓ. Thus gl. dim A = 1. dimΛ Γ.

(c). If iV= 0̂, then A is not semi-simple and thus gl. dim A = 1. dimΛ Γ > 0.

Therefore, by Proposition 2, we deduce from the exact sequence

0—>N—>Λ—>Γ—>0

that gl. dim A = 1. dimΛΓ = 1 + l.dimΛiV. If N=0, then A is semi-simple, i.e.,

gl. dim A = 0. Since 1 .dimΛ 0 = — 1, gl. dim Λ = 1 + 1. dimΛ iV.

(d). Since Γ is semi-simple, Γ ^ S C / , finite direct sum of simple left A-

modules, where the d have the property that if C is a simple left yl-module,

then C zz d for some /. Therefore sup 1. dimΛ C = 1. dimΛ Γ== gl. dim^i, where C

ranges over all simple left Λ-modules.

(e). This is proved in an analogous fashion to (d).

COROLLARY 12. If A is a semi-primary ring, then the following are equi-

valent :

(a) gl. dim A < n

(b) Ext^(r, Γ) =0, both Γ's considered as left Λ-modules

(c) Ext£(Γ, Γ) =0, both Γ's considered as right /i-modules

(d) Tor^iΓ, Γ) =0, first Γ considered a right yl-module, second .Γconsidered

a left /(-module

Proof. Since by Corollary 9 we have

gl. dim A = I. dimΛ Γ = w. dimΛ Γ = r. dimΛ Γ,

it follows from the definitions of these various terms that (a) implies (b), (c),

(d). The proofs that (b), (c), (d) each imply (a) are all similar. Consequently

we will prove only that (b) implies (a) and leave the others to the reader.

By Proposition 7(d), we have that if Ext"(Γ, Γ) = 0, then I.dimAΓ< n. But

we have by Corollary 1Kb) that 1. dimΛ Γ= gl dim A. Therefore if ExtjJίΓ, Γ) = 0,

then gl. dim A < n.

PROPOSITION 13. If A satisfies the left minimum condition and g\. dim A > 0,
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then there is an indecomposable left ideal J in A such that J2 = 0 and

g], dim A = 1 + 1. dimΛ/.

Proof. Let / b e a left ideal contained in the radical N, minimal with res-

pect to the property that 1. dimΛ/= I. dimΛ A
r (ideals of this type exist since N

is such an ideal). If J=A + B (direct sum), then l.dimΛ/=sup (ldimAA,

l.dimxB). By the minimal property of /, either A or B must be the trivial

ideal. Thus / is indecomposable.

Suppose J2 * 0. Then there is an element 2 * e j such that Jλ* # 0. Consider

the exact sequence

(*) 0—>K-^J-Ujλ*—>0

where/U) = M* and iΓ=Ker /. Since / is nilpotent, Jλ**J and / is not a

monomorphism. Thus 0*?K^J. Therefore /Λ* and K are proper ideals in/.

Consequently we have sup (I. dimΛ/Λ*, 1. dimΛ K) < 1. dimΛ/. But in view of

the exact sequence (*) and [ 1 ; VI, 2.3] we have l.dim/^sup (1. diπu/λ*,

l.dinuiΠ. This contradiction proves that /2 = 0. Since by definition 1. dimΛ/ =

1. dinuiV, we have by Corollary ll(c) gl. dim A =1 + 1. dimΛ/ Q.E.D.

§ 4. Applications

PROPOSITION 14. Let A be a semi-primary ring such that each simple left

y]-module is isomorphic to a left ideal in A, then gl.dimΛ = 0, °o.

Proof. Suppose g\. dim Λ — n, 0<n<co. By Corollary 11 (d) we have

gl. dim A = 1. dimΛ C, where C is a simple left Λ-module. By hypothesis, C ̂  /,

where / is an ideal in A. Thus 1. dim / = gl. dim A~n. But since n > 0, A!I is

not projective. Therefore Proposition 2 applied to the exact sequence

0—>/—>A—>A/I—>0

gives LdimΛ//= 1 + 1. d i m / = l + w. However, 1. dimΛ Λ//*=gl.dim /I = w. This

contradiction proves the proposition.

PROPOSITION 15. The hypothesis of Proposition 14 is satisfied in each of the

following cases:

(a) A is a direct sum of a finite number of primary rings (a semi-primary

ring A is primary if Γ= Λ/N is a simple ring).

(b) A is a semi-primary commutative ring.

(c) A satisfies both the left and right minimum conditions and every two-
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sided ideal in A is a principal right ideal and a principal left ideal,

(d) A is a quasi-Frobenius ring.

Proof, (a). Suppose A is a primary ring. If N= 0, we are finished. Assume

iV#0. Let * be the maximum index such that Nk*0. Since NNk = 0, Nk is

a Γ-moduIe. Thus Nk is semi-simple and therefore contains at least one simple

left ideal of A. But Γ is a simple ring. Thus there is only one isomorphism

class of simple left Λ-modules. Therefore each simple left Λ-module is iso-

morphic to a simple ideal in A. The rest of (a) is obvious.

(b). Since N is nilpotent, every set of orthogonal idempotents in Γ can be

'* lifted" to an orthogonal set of idempotents in A. From this and the com-

mutativity of A, it follows that A is a finite direct sum of primary rings. Thus

(d) is reduced to (a).

(c). By [3; Chapter 4, Theorem 37] we have that A is a direct sum of

primary rings. Therefore (c) is also reduced to (a).

(d). This is an immediate consequence of the definition of a quasi-Frobenius

ring as given in [4].

§ 5. Tensor products of semi-primary algebras

THEOREM 16. If Ax and A are algebras over a field K, then

w. gl. dim {A\ ® A) ^ w. g\. dim A + w. gl. dim A2.

If further A and A are semi-primary algebras and A ® Γ2 is semi-simple, then

A ® A is a semi-primary algebra and

g\. dim (Ai ® A2) = gl. dim A -f gl. dim vl2.

Proof. By [1 XI, 3.1] we have

C2, A*) ~ T o r ^ A 2 ( d ® Cu A, ® A>)

for all 72^0, where Ci and C2 are right A and Λ-modules and Ai and Λ2 are

left Ax and /ί2-modules. Since K is a field, Tor^ίCi, Ax) * 0 and ToriV2(C2; Λ2) ^ 0

implies that Tor£i? A2(Ci ® C2, Ai ® A ) =¥0. Thus

w. gl. dim(yli ® A2) ^ w. g]. dim A 4- w. gl. dim A.

From the exact sequence

Nx ® A + /ίi ® iV2—> /ii ® A—> A ® Γ2—> 0

we deduce that the Ker / is nilpotent. If we assume that Γx ® Γ2 is semi-
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simple, we have that Λ\ ® Λ2 is semi-primary with radical the Ker /. Now we

have

ΣTor^(Γ,, Γi)®Tor£2(Γ2, Γ2) % Ton u Θ A 2 (A ® Γ2, A <g> Γ2)

for all n^O. Since K is a field, we deduce from Corollary 12 and these iso-

morphisms that

gl. dim (Λi ® Λ2) = gl. dim Λ + gl. dim Λ2.
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