A REMARK ON FINITELY GENERATED MODULES, II.

TADASI NAKAYAMA

The following small remark on the relationship of the (quasi-)regularity and the zero-divisor property may be more or less known but does not seem to the writer to have been explicitly stated in a literature.

PROPOSITION 1. Let \mathfrak{r} be a right-ideal in a ring R. If and only if \mathfrak{r} is not contained in the radical N of R (or, what is equivalent, \mathfrak{r} is not quasi-regular), R can be imbedded into a ring S with unit element 1 such that there is an element a in \mathfrak{r} for which 1 - a is a right zero-divisor in S.

Proof. The "only if" part is clear. For, if $r \subseteq N$ then every element a in r is quasi-regular and 1 - a is regular. To prove the "if" part, let $r \cong N$ and let m be a non-zero cyclic R-right-module with a generator u_0 such that $m = u_0 r$; for the existence of m cf. (the second half of) V in our first note.¹⁾ Let R^* be the ring $R \oplus Z$ (Z being the ring of rational integers) in which x1 = 1x = x for every $x \in R$. m may be considered, in natural manner, as a right-module of R.^{*} In the module $m \oplus R^*$ we introduce distributive multiplication by

$$m^2 = 0, Rm = 0, 1u = u \quad (u \in m);$$

the product of two elements in R^* and the product of an element in m and an element of R,^{*} in this order, are defined as they already are. The multiplication is associative, and $\mathfrak{m} \oplus R^*$ becomes a ring, which we want to denote by S. Now, since $u_0 \in \mathfrak{r} = u_0 \mathfrak{r}$, there is an element a in \mathfrak{r} such that $u_0 = u_0 a$. In S we have $u_0(1-a) = u_0 - u_0 a = 0$. So 1-a is a right zero-divisor in S. Our proposition is thus proved.

We have analogously also

PROPOSITION 2. Let a be an element of a ring R. If, and only if, a is not right quasi-regular (in R), we can imbed R into a ring S with a unit element 1 such that 1 - a is a right zero-divisor in S.

Received December 30, 1954.

¹⁾ A remark on finitely generated modules, Nagoya Math. J. 3 (1951), 139-140. Thus, we have merely to consider $\mathfrak{M} = R/\mathfrak{F}$ with a maximal right-ideal \mathfrak{F} with left modulo-unit in which r is not contained.

TADASI NAKAYAMA

Proof. The "only if" part is again clear, since if a is right quasi-regular in R then a is so in any extension S of R. Let, to prove the converse, a be a right non-quasi-regular element in R. Then the right-ideal $r = \{x - ax \mid x \in R\}$ does not coincide with R. Put m = R/r. Let R^* be as in the proof to the preceding proposition. We consider the module $m \oplus R^*$ with our present m, and introduce in it a multiplication just in the same manner in the proof to the preceding proposition, $m^2 = 0$, Rm = 0 and 1u = u ($u \in m$). Denote the ring so obtained again by S. Let u_0 be the residue-class of a modulo r; $u_0 \in m$ and $u_0 \neq 0$. Then $u_0(1-a) = u_0 - u_0a = 0$, since $a - a^2 \in r$. Hence 1 - a is a right zero-divisor in S. This proves our proposition.

The motivation and the relationship to our first note,²⁾ of the above considerations, are the following, besides that we have referred to it. In our first note we generalized namely a theorem of Azumaya and combined the theorem thus obtained with the Jacobson-Kaplansky theory of radicals to produce several propositions which may be summarized as follows: Let $\{r\}$ be a certain family of right-ideals in a ring *R*. The following properties of $\{r\}$ imply each other:

(A) For every maximal right-ideal r_0 with left modulo-unit of R, there exists (at least) a right-ideal r in the family $\{r\}$ such that $r \subseteq r_0$;

(B) If m is a finitely generated right-module of R such that m = mR and $m = u_1r + \ldots + u_nr$ for every finite generating system u_1, \ldots, u_n of m and for every $r \in \{r\}$, then $m = 0^{3}$.

³⁾ The line "the family of right-ideals of III," before the proposition V of the first note, should read "the family of all maximal right-ideals with modulo-unit."

Further, the writer was perhaps too hasty when he wrote, in the proof to the proposition V there, that the implication of (B) from (A) was "evident." The "evident" needs an explanation. It is indeed evident if we take into account (the proposition 1 there and) the fact that for every maximal right-ideal r^* of the ring $R^* = R \oplus Z$ as above (and as there) the intersection $r^* \cap R$ is either R itself or a maximal right-ideal of R with left modulo-unit; this fact can readily be seen from that if $r^* \cup R \neq R$ then $r^* + R = R^*$ whence there is an element $c \in R$ with $1 - c \in r^*$ (whence $x \equiv cx \mod r^* \cap R$ for all $x \in R$).

However, what is perhaps better is to prove the implication directly, and the proof is merely to repeat the argument of our proof to the proposition 1 of the first note. Thus, assume (A). From $\mathfrak{m} = \mathfrak{m}R$ we have $\mathfrak{m} = u_1R + \ldots + u_nR$, for any generating system u_1 , \ldots , u_n of R. So u_1 can be expressed in a form $u_1 = u_1c_1 + \ldots + u_nc_n$ ($c_i \in R$). Let r_1 be the right-ideal of R consisting of elements x such that $u_1x \in u_2R + \ldots + u_nR$; in case m = 1 the void sum in the right-hand side stands for 0. As $u_1x = u_1c_1x + u_2c_2x + \ldots + u_nc_nx$, whence $x - c_1x \in r_1$, for any element x of R, c_1 is a left modulo-unit for r_1 . Suppose here $c_1 \notin r_1$, i.e. $r_1 \neq R$. Then there is a maximal right-ideal r_0 of R containing r_1 , which evidently possesses c_1 as a left modulo-unit. By our assumption we have $\mathfrak{m} = u_1c_0 + \ldots + u_nr_0$, whence much the more $\mathfrak{m} = u_1r_0 + u_2R + \ldots + u_nR$. Expressing u_1c_1 accordingly in a form $u_1c_1 = u_1a + \ldots$ with $a \in r_0$, we have $c_1 - a \in r_1$ ($a \in r_0$). This is however a contradiction, since $r_1 \subseteq r_0$, $c_1 \notin r_0$. Thus necessarily $r_1 = R$, or, what is the same, $u_1R \subseteq u_2R + \ldots + u_nR$. Now our assertion $\mathfrak{m} = 0$ can be obtained by an easy induction on the minimum number of generating elements.

²⁾ S. foot note 1).

(We may restrict ourselves in (B) to cyclic modules and their single generators; cf. the end of the first note.)

The two-sided analogy of this is the following fact, due essentially to Jacobson and Kaplansky (cf. II, III of the first note): Let N be the radical of a ring R. The following properties concerning a (two-sided) ideal M are equivalent to each other: (A_0) $M \subseteq N$; (B_0) If m is a finitely generated right-module of R with $\mathfrak{m} = \mathfrak{m}M$, then necessarily $\mathfrak{m} = 0$.

The implication $(A_0) \Longrightarrow (B_0)$ may be used in proving another theorem of Jacobson that the radical of the matrix ring R (contains and in fact) is N(and indeed a somewhat more general theorem) as Azumaya observes. It is also true that we can prove the implication $(A_0) \Longrightarrow (B_0)$ by means of the last matrix ring theorem. For if a right-module m is generated by u_1, \ldots, u_n and satisfies $\mathfrak{m} = \mathfrak{m}N$, then there are n elements a_{ij} in N such that (u_1, \ldots, u_n) $= (u_1, \ldots, u_n)(a_{ij})$, or $(u_1, \ldots, u_n)(I - (a_{ij})) = 0$, where I is the unit matrix of degree n considered as the unit element of the matrix ring $(R^*)_n$ over the ring R^* obtained from R by the adjunction of a unit element 1. If we know that⁴⁾ N_n is contained in the radical of $(R^*)_n$, then we can conclude that $(I - (a_{ij})$ is regular in $(R^*)_n$ whence) $(u_1, \ldots, u_n) = 0$.

This argument may be modified to show the following fact: Let n be a natural number. Let M be an ideal of R. Suppose that, for every set of n^2 elements a_{ij} of M, the element $I - (a_{ij})$ of $(R^*)_n$ is a right non-zero-divisor in $(R^*)_n$. Then, if m is a right-*ideal* in R generated by some n elements and satisfies m = mM, then necessarily m = 0.

These considerations seem to show the necessity of clarifying the relationship of the (quasi-)regularity and the non-zero-divisor property, and our answer is what we proved above.

Nagoya University and University of Hamburg

⁴⁾ Observe that N is contained in (and coincides with, in fact) the radical of R^* .