A REMARK ON FINITELY GENERATED MODULES, II.

TADASI NAKAYAMA

The following small remark on the relationship of the (quasi-)regularity and the zero-divisor property may be more or less known but does not seem to the writer to have been explicitly stated in a literature.

Proposition 1. Let \mathfrak{r} be a right-ideal in a ring R. If and only if \mathfrak{r} is not contained in the radical N of R (or, what is equivalent, \mathfrak{r} is not quasi-regular), R can be imbedded into a ring S with unit element 1 such that there is an element a in \mathfrak{r} for which $1-a$ is a right zero-divisor in S.

Proof. The "only if" part is clear. For, if $\mathfrak{r} \cong N$ then every element a in r is quasi-regular and $1-a$ is regular. To prove the " if " part, let r 丰 N and let \mathfrak{m} be a non-zero cyclic R-right-module with a generator u_{0} such that $\mathfrak{m}=u_{0} r$; for the existence of $\mathfrak{m} \mathrm{cf}$. (the second half of) V in our first note. ${ }^{1)}$ Let R^{*} be the ring $R \oplus Z$ (Z being the ring of rational integers $)$ in which $x 1=1 x=x$ for every $x \in R$. \mathfrak{m} may be considered, in natural manner, as a right-module of R.* In the module $\mathrm{m} \oplus R^{*}$ we introduce distributive multiplication by

$$
\mathfrak{m}^{2}=0, \quad R \mathfrak{m}=0, \quad 1 u=u \quad(u \in \mathfrak{m}) ;
$$

the product of two elements in R^{*} and the product of an element in \mathfrak{m} and an element of $R,{ }^{*}$ in this order, are defined as they already are. The multiplication is associative, and $\mathfrak{m} \oplus R^{*}$ becomes a ring, which we want to denote by S. Now, since $u_{0} \in \mathfrak{r}=u_{0} \mathfrak{r}$, there is an element a in \mathfrak{r} such that $u_{0}=u_{0} a$. In S we have $u_{0}(1-a)=u_{0}-u_{0} \boldsymbol{a}=0$. So $1-a$ is a right zero-divisor in S. Our proposition is thus proved.

We have analogously also
Proposition 2. Let a be an element of a ring R. If, and only if, a is not right quasi-regular (in R), we can imbed R into a ring S with a unit element 1 such that $1-a$ is a right zero-divisor in S.

[^0]Proof. The "only if" part is again clear, since if a is right quasi-regular in R then a is so in any extension S of R. Let, to prove the converse, a be a right non-quasi-regular element in R. Then the right-ideal $\mathfrak{r}=\{x-a x \mid x \in R\}$ does not coincide with R. Put $\mathfrak{m}=R / \mathrm{r}$. Let R^{*} be as in the proof to the preceding proposition. We consider the module $\mathfrak{m} \oplus R^{*}$ with our present \mathfrak{m}, and introduce in it a multiplication just in the same manner in the proof to the preceding proposition, $\mathrm{m}^{2}=0, R \mathrm{~m}=0$ and $1 u=u(u \in \mathrm{~m})$. Denote the ring so obtained again by S. Let u_{0} be the residue-class of a modulo $\mathfrak{r} ; u_{0} \in \mathfrak{m}$ and $u_{0} \neq 0$. Then $u_{0}(1-a)=u_{0}-u_{0} a=0$, since $a-a^{2} \in \mathrm{r}$. Hence $1-a$ is a right zero-divisor in S. This proves our proposition.

The motivation and the relationship to our first note, ${ }^{2)}$ of the above considerations, are the following, besides that we have referred to it. In our first note we generalized namely a theorem of Azumaya and combined the theorem thus obtained with the Jacobson-Kaplansky theory of radicals to produce several propositions which may be summarized as follows: Let $\{r\}$ be a certain family of right-ideals in a ring R. The following properties of $\{r\}$ imply each other :
(A) For every maximal right-ideal \mathfrak{r}_{0} with left modulo-unit of R, there exists (at least) a right-ideal \mathfrak{r} in the family $\{r\}$ such that $\mathfrak{r} \cong \mathfrak{r}_{0}$;
(B) If m is a finitely generated right-module of R such that $\mathrm{m}=\mathrm{m} R$ and $\mathfrak{m}=u_{1} \mathfrak{r}+\ldots+u_{n} \mathfrak{r}$ for every finite generating system u_{1}, \ldots, u_{n} of \mathfrak{m} and for every $r \in\{r\}$, then $m=0^{3)}$.

[^1](We may restrict ourselves in (B) to cyclic modules and their single generators ; cf. the end of the first note.)

The two-sided analogy of this is the following fact, due essentially to Jacobson and Kaplansky (cf. II, III of the first note): Let N be the radical of a ring R. The following properties concerning a (two-sided) ideal M are equivalent to each other: $\left(A_{0}\right) M \cong N ;\left(B_{0}\right)$ If m is a finitely generated rightmodule of R with $\mathfrak{m}=\mathfrak{m} M$, then necessarily $\mathrm{m}=0$.

The implication $\left(A_{0}\right) \Rightarrow\left(B_{0}\right)$ may be used in proving another theorem of Jacobson that the radical of the matrix ring R (contains and in fact) is N (and indeed a somewhat more general theorem) as Azumaya observes. It is also true that we can prove the implication $\left(A_{0}\right) \Rightarrow\left(B_{0}\right)$ by means of the last matrix ring theorem. For if a right-module \mathfrak{m} is generated by u_{1}, \ldots, u_{n} and satisfies $\mathfrak{m}=\mathfrak{m} N$, then there are n elements $a_{i j}$ in N such that $\left(u_{1}, \ldots, u_{n}\right)$ $=\left(u_{1}, \ldots, u_{n}\right)\left(a_{i j}\right)$, or $\left(u_{1}, \ldots, u_{n}\right)\left(I-\left(a_{i j}\right)\right)=0$, where I is the unit matrix of degree n considered as the unit element of the matrix ring $\left(R^{*}\right)_{n}$ over the ring R^{*} obtained from R by the adjunction of a unit element 1 . If we know that ${ }^{4)} N_{n}$ is contained in the radical of $\left(R^{*}\right)_{n}$, then we can conclude that ($I-\left(a_{i j}\right)$ is regular in $\left(R^{*}\right)_{n}$ whence) $\left(u_{1}, \ldots, u_{n}\right)=0$.

This argument may be modified to show the following fact: Let n be a natural number. Let M be an ideal of R. Suppose that, for every set of n^{2} elements $a_{i j}$ of M, the element $I-\left(a_{i j}\right)$ of $\left(R^{*}\right)_{n}$ is a right non-zero-divisor in $\left(R^{*}\right)_{n}$. Then, if m is a right-ideal in R generated by some n elements and satisfies $\mathfrak{m}=\mathfrak{m} M$, then necessarily $\mathfrak{m}=0$.

These considerations seem to show the necessity of clarifying the relationship of the (quasi-)regularity and the non-zero-divisor property, and our answer is what we proved above.

Nagoya University and University of Hamburg

[^2]
[^0]: Received December 30, 1954.

 1) A remark on finitely generated modules, Nagoya Math. J. 3 (1951), 139-140. Thus, we have merely to consider $\mathrm{m}=R / \mathfrak{z}$ with a maximal right-ideal \mathfrak{z} with left modulo-unit in which \mathfrak{r} is not contained.
[^1]: 2) S. foot note 1).
 3) The line "the family of right-ideals of III," before the proposition V of the first note, should read "the family of all maximal right-ideals with modulo-unit."

 Further, the writer was perhaps too hasty when he wrote, in the proof to the proposition V there, that the implication of (B) from (A) was "evident." The "evident" needs an explanation. It is indeed evident if we take into account (the proposition 1 there and) the fact that for every maximal right-ideal r^{*} of the ring $R^{*}=R \oplus \mathrm{Z}$ as above (and as there) the intersection $r^{*} \cap R$ is either R itself or a maximal right-ideal of R with left modulo-unit; this fact can readily be seen from that if $\mathfrak{r}^{*} \cup R \neq R$ then $\mathrm{r}^{*}+R=R^{*}$ whence there is an element $c \in R$ with $1-c \in \mathfrak{r}^{*}$ (whence $x \equiv c x \bmod r^{*} \cap R$ for all $x \in R$).

 However, what is perhaps better is to prove the implication directly, and the proof is merely to repeat the argument of our proof to the proposition 1 of the first note. Thus, assume (A). From $\mathfrak{m}=\mathfrak{m} R$ we have $\mathfrak{m}=u_{1} R+\ldots+u_{n} R$, for any generating system u_{1}, \ldots, u_{n} of R. So u_{1} can be expressed in a form $u_{1}=u_{1} c_{1}+\ldots+u_{n} c_{n}\left(c_{i} \in R\right)$. Let x_{1} be the right-ideal of R consisting of elements x such that $u_{1} x \in u_{2} R+\ldots+u_{n} R$; in case $m=1$ the void sum in the right-hand side stands for 0 . As $u_{1} x=u_{1} c_{1} x+u_{2} c_{2} x+\ldots+u_{n} c_{n} x$, whence $x-c_{1} x \in \mathfrak{r}_{1}$, for any element x of R, c_{1} is a left modulo-unit for \mathfrak{r}_{1}. Suppose here $c_{1} \notin \mathfrak{r}_{1}$, i.e. $\mathfrak{r}_{1} \neq R$. Then there is a maximal right-ideal \mathfrak{r}_{0} of R containing \mathfrak{r}_{1}, which evidently possesses c_{1} as a left modulo-unit. By our assumption we have $\mathfrak{m}=\boldsymbol{u}_{1} \mathrm{r}_{0}+\ldots+\boldsymbol{u}_{n \mathrm{r}_{0}}$, whence much the more $\mathrm{m}=u_{1} x_{0}+u_{2} R+\ldots+u_{n} R$. Expressing $u_{1} c_{1}$ accordingly in a form $u_{1} c_{1}=u_{1} a+\ldots$ with $a \in \mathfrak{r}_{0}$, we have $c_{1}-a \in \mathfrak{r}_{1}\left(a \in \mathfrak{r}_{0}\right)$. This is however a contradiction, since $\mathfrak{r}_{1} \subseteq \mathfrak{r}_{0}, c_{1} \notin \mathfrak{r}_{0}$. Thus necessarily $\mathfrak{r}_{1}=R$, or, what is the same, $u_{1} R \subseteq u_{2} R+\ldots+u_{n} R$. Now our assertion $\mathfrak{m}=0$ can be obtained by an easy induction on the minimum number of generating elements.

[^2]: ${ }^{4}$) Observe that N is contained in (and coincides with, in fact) the radical of R^{*}.

