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The purpose of the present note is to reform Mr. K. Nomizu's resultυ on

the group of all affine transformations of an affinely connected manifold. We

shall prove the following.

THEOREM. The group of all affine transformations of an affinely connected

manifold is a Lie group.

Mr. K. Nomizu proves the theorem when the affinely connected manifold is

completed And he gives out a question whether this assumption of complete-

ness is really necessary. We shall show it is possible to prove the theorem

without any assumption by considering a Riemannian metric in the bundle of

frames of the manifold, which is naturally defined by the affine connection.

After preparing this note we heard from Mr. Nomizu that he has also proved

the same theorem and using this result Mr. S. Kobayashi3) has proved similar

results on transformation groups of manifolds with certain connections.

In section 1 we resume the definitions and properties about affine connec-

tions, geodesic curves and regular neighbourhoods, which are given in Mr. K.

Nomizu's paper. The definition of the group of affine transformations is given

in section 2. The proof of the theorem is given in the last four sections.

1. Let M be a connected different!able manifold4) of dimension n with an

Received September 3, 1954.
x) K. Nomizu; On the group of affine transformations of an affinely connected manifold,

Proc. Amer. Math. Soc. vol. 4 (1953).
2 ) For the definition of " c o m p l e t e n e s s " s e e . υ

3) S. Kobayasi; Groupe de t ransformat ions qui laissent invar iante une connexion in-

finitesimale, Comptes rendus, 238 (1954).
4> T h e term " d i f f e r e n t i a t e " will always m e a n "of class C " 0 " . As for the definitions

and the notat ions of manifold, tangent vector, differential form, etc. we follow C. Chevalley;

Theory of Lie groups, Pr inceton University Press, 1946. A manifold is not necessarily con-

nected.
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affine connection. According to Chern's formulation/* the affine connection is

defined by a set of n + n2 linear differential forms θι and θ) (i, j = 1, . . . , n)

on the bundle of frames B* of M which satisfy the equations of structure of

affine connection. If we take a local coordinate system iu%) in M, then there

corresponds a local coordinate system (u\ Xj) in B* such that the n vectors

of a frame are given by *ΣXj ^~ι (j = 1, . . . , n), where the determinant of

(Xj) # 0. Let (Yj) be the inverse matrix of (Xj). Then the n -f n2 linear

differential forms θ\ θ) are given as follows:

0* = Σ Y)duj, θ) = Σ YkidXj -f Σ Γk

mιXljdum)9 where Γ&/ are so-called

coefficients of the affine connection with respect to the local coordinates (wz).

Then βι and 0} are linearly independent linear differential forms defined on the

whole space B* and satisfy the following equations of structure:

n -j n

at/ — ^ j £/ /\ Ok = = ~75Γ - i j * /m 0 I\ 0 9

where

I n
Γ)ί ___ %p -rrl γ p v q rpi

~κ~Jrim •— <£j I j -A/ Λnu J- pq
6 j,P,q = l

n

Sjlm = ^ j Yk Xj Xl Xm Rpqr,

Tp,Q, Rpqr being the components of the torsion and curvature tensors respectively.

Let B be the tangent bundle of M. For each element Lp of B, where

p €Ξ Mand Lp is a tangent vector at p, there exists a geodesic curve fit) defined

by the so-called canonical parameter6) t in - ε < t < ε for some positive ε with

origin /(0) = p and tangent vector #*((;#) ) = Lp. With respect to a local

coordinate system (uι) in a coordinate neighbourhood of p,f(t) is represented

by a set of solutions of the system of differential equations

duj(f(t)) dufk({t)) Λ

^ ~dt dt

« = 1, . . . , n)

with the initial conditions

6)
cf. 1) or S. Chern; Lecture note on differential geometry, Princeton.
Hereafter we consider geodesic curve always with the canonical parameter.
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If a geodesic curve /(£) can be extended over the valus of the canonical

parameter — ε < t < a ~\- ε, there exists a certain neighbourhood 11 of Lp in B

such that for each LQ G 11 the geodesic curve /z3U) is defined in - δ < t

< a 4- δ with origin fLq(0) = # and tangent vector Lq at <? and the mapping r/2

from 11 into a certain neighbourhood of f(a) in M defined by ya(Lq) = fLq(a) is

differentiate.

Let / JU, w, α) be the solutions of the system of differential equations which

define a geodesic curve with initial conditions /"HO, &, <*) = ^ and (->.-) = a.
\ a t //=o

We put ^ = / ' ( I , u, a) and consider (w1, vj) as function of (w1, aj), then we see

that at a = 0 (for all ί) their functional determinant is equal to 1. Hence it

follows that for any neighbourhood U of any point p in M there exist an open

neighbourhood N of p contained in U and an open neighbourhood 11 of zero

tangent vector at p in B such that the mapping F from 11 onto N x N which

is defined by F(LQ) = {q, -ηι(Lq)) for LQ in 11 is a differentiate isomorphism.

This open neighbourhood N is called a regular neighbourhood of j£> contained

in UP It is easily seen that the geodesic curve fit), 0 ^ ί ^ 1, with /(0) G iV,

/(I) GiV and with the tangent vector F~Hf(0),f{l)) at/(0) is contained in U.

For the sake of necessity we shall prove the following

LEMMA 1. Let M be a regular neighbourhood of p in M whose closure is

contained in a regular neighbourhood N of p. If a geodesic curve /cQ(ί), — e

< K 1 + e, with origin q and tangent vector Lq at q is contained in Nι, then

LQ is an element of Hi = F'HNi X Λi).

Proof. Let TQ be the tangent space at q. The restriction of the mapping

F on Tq Π lli is also a differentiate homeomorphism from Tq Π Hi onto q x Nι.

As lli is open, the set of non-negative numbers {λ ', λ ^ 0, λLQ G Hi} is open in

the set of all non-negative real numbers. And as zero-tangent vector at q is

contained in Hi its connected compontent of zero {λ\ 0 ^ λ <λι) where λt may

be oo, is not empty. From the definition of the mapping F, F(λLq) = {q,fLq(λ))

for 0 ^ λ < λu If λi is not oo, 1XLP is contained in Hi, so λ\Lq is contained in

7> When we say simply that N is a regular neighbourhood of p it means N is a regular
neighbourhood of p contained in some neighbourhood U of />. cf. ι\
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II. Therefore F is defined at λ\Lq and F(λiLQ) = (q, fL(](λi)). As λ\Lq is not

contained in Hi, fLq(h) is not contained in Ni. If Λi were not larger than 1,

from our assumption fLq(λχ) would be contained in Ni and this is a contra-

diction. So λi must be larger than 1 and surly LQ is contained in Ui.

Moreover the fact that for any compact sets K and K1 contained in N the

set F~1(Kx K1) in B is a compact set is effectively used by K. Nomizu, and

we shall follow him.

2. Let T and T' be Hausdorff spaces. We denote the set of all continu-

ous mappings from T into T' with the compact-open topology by C(T, TO.

And we denote the set of all homeomorphisms of T onto itself by H(T). Let

U and U' be open sets in T, K and K1 be compact sets in T, and let

W(U, Uf K, Kf) be the set of φ in H(T) such that <ρ{U) C K and φ'HUf)

C K'. We take the totality of sets W(U, Uf K, Kf) as a subbase for open sets

of H(T), then H(T) becomes a Hausdorff space.

Let M and Mf be differentiate manifolds of dimension n with affine con-

nections. Let βι and 0) (i, j = 1, . . . , n) be n -f n" linear differential forms on

the bundle B* of frames of M, θfi and θ') (i, j = 1, . . . , n) be linear differ-

ential forms on the bundle B1* of frames of M1, which define the affine con-

nections on M and M' respectively. If ψ is a differentiate mapping from M

into Mf of rank n at any point, it induces a differentiate mapping Dψ from

5* into 5'* and δDφ(θfi) is equal to 0*. We shall call ψ an affine transformation

if δDψiθ'f)- β). We denote the group of all affine transformations from M

onto itself by AiM). Λ(M) is a subset of H(M). We define the topology of

AiM) by the relative topology induced by the topology of H(M), then A(M)

is a topological group.

Let R and 7?' be two w-dimensional Riemannian manifold denned by the

fundamental quadratic tensor fields G and Q respectively.

A differentiate mapping ψ from R into R' of rank n such that δψ maps the

fundamental quadratic tensor fields Gf of R1 to the fundamental quadratic tensor

field G of R is called an isometry. A Riemannian manifold is a metric space

and an isometry is of course an metric preserving mapping.85 Moreover, on

a Riemannian manifold there is one and only one affine connection with the

S) cf. S. Myers and N. Steenrod; The group of isometres of a Riemannian manifold,
Ann. of Math. vol. 40 (1939).
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following properties: 1) Its torsion tensor is zero; 2) The scalar product of

two vectors remains unchanged by a parallel displacement along a curve.9)

An isometry from R into R1 is an affine transformation from R into R' with

respect to these connections. We denote the set of all isometries from R onto

itself by I(R). I(R) is a topological group with the relative topology induced

by AiR). The point-wise convergence of a sequence of isometries and the con-

vergence with respect to the topology of I(R) are equivalent.

When an affine connection is defined on a ^-dimensional differentiable mani-

fold M by linear differential forms θι and θ) ii, j = 1, . . . , n) on the bundle of

frames £*, we can define a Riemannian metric on B* by the positive definite

symmetric quadratic tensor field Σ#* ® 0% 4- Σ # / ® θ)> where (x) means tensor

product of covariant vector fields. The induced isomorphism Dφ of B* onto

itself by an affine transformation from M onto itself obviously preserves this

tensor field.

LEMMA 2. Let M and Mf be two differentiable manifolds of dimension n

with affine connections. Let {φ^} be a sequence of affine transformations from

M into M' which converges to a continuous mapping φ from M into Mf with

respect to the compact-open topology of C(M, A/'). Then the image of a geodesic

curve in M by φ is a geodesic curve in Mf and φ has the first partial derivatives

at each point in M. And the sequence {dφ^} of mappings from the tangent

bundle B of M into the tangent bundle B1 of M' converges point-wise to the

mapping dφ from B into B1 induced by φ.

Proof We take an arbitrary point p in M, and regular neighbourhoods N

and Ni of p which have compact closure such as in lemma 1. For an arbitrary

tangent vector Lp at p, there is a positive number λ such that the image of the

geodesic curve fit), - ε < ί < l + e, with origin f'iO) - p and tangent vector

Lp = λLp at p is contained in Λri. This follows from the continuity of' φ. By

the convergence of the sequence {$v} with respect to the compact-open topology

in CiM, M'), we can find a sufficiently large number vQ such that ψv ° fit) G iVi

for v ^ VQ, 0 ?= t *= 1. By lemma 1 the set of tangent vectors dφΛLp) for v ^ PO

is contained in a compact set K in the tangent bundle Bf of M1. Then we can

choose a subsequence dφΛL'p) which converges to some tangent vector L^p) in

9> cf. S. Chern's, lecture note in 5K
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K. And the geodesic curve g'(t) with origin φ(p) and tangent vector LUp) at

ψ(p) can be extended over the values of the canonical parameter - ει < t

< 1 -f ei for εt > 0. From the continuity of rf for each t, 0 ^ t ^ 1, it is clear that

φv ° f'(t) converges g'(t). On the other hand φ* °/'(ί) converges to Φ ° f'(t),

so we see that g'(t) = φ ° fit). It is proved that the image of a geodesic

curve f(t) = ff(t/λ), - ε/λ < t < 1/λ -f ε/λ, with origin p and tangent vector Lp

at p is also a geodesic curve. If we take a normal coordinate system around

p,10) it is easily shown that φ has the first partial derivatives with respect to this

coordinate system. From above considerations the sequence idφΛLp)} is con-

tained in a compact set K, and any convergent subsequence must converge to

Lfiip), hence the original sequence {dφΛLp)} itself converges to L&p). As

dφ^(Lp) = dφv(λLp) = λdfaiLp), the sequence {dφΛLp)} converges to L^P) = λL'^p).

With respect to a coordinate system (y1) around φ(p), L&P) = Σ ( ^-v-§.-—)

( J i ) ^ Σ ^ - ; / ^ ) >(h) =dφ(Lp), hence a mapping^ is defined

from the tangent bundle 5 into the tangent bundle Bf, and {dφΛLp)} converges

to dφ(Lp) at each element Lp in B q.e.d»

LEMMA 3. Let M be a different table manifold with an affine connection. If

a sequence {ψv} of elements in A(M) converges to a element φ in H(M) with

respect to the topology in H(M), then φ is contained in AiM).

Proof. From our assumption, the sequence {$v} converges to φ with respect

to the compact-open topology of C(M, Mf) and also the sequence {φζ1} converges

to φ'1. Then lemma 2 can be applied to these sequences. Moreover, as φ is

a homeomorphism, the image of a geodesic curve which is not a point is also

not a point and therefore dφ(Lp) ]$ zero vector if and only if Lp is zero vector.

Then φ induces a mapping Dφ from the bundle of frames B* of M onto itself

and the sequence {Dφv} converges point-wise to Dφ. As φv is an affine trans-

formation. Z)0v is an isometry of the Riemannian manifold B* defined by the

fundamental tensor field Σ # ' ® 0* + Σ0y ® θj. Therefore Dφ is a metric pre-

serving mapping. The situation is just same for Dφ'1. Thus we see that Dφ

is a homeomorphism of B* onto itself and consequently ψ and φ~ι are of class C1.

We can consider the sequence {Dφ*} is contained in A(B*)9 where the affine

1 0 ) cf. S. Chern's lecture note i
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connection is given by the Riemannian metric defined above. That the sequence

{DφΛ converges to Dφ with respect to the topology of H{B*) follows from the

fact that for the sequence of isometries of B* the point-wise convergence and

the convergence with respect to the topology of H(B*) are equivalent. Then

above discussion can be applied to the sequence {Dφv) and we can see Dφ and

Dφ'1 are of class C2. This means φ and φ'1 are of class C2. Repeating the

same argument for the sequence {D(Dφy)} on the bundle of frames B** of JB*,

{D{D{Dφ^))) on the bundle of frames B*** of B** and so on, we can conclude

φ is an isomorphism of M and is an affine transformation,

3. Van Dantzig and van der Waerden proved the following theorem11 ] : if

a sequence of metric preserving homeomorphisms {</>v} of a connected locally

Euclidean metric space M satisfying the 2nd axiom of countability converges

at a certain point in M, there can be found a subsequence {φ*>} which con-

verges to a certain metric preserving homeomorphism point-wise in M. We

remark here that this theorem is true without any separability assumption in

the case where M i s a connected Riemannian manifold, and ψv are isometries

of M. Namely we shall prove the following.

LEMMA 4. If a sequence {φ^} of isometries of a Riemannian manifold R

converges at a certain point Po in R then there exists a suitable subsequence $v<

which converges at each point of the connected component of R which contains

po such that φ^1 converge at each point of the connected component of R tϋhich

contains the limit point of φ*(po). In particular if R is connected we can find

the subsequence φ^ which converges to an isometry φ such that the sequence φ~J

also converges to φ~\

Proof We take a compact neighbourhood V of jSo, where ~po is the limit

point of φv(po). Then we can find an open neighbourhood U of po in some

coordinate neighbourhood of po whose closure is compact such that φΛU) C V

for v ^ PO, where vo is some sufficiently large number. We also take a count-

able dense subset {#>,} of U, then we can choose a subsequence {φVii} of (0V)

such that φvtfίtfi) converge to some point in V as i tends to infinity. Next we

choose a subsequence {</>*#} of {φ*Li} such that φ2i(qi) converge to some point

of V, and so on. Then we see easily that the sequence {φHi} converges at each

π> van Dantzig und van der Waerden, ϋber metrischen homogene Raume, Abh. Math.

Sem. Hamburg, vol. 6 (1928).
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point qi and also at each point of U. We denote the sequence {φ^u) by {ψ^}

and consider the maximal open set O containing U in which φv converge at

each point. If O did not contain the connected component K of R containing

po, there would be a boundary point pi of Oi = O Π K. If the closure of the

ε-neighbourhood U(pu ε) of pi is compact we take a regular neighbourhood N

of pi contained in Uipi, ε/4). As pi is a boundary point of Oi, Oi Π N contains

a point p2 of Oi. By the convergence of φv at p2 we can find a sufficiently large

number m such that p(φ^pi), φm(p2))< ε/4 for v' ^ m, where p denotes the

Riemann metric in R. Now it is shown that φ^ΛN) C U(φm(pi), e) for vf ^ w.

For φAN) C U(φv(pό, ε/4) and if * (Ξ U(φjpι\ ε/4) then p(*, <Mi>i)) < e/4

and

p(x, φm(pi)) ^ P(AΓ, φ^(pi)) + p(φvipi),

+ βiφUp2), φmipz)) + piψmipt), φm(pl))

= p{%, φv(pi)) + β(pi,p2) + p(φv(p2), φm(p2))

+ p(p2,pi) < ε.

As φm{U{pu ej) = U(φm{pi), ε) is compact, φ^(N) is contained in a fixed com-

pact set for all z/ ^ m. Hence we can find a subsequence {0V"} of {0v} which

converges at each point of N as the same way as we have chosen the sequence

{0v'} for U. Next we take a regular neighbourhood JVi of p contained in N

then for any two points p and q of iVΊ there exists a geodesic curve contained

in N joining p and q. If we take arbitrary points p in iVΊ and q in Ni Γ\ Oι9

we can join p and # with a geodesic curve fit), — ε < t < 1 -j- ε contained in

iV, whose tangent vector at origin f(0) — q is equal to Lq and the tangent

vector at / (I) — p is equal to Lp. From the lemma 2 git) — limV"->:»0v" ° fit)

is a geodesic curve and {dφ^{Lq)} converges to the tangent vector Lg^ of the

geodesic curve g(t) at g{0). Then from the continuity of the solution of a

system of differential equations with respect to initial conditions {φ^> °/(l)}

converges to g(l). Thus {0V'I converges at each point in the open set NΊ U O

( =*F φ) and this is a contradiction. Hence the convergence of {φv) in K is

proved. It is clear that {φζ>1} converges at ϊ>0? so we can find as above a suit-

able subsequence {φ^") of {φ^} which converges in K to a continuous mapping

φ from K into R such that {̂ v'1"} converges in L to a continuous mapping ψ

from Z, into ;?, where L is the connected component of R containing Jo.
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Now we assume that R is connected, then we can easily see that φ and ψ

are homeomorphisms of R and each one is the inverse mapping of the other.

The differentiability of φ and ψ follows from lemma 3.

4. LEMMA 5. Let {φv} be a sequence of elements in A(M). If the sequence

{Dφ*) converges at a certain frame (Lp0, . . . , Lp0) at pQ, then there exists a

subsequence φw which converges to an affine transformation φ ivith respect to

the topology of A{M).

Proof. In J5* there are at most two connected components of J3* each of

which contains (Lp0, . . . , Ln

Po) or ( - LpD, L2

Po, . . . , Lp0). As it is clear that

{DφJ converges also at ( — Lp0, L
2

Po, . . , , Lp0), from the proof of lemma 4 we

see that there exists a subsequence of isometries {Dφ^} which converges to an

isometry ψ* at each point in JB* such that {Dφζi1} also converges to 0*"1. As

0* is a fibre preserving isomorphic mapping, 0* induces an isomorphism φ of

M. It is easily verified that {φv>} converges to φ with respect to the topology

of H(M) from the fact that point-wise convergence of isometries is equivalent

to the convergence with respect to the topology of H(B*). Next we shall prove

that φ is an affine transformation, i.e. Dφ leaves the linear differential forms

θ} invariant. For this purpose it is sufficient to show that Dφ = φ*, because

according to lemma 2 {δDφw} converges to dφ* at each point in /?* and so φ>:'

leaves θ) invariant.

At any point in B' there exist a neighbourhood V with compact closure

which is contained in some coordinate neighbourhood and an open set U in

some coordinate neighbourhood such that if v1 is larger than a sufficiently large

number v0, DφΛV) C U. Let («', X1}) and (ΰ\ XΪj) be local coordinate systems

in V and U respectively. Then with respect to these coordinate systems the

mapping Dφv are expressed as follows

ΰ*(DφΛu, X)) = ϊSi

converges uniformly to φ* on the compact V with respect to the metric.

And the metric topology and the manifold topology is equivalent. Therefore

the functions ΰ\DφΛu, X)) and Xj(Dφw(u,X)) converge uniformly to ΰ'(φ(u))

= ΰ%(φ*(u, X)) and Xj(φ*(u, X)) respectively. According to a theorem of differ-
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ential calculus from the facts that

ox dΰk(φ^(u)) ., . ,
2) .r_-—- converge uniformly, and

3) ^-γ(φv(u)) are continuous,

we can conclude that lim^-7 iφv'(u)) = ^—f(φ(u))9 hence Dφ = \\mv-**>Dφ<>> = 0*.

5. Before proceeding to prove the theorem, it is convenient to show that

in a certain neighbourhood of the identity of the group A(M) the 2nd axiom

of countability holds. If we take the neighbourhood W of the identity which

is given by W = {φ φ e A(M), ψ(K) C U, φ~ι(K) C U), where a compact set

if containing an open set V and an open set U whose closure is compact are

contained in a certain coordinate neighbourhood and V Q K Q U, then in this

neighbourhood W the axiom always holds with respect to the compact-open to-

pology in C(K, U), because K and U are separable. Therefore we have only

to prove that the new topology in W coincides with the relative topology in-

duced by the topology of A(M). We shall now show that if a sequence {φj

in W converges to φ in W with respect to the new topology, then also with

respect to the topology of A(M). If {φ^} did not converge to φ with respect

to the topology of A(M) there would exist a neighbourhood Wi of φ in A(M)

and a subsequence {φv} such that φw $ Wu But from lemma 2 {dφy>) con-

verge to dφ because φv satisfies the assumption oί lemma 2. Moreover, as φ

is a homeomorphism we can see {Dφv} converge to Dφ at each point in the

same fashion as in the first part of the proof of lemma 3. Hence by lemma 5

we can find a subsequence {φ^>>) of {φ^} which converges to an affine trans-

formation ψ with respect to the topology of A{M). From the fact that an

affine transformation which leaves a non-empty open set in M point-wise fixed

must be the identily transformation,125 it is clear that φ-ψ, because ψ(p) = ψ'(p)

for any point p in K. Namely {φ^"} converges to φ in A{M), which is a con-

tradiction. From this the equivalence of the two topologies is easily seen.

6. Proof of the theorem

1 2> cL *>.
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In virtue of a theorem of S. Bochner, D. Montgomery13) and M. Kuranishi11;

we have only to prove that A(M) is locally compact and that any element of

A(M) which leaves a non-emply open set in M point-wise fixed must be the

identity. The latter part is proved in K. Nomizu's paper as already indicated

in the preceding section.

We take a neighbourhood W of the identity which we deal in the section

5 and a point pQ in V. The induced mapping Dφ is given at po by

VpJ - \£i\ duΓΊP0\ du'Ί^)' ' ' ' I
(

^ Vdu

where (uι) is a local coordinate system in U. If we consider the following

mapping

from W into a general linear group, it is a continuous mapping from the proof

of lemma 3. Then we take a neighbourhood Wf of the identity in A(M) such

that Wr and its closure are contained in W and the image DpQ(Wf) is contained

in a compact set. We have only to prove that Wf is sequentially compact. Let

0v be an arbitrary sequence in W, As U is compact there exists a subsequence

{0V'} which converges at p. If we take again a suitable subsequence {<ρ^>>} of

{0v'}, Dpo(φ\,>>) converge to a non-singular matrix. Then {Dφ^>} converges at

«-κ—Ϊ) , . . . , (o~n) ) m ^ * From lemma 5 we get a subsquence {0V"'}
Oil / pQ \ όM / PQ'

which converges to an element φ in A(M), then φ is contained in fflf. Thus

the sequential compactness of W1 is proved, q.e.d.

Mathematical Institute,

Nagoya University

13> S. Bochner and D. Montgomery; Locally compact groups of differentiable transfor-
mations, Ann. of Math. vol. 47 (1946).

14> M. Kuranishi; On conditions of differentiability of locally compact groups, Nagoya
Math. J. vol. 1 (1950).






