COMPLEX-HARMONIC MEIER'S THEOREM

SHINJI YAMASHITA

1. Fatou's theorem is true for a bounded complex-valued harmonic function in the disk $D:|z|<1$. One asks naturally: "Is Meier's topological analogue of Fatou's theorem (simply, "MF theorem"; [14, p. 330, Theorem 6], cf. [10, p. 154, Theorem 8.9]) true for a bounded complex-valued harmonic function in D ?" We shall give the affirmative answer to this question. Furthermore, the horocyclic $M F$ theorem [2, p. 14, Theorem 5] in the com-plex-harmonic form will be proved in parallel.

For recent various discussions on Plessner's and Meier's theorems we consult [1~7, 11, 12, 15~18].
2. In the rest of this note we denote by $\hat{\partial}\left(\zeta_{0}, \rho\right)$ the open disk $\left|z-\zeta_{0}\right|$ $<\rho$ in the z-plane.

Lemma 1. Let a function $g(\zeta)$ be complex-valued and harmonic (simply, "complexharmonic") in $\delta\left(\zeta_{0}, \rho\right)$ and $|g(\zeta)|<1$ for $\zeta \in \delta\left(\zeta_{0}, \rho\right)$. Then we have

$$
\begin{equation*}
\left|g(\zeta)-g\left(\zeta_{0}\right)\right| \leqq(8 / \pi) \operatorname{arc} \tan \left(\left|\zeta-\zeta_{0}\right| / \rho\right) \tag{1}
\end{equation*}
$$

for $\zeta \in \delta\left(\zeta_{o}, \rho\right)(S c h w a r z ' s ~ l e m m a)$.
Proof. Let $w=\left(\zeta-\zeta_{0}\right) / \rho$ and consider the function

$$
G(w)=\left\{g\left(\rho w+\zeta_{0}\right)-g\left(\zeta_{0}\right)\right\} / 2
$$

in $D:|w|<1$. Then $G(0)=0$ and $|G(w)|<1$ in D, so that we may apply the ready Schwarz lemma [13, p. 101, Lemma] to the complex-harmonic G in D. The inequality [13, p. 101, (3)]

$$
G(w)|\leqq(4 / \pi) \arctan | w \mid
$$

for $w \in D$ proves (1).
Q.E.D.

The reader should know the definition of cluster set, chordal cluster set and angular cluster set [10, pp. 1, 72 and 73].

Lemma 2. Let a function $f(z)$ be complex-harmonic in D with $|f(z)|<1$ for $z \in D$. Assume that

$$
\begin{equation*}
C_{X}(f, 1) \neq C_{D}(f, 1), \tag{2}
\end{equation*}
$$

where X is a chord of the unit circle passing through the point $z=1$. Then there exists an angle Δ at $z=1$ (i.e., the interior of a triangle lying in D except for one vertex $z=1$) such that

$$
\begin{equation*}
C_{\Delta}(f, 1) \neq C_{D}(f, 1) . \tag{3}
\end{equation*}
$$

Proof. Choose a point $P \in C_{D}(f, 1)-C_{X}(f, 1)$ and let

$$
0<2 \varepsilon<\operatorname{dis}\left\{P, C_{X}(f, 1)\right\} .
$$

By (2) such a point P does exist and further we can find a rectilinear segment $X_{1} \subset X$ terminating at $z=1$ such that

$$
\begin{equation*}
\overline{f\left(X_{1}\right)} \cap \delta(P, \varepsilon)=\phi \text { (empty) } \tag{4}
\end{equation*}
$$

by the very definition of $C_{X}(f, 1)$. Let φ be the directed angle, $|\varphi|<\pi / 2$, made by X and the radius of D at $z=1$ and suppose without loss of generality that $0 \leqq \varphi<\pi / 2$. Set

$$
\gamma\left(z_{0}\right)=\left|1-z_{o}\right| \sin (\pi / 4-\varphi / 2), \quad z_{0} \in X_{1}
$$

and choose a constant μ such that

$$
\begin{equation*}
0<\mu<\tan (\pi \varepsilon / 16) . \tag{5}
\end{equation*}
$$

Then $\tan (\pi \varepsilon / 16)<1<\pi / 2$ because of $\varepsilon<1$ and for any point $z \in \delta\left(z_{o}, \mu \gamma\left(z_{0}\right)\right)$; ($z_{0} \in X_{1}$) we have

$$
\begin{equation*}
\left|f(z)-f\left(z_{o}\right)\right| \leqq(8 / \pi) \text { arc } \tan \left\{\mu \gamma\left(z_{o}\right) / r\left(z_{o}\right)\right\}<\varepsilon / 2 \tag{6}
\end{equation*}
$$

by (1) of Lemma 1 and (5) if z_{o} is so near to $z=1$ that $\delta\left(z_{o}, \gamma\left(z_{0}\right)\right) \subset D$. Now, as $X_{1} \ni z_{0} \rightarrow 1$, the disks $\delta\left(z_{o}, \mu \gamma\left(z_{0}\right)\right)$ sweep an angle Δ at $z=1$, so that by (4) and (6) we have

$$
\begin{equation*}
\overline{f(\Delta)} \cap \delta(P, \varepsilon / 4)=\phi . \tag{7}
\end{equation*}
$$

Now that (7) means $P \notin \overline{f(\Delta)}$ we have

$$
P \in C_{D}(f, 1)-C_{\Delta}(f, 1)
$$

which proves (3).
Q.E.D.

For the terminology, "right horocycle", "right horocyclic cluster set",
"right horocyclic angle", etc. we refer to [2, pp. 4-6].
Lemma 3. Let a function $f(z)$ be complex-harmonic in D with $|f(z)|<1$ for $z \in D$. Assume that

$$
\begin{equation*}
C_{h(1)}(f, 1) \neq C_{D}(f, 1), \tag{8}
\end{equation*}
$$

where $h(1)=h_{r}^{+}(1)$ is a right horocycle at $z=1$. Then there exists a right horocyclic angle $H(1)=H_{r_{1}, r_{2}, r_{3}}^{+}(1)$ at $z=1$ such that

$$
\begin{equation*}
C_{H(1)}(f, 1) \neq C_{D}(f, 1) . \tag{9}
\end{equation*}
$$

Proof. We use a different method from Bagemihl's [2, p. 14, Lemma 3]. By (8) we can find a point $P \in C_{D}(f, 1)-C_{h(1)}(f, 1)$ and we then set

$$
0<2 \varepsilon<\operatorname{dis}\left\{P, C_{h(1)}(f, 1)\right\}
$$

By the definition of $C_{h(1)}(f, 1)$ we obtain a subarc α of $h(1)$ terminating at $z=1$ such that

$$
\begin{equation*}
\overline{f(\alpha)} \cap \grave{o}(P, \varepsilon)=\phi . \tag{10}
\end{equation*}
$$

We consider next the map

$$
z=\chi(\zeta)=(\zeta-1) /(\zeta+1)
$$

from the half plane $\operatorname{Re} \zeta>0$ onto D. The initial point of $h(1)$ lies on the real axis, which we denote by $x,|x|<1$. Then the image L_{x} of $h(1)$ by the $\operatorname{map} \chi^{-1}$ is the half line

$$
L_{x}=\{\zeta ; \operatorname{Re} \zeta=(1+x) /(1-x) \text { and } \operatorname{Im} \zeta \leqq 0\}
$$

Let β be the image of α by χ^{-1} and let

$$
\begin{equation*}
0<\mu<\tan (\pi \varepsilon / 16) . \tag{11}
\end{equation*}
$$

Let $0<\rho<(1+x) /(1-x)$ and consider the composed function $F(\zeta)=f \circ \chi(\zeta)$ in the disk $\delta\left(\zeta_{0}, \rho\right)$, where $\zeta_{0} \in \beta$. Then for $\zeta \in \delta\left(\zeta_{0}, \mu \rho\right) \subset \delta\left(\zeta_{0}, \rho\right)$, we have

$$
\begin{equation*}
\left|F(\zeta)-F\left(\zeta_{0}\right)\right| \leqq(8 / \pi) \operatorname{arc} \tan (\mu \rho / \rho)<\varepsilon / 2 \tag{12}
\end{equation*}
$$

by (1) of Lemma 1 combined with (11). Now, as $\beta \ni \zeta_{0} \rightarrow \infty$ (i.e., $\alpha \ni \chi\left(\zeta_{o}\right) \rightarrow 1$) the disks $\delta\left(\zeta_{0}, \mu \rho\right)$ sweep a strip of width $2 \mu \rho$ whose image by χ contains a right horocyclic angle $H(1)=H_{r_{1}, r_{2}, r_{3}}^{+}(1)$ at $z=1$. By (10) and (12) we have

$$
\overline{f(H(1))} \cap \delta(P, \varepsilon / 4)=\phi,
$$

so that we have (9).
Q.E.D.

Remark. Lemma 3 is true if the word "right" is replaced by "left" where it is.
3. A point $e^{i \theta}$ of the circle is a Meier point (horocyclic Meier point, resp.) of a complex-harmonic function $f(z)$ in D if $C_{D}\left(f, e^{i \theta}\right)$ is a proper subset of the Riemann sphere and if every chordal cluster set (every right or left horocyclic cluster set, resp.) of f at $e^{i \theta}$ coincides with $C_{D}\left(f, e^{i \theta}\right)[10$, p. 153], [2, p. 6].

By means of Lemmas 2 and 3, and Collingwood's maximality theorem ([8, p. 1241, Theorem 4], [9, p. 8, Theorem 4]; [10, p. 80, Theorem 4.10]) or its ready generalization from (Stolz) angles to horocyclic angles we have the following two theorems.

Theorem 1. Let a function $f(z)$ be bounded, complex-valued and harmonic in the disk $|z|<1$. Then all points of the circle $\Gamma:|z|=1$ are, except perhaps for a set of first Baire category on Γ [10, p. 75], Meier points of f.

Theorem 2. Let a function $f(z)$ be bounded, complex-valued and harmonic in the disk $|z|<1$. Then all points of the circle $\Gamma:|z|=1$ are, except perhaps for a set of first Baire category on Γ, horocyclic Meier points of f.
4. As a concluding remark we note that further generalizations of Theorems 1 and 2 are possible (cf. [15]). Let Ω and Ω^{\prime} be domains in the z-plane and in the ζ-plane respectively. A complex-valued function $f(z)$ in Ω is called K-quasi-conformal harmonic (simply, " $K Q C H$ ") in Ω provided that $f(z)$ is of the composed form $f(z)=g \circ Q(z)$, where $\zeta=Q(z)$ is a K-quasiconformal homeomorphism $(K \geqq 1)$ from Ω onto Ω^{\prime} and $g(\zeta)$ is complex-harmonic in $\Omega^{\prime *)}$. The key lemma for the proof of $M F$ or horocyclic $M F$ theorem of $K Q C H$ functions in D is, of course, an analogue of the Schwarz lemma:

Lemma $1^{\text {b1s }}$. Let a function $f(z)$ be $K Q C H$ and $|f(z)|<1$ in the disk $\delta\left(z_{0}, q\right)$. Then for $z \in \delta\left(z_{o}, q\right)$ we have

$$
\begin{equation*}
\left|f(z)-f\left(z_{o}\right)\right| \leqq(8 / \pi) \arctan \left(4 q^{-1 / K}\left|z-z_{o}\right|^{1 / K}\right) \tag{13}
\end{equation*}
$$

Proof. We may consider $f=g \circ T$, where T is a K-quasi-conformal selfhomeomorphism of $\delta\left(z_{o}, q\right)$ with the additional property that $z_{o}=T\left(z_{o}\right)$, and g is complex-harmonic in $\delta\left(z_{o}, q\right)$. Furthermore, we know about T that [15, p. 323, line 2 from below]

[^0]$$
\left|T(z)-T\left(z_{o}\right)\right| \leqq 4 q^{1-(1 / K)}\left|z-z_{o}\right|^{1 / K}, \quad z \in \delta\left(z_{o}, q\right)
$$
an inequality due to A. Mori, so that combining this with Lemma 1 of section 2 we obtain (13).

References

[1] F. Bagemihl, Meier points of holomorphic functions, Math. Ann. 155 (1964), 422-424.
[2] F. Bagemihl, Horocyclic boundary properties of meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A-I. Math. No. 385 (1966), 18 pp.
[3] F. Bagemihl, Chordal limits of holomorphic functions at Plessner points, J. Sci. Hiroshima Univ. Ser. A-I. 30 (1966), 109-115.
[4] F. Bagemihl, On the sharpness of Meier's analogue of Fatou's theorem, Israel J. Math. 4 (1966), 230-232.
[5] F. Bagemihl, Generalizations of two theorems of Meier concerning boundary behavior of meromorphic functions, Publ. Math. Debrecen, 14 (1967), 53-55.
[6] F. Bagemihl, An improvement on Plessner's theorem, Math. Z. 110 (1969), 177-179.
[7] F. Bagemihl, Meier points and horocyclic Meier points of continuous functions, Ann. Acad. Sci. Fenn. Ser. A-I. Math. No. 461 (1970), 7 pp.
[8] E.F. Collingwood, Cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 1236-1242.
[9] E.F. Collingwood, Cluster set theorems for arbitrary functions with applications to function theory, Ann. Acad. Sci. Fenn. Ser. A-I. Math. No. 336/8 (1963), 15 pp.
[10] E.F. Collingwood and A.J. Lohwater, The theory of cluster sets, Cambridge (1966).
[11] S. Dragosh, Horocyclic boundary behavior of meromorphic functions, J. Analyse Math. 22 (1969), 37-48.
[12] S. Dragosh, Horocyclic cluster sets of functions defined in the unit disc, Nagoya Math. J. 35 (1969), 53-82.
[13] E. Heinz, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959), 101-105.
[14] K.E. Meier, Ueber die Randwerte der meromorphen Funktionen, Math. Ann. 142 (1961), 328-344.
[15] S. Yamashita, Quasi-conformal extension of Meier's theorem, Proc. Japan Acad. 46 (1970), 323-325.
[16] S. Yamashita, Cluster sets of algebroid functions, Tôhoku Math. J. 22 (1970), 273-289.
[17] S. Yamashita, Boundary behaviour of functions harmonic in the unit ball, Proc. Japan Acad. 46 (1970), No. 6, 490-493.
[18] S. Yamashita, On Fatou- and Plessner-type theorems, Proc. Japan Acad. 46 (1970), No. 6, 494-495.

Mathematical Institute

Tôhoku University
Sendai 980, Japan

[^0]: *) A domain Ω^{\prime} may depend upon f.

