ON THE TRACE OF HECKE OPERATORS FOR CERTAIN MODULAR GROUPS

MASATOSHI YAMAUCHI

Introduction.

The trace of Hecke operators with respect to a unit group of an order in a quaternion algebra has been given in Eichler [1], [2] in the case when the order is of square-free level. The purpose of this note is to study the order of type (q_{1}, q_{2}, q_{3}) (see text 1.1), in the case, of cube-free level, and to give a formula for the trace of Hecke operators in the case $q_{3}=2$.

Notation.

$\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}$ denote the ring of rational integers, the field of rational numbers, and the field of real numbers, respectively. $\boldsymbol{Q}_{\boldsymbol{z}}$ denotes the p-adic closure of \boldsymbol{Q} and \boldsymbol{Z}_{p} the ring of integers in $\boldsymbol{Q}_{p} . \quad R$ being a ring, $M_{2}(R)$ denotes the full matrix ring over R of degree 2 .

1. The order of type $\left(q_{1}, q_{2}, q_{3}\right)$
1.1. Let A be a quaternion algebra over \boldsymbol{Q} and $q_{1}^{2}=d(A / \boldsymbol{Q})$ be its discriminant. For every prime number $p, A_{p} \otimes_{\boldsymbol{Q}} \boldsymbol{Q}_{p}$ is a division algebra over \boldsymbol{Q}_{p} or $A_{p} \simeq M_{2}\left(\boldsymbol{Q}_{p}\right)$ according as $p \mid q_{1}$ or $p \nless q_{1}$. Let q_{2}, q_{3} be square-free positive integers such that $\left(q_{i}, q_{j}\right)=1$ for $i \neq j, 1 \leq i, j \leq 3$. We then define the order \mathfrak{D} of type $\left(q_{1}, q_{2}, q_{3}\right)$ which satisfies the following properties:
i) $\mathfrak{D}_{p}=\mathfrak{D} \otimes_{Z} \boldsymbol{Z}_{p}$ is a maximal order in A_{p}, if $p \nless q_{1} q_{2} q_{3}$,
ii) $\mathfrak{V}_{\mathfrak{p}}$ is the unique maximal order in the division algebra A_{p}, if p / q_{1},
iii) $\mathfrak{D}_{p} \cong\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}\left(Z_{p}\right) \right\rvert\, c \equiv 0(\bmod p)\right\}$, if $p \mid q_{2}$,
iv) $\mathfrak{D}_{p} \cong\left\{\left.\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \in M_{2}\left(\boldsymbol{Z}_{p}\right) \right\rvert\, c \equiv 0\left(\bmod p^{2}\right)\right\}$, if $p \mid q_{3}$,

In this note we consider the order of type (q_{1}, q_{2}, q_{3}) exclusively.

[^0]1.2. The local properties of the order of type $\left(q_{1}, q_{2}, 1\right)$, in our notation, have been investigated by [1], [2]. So we study the property of D_{p} for $p \mid q_{3}$. After fixing the isomorphism we assume $\mathfrak{D}_{p}=\left\{\left.\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \in M_{2}\left(\boldsymbol{Z}_{p}\right) \right\rvert\, c \equiv 0\right.$ $\left.\left\langle\bmod p^{2}\right)\right\}$, and write symbolically $\Im_{p}=\left(\begin{array}{ll}\boldsymbol{Z}_{p} \\ \left(p^{2}\right)\end{array}{\underset{\boldsymbol{Z}}{p}}^{\boldsymbol{Z}_{p}}\right.$. Let U_{p} be the unit group of \mathfrak{D}_{p}; then according to the elementary divisor theory, we find that every double coset $U_{p} \alpha U_{p}$ modulo scalar matrix $\left(\alpha \in \Im_{p}\right)$ is one of the following types:
(1) $U_{p}\left(\begin{array}{ll}p^{a} & 0 \\ 0 & 1\end{array}\right) U_{p}$,
(2) $U_{p}\left(\begin{array}{ll}1 & 0 \\ 0 & p^{a}\end{array}\right) U_{p}$,
(3) $U_{p}\left(\begin{array}{ll}p^{a} & 1 \\ 0 & p\end{array}\right) U_{p}, \quad(a \geq 1)$,
(4) $U_{p}\left(\begin{array}{ll}p & 1 \\ 0 & p^{a}\end{array}\right) U_{p},(a \geq 1)$,
(5) $U_{p}\left(\begin{array}{cc}0 & p^{a} \\ p^{a} & 0\end{array}\right) U_{p}, \quad(a \geq 0)$,
(6) $U_{p}\left(\begin{array}{ll}0 & 1 \\ p^{a} & 0\end{array}\right) U_{p}, \quad(a \geq 2)$,
(7) $U_{p}\left(\begin{array}{cc}0 & p^{a} \\ p^{2} & p\end{array}\right) U_{p}, \quad(a \geq 0)$,
(8) $U_{p}\left(\begin{array}{cc}p & 0 \\ p^{2} & p^{a}\end{array}\right) U_{p}, \quad(a \geq 1)$,
(9) $\quad U_{p}\left(\begin{array}{cc}p^{2} & 1+p_{p}^{a}\end{array}\right) U_{p}$,
and the degree (the number of left representatives) of $U_{p} \alpha U_{p}$ is calculated for the above nine cases as follows:

> (1) p^{a}, \quad (2) p^{a}, \quad (3) $p^{a}-p^{a-1}, \quad$ (4) $p^{a}-p^{a-1}$, (5) p^{a}, \quad (6) p^{a-2}, \quad (7) $p^{a+1}-p^{a}$, (8) $p^{a}-p^{a-1}$, (9) $\frac{p(p-1)\left(p^{a+1}-1\right)}{p+1}, \quad$ if a is odd, $\frac{(p-1)\left(p^{a+2}-p-2\right)}{p+1}, \quad$ if a is even.

By decomposing these double cosets into the sum of left representatives, we see that every integral left D_{p}-ideal with norm p^{n} is one of the following types;

$$
\mathfrak{D}_{p}\left(\begin{array}{ll}
p^{a} & t \tag{i}\\
0 & p
\end{array}\right), \quad t \bmod p^{b}, \quad a+b=n, \quad a, b \geqq 0,
$$

(ii) $\mathfrak{D}_{p}\left(\begin{array}{ll}0 & p^{a} \\ p^{a}\end{array}\right)$,
$t \bmod p^{a+2}, \quad a+b=n, a \geqq 0, b \geqq 2$,
(iii) $\mathfrak{S}_{p}\left(\begin{array}{ll}p^{a} & 0 \\ p^{a+1} v & p^{b}\end{array}\right)$,
$1 \leqq v \leqq p-1, \quad a+b=n, \quad a \geqq 1, \quad b \geqq 0$,
(iv) $\mathfrak{O}_{p}\left(\begin{array}{ll}p^{b-2} v & p^{a} \\ p^{b}\end{array}\right), \quad 1 \leqq v \leqq p-1, \quad a+b=n, a \geqq 0, b \geqq 2$,

$$
\begin{align*}
& \mathfrak{S}_{p}\left(\begin{array}{ll}
p^{a+1} x & p^{b} \\
p^{a+2} & p^{b+1} y
\end{array}\right), \quad \begin{array}{l}
x y-1 \equiv 0\left(\bmod p^{n-a-b-2}\right), \\
x y-1 \neq 0\left(\bmod p^{n-a-b-1}\right),
\end{array} \tag{v}\\
& x, y \bmod p^{n-a-b-1}, x, y \text { : units, } \\
& a+b+2 \leqq n, a, b \geqq 0 \text {. }
\end{align*}
$$

2. The case $q_{3}=2$
2.1. Hereafter we assume $q_{3}=2$, hence \mathfrak{D} is of type $\left(q_{1}, q_{2}, 2\right)$.

Lemma 1. The group of integral two-sided $\mathfrak{D}_{2}=\mathfrak{D} \underset{\boldsymbol{Z}}{\otimes} \boldsymbol{Z}_{2}$ ideals modulo scalar ideals is isomorphic to the symmetric group of degree 3, hence its order is 6 .

Proof. Since for any integral two-dsied \mathfrak{V}_{2} ideal $\mathfrak{M}=\mathfrak{D}_{2} \alpha=\alpha \mathfrak{V}_{2}\left(\alpha \in \mathfrak{V}_{2}\right)$, the degree of $U_{2} \alpha U_{2}$ should be 1 , hence the generator α of \mathfrak{M} is, according to the elementary divisor theory given in $\mathbf{1 , 2}$, one of the following forms:

$$
\begin{aligned}
& \iota=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pi=\left(\begin{array}{ll}
0 & 1 \\
4 & 0
\end{array}\right), \xi=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right), \pi \xi=\left(\begin{array}{ll}
0 & 1 \\
4 & 2
\end{array}\right), \\
& \xi \pi=\left(\begin{array}{ll}
2 & 1 \\
4 & 0
\end{array}\right), \xi \pi \xi=\pi \xi \pi=\left(\begin{array}{ll}
2 & 0 \\
4 & 2
\end{array}\right) .
\end{aligned}
$$

We see easily that $(\pi \xi)^{3}=(\xi \pi)^{3}=\iota$, and $\pi^{2}=\xi^{2}=\iota$ modulo scalar matrix. Hence we obtain Lemma 1.
2.2. Let g be an order in a quadratic field $K=\boldsymbol{Q}(\sqrt{d})(d$: a squarefree integer); then we may put $g=\boldsymbol{Z}[1, \omega]$ and $\omega=f \omega_{0}(f>0)$ where $\left[1, \omega_{0}\right]$ is the canonical \boldsymbol{Z}-basis of the maximal order g_{o} in K, namely

$$
\omega_{o}= \begin{cases}(1+\sqrt{d}) / 2, & \text { if } d \equiv 1(\bmod 4) \\ \sqrt{d} \quad, & \text { if } d \equiv 2,3(\bmod 4)\end{cases}
$$

The discriminat D of g is $D=f^{2} D_{o}$, where $D_{o}=d$ or $4 d$ according as $d \equiv 1$ or $2,3 \bmod 4$. Now for a prime p, we define the modified Legendre symbol as follows:

$$
\left\{\frac{D}{p}\right\}=\left\{\begin{array}{l}
1, \text { if } D p^{-2} \in Z \text { and } D p^{-2} \equiv 0,1(\bmod 4) \\
\left(\frac{D}{p}\right), \text { the Legendre symbol, otherwise }
\end{array}\right.
$$

2.3. Let K be a quadratic subfield of A and g be an order in K; then we say g is optimally embedded in \mathfrak{D} if $g=\mathscr{D} \cap K$. It is easy to see that g is optimally embedded in \mathfrak{D} if and only if $\mathfrak{g}_{p}=\mathfrak{D}_{p} \cap K_{p}$ for every p. Now we shall prove the following theorem which is essential to give a formula
for the trace of Hecke operators, and this was proved for the order of type ($q_{1}, q_{2}, 1$) by [2].

Theorem 1. Let \mathfrak{D} and \mathfrak{D}^{\prime} be order of type $\left(q_{1}, q_{2}, 2\right)$ and \mathfrak{g} be an order of a quadratic subfield of which is optimally embedaed in both \mathfrak{D} and \mathfrak{V}^{\prime}. Then there exists an ideal \mathfrak{a} of \mathfrak{g} such that $\mathfrak{D a}=\mathfrak{a} \mathfrak{V}^{\prime}$. Conversely, if \mathfrak{g} is optimally embedded in \mathfrak{D} and if there exists an \mathfrak{g}-ideal such that $\mathfrak{D a}=\mathfrak{a} \mathfrak{D}^{\prime}$ then \mathfrak{g} is also optimally embedded in \mathfrak{V}^{\prime}.

Proof. The second assertion holds trivially as it is contained in [2]. So we examine the local behaviour of orders to prove the first assertion. For $p=2$, we may assume $\mathfrak{D}_{2}=\mathfrak{D} \otimes_{\boldsymbol{Z}} \boldsymbol{Z}_{2}=\left(\begin{array}{ll}\boldsymbol{Z}_{2} & \boldsymbol{Z}_{2} \\ (4) & \boldsymbol{Z}_{2}\end{array}\right)$. Since $\mathfrak{D}_{2}^{\prime}$ is isomorphic to \mathfrak{D}_{2}, there exists $\alpha \in A_{2}$ such that $\alpha^{-1} \mathfrak{D}_{2} \alpha=\mathfrak{D}_{2}^{\prime}$. Under this situation we shall show that there exists $\beta \in \mathfrak{g} \underset{\boldsymbol{Z}}{\otimes} \boldsymbol{Z}_{2}$ such that $\mathfrak{D}_{2} \beta=\beta \mathfrak{D}_{2}^{\prime}$. First, we assume $\alpha=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 2^{r}\end{array}\right)(r>0)$. Put $g_{2}=\boldsymbol{Z}_{2}[1, \omega]$, and fix ω to be $\omega=\left(\begin{array}{ll}0 & b \\ 4 c & d\end{array}\right) \in \mathcal{D}_{2}$ after a suitable translation; since g_{2} is embedded in \mathfrak{D}_{2} optimally, we see $(b, c, d)_{2}=1$, where $(,,)_{2}$ denotes the $g \cdot c \cdot d \cdot$ in $\boldsymbol{Z}_{2} . \quad g_{2}$ is also optimally embedded in α^{-1} $\mathfrak{V}_{2} \alpha=\mathfrak{D}_{2}^{\prime}$, and $\alpha \omega \alpha^{-1}=\left(\begin{array}{cc}2^{r+2} c & 2^{-r} b \\ d\end{array}\right)$, hence $\left(2^{-r} b, 2^{r} c, d\right)=1$. For the proof of existence of $\beta \in g_{2}$ such that $\mathfrak{V}_{2} \beta=\beta \mathfrak{D}_{2}^{\prime}$, we consider three cases.
case 1. $(d, 2)=1$. Take $\beta \in g_{2}$ such that $\beta=2^{r}-d+\omega=\left(\begin{array}{ll}2^{r}-d & b \\ 4 c & 2^{r}\end{array}\right)$. Then $\beta \alpha^{-1}=\left(\begin{array}{ll}2^{r}-d & b \\ 4 c & 2^{r}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 2^{-r}\end{array}\right)=\left(\begin{array}{ll}2^{r}-d & 2^{-r} b \\ 4 c & 1\end{array}\right)$. Since $2^{r}-d$ is a unit in $\boldsymbol{Z}_{2}, \beta \alpha^{-1}=\varepsilon \in U_{2}$ hence $\Im_{2} \beta=\mathfrak{D}_{2} \varepsilon \alpha=\mathfrak{D} \alpha=\alpha \mathfrak{D}^{\prime}=\beta \mathfrak{D}^{\prime}$.
case 2. $\quad(d, 4)=2$. Take $\beta=2^{r+2}-d+\omega \in g_{2}$, then $\beta a^{-1}=\left(\begin{array}{ll}2^{r+2}-d & 2^{-r} b \\ 4 c & 4\end{array}\right)$. Now put $\eta=\xi \pi=\left(\begin{array}{ll}2 & 1 \\ 4 & 0\end{array}\right)$, η : an element which generates a two-sided \mathfrak{D}_{2}-ideal by Lemma 1), then $\beta \alpha^{-1} \eta^{-1}=\left(\begin{array}{ll}2^{-r} b & 2^{-1}\left(2^{-1} u-2^{-\tau} b\right) \\ 4 & c-2\end{array}\right)$ where $u=2^{r+2}-d$. As $(d, 4)=2,2^{-r} b$ and $c-2$ are both units in \boldsymbol{Z}_{2} and $2^{-1}\left(2^{-1} u-2^{-r} b\right) \in \boldsymbol{Z}_{2}$. Therefore $\beta \alpha^{-1} \eta^{-1}=\varepsilon \in U_{2}, Ð_{2} \beta=\mathfrak{D}_{2} \eta \pi=\eta \mathfrak{D}_{2} \alpha=\eta \alpha \mathfrak{D}_{2}^{\prime}=\beta \mathfrak{D}_{2}^{\prime}$.
case 3. $(d, 4)=4$. Take $\beta=-d+\omega \in g_{2}, \beta=\left(\begin{array}{cc}-d & b \\ 4 c & 0\end{array}\right)$, and $\pi=\left(\begin{array}{ll}0 & 1 \\ 4 & 0\end{array}\right)$; then $\beta \alpha^{-1} \pi^{-1}=\left(\begin{array}{cc}q^{-r} b & 4^{-1} d \\ 0 & c\end{array}\right)$, in this case $2^{-r} b$, and c are units in $Z_{2}, \beta \alpha^{-1} \pi^{-1}=\varepsilon \in$ U_{2} hence $\mathfrak{D}_{2} \beta=\mathfrak{D}_{2} \pi \alpha=\pi \mathfrak{N}_{2} \alpha=\pi \alpha \mathfrak{V}_{2}^{\prime}=\beta \mathfrak{D}_{2}^{\prime}$. Thus we have proved the existence of $\beta \in g_{2}$ such that $\mathfrak{D}_{2} \beta=\beta \searrow_{2}^{\prime}$ for the case $\alpha=\left(\begin{array}{ll}1 & 0 \\ 0 & 2^{r}\end{array}\right)$. As for the second step, we shall show that if the above assertion is true for an $\alpha \in A_{2}$,
then the assertion is true also for the following elements: (1) α_{i} : the left representative of $U_{2} \alpha U_{2}$, (2) $\alpha \gamma$: here γ a generator of a two-sided integral \mathfrak{D}_{2} ideal (3) α^{-1}. Because, for the type (1) by a suitable element $\varepsilon \in U_{2}, \alpha=\alpha_{i} \varepsilon$, and \mathfrak{g} is optimally embedded in \mathfrak{D} and in $\alpha_{i}^{-1} \mathfrak{D} \alpha_{i}$. Then $\varepsilon^{-1} \mathfrak{g} \varepsilon$ is optimally embedded in \mathfrak{D} and in $\alpha^{-1} \mathfrak{D}=\mathfrak{D}^{\prime}$. For the type (2), $\gamma \mathfrak{g}_{2} \gamma^{-1}$ is optimally embedded in $\gamma \subseteq \gamma^{-1}=\mathfrak{D}$ and in $\alpha^{-1} \mathfrak{D}=\mathfrak{D}^{\prime}$. For the type (3), $\alpha^{-1} g_{2} \alpha$ is optimally embedded in $\alpha^{-1} \mathfrak{D} \alpha=\mathfrak{V}^{\prime}$ and in \mathfrak{D}. Hence in any case there exists $\beta \in g_{2}$ such that $\mathfrak{D}_{2} \beta=\beta \mathfrak{D}_{2}^{\prime}$. Let $\pi=\left(\begin{array}{ll}0 & 1 \\ 4 & 0\end{array}\right), \xi=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$ be as in Lemma 1. Then for $\alpha=\left(\begin{array}{ll}p^{a} & 0 \\ 0 & p^{b}\end{array}\right)$, our assertion is true by (1), this is also valid for the following elements and the left representatives of their double cosets with U_{2} on account of (1) and (2). $\alpha \pi=\left(\begin{array}{cc}0 & 2^{a} \\ 2^{b+2} & 0\end{array}\right), \alpha \xi=\left(\begin{array}{cc}2^{a+1} & 2^{a} \\ 0 & 2^{b+1}\end{array}\right), \alpha \pi \xi=\left(\begin{array}{cc}0 & 2^{a} \\ 2^{b+2} & 2^{b+1}\end{array}\right)$, $\alpha \xi \pi \xi=\left(\begin{array}{cc}2^{a+1} & 0 \\ 2^{b+2} & 2^{b+1}\end{array}\right)$. After all we only have to check for $\alpha=\left(\begin{array}{cc}2 & 1+2^{r} \\ 4 & 2\end{array}\right)$. According to the condition that $g_{2}=Z_{2}[1, \omega]$, with $\omega=\left(\begin{array}{ll}4 c & b \\ 4 & d\end{array}\right) \in \mathfrak{D}_{2}, g_{2}$ is optimally embedded in \mathfrak{D}_{2} and in α, and we see easily that d is a unit in \boldsymbol{Z}_{2}. Take $\beta=-d+\omega \in g_{2}$; then $-2^{r+2} \beta \alpha^{-1}=\left(\begin{array}{cl}-2(d+2 b) & 2 b+\left(1+2^{r}\right) d \\ 8 c & -4 c\left(1+2^{r}\right)\end{array}\right)$, hence there exists $\varepsilon \in U_{2}$ such that $-2^{r+2} \varepsilon \beta \alpha^{-1}=\left(\begin{array}{ll}2 & f \\ 0 & 2^{r+1}\end{array}\right)\left(f:\right.$ a unit in $\left.\boldsymbol{Z}_{2}\right)$. Since our assertions holds, for $\alpha^{\prime}=\left(\begin{array}{ll}2 & f \\ 0 & 2^{r+1}\end{array}\right)$, it is easy to see that $\mathfrak{D}_{2} \beta=\beta \alpha^{-1} \mathfrak{D}_{2} \alpha$. This completes our that proof there exists $\beta \in g_{2}$ such that $\mathfrak{N}_{2} \beta=\beta \mathfrak{D}_{2}^{\prime}$ for any $\alpha \in A_{2}$ which satisfies $\mathfrak{D}_{2}^{\prime}=\alpha^{-1} \mathfrak{D}_{2} \alpha$. For other prime $p \neq 2$, it is proved in [2] that there exists $\beta_{p} \in g_{p}$ such that $\mathfrak{D}_{p} \beta_{p}=\beta_{p} \mathfrak{D}_{p}$, and β_{p} is a unit for almost all primes p. Hence the \mathfrak{g}-ideal $\mathfrak{a}=\cap \mathfrak{g}_{p} \beta_{p}$ serves our theorem with $\beta_{2}=\beta$.
2.4. Let \mathfrak{g} and D be as in 2.2 , and \mathfrak{D} be of type $\left(q_{1}, q_{2}, 2\right)$, then the criterion for $\mathfrak{g}_{2}=\mathfrak{D}_{2} \cap K_{2}$ is described as follows.

Lemma 2. \mathfrak{g}_{2} is optimally embedded in \mathfrak{V}_{2} if and only if $\left\{\frac{D}{2}\right\}=1$.

Proof. Suppose $g_{2}=\mathfrak{D}_{2} \cap K_{2}$, put $\mathfrak{D}_{2}=\left(\begin{array}{ll}\boldsymbol{Z}_{2} & \boldsymbol{Z}_{2} \\ (4) & \boldsymbol{Z}_{2}\end{array}\right), g_{2}=\boldsymbol{Z}_{2}[1, \omega]$, and $\omega=$ $\left(\begin{array}{ll}0 & b \\ 4 c & d\end{array}\right) \in \mathfrak{V}_{2}$. Then the discriminant of g_{2} in \boldsymbol{Z}_{2} is $d^{2}+16 b c$. Hence if (d, $2)=1$, then $d^{2} \equiv 1(\bmod 8)$, this implies $\left\{\frac{D}{2}\right\}=\left(\frac{d^{2}+16 b c}{2}\right)=1$, and if $(d, 2)$ $=2$, then $\left(d^{2}+16 b c\right) / 4=(d / 2)^{2}+4 b c \in \boldsymbol{Z}_{2}$ and $\equiv 0,1(\bmod 4)$, therefore $\left\{\frac{D}{2}\right\}$
$=1$. Conversely, if $\left\{\frac{D}{2}\right\}=1$, we can show that $\mathfrak{g}_{2}=\boldsymbol{Z}_{2}[1, \omega]$ is optimally
embedded in an order $\mathfrak{D}_{2}^{\prime}$ which is isomorphic to $\mathfrak{D}_{2}=\left(\begin{array}{ll}\boldsymbol{Z}_{2} & \boldsymbol{Z}_{2} \\ (4) & \boldsymbol{Z}_{2}\end{array}\right)$. Put namely $\omega=\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right)$; then the discriminant of \mathfrak{g}_{2} is $d^{2}+b c$. If $(d, 2)=1$, then $d^{2} \equiv 1$ $(\bmod 8)$, hence $\sqrt{D} \in \boldsymbol{Z}_{2}$ and $\omega \operatorname{satisfies}\left(\omega-\frac{d+\sqrt{D}}{2}\right)\left(\omega-\frac{d-\sqrt{D}}{2}\right)=0$. Consider $\omega^{\prime \prime}=\left(\begin{array}{cc}0 & 0 \\ 4 c & \sqrt{D}\end{array}\right) \in \mathfrak{D}_{2}$; then $g^{\prime \prime}=\boldsymbol{Z}_{2}\left[1, \omega^{\prime \prime}\right]$ is embedded in \mathfrak{D}_{2} optimally, and $\omega^{\prime \prime}$ and $\omega^{\prime}=\omega-\frac{d+\sqrt{D}}{2}$ satisfy the same quadratic equation hence there exists $\alpha \in A_{2}$ such that $\alpha \omega^{\prime} \alpha^{-1}=\omega^{\prime \prime}$. So, $Z_{2}[1, \omega]=\mathfrak{g}$ is embedded in $\alpha^{-1} \mathfrak{D}_{2} \alpha$ optimally. In the case $(d, 2)=2, D / 4$ should be $\equiv 0,1 \bmod 4$ hence $b c \equiv 0$ $(\bmod 4)$, or $\equiv 1(\bmod 4)$. In the former case, take $b^{\prime}, c^{\prime} \in \boldsymbol{Z}_{2}$ such that b^{\prime} is a unit and $b c=b^{\prime} c^{\prime}$. Then $\omega^{\prime}=\left(\begin{array}{ll}0 & b^{\prime} \\ c^{\prime} & d\end{array}\right)$ and ω satisfy the same equation and $\boldsymbol{Z}_{2}\left[1, \omega^{\prime}\right]$ is embedded optimally in \mathfrak{D}_{2}. In the latter case, $b c \equiv 1(\bmod 4)$ implies $d \equiv 0(\bmod 4)$. Put $\omega^{\prime}=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ 4 & e^{\prime}\end{array}\right)$ and take $a^{\prime}, b^{\prime}, e^{\prime}$ such that ω^{\prime} and ω satisfy the same equation, namely, $a^{\prime}, e^{\prime}=d / 2 \pm \sqrt{(d / 2)^{2}+b c-4 b^{\prime}}$. Then, since $(d / 2)^{2}+b c \equiv 1(\bmod 4)$ we can take $b^{\prime} \in \boldsymbol{Z}_{2}$ such that $(d / 2)^{2}+b c-4 b^{\prime} \equiv 1$ $(\bmod 8)$, hence we see $a^{\prime}, e^{\prime} \in \boldsymbol{Z}_{2}$. Therefore $g=\boldsymbol{Z}_{2}\left[1, \omega^{\prime}\right]$ is optimally embedded in \mathfrak{D}_{2}. This completes the proof of Lemma 2.
2.5. Let G be the group of integral two-sided \mathfrak{D}_{2} ideals modulo scalar matrix which is calculated in Lemma 1, and $g_{2}=\mathfrak{D}_{2} \cap K_{2}$ as in Lemma 2, and let $H\left(\mathfrak{g}_{2}\right)$ be the subgroup which is defined as follows $H\left(\mathfrak{g}_{2}\right)=\{\mathfrak{M} \in G \mid \mathfrak{M}$ $\left.=\mathfrak{D}_{2} \beta, \beta \in g_{2}\right\}$. Namely, $H\left(\mathfrak{g}_{2}\right)$ is the subgroup consists of all two sided ideals generated by g -ideals.

Lemma 3. Let D be the discriminant of g and define $\delta(D)=\delta\left(\mathrm{g}_{2}\right)=\left[G: H\left(\mathfrak{g}_{2}\right)\right]$, then

$$
\delta(D)=\left\{\begin{array}{l}
2, \text { if } D / 4 \in \boldsymbol{Z} \text { and } D / 4 \equiv 5(\bmod 8), \\
3, \text { otherwise }
\end{array}\right.
$$

Proof. Put $\mathfrak{D}_{2}=\left(\begin{array}{ll}\boldsymbol{Z}_{2} & \boldsymbol{Z}_{2} \\ (4) & \boldsymbol{Z}_{2}\end{array}\right), \quad g_{2}=\boldsymbol{Z}_{2}[1, \omega]$, and $\omega=\left(\begin{array}{ll}0 & b \\ 4 c & d\end{array}\right)$. Then, by Lemma 1, $\delta(D)=2$ if $H\left(\mathrm{~g}_{2}\right)=\{\iota, \xi \pi, \pi \xi\}$ and $\delta(D)=3$, otherwise. Hence if $\grave{\delta}(D)=2, U_{2} \omega U_{2}=U_{2} \pi \xi U_{2}$ or $U_{2}(\omega-d) U_{2}=U_{2} \xi \pi U_{2}$, therefore $(b, 2)=(c, 2)=1$ and $(d, 4)=2$. As the discriminant of g_{2} is $d^{2}+16 b c$, we obtain $D / 4 \in Z$ and $D / 4 \equiv 5 \bmod 8$ since $(d / 2)^{2} \equiv 1 \bmod 8$. Conversely, if $D / 4 \equiv 5 \bmod 8$ it is easy to see $(d, 4)=2$ and $(b, 2)=(c, 2)=1$, hence $U_{2} \omega U_{2}=U_{2} \pi \xi U_{2}$ therefore $\delta(D)$ $=2$. Thus we obtain our Lemma 3.
2.6. We remark the following two lemmas which are special cases of $[6, \S 3.10, \S 3.11]$, and these lemmas are necessary to prove the theorem 2.

Lemma 4. The class number h of an order of type $\left(q_{1}, q_{2}, q_{3}\right)$ is the same the class number of a maximal order in A. Hence if A is indefinite, $h=1$.

Lemma 5. Let \mathfrak{D} be as in Lemma 4 and \mathfrak{M} an integral two-sided \mathfrak{D}-ideal. Let $b \in \boldsymbol{Z}$ and $\alpha \in \mathfrak{D}$ such that $N \alpha \equiv b \bmod ^{*}(\mathfrak{M} \cap \boldsymbol{Z})$. Then there exists an element $\beta \in \mathfrak{D}$ such that $\beta \equiv \alpha \bmod \mathfrak{M}$ and $N \beta=b$. Here mod* means the multiplicative congruence.

By Lemma 5 we note that \mathfrak{D} contains an element of norm -1 .
Now we assume A is indefinite g and is an order in an imaginary quadratic subfield K of A optimally embedded in \mathfrak{D}. Then for a unit $\varepsilon \in \mathfrak{D} \varepsilon^{-1} g \varepsilon$ is also optimally embeeddd in \mathfrak{N}. Let us denote the set of orders $\left\{\varepsilon^{-1} g \varepsilon\right.$; norm $(\varepsilon)=1\}$ by simply (g), and call it the proper classes of orders. Then we obtain

Theorem 2. The number of proper classes of orders (g) which is optimally embedded in an order \mathfrak{D} of type $\left(q_{1}, q_{2}, 2\right)$ and is isomorphic to a given order \mathfrak{g}_{1} in K is equal to

$$
\frac{\delta\left(D_{1}\right)}{2}\left(1+\left\{\frac{D_{1}}{2}\right\}\right)\left\{\frac{D_{1}}{2}\right\} \prod_{p \mid q_{1}}\left(1-\left\{\frac{D_{1}}{p}\right\}\right)_{q \mid q_{1}}\left(1+\left\{\frac{D_{1}}{p}\right\}\right) h\left(D_{1}\right)
$$

where D_{1} denotes the discriminant of g_{1}, and $h\left(D_{1}\right)$ the class number of g_{1}-ideals, and .$o\left(D_{1}\right)$ is defined in Lemma 3.

Proof. This theorem is proved by the same method as in [2, Satz 7] by virtue of Lemma 2 and 3 . So we only sketch the proof. Namely, let \mathfrak{g} be an order, isomorphic to g_{1} and optimally embedded in \mathfrak{D}. Since the class number of \mathfrak{D}-ideals is 1 by lemma 4, there exists $\alpha \in A$ such that $\mathfrak{g}=\alpha \mathfrak{I}_{1} \alpha^{-1}$. Then g is optimally embedded in \mathfrak{D} and in $\alpha^{-1} \mathfrak{D}$, hence there exists g_{1}-ideal such that $\mathfrak{D a}=\mathfrak{a} \alpha^{-1} \mathfrak{D} \mathfrak{a}$. Therefore $\mathfrak{M}=\mathfrak{D a} \alpha^{-1}$ is a two-sided \mathfrak{D}-ideal. We make correspond to every pair of class of orders $\left((\mathfrak{g}),\left(g_{1}\right)\right)$ the pair ((M)), (a)), where (\mathfrak{M}) is the class of \mathfrak{M} the group of two sided \mathfrak{D}-ideals modulo two sided \mathfrak{D}-ideals which is generated by g-ideals, and (a) is the ideal class of \mathfrak{a}. This correspondence is one to one if and only if \mathfrak{D} contains a unit with norm -1 , and this is so our case by Lemma 5. Hence the classes of orders (g) which are optimally embedded in \mathfrak{D} and isomorphic to (\mathfrak{g}_{1}) is equal to the number of pairs ((M) $\mathfrak{M})$, $\mathfrak{a})$). Combining lemma 2 and 3 with Eichler's result
for the local behaviours of \mathscr{D}_{p} at $p \mid q_{1} q_{2}$, this number is given by

$$
\frac{\delta\left(D_{1}\right)}{2}\left(1+\left\{\frac{D_{1}}{2}\right\}\right)\left\{\frac{D_{1}}{2}\right\} \cdot \Pi_{p \mid q_{1}}\left(1-\left\{\frac{D_{1}}{p}\right\}\right) \cdot \Pi_{p \mid q_{2}}\left(1+\left\{\frac{D_{1}}{p}\right\}\right) h\left(D_{1}\right) .
$$

This completes the proof.

3. The trace of Hecke operators for $\Gamma_{0}^{q_{1}}\left(4 q_{2}\right)$

3.1. In this paragraph we assume that A is indefinite. We regard $\Gamma_{0}^{q_{1}\left(4 q_{2}\right)}$ as a subgroup of $S L_{2}(\boldsymbol{R})$ after a fixed isomorphism $A \underset{Q}{\otimes} \boldsymbol{R} \cong M_{2}(\boldsymbol{R})$, and we define a linear transformation $T(\Gamma \alpha \Gamma)$ in $S_{k}(\Gamma)$, where $S_{k}(\Gamma)$ is the complex vector space of cusp forms of weight k with respect to the group. $\Gamma=\Gamma_{0}^{q_{1}}\left(q_{2}\right)$. Let namely $\Gamma \alpha \Gamma=\bigcup_{\nu=1}^{d} \Gamma \alpha_{\nu}$ be a disjoint sum; then, for $f \in S_{k}(\Gamma)$ we set

$$
(T(\Gamma \alpha \Gamma) f)(z)=(N \alpha)^{\frac{k}{2}} \sum_{\nu=1}^{d} j\left(\alpha_{\nu}, z\right)^{-k} f\left(\alpha_{\nu}(z)\right)
$$

where $\alpha_{\nu}(z)=\frac{a_{\nu} z+b_{\nu}}{c_{\nu} z+d_{\nu}}$, for $\alpha_{\nu}=\left(\begin{array}{ll}a_{\nu} & b_{\nu} \\ c_{\nu} & d_{\nu}\end{array}\right), z \in H$ and $j\left(\alpha_{\nu}, z\right)=\left(c_{\nu} z+d_{\nu}\right)$.
We shall give the trace of $T(\Gamma \alpha \Gamma)$ following Shimizu's treatment [3] and Eichler's [1] in the representation space $S_{k}(\Gamma)$ fo $\Gamma=\Gamma_{0}^{q_{1}}\left(4 q_{2}\right)$, in the case n $=N \alpha$ is prime to $4 q_{2}$.
3.2. If k is even and greater than $2, \operatorname{tr} T(\Gamma \alpha \Gamma)$ is obtained in [4, Theorem 1], which is as follows:

$$
\begin{aligned}
& \operatorname{tr} T(\Gamma \alpha \Gamma)=t_{0}+t_{1}+t_{2}+t_{3}, \\
& t_{0}=\frac{k-1}{4 \pi} \cdot \operatorname{vol}(\mathfrak{F}) \cdot \varepsilon(\sqrt{n}) \\
& t_{1}=-\sum_{\alpha_{1} \in C_{1}} \frac{1}{\left(\Gamma\left(\alpha_{1}\right):\{ \pm 1\}\right)} \cdot \frac{\rho_{\alpha_{1}}^{k-1}-\rho_{\alpha_{1}}^{\prime k-1}}{\rho_{\alpha_{1}}-\rho_{\alpha_{1}}^{\prime}} \cdot N\left(\alpha_{1}\right)^{1-\frac{k}{2}}, \\
& t_{2}=-\sum_{\alpha_{1} \in C_{2}} \frac{2}{\left(\Gamma\left(\alpha_{1}\right):\{ \pm 1\}\right)} \cdot \frac{\operatorname{Min}\left\{\left|\rho_{a_{1}}\right|,\left|\rho_{\alpha_{1}}^{\prime}\right|\right\}^{k-1}}{\left|\rho_{\alpha_{1}}-\rho_{\alpha_{1}}^{\prime}\right|} \cdot N\left(\alpha_{1}\right)^{1-\frac{k}{2}}, \\
& t_{3}=-\lim _{s \rightarrow 0} \frac{s}{2} \sum_{\alpha_{1} \in C_{3}}\left(\frac{d\left(\alpha_{1}\right)}{m\left(\alpha_{1}\right)}\right)^{1+s}
\end{aligned}
$$

where C_{1} (resp. : C_{2}, C_{3}) is a complete system of inequivalent elliptic elements (resp. : hyperbolic elements leaving a parabolic point of Γ fixed, parabolic elements) in $\Gamma \alpha \Gamma$, with respect to the equivalence relation

$$
\alpha \sim \alpha^{\prime} \Leftrightarrow \alpha^{\prime}= \pm \gamma \alpha \gamma^{-1} \text { for } \gamma \in \Gamma .
$$

$\Gamma\left(\alpha_{1}\right)$ is the group of all $\gamma \in \Gamma$ such that $\alpha_{1}= \pm \gamma \alpha_{1} \gamma^{-1}$, and $\rho_{\alpha_{1}}, \rho_{\alpha_{1}}^{\prime}$ are characteristic roots of α_{1}. Furthermore, $d\left(a_{1}\right), m\left(\alpha_{1}\right)$ are defined as follows; for the fixed point x of $\alpha_{1} \in C_{3}$ we can find $g \equiv G L_{2}(\boldsymbol{R})$ such that $g x=\infty$; then every element β leaving x fixed is written in the form $g \beta g^{-1}(z)=z \pm m \beta$ with a non negativ number $m(\beta)$, and $d(\alpha)$ is the least positive value of $m(\beta)$ when β runs over $\Gamma(\alpha)$. Lastly, vol (\mathfrak{F}) denotes the volume of the fundamental domain for the group $\Gamma_{0}^{q_{1}}\left(4 q_{2}\right)$, which is easily obtained by the group index relation; $\left[\Gamma_{0}^{q_{1}}(1): \Gamma_{0}^{q_{1}}\left(4 q_{2}\right)\right]=6\left(q_{2}+1\right)$ and the volume of the fundamental domain for the group $\Gamma^{q_{1}}(1)$, namely

$$
\operatorname{vol}(\mathfrak{F})=2 \pi \prod_{p \mid q_{1}}(p-1) \cdot \prod_{p \mid q_{2}}(p+1),
$$

and $\varepsilon(\sqrt{n})=1$ or 0 according as $\sqrt{n} \in \boldsymbol{Z}$ or not.
3.3. First we shall determine C_{1}. For an equivalence class $\alpha_{1} \in C_{1}$, let $K_{\alpha_{1}}$ be the imaginary quadratic field generated by the eigen-value of α_{1} over \boldsymbol{Q}, and put $\mathfrak{g}=K_{\alpha_{1}} \cap \mathfrak{D}$. Then g is an order of $K_{\alpha_{1}}$, which is optimally embedded in \mathfrak{D}. We know that there is an one to one correspondence between the equivalence classes $\left\{\alpha_{1}\right\}$ of C_{1} and the proper classes of orders (\mathfrak{g}), which are optimally embedded in \mathfrak{D} and contain an elliptic element with norm n $=N a$. By virtue of theorem 2, we see

$$
\begin{aligned}
& \sum_{\alpha_{1} \in C_{1}} \frac{1}{\left[\Gamma\left(\alpha_{1}\right):\{ \pm 1\}\right]} \cdot \frac{\rho_{\alpha_{1}}^{k-1}-\rho^{\prime k} \alpha_{\alpha_{1}}}{\rho_{\alpha_{1}}-\rho_{\alpha_{1}}^{\prime}}(N \alpha)^{1-\frac{k}{2}} \\
= & \sum^{\prime} \frac{1}{2[E(\mathrm{~g}):\{ \pm 1\}]} h(D)^{\frac{\delta(D)}{2}} \cdot\left(1+\left\{\frac{D}{2}\right\}\right)\left\{\frac{D}{2}\right\} \prod_{p \mid q_{1}}\left(1-\left\{\frac{D}{p}\right\}\right) \\
\times & \prod_{p \mid q_{2}}\left(1+\left\{\frac{D}{p}\right\}\right) \cdot \frac{\rho^{k-1}-\rho^{\prime k-1}}{\rho-\rho^{\prime}}(N \alpha)^{1-\frac{k}{2}},
\end{aligned}
$$

where the sum Σ^{\prime} runs over all orders g which contain an elliptic element ν with norm $N \alpha=n$, and D is the discriminant of $\mathfrak{g}, \rho, \rho^{\prime}$ are eigenvalues of ν, and $E(\mathrm{~g})$ denotes the group of units in g. We remark that $\left[\Gamma\left(\alpha_{1}\right): E\right.$ $(\mathrm{g})]=2$ since \mathfrak{D} contains an element with norm -1 [see 3,4.3].

Hence we obtain

$$
\begin{aligned}
& t_{1}=\frac{1}{2} \sum_{0} \frac{\partial(D)}{2} \cdot\left(1+\left\{\frac{D}{2}\right\}\right)\left\{\frac{D}{2}\right\}_{p \mid q_{1}}\left(1+\left\{\frac{D}{p}\right\}\right) \\
& \times \prod_{p \mid q_{2}}\left(1+\left\{\frac{D}{p}\right\}\right) \cdot \frac{\rho^{k-1}-\rho^{\prime k-1}}{\rho-\rho^{\prime}} h(D) \cdot n^{1-\frac{k}{2}}
\end{aligned}
$$

where Σ_{0} runs over all s, f with $|s|<2 \sqrt{n}$ and with $D=\left(s^{2}-4 n\right) f^{-2} \equiv 0,1$ $\bmod 4(f>0)$, and ρ, ρ^{\prime} are the roots of the equation $x^{2}-s x+n=0$.
3.4. t_{2}, t_{3} appear only if $A=M_{2}(\boldsymbol{Q})$. In this case, if r runs through all divisors of $4 q_{2}$ other than itself, then the est of all r^{-1}, together with ∞. forms a complete system of Γ-inequivalent parabolic points. Let $C_{2 \infty}$ (resp. $C_{3 \infty}$) be an equivalent class in C_{2} (resp. C_{3}) which fixes the point ∞. Let r be a divisor of $4 q_{2}$ and put $\sigma_{r}=\left(\begin{array}{ll}r & b \\ 4 q_{2} & r d\end{array}\right)$ or $\left(\begin{array}{ll}r & 0 \\ 4 q_{2} & r\end{array}\right)$ according as $\left(r, 4 q_{2} r^{-1}\right)$ $=1$ or not, where $r d-4 q_{2} r^{-1} b=1$. Then we see $C_{\lambda}=U \sigma C_{\lambda_{\infty}} \sigma_{r}^{-1}(\lambda=2,3)$. By [3, Lemma 4.2, 4.3], we can take for $C_{2 \infty}$ the set of all $\alpha=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ with $a d$ $=n, 0<a<d, 0 \leq b \leq \frac{d-a}{2}$. In this case $[\Gamma(\alpha):\{ \pm 1\}]=2$ or 1 according. as $2 b \equiv 0 \bmod (a-d)$ or not. We note that t_{3} appears only if $n=N \alpha$ is a square integer; in this case we can take as $C_{3 \infty}$ the set of α_{1} all such that $\alpha_{1}=\left(\begin{array}{cc}\sqrt{n} & b \\ 0 & \sqrt{n}\end{array}\right) b>0, \quad b \in Z$. Furthermore $d\left(\alpha_{1}\right) \cdot m\left(\alpha_{1}\right)^{-1}=b \sqrt{-1} \sqrt{n}$ for all α_{1}. Hence we obtain

$$
t_{2}=-3 \cdot 2^{t} \cdot n^{1-\frac{k}{2}} \cdot \sum_{\substack{a d=n \\ 0<a<\sqrt{n} \\ 0 \leqq b<d-a}} \frac{a^{k-1}}{d-a}=-3 \cdot 2^{t} \cdot n^{1-\frac{k}{2}} \sum_{\substack{a \mid n \\ 0<a<\sqrt{n}}} a^{k-1},
$$

and if $\sqrt{n} \in Z$,

$$
t_{3}=-3 \cdot 2^{t} \cdot \lim _{s \rightarrow 0} \frac{s}{2} \sum_{b>0}\left(\frac{\sqrt{n}}{b}\right)^{1+s}=-3 \cdot 2^{t-1} \cdot \sqrt{n},
$$

where t denotes the number of prime factors of q_{2}.
3.5. If $k=2$, regarding $T(\Gamma \alpha \Gamma)$ as a modular correspondence of the Riemann surface $\mathfrak{R}=\mathfrak{F} \cup\{$ cusps $\}, T(\Gamma \alpha \Gamma)$ induces an endomorphism of the i-th Betti group $B^{i}(\Re)$ of $\Re(i=0,1,2)$. Then the trace of the representation of $\Gamma \alpha \Gamma$ by the Betti group of $\mathfrak{\Re}$ is $\operatorname{tr} T(\Gamma \alpha \Gamma)=t r^{0} T(\Gamma \alpha \Gamma)-t r^{1} T(\Gamma \alpha \Gamma)$ $+t r^{2} T(\Gamma \alpha \Gamma)$, where $t r^{i} T(\Gamma \alpha \Gamma)$ is the trace of the endomorphism induced by $T(\Gamma \alpha \Gamma)$ on $B^{i}(\Re)$. We see $\operatorname{tr}^{0} T(\Gamma \alpha \Gamma)=t r^{2} T(\Gamma \alpha \Gamma)=$ number of left representatives of $\Gamma \alpha \Gamma$, and $\operatorname{tr}^{1} T(\Gamma \alpha \Gamma)$ is calculated by the same method as in owing to the explicit determination of C_{1}, C_{2}, C_{3} given in 3.3, 3.4. We thus find for $n=N \alpha\left(\left(n, 4 q_{2}\right)=1\right)$,

$$
\begin{gathered}
\left.\operatorname{tr}^{1} T(\Gamma \alpha \Gamma)=\Sigma_{0} \frac{\delta(D)}{2}\left(1+\left\{\frac{D}{2}\right\}\right)\left\{\frac{D}{2}\right\}_{p \mid q_{1}}\left(1-\left\{\frac{D}{p}\right\}\right)_{p \mid q_{2}}\left(\frac{D}{p}\right\}\right) h(D) \\
-\varepsilon(\sqrt{n}) \cdot 2 \cdot \operatorname{vol}(\varsubsetneqq)
\end{gathered}
$$

$$
+\alpha\left(q_{1}\right) \cdot 3 \cdot 2^{t+1} \sum_{\substack{d{ }^{d n} \\ 0<d \leqq \sqrt{n}}}^{\prime} d
$$

where Σ_{0} is the same as in $3.3, \varepsilon(\sqrt{n})=1$ or 0 according as $\sqrt{n} \in \boldsymbol{Z}$ or not, $\alpha\left(q_{1}\right)=1$ or 0 according as $q_{1}=1$ or not, and t is defined in 3.4. Since we consider the trace in the space $S_{2}(\Gamma)$ or in other words, in the space of differential forms of the first kind on \Re, the trace which is obtained by the above method should be multiplied by $\frac{1}{2}$ with the reason in [1, p. 156]. Hence, summing up we obtain

Theorem 3. Assume A is indefinite and $S_{k}\left(\Gamma_{0}^{q_{1}}\left(4 q_{2}\right)\right)$ denotes the space of cusp forms of weight k with respect to $\Gamma_{0}^{q_{1}}\left(4 q_{2}\right)$. Then the trace $\operatorname{tr}\left(T_{n}\right)\left(\left(n, 4 q_{2}\right)=1\right.$ of Hecke operator acting on $S_{k}\left(\Gamma_{0}^{q_{1}}\left(4 q_{2}\right)\right)$ is given as follows

$$
\begin{aligned}
& \operatorname{tr}\left(T_{n}\right)=d_{k}-\frac{1}{2} \Sigma_{0} \frac{\delta(D)}{2}\left(1+\left\{\frac{D}{2}\right\}\right)\left\{\frac{D}{2}\right\}_{p \mid q_{1}}\left(1-\left\{\frac{D}{p}\right\}\right)_{p \mid q_{2}}\left(1+\left\{\frac{D}{p}\right\}\right) \\
& \times \frac{\rho^{k-1}-\rho^{\prime k-1}}{\rho-\rho^{\prime}} \cdot n^{1-\frac{k}{2}} \cdot h(D)+\varepsilon(\sqrt{n}) \cdot \frac{1}{2} \cdot \prod_{p \mid q_{1}}(p-1) \cdot \prod_{p \mid q_{2}}(p+1) \\
& -\alpha\left(q_{1}\right) \cdot 3 \cdot 2^{t} \cdot n^{1-\frac{k}{2}} \cdot \sum_{\substack{d j_{n}^{\prime} \\
0<d \leq \sqrt{n}}} d^{k-1} .
\end{aligned}
$$

where

$$
\begin{aligned}
d_{k} & = \begin{cases}\sum_{d \mid n} d, & \text { if } k=2, \\
0, & \text { if } k>2,\end{cases} \\
\alpha\left(q_{1}\right) & = \begin{cases}1, & \text { if } q_{1}=1, \\
0, & \text { if } q_{1}>1,\end{cases}
\end{aligned}
$$

the sum Σ_{0} runs over all s, f with $|s|<2 \sqrt{n}, f>0$ and $D=\left(s^{2}-4 p\right) f^{-2} \equiv 0,1$ $(\bmod 4)$, and ρ, ρ^{\prime} are the roots of the equation $x^{2}-s x+n=0$. Furthermore, $\grave{o}(D)=2$ or 3 accoding as $D / 4 \equiv 5(\bmod 8)$ or not, $h(D)$ is the class number of an order with discriminant $D . \Sigma^{\prime}$ denotes the sum with a multiplicity $1 / 2$ for $d=\sqrt{n}$, and t the number of prime factors of q_{2}.
3.6. In this section we consider the elliptic modular group $\Gamma_{0}(4 N)=$ $\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\boldsymbol{Z}) \right\rvert\, c \equiv 0 \bmod (4 N)\right\}$ where $N=\prod_{i=1}^{t} N_{i}$ is a product of distinct odd prime $N_{i}(1 \leq i \leq t)$. Let χ_{i} be a character of the multiplicative group (\boldsymbol{Z})
$\left.N_{i} \boldsymbol{Z}\right)^{\times}$and put $\chi=\prod_{i=1}^{t} \chi_{i}$ then χ is a character of $(\boldsymbol{Z} \mid N \boldsymbol{Z})^{\times}$in a natural way, and we suppose χ is not a trivial character. We denote by $S_{k}\left(\Gamma_{0}(4 N), \chi\right)$ the complex vector space of modular cusp forms satisfying

$$
f\left(\frac{a z+b}{c z+d}\right)=\chi(d)(c z+d)^{k} f(z) \quad \text { for every }\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \in \Gamma_{0}(4 N)
$$

By an obvious reason we assume $\chi(-1)=(-1)^{k}$. The Hecke operators T_{n}^{x} $\{(n, 4 N)=1)$ acting on the space $\dot{S}_{k}\left(\left(\Gamma_{0}(4 N), \chi\right)\right.$ is defined by

$$
\left(T_{n}^{x} \cdot f\right)(z)=n_{\substack{a d d=n \\ d>0 \\ 0 \leqq b<d}}^{\frac{k}{2}} x(a) f\left(\frac{a z+b}{d}\right) d^{-k}
$$

The trace $\operatorname{tr}\left(T_{n}^{x}\right)$ in the representation space $S_{k}\left(\Gamma_{0}(4 N), \chi\right)$ is calculated by the same method discussed in the preceeding sections combining with Shimizu's arguments [4] and we easily find the following

Theorem 3'. The trace $\operatorname{tr}\left(T_{n}^{\mathrm{x}}\right)$ (n is prime to $4 N$) in the representation space $S_{k}\left(\Gamma_{0}(4 N), \chi\right)$ is given as follows

$$
\begin{aligned}
& \operatorname{tr}\left(T_{n}^{x}\right)=-\frac{1}{2} \Sigma_{0} \frac{\delta(D)}{2} \cdot\left(1+\left\{\frac{D}{2}\right\}\right)\left\{\frac{D}{2}\right\}_{p \mid q_{1}}\left(1-\left\{\frac{D}{p}\right\}\right)_{p \mid q_{2}}\left(1+\left\{\frac{D}{p}\right\}\right) \\
& \times \frac{\rho^{k-1}-\rho^{\prime k-1}}{\rho-\rho^{\prime}} \cdot n^{1-\frac{k}{2}} h(D) \cdot \chi(s, n)+\varepsilon(\sqrt{n}) \cdot \frac{1}{2} \prod_{p \mid q_{1}}(p-1) \cdot \Pi_{p \mid q_{2}}(p+1) \cdot \chi(\sqrt{n}) \\
& -3 \cdot n^{1-\frac{k}{2}} \cdot \sum_{\substack{d, n \\
0<d \leqq \sqrt{n}}}^{d^{k-1}} \cdot \prod_{i=1}^{t}\left(\chi_{i}(d)+\chi_{i}\left(\frac{n}{d}\right)\right),
\end{aligned}
$$

where $\chi(s, n)$ is defined by

$$
\chi(s, n)=2^{-t} \prod_{i=1} \sum_{\alpha^{2}-s_{\alpha}+n=0 \bmod \left(N_{i}\right)} \gamma_{i}(\alpha),
$$

and other notataions are the same as in Theorem 3.

References

[1] M. Eichler, Lectures on Modular correspondence, Lecture note, Tata Insitute of Fundamental Research Bombay 1955/56.
[2] Zur Zahlentheolie der Quaternionen Algebren, Journ. reine angew. Math. 195 (1956), 127-151.
[3] -, Quadratische Formen und Modulfunktionen, Acta Arith., 4 (1958), 217-239.
[4] H. Shimizu, On traces of Hecke operators, J. Fac. Scil Univ. Tokyo 10 (1963), 1-19.
[5] H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., 81 (1965), 166-193.
[6] G. Shimura, Algebraic number fields and symplecitc discontinuous groups, Ann. of Math., 86 (1967), 503-592.

Mathematical Institute
Nagoya University

[^0]: Received August 27, 1970.
 Revised November 18, 1970.

