AN INTEGRAL FORMULA FOR THE CHERN FORM OF A HERMITIAN BUNDLE

HIDEO OMOTO

Introduction

We shall consider a Hermitian n-vector bundle E over a complex manifold X. When X is compact (without boundary), S.S. Chern defined in his paper [3] the Chern classes (the basic characteristic classes of E) $\hat{C}_{i}(E)$, $i=1, \cdots, n$, in terms of the basic forms Φ_{i} on the Grassmann manifold $H(n, N)$ and the classifying map f of X into $H(n, N)$. Moreover he proved ([3], [4]) that if E_{k} denotes the k-general Stiefel bundle associated with E, the $(n-k+1)$-th Chern class $\hat{C}_{n-k+1}(E)$ coincides with the characteristic class $C\left(E_{k}\right)$ of E_{k} defined as follows: Let K be a simplicial decomposition of X and $K^{2(n-k)+1}$ the $2(n-k)+1$ - shelton of K. Then there exists a section s of $E_{k} \mid K^{2(n-k)+1}$ so that one can define the obstruction cocycle $c(s)$ of s. The cohomology class of $c(s)$ is independent of such a section s. Thus one denotes by $C\left(E_{k}\right)$ the cohomology class of $c(s)$ which is called the characteristic class of E_{k}. The above fact is well known as the second definition of the Chern classes ([3]).

On the other hand, in case when X is with boundary, R. Bott and S.S. Chern established the so-called Gauss-Bonnet theorem ([1]), which gives an integral formula for the above second definition of the n-th Chern class $\hat{C}_{n}(E)$, that is, if $C_{n}(E)$ denotes the n-th Chern form induced by a norm on E (c.f. Prop. 2.1),

$$
\int_{X} C_{n}(E)=\int_{\partial X} s^{*} \eta_{n}+\sum_{j=1}^{l} \operatorname{zero}\left(p_{j} ; s\right)
$$

where the p_{j} are the zero points of a section s of X into E, the zero ($p_{j} ; s$) denote the zero-numbers of s at p_{j}, and η_{n} is the n-th boundary form of E (cf. Def. 3.1).

The main purpose of this paper is to generalize their theorem to give an integral formula (Theorem 4.1) for the i-th Chern form $C_{i}(E)(1 \leq i \leq n)$ induced by a norm on a Hermitian n-vector bundle E over a complex manifold X of a complex dimension m, according to [1] and the obstruction theory [3] and [4].

Roughly speaking, our main theorem 4.1, which is called the generalized realtive Gauss-Bonnet theorem, is as follows: Let E_{k} be the k-general Stiefel bundle associated with E and $\pi_{k}^{*} E$ the induced bundle of E under the projection π_{k} of E_{k} onto X. Suppose there exisit a real $2(m-n+k-1)$ dimensional oriented submanifold A (with smooth boundary ∂A) of X (here $m=\operatorname{dim}_{\boldsymbol{C}} X$), and a smooth section s of $(X-A)$ into E. Then for any interior point q of A we can define the k-th complement obstruction number $o b s_{\frac{1}{k}}(q, s, A)$ (c.f. Def. 4.2). Let V be a real $2(n-k+1)$-dimensional oriented manifold and D a compact domain with smooth boundary ∂D. Now given a smooth map f of V into X, we obtain the intersection numbers $n\left(p_{i}, f, A\right)$ of the singular chain $f: D \rightarrow X$ and A at the points $p_{j} \in D \cap f^{-1}$ (A) $(i=1, \cdots, l)$.

Then our integral formula is given by

$$
\begin{aligned}
\int_{D} f^{*} C_{n-k+1}(E)= & \int_{\partial D} f^{*} s^{*} \eta_{n-k+1}\left(\pi_{k}^{\#} E\right) \\
& +\sum_{j=1}^{i} o b s \frac{1}{k}\left(f\left(p_{j}\right), s, A\right) \cdot n\left(p_{j}, f, A\right) .
\end{aligned}
$$

As an application of our theorem, we obtain Levine's "The First Main Theorem [7]" concerning holomorphic mappings f from a non-compact complex manifold V into the n-complex projective space $\boldsymbol{P}^{n}(\boldsymbol{C})$ (c.f. §5).

Finally we note that technics in [2] are used in the proof of Theorem 4.1.

In Section 1 we review the theory of the Chern forms as described in [1]. In Section 2 we refine this theory for the case of complex analytic Hermitian bundles and state the duality formula according to [1]. In Section 3 we define an (n, k)-trivial bundle and its boundary form (c.f. Def. 3.1 and 3.2). Furthermore we study the boundary form $\eta_{n-k+1}\left(\pi_{k}^{*} E\right)$ of the ($\left.n, k\right)$ trivial bundle $\pi_{k}^{\#}(E)$ associated with a Hermitian n-bundle E over a complex manifold X, which plays an important role in our theorem. In Section 4 we define the k-th obstruction number (c.f. Def. 4.1 and 4.2), and prove the generalized relative Gauss-Bonnet theorem.

In preparing this paper, I have received many advices from Dr. N. Tanaka. I would like to express my cordial thanks to him.

§ 1. The Chern forms

1.1 The Chern forms. Let E be a C^{∞}-vector bundle of fibre dimension n over a C^{∞}-manifold X. We denote by $T^{*}=T^{*}(X)$ the cotangent bundle of X and by $A(X)=\sum_{j} A^{j}(X)$ the graded ring of C^{∞}-complex valued differential forms on X. More generally we write $A(X ; E)$ for the differential forms on X with values in E. Thus if $\Gamma(E)$ denotes the smooth sections of E, then it follows that $A(X ; E)=A(X)_{A^{\circ}(X)}^{\otimes} \Gamma(E)$.

Definition 1.1. A connection on E is a differential operator $D: \Gamma(E) \longrightarrow$ $\Gamma\left(T^{*} \otimes E\right)$ satisfying the following rule:

$$
\begin{equation*}
D(f \cdot s)=d f \cdot s+f \cdot D s \tag{1.1}
\end{equation*}
$$

for $f \in A^{0}(X), s \in \Gamma(E)$.
Suppose now that E has a definite connection D. Let $s=\left\{s_{i}\right\}_{1 \leq i \leq n}$ be a frame of E over V, where V is an open subset of X. Then there exist 1-forms $\theta_{i j}$ on V which satisfy the following relations:

$$
\begin{equation*}
D s_{i}=\sum_{j=1}^{n} \theta_{i j} s_{j} \quad i=1, \cdots, n \tag{1.2}
\end{equation*}
$$

These 1-forms $\theta_{i j}$ define a matrix of 1-forms on V, denoted by $\theta(s, D)=\left\|\theta_{j j}\right\|$, which is called the connection matrix relative to the frame s. From $\theta(s, D)$ we now define a matrix $K(s, D)=\left\|K_{i j}\right\|$ of 2 -forms on V by $K_{i j}=d \theta_{i j}-\Sigma_{k} \theta_{i k} \wedge \theta_{k j}$. In matrix notation:

$$
\begin{equation*}
K(s, D)=d \theta(s, D)-\theta(s, D) \wedge \theta(s, D) \tag{1.3}
\end{equation*}
$$

$K(s, D)$ is called the curvature matrix of D relative to the frame s,
Let us consider any two frames s and s^{\prime} of $E \mid V$. Then there exist elements $A_{i j} \in A^{0}(V)$ such that $s_{i}^{\prime}=\sum_{j} A_{i j} s_{j}$ and in matrix notation we write simply $s^{\prime}=A s$. Then we have the following transformation law

$$
\begin{equation*}
A K(s, D)=K(s, D) A \quad s^{\prime}=A s \tag{1.4}
\end{equation*}
$$

From this and the fact that even forms commute with one another, we have

Definition 1.2. The Chern form of E relative to D, denoted by $C(E, D)$, is a global form on X defined as follows: Let us cover X by $\left\{V_{\alpha}\right\}$ which
admit frames s^{α} over V_{α} : Let $\operatorname{det}\left\{1_{n}+i K(s, D) / 2 \pi\right\}$ denote determinants of matrices $1_{n}+i K\left(s^{\alpha}, D\right) / 2 \pi$, where $i=\sqrt{-1}$ and 1_{n} is the unit matrix. Then we set

$$
\begin{equation*}
C(E, D) \mid V_{\alpha}=\operatorname{det}\left\{1_{n}+i K\left(s^{\alpha}, D\right) / 2 \pi\right\} \tag{1.5}
\end{equation*}
$$

Moreover in terms of the transformation law (1.4), the curvature matrices $K\left(s^{\alpha}, D\right)=\left\|K_{i j}\right\|$ determine a definite element $K[E, D] \in A^{2}(X: \operatorname{Hom}(E, E))$ as follows: Let t be any elemet of $\Gamma(E)$. Then for each open set V_{α} there exists elements $f_{i}^{\alpha} \in A^{0}\left(V_{\alpha}\right)$ such that $t=\sum_{i=1}^{n} f_{i}^{\alpha} s_{i}^{\alpha}, s^{\alpha}=\left\{s_{i}^{\alpha}\right\}_{1 \leq i \leq n}$. Here we put

$$
\begin{equation*}
K[E, D] \cdot t=\sum_{i, j=1}^{n} f_{i}^{\alpha} K_{i j}^{\alpha} \cdot s_{j}^{\alpha} \quad \text { on } \quad V_{\alpha} . \tag{1.6}
\end{equation*}
$$

$K[E, D]$ is called the curvature element of E relative to D.
1.2. Reformulation of the Chern forms. We observe that by using the curvature element $K[E, D]$, we can reformulate the Chern form $C(E, D)$ in the following manner.

Definition 1.3. Let M_{n} denote the vector space of $n \times n$ matrices over \boldsymbol{C}. A k-linear function φ on M_{n} is called invariant if for any $B \in G L(n: C)$,

$$
\begin{equation*}
\varphi\left(A_{1}, \cdots, A_{k}\right)=\varphi\left(B A_{1} B^{-1}, \cdots, B A_{k} B^{-1}\right) \text { for } A_{i} \in M_{n} \tag{1.7}
\end{equation*}
$$

We denote by $I^{k}\left(M_{n}\right)$ the vector space of all the k-linear invariant functioons.
Now given $\varphi \in I^{k}\left(M_{n}\right)$ and an open set V of X, we ixtend φ to a k-linear mapping, denoted by φ_{v}, from $M_{n} \otimes A(V)$ into $A(V)$ by putting

$$
\omega_{\mathrm{v}}\left(A_{1} \omega_{1}, \cdots, A_{k} \omega_{k}\right)=\varphi\left(A_{1}, \cdots, A_{k}\right) \omega_{1} \wedge \cdots \wedge \omega_{k}
$$

for $A_{i} \in M_{n}, \quad \omega_{i} \in A(V)$.
On the other hand if $\xi \in A(X: \operatorname{Hom}(E, E))$ and if $s=\left\{s_{i}\right\}$ is a frame of $E \mid V$, then ξ determines a matrix of forms $\xi(s)=\left\|\xi(s)_{i j}\right\| \in M_{n} \otimes A(V)$ by $\sum_{j} \xi(s)_{i j} s=\xi \cdot s_{i}$, and under the substitution $s^{\prime}=A s$. these matrices transform by $\xi\left(s^{\prime}\right)=A \xi(s) A^{-1}$. Hence given $\xi_{i} \in A(X: \operatorname{Hom}(E, E)) \quad(i=1, \cdots, k)$ and $\varphi \in I^{k}\left(M_{n}\right)$; we can define a form $\varphi\left(\xi_{1}, \cdots, \xi_{k}\right) \in A(X)$ as follows: Let s be a frame of $E \mid V$. Then set

$$
\begin{equation*}
\varphi\left(\xi_{1}, \cdots, \xi_{k}\right) \mid V=\varphi_{v}\left(\xi_{1}(s), \cdots, \xi_{k}(s)\right) \tag{1.8}
\end{equation*}
$$

where the $\xi_{i}(s)$ are matrices of ξ_{i} relative to s.
For simplicity we put $\varphi(\xi, \cdots, \xi)=\varphi((\xi))$.

Now let D be a connection on E and let $C(E, D)$ and $K[E, D]$ denote the Chern form and the curvature element of E relative to D respectively. Then we want to construct k-linear invariant functions $b_{k}^{n} \in I^{k}\left(M_{n}\right)(k=1, \cdots, n)$ such that

$$
\left.C(E, D)=1+\sum_{k=1}^{n} b_{k}^{n}(\kappa K[E, D])\right) \quad \kappa=i / 2 \pi
$$

For this purpose let L be a k-tuples (i_{1}, \cdots, i_{k}) of integers from $\{1, \cdots, n\}$ such that $i_{1}<\cdots<i_{k}$. Then we define linear mappings L_{l} on $M_{n}(l=1$, $\cdots, k)$ as follows: For any $A=\left\|a_{i j}\right\| \in M_{n}$, we put

$$
L_{l}(A)=\left(\begin{array}{l}
a i_{1} i_{l} \\
\vdots \\
a_{i_{k} i_{l}}
\end{array}\right) \quad l=1, \cdots, k
$$

If $A_{\alpha}=\left\|a_{i j}^{\alpha}\right\| \in M_{n},(a=1, \cdots, k)$, then $\operatorname{det}\left\{L_{1}\left(A_{1}\right), \cdots, L_{k}\left(A_{k}\right)\right\}$ denotes the determinant of the matrix $\left\|a_{i_{\beta} i_{r}}^{\alpha}\right\|_{1 \leq \beta, r \leq k}$. With this notation k-linear functions b_{k}^{n} are defined as follows: For any $A_{\alpha} \in M_{n}(a=1, \cdots, k)$,

$$
\begin{equation*}
b_{k}^{n}\left(A_{1}, \cdots, A_{k}\right)=\sum_{o, L} \frac{1}{k!} \operatorname{det}\left\{L_{1}\left(A_{o(1)}\right), \cdots, L_{k}\left(A_{o(k)}\right)\right\}, \tag{1.9}
\end{equation*}
$$

where the summation is extended over all permutations σ of $\{1, \cdots, k\}$ and all k-tuples $L=\left(i_{1}, \cdots, i_{k}\right)$ of integers from $\{1, \cdots, n\}$ such that $i_{1}<\cdots<i_{k}$.

It is clear from definition that the b_{k}^{n} are symmetric, that is, for any permutation σ of $\{1, \cdots, k\}$,

$$
b_{k}^{n}\left(A_{1}, \cdots, A_{k}\right)=b_{k}^{n}\left(A_{o(1)}, \cdots, A_{\sigma(k)}\right) \quad A_{i} \in M_{n}
$$

Therefore in a case of $A_{1}=\cdots=A_{k}=A$, it follows that

$$
\begin{equation*}
b_{k}^{n}((A))=\Sigma_{L} \operatorname{det}\left\{L_{1}(A), \cdots, L_{k}(A)\right\} \tag{1.10}
\end{equation*}
$$

Hence we find that

$$
\begin{equation*}
\operatorname{det}\left(1_{n}+A\right)=1+\sum_{k=1}^{n} b_{k}^{n}((A)) \quad A \in M_{n} \tag{1.11}
\end{equation*}
$$

where 1_{n} is the unit matrix of M_{n}.
Lemma 1.1. The k-linear function b_{k}^{n} is invariant, i.e., $b_{k}^{n} \in I^{k}\left(M_{n}\right)$.
Proof. Let $\lambda_{1}, \cdots, \lambda_{. k}$ be indeterminates and let A_{1}, \cdots, A_{k} be any fixed elements of M_{n}. Then it follows from (1.10) and (1.11) that

$$
\begin{gather*}
\operatorname{det}\left(1_{n}+\sum_{\alpha=1}^{k} \lambda_{\alpha} A_{\alpha}\right)=1+\sum_{r=1}^{n}\left[\sum_{L=\left(i_{1}, \cdots, i_{k}\right)} \sum_{j_{1}, \cdots, j_{r}=1}^{k} \lambda_{j_{1}, \ldots, \lambda_{j_{r}}}\right. \tag{1.12}\\
\left.\operatorname{det}\left\{L_{1}\left(A_{j_{1}}\right) \cdots L_{r}\left(A_{j_{r}}\right)\right\}\right]
\end{gather*}
$$

Since both sides of (1.2) are considered smooth functions of k variables $\lambda_{1}, \cdots, \lambda_{k}$, we operate $\partial^{k} / \partial \lambda_{1} \cdots \partial \lambda_{k}$ on each side of (1.12) at the origin $\left(\lambda_{1}, \cdots, \lambda_{k}\right)=(0, \cdots, 0)=0$. Then from $\left.\frac{\partial^{k}}{\partial \lambda_{1} \cdots \partial \lambda_{k}}\right|_{0}\left(\lambda_{j 1} \cdots \lambda_{j r}\right)$

$$
=\left\{\begin{array}{l}
1 \text { if } r=k \text { and }\left\{j_{1}, \cdots, j_{r}\right\}=\{1, \cdots, k\} \\
0 \text { otherwise }
\end{array}\right.
$$

(1.13)

$$
\left.\frac{\partial^{k}}{\partial \lambda_{1} \cdots \partial \lambda_{k}}\right|_{0} \operatorname{det}\left(1_{n}+\sum_{\alpha=1}^{k} \lambda_{\alpha} A_{\alpha}\right)=\sum_{\sigma, L=\left(i_{1}, \cdot, i_{k}\right)} \operatorname{det}\left\{L_{1}\left(A_{o(1)}\right), \cdots L_{k}\left(A_{o(k)}\right.\right.
$$

Thus it follows from (1.9) and (1.13) that

$$
\begin{equation*}
b_{k}^{n}\left(A_{1}, \cdots, A_{k}\right)=\left.\frac{1}{k!} \frac{\partial^{k}}{\partial \lambda_{1} \cdots \partial \lambda_{k}}\right|_{0} \operatorname{det}\left(1_{n}+\sum_{\alpha=1}^{k} \lambda_{\alpha} A_{\alpha}\right) . \tag{1.14}
\end{equation*}
$$

It is clear from (1.14) that b_{k}^{n} is invariant.
Q.E.D.

Now let $C(E, D)$ and $K[E, D]$ be as before. Then in views of Lemma 1.1 and (1.11), we find that the b_{k}^{n} are invariant and satisfy the next relation:

$$
\begin{equation*}
C(E, D)=1+\sum_{k=1}^{n} b_{k}^{n}((\kappa K[E, D])) . \tag{1.15}
\end{equation*}
$$

Notice that $b_{k}^{n}((\kappa K[E, D]))$ becomes a global form of degree $2 k$ on X because of $K[E, D] \in A^{2}(X: \operatorname{Hom}(E, E))$. Here we have

Definition 1.4. Let $K[E, D]$ be the curvature element of E relative to D. Let b_{k}^{n} denote the k-linear invariant function defined by (1.9). Then the $2 k$-form $b_{k}^{n}((\kappa K[E, D]))$ is called the k th Chern form of E relative to D, denoted by $C_{k}(E, D)$.

With this notation the relation (1.15) becomes

$$
\begin{equation*}
C(E, D)=1+\sum_{k=1}^{n} C_{k}(E, D), \quad C_{k}(E, D)=b_{k}^{n}((\kappa K[E, D])) \tag{1.15}
\end{equation*}
$$

Moreover, applying the next proposition to the invariant functions b_{k}^{n}, it follows that

$$
\begin{equation*}
d C_{k}(E, D)=0 \quad k=1, \cdots, n \tag{1.16}
\end{equation*}
$$

so that

$$
\begin{equation*}
d C(E, D)=0 \tag{1.17}
\end{equation*}
$$

Proposition 1.2. [1]. Let E be a C^{∞}-vector bundle of fibre dimension n over a C^{∞}-manifold X with a connection D. Let $K[E, D]$ be the curvature element. Given any $\varphi \in I^{k}\left(M_{n}\right)$, then we obtain

$$
\begin{equation*}
d \varphi((K[E, D]))=0 \tag{1.18}
\end{equation*}
$$

Next we introduce notations used in the later sections, For $\varphi \in I^{k}\left(M_{n}\right)$ we abbreviate $\sum_{\alpha=1}^{k} \varphi(A, \cdots, B, \cdots, A)$ to $\varphi^{\prime}((A: B))$. We put for any $A, B \in M_{n}$

$$
\widetilde{\operatorname{det}}((A))=1+\sum_{k=1}^{n} b_{k}^{n}((A)) \text { and } \widetilde{\operatorname{det}^{\prime}((A: B))=\sum_{k=1}^{n} b_{k}^{n \prime}((A: B)) ~}
$$

Then it follows that

$$
\begin{align*}
& \widetilde{\operatorname{det}^{\prime}}((A: B))=\left.\frac{\partial}{\partial \lambda}\right|_{0} \operatorname{det}\left(1_{n}+A+\lambda B\right), \tag{1.19}\\
& \widetilde{\operatorname{det}}((\kappa K[E, D]))=C(E, D) . \tag{1.20}
\end{align*}
$$

In order to prove (1.19) it is sufficient to notice that $\operatorname{det}\left(1_{n}+A+\lambda B\right)=1$ $+\sum_{k=1}^{n} b_{k}^{n}((A+\lambda B))$. (1.20) is trivial.

Remark. A connection D on E is extended uniquely to an antiderivation of the $A(X)$ module $A(X: E)$, so as to satisfy the law:

$$
\begin{equation*}
D(\theta \cdot s)=d \theta \cdot s+(-1)^{p} \theta \cdot D s \quad \theta \in A^{p}(X), s \in \Gamma(E) \tag{1.21}
\end{equation*}
$$

Then from the definition (1.6) of the curvature element $K[E, D]$, we find that

$$
\begin{equation*}
D^{2} s=K[E, D] \cdot s \quad \text { for any } s \in \Gamma[E) \tag{1.22}
\end{equation*}
$$

§2. The duality formula

2.1. The canonical connection of a Hermitian bundle. Let E be a holomorphic vector bundle over a complex manifold X. Then a norm N on E is a real-valued function $N: E \longrightarrow \boldsymbol{R}$ such that the restriction of N to any fibre is a Hermitian norm on that fibre. Thus for each $x \in X$, a positive definite Hermitian form, denoted by $\langle u, v\rangle_{N}$, or simply $\langle u, v\rangle$, is defined by putting for any $u, v \in E_{x}$,

$$
\langle u, v\rangle_{N}=\frac{1}{2}\{N(u+v)-N(u)-N(v)\}+i \frac{1}{2}\{N(u+i v)-N(u)-N(v)\} .
$$

Moreover this Hermitian form \langle,\rangle_{N} is extended as follows: For any sections s and s^{\prime}, we define $\left\langle s, s^{\prime}\right\rangle$ as the function $\left\langle s, s^{\prime}\right\rangle(x)=\left\langle s(x), s^{\prime}(x)\right\rangle$ and we set in general $\left\langle\theta \cdot s, \theta^{\prime} \cdot s^{\prime}\right\rangle=\theta \wedge \bar{\theta}^{\prime}\left\langle s, s^{\prime}\right\rangle \theta, \theta^{\prime} \in A(X)$. A holomorphic vector bundle with a norm is called a hermitian vector bundle. Let E be a Hermitian vector bundle. Then we will find from the following Proposition 2.1 that E has a canonical connection induced by a norm on E. It is our aim to study the Chern form of E relative to this canonical connection.

Now let X be a complex manifold. The complex valued differential froms $A(X)$ split into a direct sum $\Sigma A^{p, q}(X)$ where $A^{p, q}(X)$ is generated over $A^{0}(X)$ by forms of the type $d f_{1} \wedge \cdots \wedge d f_{p} \wedge d \bar{f}_{p+1} \wedge \cdots \wedge d \bar{f}_{p+q}$, the f_{i} being local holomorphic functions on X. Therefore d spilts into $d^{\prime}+d^{\prime \prime}$ where

$$
d^{\prime}: A^{p, q} \longrightarrow A^{p+1, q} \text { and } d^{\prime \prime}: A^{p, q} \longrightarrow A^{p, q+1} .
$$

If E is a vector bundle over X, then $A(X: E)$ split into the direct sum $\sum A^{p, q}(X ; E)=\Sigma A^{p, q}(X) \otimes \Gamma(E)$ according to the decomposition of $A(X)$. Hence any connection D on E is decomposed into $D^{\prime}+D^{\prime \prime}$:

$$
D^{\prime}: \Gamma(E) \longrightarrow A^{1,0}(X: E) \text { and } D^{\prime \prime}: \Gamma(E) \longrightarrow A^{0,1}(X: E) .
$$

With these preliminaries we obtain
Proposition 2.1. [1]. Let N be a norm on a Hermitian vector bundle E. Then N induces a canonical connection $D=D(N)$ on E which is characterized by the two conditions:
(2.1) D preserves the norm N, i.e., for any $s, s^{\prime} \in \Gamma(E)$

$$
d\left\langle s, s^{\prime}\right\rangle=\left\langle D s, s^{\prime}\right\rangle+\left\langle s, D^{\prime}\right\rangle
$$

(2.2) If s is a holomorphic section of $E \mid V$, then $D^{\prime \prime} s=0$ on V.

This proposition shows that if $s=\left\{s_{i}\right\}$ is a holomorphic frame of $E \mid V$ and if $N(s)$ denotes the matrix of functions $N(s)=\left\|\left\langle s_{i}, s_{j}\right\rangle\right\|$, then the connection matrix $\theta(s, N)$ of $D(N)$ relative to the frame s is given by

$$
\begin{equation*}
\theta(s, N)=d^{\prime} N(s) \cdot N(s)^{-1} \quad \text { on } \quad V \tag{2.3}
\end{equation*}
$$

and the curvature matrix $K(s, N)$ is expressed as follows:

$$
\begin{align*}
& K(s, N)=d^{\prime \prime} \theta(s, N) \text {, whence } K(s, N) \text { is of type }(1,1) \tag{2.4}\\
& \text { and } d^{\prime \prime} K(s, N)=0 .
\end{align*}
$$

It follows from (2.4) and Definition 1.4 that the k th Chern forms C_{k} $(E, D(N))$ are of type (k, k).

Suppose now that E is a line bundle. Then a holomorphic frame is a nonvanishing holomorphic section s of $E \mid V$, so that, relative to s,

$$
\theta(s, N)=d^{\prime} \log N(s) \text { and } K[E, D(N)] \cdot s=d^{\prime \prime} d^{\prime} \log N(s) .
$$

Thus if E admits a global nonvanishing holomorphic sections s, then

$$
\begin{equation*}
C_{1}(E, D(N))=\frac{i}{2 \pi} d^{\prime \prime} d^{\prime} \log N(s) \tag{2.5}
\end{equation*}
$$

(Note that the invariant function b_{1}^{1} defining $C_{1}(E, D(N))$ becomes the identity mapping of $M_{1}=C$.)
2.2. Homotopy lemma. We state the homotopy lemma on which the duality formula is based.

Definition 2.1. A connection D on a holomorphic bundle E over X, is called of type $(1,1)$ if
(i) For any holomorphic section s of $E \mid V, D^{\prime \prime} s=0$
(ii) The curvature matrix $K(s, D)$ relative to a holomorphic frame s over V, are of type $(1,1)$, i.e., $K[E, D] \in A^{1,1}(X: \operatorname{Hom}(E, E))$.

It is obvious from (2.4) that a cannonical connection $D(N)$ is of type (1.1).
Definition 2.2. A family of connections $D t$ of type (1,1) will be called bounded by $L_{t} \in A^{\circ}(X$: $\operatorname{Hom}(E, E))$ if for any frame s,

$$
d D_{t}(s) / d t=d^{\prime} L_{t}(s)+\left\{L_{t}(s) \cdot \theta\left(s, D_{t}\right)-\theta\left(s, D_{t}\right) L_{t}(s)\right\}
$$

Then we obtain the following homotopy lemma.
Proposition 2.2. [1]. Let D_{t} be a smooth family of comnections of type $(1,1)$ on a holonorphic vector bundle E. Suppose that D_{t} is bounded by $L_{t} \in A$ (X: Hom $(E, E))$. Then for any $\varphi \in I^{k}\left(M_{n}\right), n=\operatorname{dim} E$,

$$
\begin{align*}
& \varphi\left(\left(K\left[E, D_{b}\right]\right)\right)-\varphi\left(\left(K\left[E, D_{a}\right]\right)\right) \tag{2.6}\\
& =d^{\prime \prime} d^{\prime} \int_{a}^{b} \varphi^{\prime}\left(\left(K\left[E, D_{t}\right]: L_{t}\right)\right) d t
\end{align*}
$$

2.3. The duality formula. Now let us consider an exact sequence of holomorphic vector bundles:

$$
\begin{equation*}
0 \longrightarrow E_{I} \longrightarrow E \longrightarrow E_{I I} \longrightarrow 0 \tag{2.7}
\end{equation*}
$$

over a complex manifold X. We twrite ξ for the homomorphism from E onto $E_{I I}$ defining (2.7). Let N be a norm on E. Then the norm N on E iinduces norms N_{I} on E_{I} and $N_{I I}$ on $E_{I I}$ as follows: Let $E_{\frac{1}{I}}$ be the orthocomplement of E_{I}, i.e., if for each $x \in X$, we put $\left(E_{\frac{1}{I}}\right)_{x}=\left\{a \in E_{x}:\langle a, b\rangle_{N}=0\right.$, for all $\left.b \in E_{x}\right\}$, then $E_{\frac{1}{I}}=\cup_{x \in X}\left(E_{\frac{1}{I}}\right)_{x}$.
Hence $E_{\frac{1}{T}}$ becomes the C^{∞}-vector bundle over X. The restriction of ξ to $E_{\frac{1}{I}}$ is the C^{∞}-isomorphism of $E_{\frac{\perp}{I}}$ and $E_{I I}$. Let $\hat{\xi}$ denote the inverse mapping of $\xi \mid E_{I}$. Then the norm $N_{I I}$ on $E_{I I}$ is defined by

$$
N_{I I}\left(a^{\prime}\right)=N\left(\hat{\xi} \cdot a^{\prime}\right) \quad \text { for any } a^{\prime} \in E_{I I}
$$

On the other hand, the norm N_{I} on E_{I} is the restriction of N to E_{I}.
To the exact sequence (2.7), there correspond the canonical connections $D(N)=D$ (on E), $D\left(N_{i}\right)$ (on E_{i}) and the Chern forms $C(E)=C(E, D((N)$), $C\left(E_{i}, D\left(N_{i}\right)\right)$.

Now let $P_{i}(i=I, I I)$ be the orthogonal projections

$$
\begin{equation*}
P_{I}: E \longrightarrow E_{I} \quad \text { and } \quad P_{I I}: E \longrightarrow E_{I} . \tag{2.8}
\end{equation*}
$$

Since $P_{i}(i=I, I I)$ are elements of $\Gamma(\operatorname{Hom}(E, E))$, these are interpreted as degree zero operator, that is, $P_{i}(\theta \cdot s)=\theta \cdot P_{i} \cdot s, \theta \in A(X), s \in \Gamma(E)$. Then the connection $D=D(N)$ is decomposed into four parts

$$
\begin{equation*}
D=\sum_{i, j} P_{i} D P_{j} \quad j, i=I, I I . \tag{2.9}
\end{equation*}
$$

With these preliminaries we obtain
Lemma 2.3, [1]. In the decomposition
(i) $P_{i} D P_{i}(i \neq j)$ are degree zero operators of type (1.0) and (0,1) respectively:

$$
\begin{equation*}
P_{I I} D^{\prime \prime} P_{I}=0, P_{I} D^{\prime} P_{I I}=0 . \tag{2.10}
\end{equation*}
$$

(ii) $P_{i} D P_{i}$ induces the connection $D\left(N_{i}\right)$ on $E_{i} \cdot i=I, I I$.

Proof. The first statement is already proved in [1]. We shall prove only (ii). Let $\xi, \hat{\xi}$ be as above. Then ξ and $\hat{\xi}$ are considered as degree zero operators. Therefore it is clear that $\xi D \hat{\xi}$ defines a connection on $E_{I I}$. We show that $\xi D \hat{\xi}$ is the canonical connection $D\left(N_{I I}\right)$. In order to prove this, it is sufficient to check the conditions (2.1) and (2.2) in Proposition
2.1. At first, (2.1) follows directly from the definition of $N_{I I}$ and the fact that D preserves the inner product \langle,\rangle_{N} :

Let t, t^{\prime} be sections of $E_{1 I}$. Then it follows that

$$
\begin{aligned}
d\left\langle t, t^{\prime}\right\rangle_{N_{I I}} & =d\left\langle\hat{\xi} t, \hat{\xi} t^{\prime}\right\rangle=\left\langle D \hat{\xi} t, \hat{\xi} t^{\prime}\right\rangle_{N}+\left\langle\hat{\xi} t, D \hat{\xi} t^{\prime}\right\rangle_{N} \\
& =\left\langle\xi D \hat{\xi} t, t^{\prime}\right\rangle_{N_{I I}}+\left\langle t, \xi D \hat{\xi} t^{\prime}\right\rangle_{N_{I I}}
\end{aligned}
$$

For (2.2), let s be a holomorphic section of $E \mid V$. Then, D satisfying the condition (2.2), it follows that $D^{\prime \prime} s=0$ on V. Hence from (2.9) we have

$$
0=D^{\prime \prime} s=\left(P_{I} D^{\prime \prime} P_{I I}+P_{I} D^{\prime \prime} P_{I}\right) \cdot s+P_{I I} D^{\prime} P_{I I} s+P_{I I} D^{\prime \prime} P_{I} s
$$

Thus we find from (2.10) that if s is a holomorphic section of $E \mid V$, then

$$
\begin{equation*}
P_{I I} D^{\prime \prime} P_{I I} s=0 \quad \text { on } \quad V . \tag{2.11}
\end{equation*}
$$

Now let t be a holomorphic section of $E_{I I} \mid V$. Then for each $x \in V$, there exist a neighborhood $V(x) \subset V$ of x and a holomorphic section s of $E \mid V(x)$ such that $\xi \cdot s=t$ on $V(x)$. On the other hand, it is clear that $(\xi D \hat{\xi})^{\prime \prime}=$ $\xi D^{\prime \prime} \hat{\xi}, \xi=\xi P_{I I}$ and $\hat{\xi} \xi=P_{I I}$. Therefore we have

$$
(\xi D \hat{\xi})^{\prime \prime} \cdot t=\xi D^{\prime \prime} \hat{\xi} \cdot t=\xi D^{\prime \prime} \hat{\xi} \cdot \xi s=\xi P_{I I} D^{\prime \prime} P_{I I} s
$$

From (2.11) it follows that $(\xi D \hat{\xi})^{\prime \prime} t=0$ on $V(x)$. Thus we have proved that $(\xi D \hat{\xi})^{\prime \prime} t=0$ on V. Therefore $\xi D \hat{\xi}$ is the canonical connection $D\left(N_{I I}\right)$.

Hence if we identify E_{I} and $E_{I I}$ under the isomorphism $\hat{\xi}$, then we can zalso identify $P_{I I} D P_{I I}$ and $\xi D \hat{\xi}$. Therefore, as we have proved, $P_{I I} D P_{I I}$ is regarded as the connection $D\left(N_{I I}\right)$ on $E_{I I}$. Similarly it is proved that $P_{I} D P_{I}$ induces the connection $D\left(N_{I}\right)$ on E_{I}.
Q.E.D.

Now a family D_{t} which we need for the duality theorem is given by

$$
\begin{equation*}
D_{t}=D+\left(e^{t}-1\right) P_{I I} D P_{I} \quad \text { for all } t \in \boldsymbol{R} \tag{2.12}
\end{equation*}
$$

From (i) in Lemma 2.3 and the fact that D is the connection of type (1.1), D_{t} is a connection of type (1,1) for every $t \in \boldsymbol{R}$. We have further

Lemma 2.4, [1]. The family D_{t} defined by (2.12) is "bounded" by the element $P_{I} \in \Gamma(\operatorname{Hom}(E, E))$.

Using the identifications $P_{i} D P_{i}=D\left(N_{i}\right)(i=I, I I)$, we obtain the following decompositions of $K\left[E, D_{t}\right]$ according to $P_{i}(i=I, I I)$, [1]: Let $P_{i} K$ $\left[E, D_{t}\right] P_{j}$ be denoted by $K_{j 2}\left[E, D_{t}\right]$. Then we have

$$
\begin{equation*}
K_{I I}\left[E, D_{t}\right]=K\left[E_{I}, D\left(N_{I}\right)\right]+e^{t} \square_{I} \tag{2.13}
\end{equation*}
$$

$$
\begin{align*}
& K_{I I I I}\left[E, D_{t}\right]=K\left[E_{I I}, D\left(N_{I I}\right)\right]+e^{t} \square_{I I} \tag{2.14}\\
& K_{I I I}\left[E, D_{t}\right]=e^{t} K_{I I I}[E, D], K_{I I I}\left[E, D_{t}\right]=K_{I I I}[E, D] \tag{2.15}
\end{align*}
$$

where $\square_{I}=P_{I} D P_{I I} D P_{I}$ and $\square_{I I}=P_{I I} D P_{I} D P_{I I}$.
Notice that $\xi K[E, D] \hat{\xi} \in A^{1,1}\left(X ; \operatorname{Hom}\left(E_{I I}, E_{I I}\right)\right)$ is identified with $K_{I I, I I}[E, D]$ under the isomorphism $\hat{\xi}: E_{I I} \longrightarrow E_{I}^{\perp}$. Under this identification, $\square_{I I}$ is also considered as the element of $A^{2}\left(X: \operatorname{Hom}\left(E_{I I}, E_{I I}\right)\right)$, that is, from (2.14),

$$
\square_{I I}=K_{I I I I}[E, D]-K\left[E_{I I}, D\left(N_{I I}\right)\right] \in A^{2}\left(X: \operatorname{Hom}\left(E_{I I}, E_{I I}\right)\right) .
$$

We are now in a position to state the duality theorem. Let us suppose that $\operatorname{dim} E=n$ and let $b_{k}^{n} \in I^{k}\left(M_{n}\right) . \quad(k=1, \cdots, n)$ and let det be as defined in §1. Then from Lemma 2.4 we can apply Proposition 2.2 to D_{t}, P_{I} and det. Here it follows that

$$
\begin{equation*}
C(E, D)-C\left(E, D_{t}\right)=d^{\prime \prime} d^{\prime} \int_{t}^{0} \widetilde{\operatorname{det}^{\prime}}\left(\left(\kappa K\left[E, D_{t}\right] ; \kappa P_{I}\right)\right) \tag{2.16}
\end{equation*}
$$

In the case of $\operatorname{dim} E_{I}=1$, we calculate (2.16). Let us take a frame $u=$ $\left\{u_{i}\right\}_{1 \leq i \leq n}$ of E over an open set V of X such that u_{1} and $v=\left\{u_{i}\right\}_{2 \leq i \leq n}$, respectively, form frames of $E_{I} \mid V$ and $E_{I} \mid V$. Then $v=\left\{u_{i}\right\}_{2 \leq i \leq n}$ is considered as the frame of $E_{I I} \mid V$. As, relative to the frame $u, P_{I}(u)=\left(\begin{array}{c:c}1 & 0 \\ \hdashline 0 & 0\end{array}\right)$ we find from (1.19), (2.13), (2.14) and (2.15) that $\left.\operatorname{det}^{\prime}\left(\left(\kappa K\left[E, D_{t}\right]: \kappa P_{I}\right)\right)\right|_{v}=$. $\left.\frac{\partial}{\partial \lambda}\right|_{\lambda=0}\left\{1_{n}+\kappa K\left[E, D_{t}\right](u)+\lambda_{k} P_{I}(u)\right\}=\left.\frac{\partial}{\partial \lambda}\right|_{\lambda=0} \operatorname{det}$

$$
\left(\frac{1+\kappa K\left[E_{I}, D\left(N_{I}\right)\right]\left(u_{1}\right)+\kappa e^{t} \square_{I}\left(u_{1}\right)+\lambda \kappa}{\kappa K_{I I}[E, D](u)} \left\lvert\, \frac{\kappa e^{t} K_{I I}[E, D](u)}{\left.1_{n-1}+\kappa K\left[E_{I I}, D\left(N_{I I}\right)\right]\right](v)+\kappa e^{t} \square \square_{I I}(v)}\right.\right)
$$

$$
=\kappa \operatorname{det}\left\{1_{n-1}+\kappa K\left[E_{I I}, D\left(N_{I I}\right)\right](v)+e^{t} \kappa \square_{I I}(v)\right\}
$$

$$
=\kappa\left\{1+\sum_{k=1}^{n-1} b_{k}^{n-1} v\left(\left(\kappa K\left[E_{I I}, D\left(N_{I I}\right)\right](v)+\kappa e^{t} \square_{I I}(v)\right)\right\}\right.
$$

$$
=\kappa\left\{1+\sum_{k=1}^{n-1} b_{k}^{n-1}\left(\left(\kappa K\left[E_{I I}, D\left(N_{I I}\right)\right]+\kappa e^{t} \square_{I I}\right)\right)\right\} \mid V,
$$

so that, $\widetilde{\operatorname{det}^{\prime}}\left(\left(\kappa K\left[E, D_{t}\right]: \kappa P_{I}\right)\right)=\kappa\left\{1+\sum_{k=1}^{n-1} b_{k}^{n-1}\left(\left(\kappa K\left[E_{I I}, D\left(N_{I I}\right)\right]+e^{t} \kappa \square \square_{I I}\right)\right)\right.$ on X. For simplicity put $b_{\alpha}^{n-1}((A:(l) B))=b_{\alpha}^{n-1}(\overbrace{\cdots, \cdots, A}^{\alpha-l}, \overbrace{B, \cdots,}^{i} B) A, B \in M_{n-1}$ and set $b_{0}^{n-1}((A))=1, A \in M_{n-1}$. Then in terms of the symmetry of b_{α}^{n-1} and $K\left[E_{I I}, D\left(N_{I I}\right)\right], \square_{I I} \in A^{2}\left(X: \operatorname{Hom}\left[E_{I I}, E_{I I}\right)\right)$, it follows that $b_{\alpha}^{n-1}\left(\left(\kappa K\left[E_{I I}\right]+e^{t}{ }_{\kappa} \square_{I I}\right)\right)$ $=\sum_{l=1}^{a}\binom{\alpha}{l} e^{l t} b_{\alpha}^{n-1}\left(\left(\kappa K\left[E_{I I}\right]:(l) \kappa \square \square_{I I}\right)\right)$ where $K\left[E_{I I}\right]=K\left[E_{I I}, D\left(N_{I I}\right)\right]$ and $\binom{a}{0}=1$ for $l=0$. Therefore it follows that

$$
\begin{aligned}
& \widetilde{\operatorname{det}^{\prime}}\left(\left(\kappa K\left[E . D_{t}\right]: \kappa P_{I}\right)\right) \\
& =\kappa \sum_{\alpha=0}^{n-1} b_{\alpha}^{n-1}\left(\left(\kappa K\left[E_{I I}\right]\right)\right)+\kappa \sum_{\alpha=0}^{n=1} \sum_{l=1}^{\alpha}\binom{\alpha}{l} e^{l t} b_{\alpha}^{n-1}\left(\left(\kappa K\left[E_{I I}\right]:(l) \kappa \square_{I I}\right)\right) . \quad \text { Hence as } \\
& \begin{array}{c}
d^{\prime \prime} d^{\prime}\left(\sum_{\alpha=0}^{n-1} b_{\alpha}^{n-1}\left(\left(\kappa K\left[E_{I I}\right]\right)\right)=d^{\prime \prime} d^{\prime} C_{\alpha}\left(E_{I I}\right)=0\right. \text {, we have } \\
\qquad \lim _{t=-\infty} d^{\prime \prime} d^{\prime} \int_{t}^{0} \widetilde{\operatorname{det}^{\prime}}\left(\left(\kappa K\left[E, D_{t}\right]: \kappa P_{I}\right)\right) \\
=\kappa \sum_{\alpha=1}^{n-1} \sum_{l=1}^{\alpha-1} \frac{1}{l}{ }_{\binom{\alpha}{l}}^{\alpha} b_{\alpha}^{n-1}\left(\left(\kappa K\left[E_{I I}, D\left(N_{I I}\right)\right]:(l) \kappa \square_{I I}\right)\right) .
\end{array}
\end{aligned}
$$

On the other hand, it is obvious that

$$
\lim _{t=-\infty} C\left(E, D_{t}\right)=C\left(E_{I}\right) \cdot C\left(E_{I I}\right) .
$$

Thus we obtain from (2.16) the duality formula for the case of $\operatorname{dim} E_{I}=1$:

$$
\begin{align*}
& C(E)-C\left(E_{I}\right) \cdot C\left(E_{I I}\right) \tag{2.17}\\
= & \kappa d^{\prime \prime} d^{\prime} \sum_{\alpha=1}^{n=1} \sum_{l=1}^{\alpha} \frac{1}{l}\binom{\alpha}{l} b_{\alpha}^{n-1}\left(\left(\kappa K\left[E_{I I}, D\left(N_{I I}\right)\right]:(l) \kappa \square_{I I}\right)\right) .
\end{align*}
$$

Here we put, in general,

$$
C_{0}(E)=1 \quad \text { and } \quad C_{\alpha}(E)=0 \quad \text { if } \quad \alpha>\operatorname{dim} E .
$$

Then using $b_{\alpha}^{n-1}\left(\left(\kappa K\left[E_{I I}, D\left(N_{I I}\right)\right]:(l) \kappa \square_{I I}\right)\right) \in A^{2 \alpha}(X)$, we obtain from (2.17) the following

Proposition 2,5. Let $0 \longrightarrow E_{I} \longrightarrow E \longrightarrow E_{I I} \longrightarrow 0$ be an exact sequence of holomorphic vector bundles over a complex manifold X, and let $C(E)$, and $C\left(E_{i}\right)$ $i=I$, II be the Chem forms induced by a norm N on E. Suppose now $\operatorname{dim} E=n$. Then if $\operatorname{dem} E_{I}=1$, we obtain

$$
\begin{align*}
& C_{n-k+1}(E)-C_{1}\left(E_{I}\right) \cdot C_{n-k}\left(E_{I I}\right)-C_{n-k+1}\left(E_{I I}\right) \tag{2.18}\\
= & \left.\kappa d^{\prime \prime} d^{\prime} \sum_{l=1}^{n-k} \frac{1}{l}\left({ }_{l}^{n-k}\right) b_{n-k}^{n-1}\left(\kappa K\left[E_{I I}, D\left(N_{I I}\right)\right]:(l) \kappa \square \square_{I I}\right)\right), \\
& k=1, \cdots, n,
\end{align*}
$$

where $\square_{I I}=P_{I I} K[E, D(N)] P_{I I}-K\left[E_{I I}, D\left(N_{I I}\right)\right] \in A^{2}\left(X: \operatorname{Hom}\left(E_{I I}, E_{I I}\right)\right)$.
Here we require explicit representations of $K\left[E_{I I}, D\left(N_{I I}\right)\right]$ and $\square_{I I}$.
Lemma 2.6. Notations being as above, let $u=\left\{u_{i}\right\}_{1 \leq i \leq n}$ be a frame of $E \mid V$ such that u_{1} and $v=\left\{u_{i}\right\}_{2 \leq i \leq n}$, respectively, are frames of $E_{I} \mid V$ and $E_{I} \mid V$. Then, relative to the frame v,

$$
\begin{align*}
& K\left[E_{I I}, D\left(N_{I I}\right)\right](v)=\left\|d \theta_{i j}-\sum_{k=2}^{n} \theta_{i k} \wedge \theta_{k j}\right\|_{2 \leq i, j \leq n} \tag{2.19}\\
& \square_{I I}(v)=\left\|-\theta_{i 1} \wedge \theta_{1 j}\right\|_{2 \leq i, j \leq n} \tag{2.20}
\end{align*}
$$

Proof. It is trivial from assumptions that

$$
P_{I I} D P_{I I} \cdot u_{i}=\sum_{j=2}^{n} \theta_{i j} \cdot u_{j} \quad i=2, \cdots, n
$$

Therefore it follows from (1.22) and $P_{I I} D P_{I I}=D\left(N_{I I}\right)$ that

$$
\begin{aligned}
K\left[E_{I I}, D\left(N_{I I}\right)\right] \cdot u_{\imath} & =\left(P_{I I} D P_{I I}\right)^{2} \cdot u_{i} \\
& =\sum_{j=2}^{n}\left(d \theta_{i j}-\sum_{k=2}^{n} \theta_{i k} \wedge \theta_{k j}\right) u_{j}, \quad 2 \leq i \leq n .
\end{aligned}
$$

Thus (2.19) is proved. On the other hand, it follows that; for each integer $i(2 \leq i \leq n)$,

$$
\begin{aligned}
P_{I I} K[E, D] P_{I I} \cdot u_{i} & =P_{I I} D^{2} P_{I I} u_{i}=P_{I I} D^{2} u_{i} \\
& =\sum_{j=2}^{n}\left(d \theta_{i j}-\sum_{k=1}^{n} \theta_{i k} \wedge \theta_{k j}\right) u_{j}
\end{aligned}
$$

Then, relative to the frame v,

$$
P_{I I} K[E, D] P_{I I}(v)=\left\|d \theta_{i j}-\sum_{k=1}^{n} \theta_{i k} \wedge \theta_{k j}\right\|_{2 \leq i, j \leq n} .
$$

Therefore (2.20) follows immediately:

$$
\begin{aligned}
\square_{I I}(v) & =P_{I I} K[E, D] P_{I I}(v)-K\left[E_{I I}, D\left(N_{I I}\right)\right](v) . \\
& =\left\|-\theta_{i 1} \wedge \theta_{1 j}\right\|_{2 \leq i, j \leq n} . \quad \text { Q.E.D. }
\end{aligned}
$$

Using these relations (2.19) and (2.20), we shall apply Proposition 2.5 to the case when E is the product bundle $X \times \boldsymbol{C}^{n}$ over X. Let (,) be the inner product of \boldsymbol{C}^{n} defined as follows: Let e_{1}, \cdots, e_{n} be the natural basis of \boldsymbol{C}^{n} and let z^{1}, \cdots, z^{n} denote the complex coordinates corresponding to this basis. Then put

$$
\begin{equation*}
(u, v)=\sum_{i=1}^{n} \bar{z}^{i}(u) \bar{z}^{i}(v) \quad u, v \in C^{n} \tag{2.21}
\end{equation*}
$$

We take a norm N_{0} on the product bundle E to be one induced by the inner product (,) of \boldsymbol{C}^{n}. Then we have

Corollary 2.7. Let $0 \longrightarrow E_{I} \longrightarrow E \longrightarrow E_{I I} \longrightarrow 0$ be as in Proposition 2.5. Suppose that E is the product bundle $X \times C^{n}$ over X and that $\operatorname{dim} E_{I}=1$. Then it follows that

$$
\begin{equation*}
C_{k}\left(E_{I I}\right)=\left(-C_{1}\left(E_{I}\right)\right)^{k} \quad 1 \leq k \tag{2.22}
\end{equation*}
$$

Proof. Let $s=\left\{s_{i}\right\}_{1 \leq i \leq n}$ be a global holomorphic frame of E defined by

$$
s_{i}(x)=\left(x, e_{i}\right) \quad x \in X, \quad i=1, \cdots, n
$$

E Further let E_{I} denote the orthocomplement to E_{I} and let us take a frame $u=\left\{u_{i}\right\}_{1 \leq_{i} \leq_{n}}$ of $E \mid V$ as defined in Lemma 2.6. Then there exist elements $a_{i j} \in A(V)$ such that $v_{i}=\sum_{j=1}^{n} a_{i j} \cdot s_{j} i=1, \cdots, n$. Let A be the matrix of functions $\left\|a_{i j}\right\|$, and let put $A^{-1}=\left\|b_{i j}\right\|$. Then from $D\left(N_{0}\right) \cdot s_{i}=0(i=1, \cdots, n)$ we have

$$
D\left(N_{0}\right) \cdot u_{i}=\sum_{k=1}^{n}\left(\sum_{k=1}^{n} d a_{i k} b_{k j}\right) \cdot u_{j} .
$$

Therefore if we put $\omega_{i j}=\sum_{k=1}^{n} d a_{i k} b_{k j}(i, j=1, \cdots, n)$, it follows that, relative to the frame u,

$$
\theta\left(u, D\left(N_{0}\right)\right)=\left\|\omega_{i j}\right\|_{1 \leq i, j \leq n} .
$$

Thus if $N_{o I I}$ denotes a norm on $E_{I I}$ induced by N_{0}, we find from (2.19) and (2.20) that, relative to the frame $v=\left\{u_{i}\right\}_{2 \leq i \leq n}$,

$$
\begin{align*}
& K\left[E_{I I}, D\left[N_{o I I}\right)\right](v)=\left\|d \omega_{i j}-\sum_{k=2}^{n} \omega_{i k} \wedge \omega_{k j}\right\| \tag{2.23}\\
& \square_{I I}(v)=\left\|-\omega_{i 1} \wedge \omega_{1 j}\right\| . \tag{2.24}
\end{align*}
$$

On the other hand, it is proved that

$$
\begin{equation*}
d \omega_{i j}-\sum_{k=1}^{n} \omega_{i k} \wedge \omega_{k j}=0, \quad i, j=1, \cdots, n . \tag{2.25}
\end{equation*}
$$

We obtain from (2.23), (2.24) and (2.25),

$$
\begin{equation*}
K\left[E_{I I}, D\left(N_{o I I}\right)\right]=-\square_{I I} . \tag{2.26}
\end{equation*}
$$

Hence the right hand side of (2.17) equals zero. Indeed it follows that, for each k, $(1 \leq k \leq n)$,

$$
\begin{aligned}
& b_{n-k}^{n-1}\left(\left(\kappa K\left[E_{I I}, D\left(N_{o I I}\right)\right]:(l) \kappa \square \square_{I I}\right)\right)=(-1)^{l} b_{n-k}^{n-1}\left(\left(\kappa K\left[E_{I I}, D\left(N_{o I I}\right)\right]\right)\right. \\
& \quad=(-1)^{l} C_{n-k}\left(E_{I I}\right) .
\end{aligned}
$$

From $d C_{n-k}\left(E_{I I}\right)=0$, we find that $d^{\prime \prime} d^{\prime} b_{n-k}^{n-1}\left(\left(\kappa K\left[E_{I I}\right]:(l) \kappa \square \square_{I I}\right)\right)=0 \quad$ Thus we have from (2.17)

$$
\begin{equation*}
C_{n-k+1}(E)-C_{1}\left(E_{I}\right) \cdot C_{n-k}\left(E_{I I}\right)=C_{n-k+1}\left(E_{I I}\right), \quad k=1, \cdots, n \tag{2.27}
\end{equation*}
$$

It is trivial that $C(E)=1$, that is, $C_{o}(E)=1$ and $C_{k}(E)=0$, if $k \geq 1$. Therefore from (2.27)

$$
\begin{equation*}
C_{l}\left(E_{I I}\right)=-C_{1}\left(E_{I}\right) \cdot C_{l-1}\left(E_{I I}\right) \quad l=1, \cdots, n \tag{2.28}
\end{equation*}
$$

By noting $C_{n}\left(E_{I I}\right)=0$ and $C_{o}\left(E_{I I}\right)=1$, (2.22) follows directly from (2.28).
Q.E.D.

§3. The (n, k)-trivial bundle

3.1. Let E be a Hermitian vector bundle of fibre dimension n over a 3 complex manifold X, which admits k linearly independent holomorphic sections, say $s_{1}, \cdots, s_{k},(1 \leq k \leq n)$. At first, let us introduce the next notation: Let V be a complex vector space and let v_{1}, \cdots, v_{k} be k vectors of V. Then we denote by $\left[v_{1}, \cdots, v_{k}\right]$ the linear subspace of V spanned by the vectors v_{1}, \cdots, v_{k}.

Since s_{1}, \cdots, s_{k} are k linearly independent holomorphic sections of E, we can define, with the notation above, the following holomorphic vector bundles over X :

$$
\begin{array}{lr}
E_{0}^{I}=\bigcup_{x \in X}\left[s_{1}(x)\right] & \\
E_{\imath}^{I}=\bigcup_{x \in X}\left[s_{i+1}(x)\right] /\left[s_{1}(x), \cdots, s_{i}(x)\right] & i=1, \cdots, k-1 \\
E_{i}^{I I}=\underset{x \in X}{ } E_{x} /\left[s_{1}(x), \cdots, s_{i}(x)\right] & i=1, \cdots, k \tag{3.3}
\end{array}
$$

For convenience sake put $E_{0}^{I I}=E$. Then one notes that each E_{i}^{I} is a subbundle of $E_{i}^{I I}$ of fibre dimension 1, and that $E_{i}^{I I}$ is of fibre dimension $(n-i)$ for $i=0, \cdots, k$. Now let $\xi_{i}: E_{i-1}^{I I} \longrightarrow E_{i}^{I I}(i=1, \cdots, k)$ be homomorphisms defined by setting, for each $x \in X$

$$
\begin{aligned}
& \xi_{1}(e)=e /\left[s_{1}(x)\right] \quad \text { and } \quad \xi_{i}\left(e /\left[s_{1}(x), \cdots, s_{i}(x)\right]\right)=e /\left[s_{1}(x), \cdots, s_{i+1}(x)\right], \\
& i=2, \cdots, k,
\end{aligned}
$$

for any $e \in E_{x}$. Then there exists a system of exact sequences:

$$
\begin{equation*}
0 \longrightarrow E_{i-1}^{I} \longrightarrow E_{i-1}^{I I} \longrightarrow E_{i}^{I I} \longrightarrow 0 \quad(i=1, \cdots, k) \tag{3.4}
\end{equation*}
$$

over X. Let N be a norm on E. First of all, in terms of the exact sequence: $0 \longrightarrow E_{0}^{I} \longrightarrow E_{0}^{I I} \longrightarrow E_{1}^{I I} \longrightarrow 0$, the norm N on $E=E_{0}^{I I}$ induces norms N_{0}^{I} on E_{0}^{I} and $N_{1}^{I I}$ on $E_{1}^{I I}$ as defined in $\S 2$. Next $N_{1}^{I I}$ induces norms $N_{1}^{I I}$ on E_{1}^{I} and $N_{2}^{I I}$ on $E_{2}^{I I}$ from $0 \longrightarrow E_{1}^{I} \longrightarrow E_{1}^{I I} \longrightarrow E_{2}^{I I} \longrightarrow 0$. Thus the norm N on E induces norms N_{i-1}^{I} on E_{i-1}^{I} and $N_{i}^{I I}$ on $E_{i}^{I I}$ inductively. Here we write $C(E), C\left(E_{i-1}^{I}\right)$ and $C\left(E_{i}^{I I}\right)(i=1, \cdots, k)$ for the Chern forms induced by the norm N. We shall now apply the duality formula (2.17) to each exact sequence of (3.4). Let $0 \longrightarrow E_{i-1}^{I} \longrightarrow E_{i-1}^{I I} \longrightarrow$ $E_{i}^{I I} \longrightarrow 0$ be as in (3.4). Let $\left(E_{i-1}^{I}\right) \perp$ denote the orthocomplement to E_{i-1}^{I}
and let $P_{i-1}^{I I}: E_{i-1}^{I I} \longrightarrow\left(E_{i-1}^{I}\right) \perp$ be the projection. Then we define an element $\square_{i} \in A^{2}\left(X: \operatorname{Hom}\left(E_{i}^{I I}, E_{i}^{I I}\right)\right)$ by

$$
\begin{equation*}
\square_{i}=P_{i-1}^{I I} K\left[E_{i-1}^{I I}, D\left(N_{i-1}^{I I}\right)\right] P_{i-1}^{I I}-K\left[E_{i}^{I I}, D\left(N_{i}^{I I}\right)\right] \tag{3.5}
\end{equation*}
$$

where $K\left(E_{\alpha}^{I I}, D\left(N_{\alpha}^{I I}\right)\right]$ is the curvature element of the cannonical connection $D\left(N_{\alpha}^{I I}\right)$ induced by $N_{\alpha}^{I I}(\alpha=i-1, i)$. Then noting that $\operatorname{dim} E_{i-1}^{I I}=(n-i+1)$, we have from (2.17)

$$
\begin{equation*}
C_{n-k+1}\left(E_{i-1}^{I}\right)-C_{1}\left(E_{i-1}^{I}\right) \cdot C_{n-k}\left(E_{i}^{I I}\right)-C_{n-k+1}\left(E_{i}^{I I}\right) \tag{3.6}
\end{equation*}
$$

$$
\left.=\kappa d^{\prime \prime} d^{\prime} \sum_{l=1}^{n-k} \frac{1}{l}\left({ }_{l}^{n-k}\right) b_{n-k}^{n-1}\left(\left(\kappa K E_{i}^{I I}, D\left(N_{i}^{I I}\right)\right]:(l)_{\kappa} \square_{i}\right)\right), \quad i=1, \cdots, k
$$

Let $\tilde{s}_{i}: X \rightarrow E_{i-1}^{I}(i=1, \cdots, k)$ be holomorphic sections defined as follows: For each $x \in X$,
(3.7) $\quad \tilde{s}_{1}(x)=s_{1}(x)$, and $\tilde{s}_{i}(x)=s_{i}(x) /\left[s_{1}(x), \cdots, s_{i-1}(x)\right]$ for $i=2, \cdots, k$. Then these sections become global nonvanishing holomorphic sections, so that from (2.5)

$$
\begin{equation*}
C_{1}\left(E_{i-1}^{I}\right)=\chi d^{\prime \prime} d^{\prime} \log N_{i-1}^{I}\left(s_{i}\right) \quad i=1, \cdots, k . \tag{3.8}
\end{equation*}
$$

As $\sum_{i=1}^{k}\left\{C_{n-k+1}\left(E_{i-1}^{I I}\right)-C_{n-k+1}\left(E_{i}^{I I}\right)\right\}=C_{n-k+1}(E)$ and $d^{\prime} C_{n-k}\left(E_{\imath}^{I I}\right)=0 \quad i=1, \cdots, k$, it follows from (3.6) and (3.8) that

$$
\begin{align*}
& C_{n-k+1}(E) \tag{3.9}\\
& =\kappa d^{\prime \prime} d^{\prime} \sum_{i=1}^{k}\left\{\log N_{i-1}^{I}\left(\tilde{s}_{i}\right) C_{n-k}\left(E_{i}^{I I}\right)+\sum_{l=1}^{n-k} \frac{1}{l}\left(l_{l}^{n-k}\right) b_{n-k}^{n-i}\right. \\
& \left.\left.\left(\left(\kappa K E_{i}^{I I}, D N_{i}^{I I}\right)\right]: \kappa \square_{i}\right)\right) .
\end{align*}
$$

Put

$$
\begin{align*}
& \eta_{n-k+1}\left(E, N,\left\{s_{i}\right\}_{1 \leq i \leq k}\right) \tag{3.10}\\
& =-\frac{1}{4} d^{c} \sum_{l=1}^{k}\left\{\log N_{i-1}^{I}\left(\tilde{s}_{2}\right) \cdot C_{n-k}\left(E_{i}^{I I}\right)+\sum_{l=1}^{n-k} \frac{1}{l}\left({ }_{l}^{n-k}\right) b_{n-k}^{n-i}\right. \\
& \\
& \left(\left(\kappa K\left[E_{i}^{I I}, D\left(N_{i}^{I I}\right):(l) \kappa \square \square_{i}\right)\right)\right\} .
\end{align*}
$$

where $d^{c}=i\left(d^{\prime}-d^{\prime}\right)$.
Then from $d d^{c}=-2 i d^{\prime \prime} d^{\prime}, \quad C_{n-k+1}(E)=d \eta_{n-k+1}\left(E, N,\left\{s_{i}\right\}_{1 \leq i \leq k}\right)$. One notes that $\eta_{n-k+1}\left(E, N,\left\{s_{i}\right\}_{1 \leq i \leq k}\right)$ is an element of $A^{2(n-k)+1}(X)$.

Definition 3.1. Let E be a holomorphic vector bundle of fibre dimension n with a norm N, over a complex manifold X. Suppose further
E admits k linearly independent holomorphic sections s_{1}, \cdots, s_{k}. Then E is called the (n, k)-trivial bundle with the norm N and the k-frames $=\left\{s_{i}\right\}_{1 \leq i} \leq_{k}$, over X, or simply the (n, k)-trivial bundle with (N, s) over X. Moreover the $2(n-k)+1$-form $\eta_{n-k+1}(E, N, s)$ on X defined by (3.10) is called the boundary form of the (n, k)-trivial bundle E.

With this definition, we resume discussions above as
Proposition 3.1. Let E be an (n, k)-trivial bundle with (N, s), over a complex manifold X, and let $\eta_{n-k+1}(E, N, s)$ be the boundary form of E. If $C_{n-k+1}(E)$ denotes the $(n-k+1)$ th Chern form induced by the norm N on E, then

$$
\begin{equation*}
C_{n-k+1}(E)=d \eta_{n-k+1}(E, N, s) \tag{3.11}
\end{equation*}
$$

3.2. The properties of boundary forms. We shall next study a local expression of the boundary form $\eta_{n-k+1}(E, N, s)$. Let E be an (n, k)-trivial bundle with $\left(N, s=\left\{s_{i}\right\}\right)$ over X. Then a frame $u=\left\{u_{i}\right\}_{1 \leq_{i} \leq n}$ of E over an open set V of X, is called a compatible frame with the k-frame s if:
(i) u is an orthonormal frame of $E \mid V$.
(ii) For each $x \in X,\left[u_{1}(x), \cdots, u_{i}(x)\right]=\left[s_{1}(x), \cdots, s_{i}(x)\right] i=1, \cdots, k$, i.e., u_{1}, \cdots, u_{k} are global orthonormal sections constructed from the k-frame s, in terms of Schmidt's orthogonalization.

Let $0 \rightarrow E_{i-1}^{I} \rightarrow E_{i-1}^{I I} \xrightarrow{\xi_{t}} E_{i}^{I I} \rightarrow 0$ be as defined in (3.4) and put $\xi_{0}=$ identity mapping of E. Let $u=\left\{u_{i}\right\}_{1 \leq_{i} \leq n}$ be a compatible frame of $E \mid V$ with the k-frame s. Then for each $i,(1 \leq i \leq k),\left\{\xi_{i-1} \cdots \xi_{0} u_{t}\right\}_{i \leq t} \leq n$ becomes an orthonormal frame of $E_{i-1}^{I I}$ such that $\xi_{i-1} \cdots \xi_{0} u_{i}$ and $\left\{\xi_{i} \cdots\right.$ $\left.\xi_{1} u_{t}\right\}_{i+1 \leq t \leq n}$ form orthonormal frames of $E_{i-1}^{I} \mid V$ and $E_{i}^{I I} \mid V$ respectively. Moreover if $\hat{\xi}_{i}: E_{i}^{I I} \rightarrow\left(E_{i-1}^{I}\right) \perp$ denotes the inverse mapping of $\xi_{i} \mid\left(E_{i-1}^{I}\right) \perp$, $i=1, \cdots, k$, then from (ii) in Lemma 2.3 it follows that $D\left(N_{i}^{I I}\right)=\xi_{i} \cdots$ $\hat{\xi}_{1} D \hat{\xi}_{1} \cdots \hat{\xi}_{i}, i=1, \cdots, k$. Combining these facts with Lemma 2.6, we can prove inductively

Lemma 3.2. Let u be a compatible frame of $E \mid V$ with the k-frame θ and let $\theta(u, D(N))=\left\|\theta_{i j}\right\|$ be the connection matrix of the connection $D(N)$ relative to the frame u. Let us put, for each $i,(i=1, \cdots, k)$,

$$
\begin{align*}
& \Theta_{i i}=\left\|d \theta_{s i}-\sum_{l=i+1}^{n} \theta_{s i} \wedge \theta_{l t}\right\|_{i+1 \leq s, i \leq n} \tag{3.12}\\
& \Theta_{i}=\left\|-\theta_{s i} \wedge \theta_{i t}\right\|_{i+1 \leq s, t \leq n} \tag{3.13}
\end{align*}
$$

$$
\begin{equation*}
s_{i}=\sum_{j=1}^{i} g_{i j} u_{j}, \quad g_{i j} \in A^{o}(X) . \tag{3.14}
\end{equation*}
$$

Then relative to the frame $\left\{\xi_{i-1} \cdots \xi_{1} u_{t}\right\}_{i+1 \leq t \leq n}$,

$$
\begin{align*}
& K\left[E_{i}^{I I}, D\left(N_{i}^{I I}\right)\right]=\Theta_{i i} \tag{3.15}\\
& \square_{i}=\Theta_{i} \tag{3.16}\\
& N_{i-1}^{I}\left(\tilde{s}_{i}\right)=\left|g_{i i}\right|^{2}, \text { for } i=1, \cdots, k \tag{3.17}
\end{align*}
$$

Therefore we obtain from (3.10)

$$
\begin{align*}
& \quad \eta_{n-k+1}(E, N, s) \mid V \tag{3.18}\\
& =\frac{-1}{4 \pi} d^{c} \sum_{i=1}^{k}\left\{\log \left|g_{i i}\right|^{2} b_{n-k}^{n-i}\left(\left(\kappa \Theta_{i i}\right)\right)+\sum_{l=1}^{n-k} \frac{1}{l}\left({ }^{n}{ }_{l}^{n}\right) b_{n-k}^{n-i}\left(\left(\kappa \Theta_{i i}:(l) \kappa \Theta_{0}\right)\right)\right\} .
\end{align*}
$$

From this lemma we have
Corollary 3.3. The boundary form $\eta_{n-k+1}(E, N, s)$ is a real form on X.
Proof. At first, let $u=\left\{u_{i}\right\}_{1 \leq i \leq n}$ be a compatible frame of $E \mid V$ with s and put $\theta(u, D(N))=\left\|\theta_{i j}\right\|$. Then since $D(N)$ preserves the inner product \langle,\rangle_{N} and $\left\langle u_{i}, u_{j}\right\rangle_{N}=\delta_{2 j}, i, j=1, \cdots, n$, we observe that $\bar{\theta}_{i j}=-\theta_{j i} i, j=1$, \cdots, n. Therefore if $\Theta_{i i}$ and Θ_{i} are as defined by (3.12) and (3.13) respectively, then $\bar{\Theta}_{i i}=-{ }^{t} \Theta_{i i}$ and $\bar{\Theta}_{i}=-{ }^{t} \Theta_{i}$ for each i. On the other hand, from the definition (1.9) of b_{k}^{n},

$$
b_{k}^{n}\left(A_{1}, \cdots, A_{k}\right)=b_{k}^{n}\left({ }^{t} A_{1}, \cdots,{ }^{t} A_{k}\right) \quad A_{i} \in M_{n} .
$$

Hence, $b_{n-k}^{n-i}\left(\left(\bar{\kappa} \bar{\Theta}_{i i}\right)\right)=b_{n-k}^{n-i}\left(\left(\kappa^{t} \Theta_{i i}\right)\right)=b_{n-k}^{n-i}\left(\left(\kappa \Theta_{i i}\right)\right)$, and $b_{n-k}^{n-i}\left(\left(\bar{\kappa} \bar{\Theta}_{i i} ;(l) \bar{\epsilon}_{i}\right)\right)=b_{n-k}^{n-i}$ $\left(\left(\kappa \Theta_{i i}:(l) \kappa \Theta_{i}\right)\right)$. Further, as $\bar{d}^{c}=d^{c}$ this corollary is proved. Q.E.D.
3.3 Naturality of boundary forms. We shall next state the naturality of the boundary form. For this purpose, in general, let E be a Hermitian vector bundle over a complex manifold X, and let Y be a complex manifold. Now given a holomorphic mapping $f: Y \longrightarrow X$, we have the induced bundle, denoted by $f^{\sharp} E$, of E under f defined as follows: Let $\Pi: E \longrightarrow X$ be the projection. Then

$$
f^{\sharp} E=\{(y, e) \in Y \times E: f(y)=\Pi(e)\} .
$$

If $t \in \Gamma(E)$, then $t . f$ is considered as an element of $\Gamma\left(f^{\#} E\right)$. Let N be a norm on E. Then a norm $f^{\#} N$ on $f^{\sharp} E$ is denfined by, $f^{\#} N(y, e)=N(e)$, $(y, e) \in f^{\#} E$. This norm $f^{\#} N$ is called the induced norm of N under f. It is
trivial from definition that

$$
\begin{equation*}
f^{*}\left\langle t, t^{\prime}\right\rangle_{N}=\left\langle t . f, t^{\prime} . f\right\rangle_{f^{{ }^{*}}}, \quad t, t^{\prime} \in \Gamma(E) . \tag{3.20}
\end{equation*}
$$

Moreover we can define a connection $f^{\sharp} D$ on $f^{\sharp} E$ as follows: Let $t \in \Gamma\left(f^{\sharp} E\right)$. For each $x \in X$, we take a neighborhood V of x such that there exists a frame $s=\left\{s_{i}\right\}$ of $E \mid V$. Then there exist elements such $f_{i} \in A^{o}\left(f^{-1}(V)\right)$ that $t=\sum_{i} f_{i} \cdot(s \cdot f)$ on $f^{-1}(V)$. If $\theta(s, D(N))=\left\|\theta_{i j}\right\|$ the connection matrix relative to the frame s, then put

$$
\begin{equation*}
f^{\sharp} D \cdot t=\sum_{i} d f_{i} \cdot\left(s_{i} f\right)+\sum_{i, j} f_{i} \cdot f * \theta_{i j}\left(s_{j} f\right) \text { on } V \text {. } \tag{3.21}
\end{equation*}
$$

That this definition is well-defined need not the assumption that f is holomorphic. However the next Lemma 3.4 follows from the facts that f is holomorphic and that $D(N)=D$ is the cannonical connection induced by the norm N on E.

Lemma 3.4. The connection $f^{\sharp} D$ is equal to the canonical connection $D\left(f^{\sharp} N\right)$, i.e., $f^{\sharp} D(N)=D\left(f^{\sharp} N\right)$.

This is proved as (ii) in Lemma 2.3. Let $u=\left\{u_{i}\right\}$ be a frame of $E \mid V$. Then we denote by $f^{\sharp} u=\left\{u_{i} \cdot f\right\}$ the induced frame of $f^{\sharp} E \mid f^{-1}(V)$. Then we observe from Lemma 3.4 that

$$
\begin{equation*}
f^{*} \theta(u, D(N))=\theta\left(f^{\sharp} u, D\left(f^{\#} N\right)\right) . \tag{3.22}
\end{equation*}
$$

If $C(E)$ and $C\left(f^{\#} E\right)$ denote the Chern form induced by norms N and $f^{\#} N$, respectively, then

$$
\begin{equation*}
f^{*} C(E)=C\left(f^{\#} E\right) . \tag{3.23}
\end{equation*}
$$

Now let E be an (n, k)-trivial bundle with (N, s) over a complex manifold X. Let Y be a complex manifold and let $f: Y \longrightarrow X$ be a holomorphic mapping. Then the induced bundle $f^{\sharp} E$ becomes the (n, k)-trivial bundle with ($f^{\sharp} N, f^{\sharp} s$) over Y. Hence if $\eta_{n-k+1}(E, N, s)$ and $\eta_{n-k+1}\left(f^{\ddagger} E, f^{\sharp} N, f^{\sharp} s\right)$ denote the boundary forms of E and $f^{\sharp} E$ respectively, then we obtain

Proposition 3.5. (Naturality of boundary form)

$$
\begin{equation*}
f^{*} \eta_{n-k+1}(E, N, s)=\eta_{n-k+1}\left(f^{\sharp} E, f^{\sharp} N, f^{\sharp} s\right) \tag{3.24}
\end{equation*}
$$

Proof. As $d^{c} f^{*}=f^{*} d^{c}$, this proposition follows directly from (3.18), (3.20) and (3.22).
Q.E.D.
3.4. The \boldsymbol{k}-general Stiefel bundle. We shall study properties of the boundary form of an (n, k) -trivial bundle constructed from a Hermitian vector bundle. At first let V be a complex vector space of dimension n. Then we denote by $F_{k}(V)$ the k-general Stiefel manifold consisting of all the k-frames $\left(v_{1}, \cdots, v_{k}\right)$ of V. Now let E be a Hermitian vector bundle of fibre dimension n over a complex manifold X. Then let E_{k} be a holomorphic bundle defined by

$$
\begin{equation*}
E_{k}=\bigcup_{x \in X} F_{k}\left(E_{x}\right) . \tag{3.25}
\end{equation*}
$$

This bundle E_{k} is called the k-general Stiefel bundle of E. Clearly E_{k} has the k-general Stiefel manifold $F_{k}\left(\boldsymbol{C}^{n}\right)$ as fibre. Let $\pi_{k}: E_{k} \longrightarrow X$ be the projection. Then we obtain the induced bundle $\pi_{k}^{*} E$ of E under π_{k}. This induced bundle $\pi_{k}^{*} E$ is a holomorphic vector bundle of fibre dinension n over E_{k}, which admits k linearly independent holomorphic sections of $\pi_{k}^{\sharp} E$, say s_{1}, \cdots, s_{k}, defined by setting

$$
\begin{equation*}
s_{i}\left(v_{1}, \cdots, v_{k}\right)=\left\{\left(v_{1}, \cdots, v_{k}\right), v_{i}\right\}, \quad\left(v_{1}, \cdots, v_{k}\right) \in E_{k} i=1, \cdots, k \tag{3.26}
\end{equation*}
$$

Moreover let N be a norm on E. Then $\pi_{k}^{\#} E$ becomes the (n, k)-trivial bundle with the induced norm $\pi_{k}^{\#} N$ and the k-frame $s=\left\{s_{i}\right\}_{1 \leq i \leq k}$, over E_{k}. Therefore if $\eta_{n-k+1}\left(\pi_{k}^{*} E \pi_{k}^{\#} N, s\right)$ denotes the boundary form of $\pi_{k}^{\#} E$, and if $C_{n-k+1}\left(\pi_{k}^{\sharp} E\right)$ is the $(n-k+1)$ th Chern form induced by the norm $\pi_{k}^{\sharp} N$ on $\pi_{k}^{\sharp} E$, then from Proposition 3.1, $C_{n-k+1}\left(\pi_{k}^{\sharp} E\right)=d \eta_{n-k+1}\left(\pi_{k}^{\sharp} E, \pi_{k}^{*} N, s\right)$. Further let $C_{n-k+1}(E)$ be the $(n-k+1)$ the Chern form induced by the norm N on E. Then it follows from (3.23) that $\pi_{k}^{*} C_{n-k+1}(E)=C_{n-k+1}\left(\pi_{k}^{*} E\right)$. We have

$$
\begin{equation*}
\pi_{k}^{*} C_{n-k+1}(E)=d \eta_{n-k+1}\left(\pi_{k}^{\#} E, \pi_{k}^{*} N, s\right) \quad \text { on } E_{k} \tag{3.27}
\end{equation*}
$$

Let x be any fixed point of X, and let us take a neighborhood V of x such that $\varphi: V \times F_{k}\left(\boldsymbol{C}^{n}\right) \longrightarrow \pi_{k}^{-1}(V)$ is a trivialization of $E_{k} \mid V$. Then we define a holomorphic mapping $\varphi_{x}: F_{k}\left(\boldsymbol{C}^{n}\right) . \longrightarrow E_{k}$ by

$$
\begin{equation*}
\varphi_{x}\left(v_{1}, \cdots, v_{k}\right)=\varphi\left\{x,\left(v_{1}, \cdots, v_{k}\right)\right\}\left(v_{1}, \cdots, v_{k}\right) \in F_{k}\left(\boldsymbol{C}^{n}\right) \tag{3.28}
\end{equation*}
$$

This mapping φ_{x} is called the inclusion map at x. Then it is obvious from (3.27) that a $2(n-k)+1$-form

$$
\begin{gathered}
\varphi_{x}^{*} \eta_{n-k+1}\left(\pi_{k}^{\sharp} E, \pi_{k}^{*} N, s\right) \text { on } F_{k}\left(\boldsymbol{C}^{n}\right) \text { is a closed form, i.e., } \\
d \varphi_{x}^{*} \eta_{n-k+1}\left(\pi_{k}^{\#} E, \pi_{k}^{*} N, s\right),=0,
\end{gathered}
$$

and that $\varphi_{x}^{\sharp} \pi_{k}^{\sharp} E=\left(\pi_{k} \cdot \varphi_{x}\right)^{\sharp} E$ is the product bundle $F_{k}\left(\boldsymbol{C}^{n}\right) \times E_{x}$ over $F_{k}\left(\boldsymbol{C}^{n}\right)$. Let us consider the product bundle $F_{k}\left(\boldsymbol{C}^{n}\right) \times \boldsymbol{C}^{n}$ over $F_{k}\left(\boldsymbol{C}^{n}\right)$. We consider $F_{k}\left(\boldsymbol{C}^{n}\right) \times \boldsymbol{C}^{n}$ as the (n, k)-trivial bundle with (No. s^{0}) defined as follows: We take a norm No to be one induced by the inner product (,) of \boldsymbol{C}^{n} as defined in $\S 2$, and we define a k-frame $s^{0}=\left\{s_{i}^{o}\right\}_{1 \leq i \leq k}$ by $s_{i}^{o}\left(v_{1}, \cdots, v_{k}\right)=$ $\left\{\left(v_{1}, \cdots, v_{k}\right), v_{i}\right\}$ for $\left(v_{1}, \cdots, v_{k}\right) \in F_{k}\left(\boldsymbol{C}^{n}\right), \quad i=1, \cdots, k$.

Then the boundary form of $F_{k}\left(\boldsymbol{C}^{n}\right) \times \boldsymbol{C}^{n}$ is also a cocycle form.
Definition 3.2. Let $-\Phi_{k}$ be the boundary form of the (n, k)-trivial bundle $F_{k}\left(\boldsymbol{C}^{n}\right) \times \boldsymbol{C}^{n}$ with (No, $\left.s^{0}\right)$. Then Φ_{k} is called the obstruction form of $F_{k}\left(\boldsymbol{C}^{n}\right)$.

Proposition 3.6. Notations being as above, let $\left\{\varphi_{x}^{*} \eta_{n-k+1}\left(\pi_{k}^{\#} E, \pi_{k}^{\sharp} N, s\right)\right\}$ and $\{\Phi\}_{k}$, respectively, denote the cohomology class of $\varphi_{x}^{*} \eta_{n-k+1}\left(\pi_{k}^{*} E, \pi_{k}^{*} N, s\right)$ and Φ_{k}. Then

$$
\begin{equation*}
-\left\{\Phi_{k}\right\}=\left\{\varphi_{x}^{*} \eta_{n-k+1}\left(\pi_{k}^{*} E, \pi_{k}^{*} N, s\right)\right\} \tag{3.29}
\end{equation*}
$$

$\left\{\Phi_{k}\right\}$ is a generator of $2(n-k)+1$-dimensional cohomology group of $F_{k}\left(\boldsymbol{C}^{n}\right), H^{2(n-k)+1}\left(F_{k}\left(\boldsymbol{C}^{n}\right) ; \boldsymbol{Z}\right)=\boldsymbol{Z}$.

Proof. At first we shall prove (3.29). Since φ_{x} is a holomorphic map, it follows from (3.24) that

$$
\varphi_{x}^{*} \eta_{n-k+1}\left(\tau_{k}^{\ddagger} E, \pi_{k}^{\#} N, s\right)=\eta_{n-k+1}\left(\left(\tau_{k} \varphi_{x}\right)^{\sharp} E, \quad\left(\pi_{k} \varphi_{x}\right)^{\sharp} N, \varphi_{x}^{\sharp} s\right) .
$$

There exists an element $g \in G L(n: C)$ such that the (n, k)-trivial bundle $\left(\pi_{k} \varphi_{x}\right)^{\sharp} E$ with $\left\{\left(\pi_{k} \varphi_{x}\right)^{\#} N, \varphi_{x}^{\#} s\right\}$ is identified with the (n, k)-trivial bundle $F_{k}\left(\boldsymbol{C}^{n}\right) \times \boldsymbol{C}^{n}$ with (No, so under the transformation T_{g} of $F_{k}\left(\boldsymbol{C}^{n}\right)$ defined by, $T_{g}\left(v_{1}, \cdots, v_{k}\right)=\left(g \cdot v_{1}, \cdots, g \cdot v_{k}\right)$ for any $\left(v_{1}, \cdots, v_{k}\right) \in F_{k}\left(\boldsymbol{C}^{n}\right)$, that is,

$$
\begin{aligned}
& T_{g}^{*} \eta_{n-k+1}\left(\left(\pi_{k} \varphi_{x}\right)^{\#} E, \quad\left(\tau_{k} \varphi_{x}\right)^{\#} N, \quad \varphi_{x}^{\#} s\right) \\
& =\eta_{n-k+1}\left(T_{g}^{\#}\left(\pi_{k} \varphi_{x}\right)^{\#} E, \quad T_{g}^{\#}\left(\tau_{k} \varphi_{x}\right)^{\#} N, \quad T_{g}^{\#} \varphi_{x}^{\sharp} s\right) \\
& =\eta_{n-k+1}\left(F_{k}\left(\boldsymbol{C}^{n}\right) \times C^{n}, \quad \text { No, } s^{0}\right)=-\Phi_{k} .
\end{aligned}
$$

However T_{g} is homotopic to the identity mapping of $F_{k}\left(\boldsymbol{C}^{n}\right)$. Thus, (3.29) is proved. On the other hand, (3.30) follows from the next lemma.

Lemma 3.7. Let $F: \boldsymbol{C}^{n-k+1}-\{0\}-F_{k}\left(\boldsymbol{C}^{n}\right)$ be a mapping defined by

$$
F(v)=\left\langle e_{1}, \cdots, e_{k-1}, v\right) \text { for any } v \in \boldsymbol{C}^{n-k+1}-\{0\}
$$

where C^{n-k+1} is regarded as the subspace $\overbrace{0 \times \cdots \times 0}^{k-1} \times C^{n-k+1}$ of \boldsymbol{C}^{n}, and e_{1}, \cdots, e_{n}. is the natural basis of \boldsymbol{C}^{n}.
Then if $S_{n-k+1}(\boldsymbol{C})$ is the unit sphare about the origin in \boldsymbol{C}^{n-k+1}, it follows that the restriction of $F^{*} \Phi_{k}$ to $S_{n-k+1}(\boldsymbol{C})$ becomes the normalized volume element of $S_{n-k+1}(\boldsymbol{C})$, i.e.,

$$
\begin{equation*}
\int_{S_{n-k+1(e)}} F^{*} \Phi_{k}=1 \tag{3.31}
\end{equation*}
$$

Proof. For simplicity put $E=F_{k}\left(\boldsymbol{C}^{n}\right) \times \boldsymbol{C}^{n}$. Since $-\Phi_{k}$ is the boundary form of E with (No, so and $F: \boldsymbol{C}^{n-k+1}-\{0\} \longrightarrow F_{k}\left(\boldsymbol{C}^{n}\right)$ is holomorphic, $F^{*}\left(-\Phi_{k}\right)$ is the bounadry form of the (n, k)-trivial bundle $F^{\#} E$ with ($F^{\#}$ No, $F^{\#} s^{0}$), over $C^{n-k+1}-\{0\}$. In terms of the definitions of F and the k-frame s^{0}, we have

$$
s_{i}^{o} F(v)=e_{i} \quad i=1, \cdots, k-1, \text { and } s_{k}^{o} F(v)=v \text { for } v \in \boldsymbol{C}^{n-k+1}-\{0\}
$$

Hence $F^{*}\left(-\Phi_{k}\right)$ is equal to the boundary form of the ($n-k+1,1$)-trivial bundle $E(\boldsymbol{C})=\left(\boldsymbol{C}^{n-k+1}-\{0\}\right) \times \boldsymbol{C}^{n-k+1}$ with the norm No and the 1 -frame s_{1} defined by $s_{1}(v)=v \times v, v \in \boldsymbol{C}^{n-k+1}-\{0\}$. Here let us consider the following exact sequence:

$$
0 \longrightarrow E(\boldsymbol{C})_{0}^{I} \longrightarrow E(\boldsymbol{C}) \longrightarrow E(\boldsymbol{C})_{1}^{I I} \longrightarrow 0
$$

where $E(\boldsymbol{C})_{0}^{I}=\underset{v \in \boldsymbol{C}^{n-k+1}-\{0\}}{\cup}\left[s_{1}(v)\right]$ and $E(\boldsymbol{C})_{1}^{I I}=\underset{v \in \boldsymbol{C}^{n-k+1}-\{0\}}{\cup} \boldsymbol{C}^{n-k+1} /\left[s_{1}(v)\right]$. Then $C_{1}\left(E(\boldsymbol{C})_{0}^{I}\right)=\frac{i}{2 \pi} d^{\prime \prime} d^{\prime} \log \operatorname{No}\left(s_{1}\right)$, so that, from Corollary 2.7, $C_{n-k}\left(E(\boldsymbol{C})_{1}^{I I}\right)=$ $\left(-\frac{i}{2 \pi} d^{\prime \prime} d^{\prime} \log \mathrm{No}\left(s_{1}\right)\right)^{n-k}$. Let z^{1}, \cdots, z^{n-k+1} be complex coordinates of \boldsymbol{C}^{n-k+1}. Then as $\operatorname{No}\left(s_{1}(v)\right)=(v, v)=\sum_{j=1}^{n-k+1} z^{j}(v) \bar{z}^{j}(v)$, we obtain

$$
\begin{aligned}
F^{*}\left(-\Phi_{k}\right) & =-\frac{1}{4 \pi} d^{c} \log \mathrm{No}\left(s_{1}\right) \cdot C_{n-k}\left(E(\boldsymbol{C})_{1}^{I I}\right) \\
& =-\frac{1}{4 \pi} d^{c} \log \sum_{j=1}^{n-k+1}\left|z^{j}\right|^{2} \cdot\left(-\frac{i}{2 \pi} d^{\prime \prime} d^{\prime} \log \sum_{j=1}^{n-k+1}\left|z^{j}\right|^{2}\right)^{n-k}
\end{aligned}
$$

Therefore $F^{*} \Phi_{k}$ is the normalized volume element of $S_{n-k+1}(\boldsymbol{C})$, [2]. Q.E.D.
One notes that in the case of $k=1$, the mapping F defined in Lemma 3.7 becomes the identity mapping of $\boldsymbol{C}^{n}-\{0\}$, so that, the restriction of the
obstruction from Φ_{1} of $F_{2}\left(\boldsymbol{C}^{n}\right)=\boldsymbol{C}^{n}-\{0\}$ to the unit sphere $S_{n-1}\left(\boldsymbol{C}^{n}\right), \Phi_{1} \mid S_{n-1(C)}$, is the normalized volume element of $S_{n-1}(\boldsymbol{C})$.

§4. The generalized relative Gauss-Bonnet formula.

4.1. In this section we shall establish an integral formula for the i th Chern form $C_{i}(E)$. In the case of $i=\operatorname{dim} E=\operatorname{dim} X$, Bott and Chern established the integral formula of $C_{n}(E)$ as the relative Gauss-Bonnet theorem. Here we want to extend this theorem.

Let E be a holomorphic vector bundle of fibre dimension n with a norm N, over an m-dimensional complex manifold X, and let E_{k} be the k general Stiefel bundle of E with the projection $\pi_{k}: E_{k} \longrightarrow X$. Let $\pi_{k}^{\#} E$ be the (n, k)-trivial bundle with the induced norm $\pi_{k}^{\#} N$ and the k-frame defined by (3.26). We denote by $\eta_{n-k+1}\left(\pi_{k}^{\#} E\right)$ the boundary form of $\Pi_{k}^{\#} E$ and by $C_{n-k+1}(E)$ the $(n-k+1)$ th Chern form induced by the norm N on E. Now let A be a real $2(m-n+k-1)$-dimensional oriented submanifold of X with boundary ∂A, and let $s:(X-A) \longrightarrow E_{k}$ be a smooth section. Moreover let V be a real $2(n-k+1)$-dimensional (non-compact) oriented manifold and let $D \subset V$ be a compact domain with the smooth boundary ∂D. Then we obtain

Theorem 4.1. Let us suppose that there exists a smooth mapping $f: V \longrightarrow X$ such that $f^{-1}(A) \cap D=\left\{p_{1}, \cdots, p_{l}\right\}$ is a set of isolated points, $f^{-1}(A) \cap \partial D=\phi$, and $f(D) \cap \partial A=\phi$. If $n\left(p_{j}, f, A\right)$ denotes the intersection number at $\left(p_{j} ; f\left(p_{j}\right)\right)$ of the singular chains $f: D \longrightarrow X$ and $\iota_{A}: A \longrightarrow X\left(\iota_{A}=\right.$ the inclusion map), for each j, then

$$
\begin{align*}
& \int_{D} f^{*} C_{n-k+1}(E)=\cdot \int_{\partial D} f^{*} s^{*} \eta_{n-k+1}\left(\pi_{k}^{*} E\right)+\sum_{j=1}^{l} o b s_{k}\left(p_{j}, s f, D\right) \tag{4.1}\\
& o b s_{k}\left(p_{j}, s f, D\right)=o b s_{\frac{1}{k}}\left(f\left(p_{j}\right), s, A\right) n\left(p_{j}, f, A\right), j=1, \cdots, \tag{4.2}\\
& \int_{D} f^{*} C_{n-k+1}(E)=\int_{\partial D} f^{*} s^{*} \eta_{n-k+1}\left(\pi_{k}^{*} E\right)+\sum_{j=1}^{l} o b s_{k}^{\frac{1}{k}}\left(f\left(p_{j}\right), s, A\right) n\left(p_{j}, f, A\right), \tag{4.3}
\end{align*}
$$

where obs $s_{k}\left(p_{j}, s f, D\right)$ and obs $\frac{1}{k}\left(f\left(p_{j}\right), s, A\right)$ are integers defined in Definition 4.1 and 4.2, respectively.
4.2. Definition of obstruction numbers. Before the proof of this theorem we define $o b s_{k}\left(p_{j}, s f, D\right)$ and $o b s_{\frac{1}{k}}\left(f\left(p_{j}\right), s, A\right)$. Let Φ_{k} be the obstruction form of the k-general Stiefel manifold $F_{k}\left(\boldsymbol{C}^{n}\right)$. Let Y be a real $2(n-k+1)$ -
demensional oriented manifold Y with boundary ∂Y. Let p be any point in $(Y-\partial Y)$. Now, given a smooth mapping $t: Y-\{p\} \longrightarrow E_{k}$ such that $\pi_{k} t$ can be regarded as the smooth mapping from Y into X, we define an integer, denoted by $o b s_{k}(p, t, Y)$ as follows: Let $\pi_{k} t(p)=q \in X$ and choose a neighborhood $V(q)$ of q which admits a trivialization $\varphi: V(q) \times F_{k}\left(\boldsymbol{C}^{n}\right) \longrightarrow$ $\pi_{k}^{-1}(V(q))$ of $E_{k} \mid V(q)$. Then let $\psi: \pi_{k}^{-1}(V(q)) \longrightarrow F_{k}\left(\boldsymbol{C}^{n}\right)$ be a holomorphic mapping defined by
(4.4) $\quad \psi \cdot \varphi\left\{q^{\prime},\left(v_{1}, \cdots, v_{k}\right)\right\}=\left(v_{1}, \cdots, v_{k}\right), q^{\prime} \in V(q),\left(v^{1}, \cdots, v^{k}\right) \in F_{k}\left(\boldsymbol{C}^{n}\right)$.

Next take a chart $\left(U_{\delta}(p), h=\left(y^{1}, \cdots, y^{2(n-k+1)}\right)\right)$ of Y at p such that $h(p)=0$, $h\left(U_{\dot{\delta}}(p)\right)$ is the ball of raduis $U \delta,(\delta>0)$ and $\pi_{k} t\left(U_{\dot{\delta}}(p)\right) \subset V(q)$. For an ε-ball $U_{\mathrm{s}}(p), 0<\varepsilon<\delta$, let us take the normalized volume element ω_{k} of $\partial U_{s}(p)$. Further let $\gamma: U_{\dot{\delta}}(p)-\{p\} \longrightarrow \partial U_{\epsilon}(p)$ be a smooth mapping defined by

$$
\begin{equation*}
\gamma_{\varepsilon}\left(p^{\prime}\right)=h^{-1}\left(\varepsilon \frac{y^{1}\left(p^{\prime}\right)}{\left\|h\left(p^{\prime}\right)\right\|}, \cdots, \varepsilon \frac{y^{2(p-k+1)}\left(p^{\prime}\right)}{\left\|h\left(p^{\prime}\right)\right\|}\right) p^{\prime} \in U_{\delta}(p), \tag{4.5}
\end{equation*}
$$

where $\left\|h\left(p^{\prime}\right)\right\|=\left(\sum_{j=1}^{2(n-k+1)}\left(y^{j}\left(p^{\prime}\right)^{2}\right)\right.$
Then $\gamma_{e}^{*} \omega_{k}$ becomes a cocycle form on $\left(U_{\dot{j}}(p)-\{p\}\right)$ whose cohomology class $\left\{\gamma^{*} \omega_{k}\right\}$ is a generator of $H^{2(n-k)+1}\left(U_{\dot{\delta}}(p)-\{p\}: \boldsymbol{Z}\right)=\boldsymbol{Z}$. On the other hand as $\left\{\Phi_{k}\right\}$ is also a generator of $H^{2(n-k)+1}\left(F_{k}\left(\boldsymbol{C}^{n}\right): \boldsymbol{Z}\right)=\boldsymbol{Z}$, it follows from the fact that $\varphi \cdot t$ is a smooth mapping of $\left(U_{o}(p)-\{p\}\right)$ into $F_{k}\left(\boldsymbol{C}^{n}\right)$ that there exists an integer n such that
$(4.6)^{\prime}$

$$
\begin{gather*}
\left\{(\psi \cdot t)^{*} \Phi_{k}\right\}=n\left\{\gamma_{\epsilon}^{*} \omega_{k}\right\}, \text { i.e., } \tag{4.6}\\
n=\int_{\partial U_{t}(p)}(\psi t)^{*} \Phi_{k}
\end{gather*}
$$

Here put, $o b s_{k}(p, t, Y)=n=\int_{\partial U_{\varepsilon}(p)}(\psi \cdot t)^{*} \Phi$

Definition 4.1. The integer $o b s_{k}(p, t, Y)$ defined by (4.6) or (4.6) is called the k th obstruction number of t at p relative to Y. We show that (4.6)' is independent of $U_{\epsilon}(p)$ and ψ. It is clear from $d \Phi_{k}=0$ and Stockes formula that

$$
\begin{equation*}
\int_{\partial U_{t}(p)}(\psi t)^{*} \Phi_{k}=\lim _{\varepsilon \rightarrow 0} \int_{\partial U_{t}(p)}(\psi t)^{*} \Phi_{k} \tag{4.7}
\end{equation*}
$$

We have

Lemma 4.2. Let notations be as above. Then

$$
\begin{equation*}
\int_{\partial U_{1}(p)}(\psi \cdot t)^{*} \Phi_{k}=\lim _{\varepsilon \rightarrow 0} \int_{\partial U_{1}(p)} t^{*} \gamma_{n-k+1}\left(\pi_{k} E\right), \quad 0<\varepsilon<\delta . \tag{4.8}
\end{equation*}
$$

Proof. Let $\varphi_{q}: F_{k}\left(\boldsymbol{C}^{n}\right) \longrightarrow E_{k}$ be the inclusion map at $q=\pi_{k} t(p)$ defined from the trivialization $\varphi: V(q) \times F_{k}\left(C^{n}\right) \longrightarrow \pi_{k}^{-1}(V(q))$. From $d \eta_{n-k+1}\left(\pi_{k}^{\#} E\right)=$ $\pi_{k}^{*} C_{n-k+1}(E)$, we have

$$
d \varphi^{*} \eta_{n-k+1}\left(\pi_{k}^{\sharp} E\right)=C_{n-k+1}(E) \quad \text { on } \quad V(q) \times F_{k}\left(\boldsymbol{C}^{n}\right) .
$$

Moreover, as $d C_{n-k+1}(E)=0$, we obtain a $2(n-k)+1$-form ω on $U(q)$ such that $C_{n-k+1}(E) \mid V(q)=d \omega$. Then $\varphi^{*} \eta_{n-k+1}\left(\pi_{k} E\right)-\omega$ is a cocycle form on $V(q) \times F_{k}\left(\boldsymbol{C}^{n}\right)$. However $H^{2(n-k)+1}\left(V(q) \times F_{k}\left(\boldsymbol{C}^{n}\right)\right)=H^{2(n-k)+1}\left(F_{k}\left(\boldsymbol{C}^{n}\right)\right)=\boldsymbol{R}$. Therefore there exists a real number a such that

$$
\left\{\varphi^{*} \eta_{n-k+1}\left(\pi_{k} E\right)-\omega\right\}=a\left\{\Phi_{k}\right\} \quad \text { on } \quad V(q) \times F_{k}\left(\boldsymbol{C}^{n}\right) .
$$

Let $j_{q}: F_{k}\left(\boldsymbol{C}^{n}\right) \longrightarrow V(q) \times F_{k}\left(\boldsymbol{C}^{n}\right)$ be a mapping defined by

$$
j_{q}\left(v_{1}, \cdots, v_{k}\right)=\left\{q,\left(v_{1}, \cdots, v_{k}\right)\right\} \quad\left(v_{1}, \cdots, v_{k}\right) \in F_{k}\left(\boldsymbol{C}^{n}\right) .
$$

Then from (3.29), $a\left\{\Phi_{k}\right\}=a\left\{j_{q}^{*} \Phi_{k}\right\}=\left\{\left(\varphi j_{q}\right)^{*} \eta_{n-k+1}\left(\pi_{k}^{*} E\right)-j_{q}^{*} \omega\right\}=\left\{\varphi_{q}^{*} \eta_{n-k+1}\left(\pi_{k}^{*} E\right)\right\}$ $=-\left\{\Phi_{k}\right\}$. Hence $a=-1$. Therefore we have

$$
\begin{equation*}
\left\{\varphi^{*} \eta_{n-k+1}\left(\pi_{k} E\right)-\omega\right\}=-\left\{\Phi_{k}\right\} \text { on } V(q) \times F_{k}\left(\boldsymbol{C}^{n}\right) \tag{4.9}
\end{equation*}
$$

Since $\pi_{k} t$ is a smooth mapping of $U_{\dot{\delta}}(p)$ into $V(q)$, Lemma 4.2 follows directly from (4.7) and (4.9) as follows:

$$
\begin{align*}
& \int_{\partial U_{\&}(p)}(\psi t)^{*} \Phi_{k}=\lim _{\varepsilon \rightarrow 0} \int_{\partial U_{\varepsilon}(p)}(\psi t)^{*} \Phi_{k}=\lim _{\varepsilon \rightarrow 0} \int^{(}\left(\varphi^{-1} t\right)^{*} \Phi_{k} \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\partial U_{\iota}(p)}\left(\varphi^{-1} t\right)^{*}\left(\omega-\varphi^{*} \eta_{n-k+1}\left(\pi_{k}^{\#} E\right)\right) \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\partial U_{\bullet}(p)}\left(\pi_{k} t\right)^{*} \omega-\lim _{\varepsilon \rightarrow 0} \int_{\partial U_{\bullet}(p)} t^{*} \eta_{n-k+1}\left(\pi_{k}^{\exists} E\right) \\
& =-\lim _{\varepsilon \rightarrow 0} \int_{\partial U_{\bullet}(p)} t^{*} \eta_{n-k+1}\left(\pi_{k}^{\#} E\right) .
\end{align*}
$$

Thus Definition 4.1. is well-defined. This definition is extended as follows: Let $p \in Y-\partial Y$. If p is an isolated singular point of a smooth mapping t, that is, there exists a neighborhood $U(p)$ of p such that t is a smooth mapping of $(U(p)-\{p\})$ into E_{k}, and $\pi_{k} t$ is differentiable on $U(p)$, then we can
define $o b s_{k}(p, t, U(p))$. Then put

$$
o b s_{k}(p, t, Y)=o b s_{k}(p, t, U(p)) .
$$

In particular, the 1 th obstruction, $o b s_{1}(p, t, Y)$, becomes the degree of t at p because Φ_{1} is regarded as the normalized volume element of the unit sphere in \boldsymbol{C}^{n}. If t is a smooth mapping of Y into E such that
a) $t \neq 0$ on ∂Y
β) t has isolated zeroes only, say p_{1}, \cdots, p_{l},
then for each point $p_{j}, \quad o b s_{1}\left(p_{j}, t, Y\right)$ is the order of vanishing of t, so that we write by zero $\left(p_{j}, t, Y\right)$ the 1 th obstruction of t at p_{j} relative to Y.
4.3. Let A be the submanifold of X as defined in Theorem 5.1. Let q be a point in $(A-\partial A)$. Then a complemental submanifold to A at q, denoted by $A_{\frac{1}{q}}$, is a real $2(n-k+1)$-dimensional oriented submanifold of X (with boundary $A_{\frac{1}{q}}$) satisfying the following conditions:

$$
\begin{equation*}
A_{\bar{q}}^{\perp} \cap A=\{q\} \quad q \in A_{\bar{q}}^{\frac{1}{q}}-\partial A_{\bar{q}} \tag{4.10}
\end{equation*}
$$

There exists a chart $\left(U, h=\left(z^{1}, \cdots, z^{2(n-m+k+1)}\right.\right.$

$$
\begin{align*}
& \left.\left.y^{1}, \cdots, y^{2(n-k+1)}\right)\right) \text { at } q \text { in } X \text { such that, } h(q)=(0, \cdots, 0) \\
& A_{\frac{1}{Q} \cap U=\left\{q^{\prime} \in U: z^{1}\left(q^{\prime}\right)=\cdots=z^{2(m-n+k-1)}\left(q^{\prime}\right)=0\right\}}^{A \cap U=\left\{q^{\prime} \in U: y^{1}\left(q^{\prime}\right)=\cdots=y^{2(n-k+1)}\left(q^{\prime}\right)=0\right\}} \\
& A_{q} \frac{1}{q} \text { is compact. }
\end{align*}
$$

Then we choose the orientation of $A_{\frac{1}{q}}$ as follows: Put $u=\left(z^{1}, \cdots, z^{2(m-n+k-1)}\right)$ and $u=\left(y^{1}, \cdots, y^{2(n-k+1)}\right)$. If h and u are positive coordinates systems on U and $A \cap U$ respectively, then v is also the positive coordinates system on $A_{\frac{1}{q}} \cap U$.

Since A is the submanifold of X, there exists, of course, such a submanifold of X. Now let $s:(X-A) \longrightarrow E_{k}$ be the smooth cross section and let $q \in(A-\partial A)$. Then taking a complemental submanifold $A_{\bar{q}}$ to A at q, we can define the k th obstruction number $o b s_{k}\left(q, s, A_{q}\right)$. It will be shown in the proof of Theorem 4.1 that $o b s_{k}\left(q, s, A_{\frac{1}{q}}\right)$ is independent of $A_{\frac{1}{q}}$.

Definition 4.2. For any point $q \in(A-\partial A)$, obs $\frac{1}{k}(q, s, A)$ which is called the k th obstruction number of s at q corresponding to A, is defined as follows:

Let $A_{\bar{q}}$ be a complemental sybmanifold to A at q. Then put

$$
\begin{equation*}
o b s_{k}^{\frac{1}{k}}(q, s, A)=o b s_{k}\left(q, s, A_{\left.\frac{1}{q}\right)}\right) \tag{4.13}
\end{equation*}
$$

4.4. Proof of Theorem 4.1. Withoutloss of generality we can assume that $f^{-1}(A) \cap D=\{p\}, p \notin \partial D$ and $f(p) \notin \partial A$. and that $f(d)$ is contained in a coordinate δ_{1}-ball $U_{\delta_{1}}$ of $f(p)$ which admits a trivialization $\varphi: U_{\delta_{1}} \times F_{k}\left(\boldsymbol{C}^{n}\right) \longrightarrow$ $\pi_{k}^{-1}\left(U_{\delta_{1}}\right)$ of $E_{k} \mid U_{\delta_{1}}$. Let $V_{\varepsilon_{1}}(p)$ be an ε_{1}-ball of p contained completely in D and let put $D_{\varepsilon_{1}}=D-V_{\varepsilon_{1}}(p)$. Since s. $f: D_{\varepsilon_{1}} \longrightarrow E_{k}$ is the smooth mapping and $\pi_{k}^{*} C_{n-k+1}(E)=d \eta_{n-k+1}\left(\pi_{k}^{\#} E\right)$ on E_{k}, we obtain from Stokes formula

$$
\int_{D \varepsilon_{1}} f^{*} C_{n-k+1}(E)=\int_{\partial D} f^{*}\left\{s^{*} \eta_{n-k+1}\left(\pi_{k}^{*} E\right)\right\}-\int_{\partial \epsilon V_{1}(p)}(s \cdot f)^{*} \eta_{n-k+1}\left(\pi_{k}^{*} E\right) .
$$

Here let $\psi: \pi_{k}^{-1}\left(U_{\hat{\delta}_{1}}\right) \longrightarrow F_{k}\left(\boldsymbol{C}^{n}\right)$ be as defined by (4.4). Then from (4.7),

$$
-\lim _{\varepsilon \rightarrow 0} \int_{\partial V_{c}(p)}(s \cdot f)^{*} \eta_{n-k+1}\left(\pi_{k} E\right)=\int_{\partial V_{t}(\eta)}(\psi(s f))^{*} \Phi_{k} \quad 0<\varepsilon<\varepsilon_{1}
$$

Therefore

$$
\int_{D} f^{*} C_{n-k+1}(E)=\int_{\partial D} f^{*}\left\{s^{*} \eta_{n-k+1}\left(\pi_{k} E\right)\right\}+\int_{\partial V_{\epsilon}(\mathcal{p})}(\psi(s f))^{*} \Phi_{k}
$$

This relation implies (4.1) because of $\int_{\partial V_{\epsilon}(\eta)}\left(\psi(s \cdot f)^{*} \Phi_{k}=o b s_{k}(p, s . f, D)\right.$. In order to prove (4.2) and (4.3), we calculate the integration $\int_{\partial V_{\iota}(\eta)}(\psi(s f))^{*} \Phi_{k}$, Let ε be fixed $\left(0<\varepsilon<\varepsilon_{1}\right)$. Let us put $q=f(p) \in X$ and take a complemental submanifold $A_{\frac{1}{q}}$ to A at q. Then from the conditions (4.10) and (4.11) it follows that $A \frac{1}{q} \cap A=\{q\}$ and that there exists a chart $\left\{U, h=\left(z^{1}, \cdots, z^{2(z z-n+k-1)}\right.\right.$, $\left.y^{1}, \cdots, y^{2(n-k+1)}\right\}$ in X at q such that $h(q)=0$

$$
\begin{aligned}
& A \cap U=\left\{q^{\prime} \in U: y^{1}\left(q^{\prime}\right)=\cdots=y^{2(n-k+1)}\left(q^{\prime}\right)=0\right\} \\
& A_{\frac{1}{q} \cap U=\left\{q^{\prime} \in U: z^{1}\left(q^{\prime}\right)=z^{2(m i>n+k-1)}\left(q^{\prime}\right)=0\right\}}
\end{aligned}
$$

Assume $U=U_{\delta_{\delta_{1}}}$ and put $U_{\delta_{1}}(q)=U_{\hat{\delta}_{1}}$. Further we assume that $f\left(V_{\epsilon}(p)\right) \subset U_{\dot{\delta}}(q)$ $\varsubsetneqq U_{\hat{o}_{1}}(q), 0<\delta<\delta_{1}$. Let put $u=\left(z^{1}, \cdots, z^{2\left(m_{n}-n+k-1\right)}\right)$ and $v=\left(y^{1}, \cdots, y^{2(n-k+1)}\right)$. Then let us consider a homotopy mapping H_{t} given by

$$
\left.H_{t}=h^{-1}\{(1-t) u \times v) f\right\}: V_{\varepsilon_{1}}(p) \longrightarrow U_{\delta_{1}}(q), \text { for all } t \in[0,1] .
$$

For $t=1, H_{1}$ is the smooth mapping of $V_{\varepsilon_{1}}(p)$ into $A_{\frac{1}{q}} \cap U_{\delta_{1}}(q)$, and for each $t \in[0,1], V(p) \cap H_{t}^{-1}(A)=\phi$ and $H_{i}\left(V_{\epsilon}(p)\right) \cap A=\{q\}$. Hence, as $f=H_{0}$ is ho-
motopic to H_{1}, we obtain

$$
\begin{equation*}
\int_{\partial V_{c}(p)}\left(\psi_{S} f\right)^{*} \Phi_{k}=\int_{\partial V_{d}(p)} H_{1}^{*}(\psi S)^{*} \Phi_{k} \tag{4.14}
\end{equation*}
$$

If ${ }_{{ }_{A}{ }_{A} \frac{1}{q}}: A_{\frac{1}{q}} \longrightarrow X$ denotes the inclusion mapping, then from $H_{1}\left(V_{\varepsilon}(p)\right) \subset A_{\frac{1}{q}} \cap U_{\dot{\delta}}(q)$, (note $f\left(V_{\epsilon}(p)\right) \subset U_{\delta}(q)$),

$$
\begin{equation*}
\int_{\partial V_{\epsilon}(p)} H^{*}(\psi s)^{*} \Phi_{k}=\int_{\partial V_{\epsilon}(p)} H_{1}^{*}\left(\psi s \iota_{\Lambda_{1}}\right)^{*} \Phi_{k}, \tag{4.15}
\end{equation*}
$$

Here if ω_{k} denotes the normalized volume element of $\partial\left(A_{\bar{q}} \cap U_{\dot{\delta}}(q)\right)$, and if $\gamma_{\delta}:\left(A_{q} \frac{1}{q} \cap U_{\delta_{1}}(q)-\{q\}\right) \longrightarrow \partial\left(A_{q} \cap U_{\delta}(q)\right)$ denotes a smooth mapping as defined by (4.5), then from $\left\{\left(\psi s_{\iota_{\Lambda_{q}}}\right)^{*} \Phi_{k}\right\}=o b s_{k}\left(q, s, A_{\frac{1}{q}}\right)\left\{\gamma_{\partial}^{*} \omega_{k}\right\}$,

$$
\begin{equation*}
\int_{\partial V_{t}(p)} H_{1}^{*}\left(\psi \cdot s \cdot A_{\left.\frac{1}{q}\right)}\right)^{*} \Phi_{k}=o b s_{k}\left(q, s, A_{\left.\frac{1}{q}\right)} \int_{\partial V_{G}(\mathcal{p})}\left(\gamma_{\partial} H_{1}\right)^{*} \omega_{k}\right. \tag{4.16}
\end{equation*}
$$

It follows from (4.14), (4.16) and (4.16) that

$$
\begin{equation*}
\int_{\partial V_{\iota}(p)}(\psi \cdot s f)^{*} \Phi_{k}=o b s_{k}\left(q, s, A_{\bar{q})}\right) \int_{\partial V_{v}(p)}\left(\gamma_{\dot{\delta}} H_{1}\right)^{*} \omega_{k} \tag{4.17}
\end{equation*}
$$

where H_{1} is homotopic to f.
To prove that $\int_{\left.\partial V_{d}(p)\right)}\left(\gamma_{\delta} H_{1}\right)^{*} \omega_{k}$ is equal to the intersection number at ($p, H_{1}(p)$ $=q)$ of the singular chains $H_{1}=h^{-1}(0 \times v f): V_{t}(p) \longrightarrow X$ and $\iota_{A}: A \longrightarrow X$, we change the mapping $v . f$ for a mapping $g_{1} . \quad V_{\delta_{1}}(p) \longrightarrow v\left(U_{\delta_{1}}(q)\right) \subset \boldsymbol{R}^{2(n-k+1)}$ which agrees with $v . f$ on a neighborhood of the boundary $\partial V_{\varepsilon}(p)$, which is homotopic to v.f, and which has a maximal rank at each $p^{\prime} \in g_{1}^{-1}(0)$. In terms of Thom's Transversality Lemma [6], there exists such a mapping g_{1}. Hence put $G_{1}=h^{-1}\left(0 \times g_{1}\right)$. Then G_{1} is, of course, homotopic to H_{1}. Thus. from (4.17),

$$
\begin{equation*}
\int_{\partial V_{\iota}(p)}(\psi s f)^{*} \Phi_{k}=o b s_{k}\left(q, s, s, A_{\left.\frac{1}{q}\right)}\right) \int_{\partial V_{t}(p)}\left(\gamma_{\dot{\delta}} G_{1}\right)^{*} \omega_{k} \tag{4.18}
\end{equation*}
$$

$G_{1}=h^{-1}\left(0 \times g_{1}\right): V_{\varepsilon_{1}}(p) \longrightarrow U_{\hat{\delta}_{1}}(q)$, has a maximal rank at each $p^{\prime} \in G_{1}^{-1}(q)$.
(4.20) $\quad G_{1}$ is homotopic to f, and each $p^{\prime} \in G_{1}^{-1}(q)$ belongs to $V_{s}(p)-$ $\partial V_{\epsilon}(p)$

Then we have

Lemma 4.3.

$$
\begin{equation*}
\int_{\partial V_{\iota}(p)}\left(\gamma_{\dot{\delta}} G_{1}\right)^{*} \omega_{k}=n(q, f, A) . \tag{4.21}
\end{equation*}
$$

Proof. From definition of G_{1} it is clear that $G_{1}\left(V_{\varepsilon}(p)\right) \cap A=\{q\}$, $G_{1}\left(\partial V_{\epsilon}(p)\right) \cap A=\phi$ and $G_{1}\left(V_{\epsilon}(p)\right) \cap \partial A=\phi . \quad$ Therefore from (4.20), $n(p, f, A)=$ $n\left(V_{s}(p), G_{1}, A\right)$. Hence, at first, we compute $n\left(V_{s}(p), G_{1}, A\right)$. Let put $\alpha=2(m-n+k-1)$ and $\beta=2(n-k+1)$. Let $h=\left(z^{1}, \cdots, z^{\alpha}, y^{1}, \cdots, y^{\beta}\right)$, $u=\left(z^{1}, \cdots, z^{\alpha}\right)$ and $v=\left(y^{1}, \cdots, y^{\beta}\right)$, respectively, be coordinate systems on $U_{\delta_{1}}(q), A \cap U_{\delta_{1}}(q)$ and $A \frac{1}{q} \cap U_{\delta_{1}}(q)$, as before. Assume now that h and u are positive coordinate systems. Then, from the choice of the orientation of $A_{\frac{1}{q}}, v$ is also the positive coordinate system. Let $\left(x^{1}, \cdots, x^{\beta}\right)$ be a coordinate system of $V_{\varepsilon_{1}}(p)$ which is positive. Let us put $G_{1}^{-1}(q)=\left\{p_{1}^{\prime}, \cdots, p_{s}^{\prime}\right\}$, that is, $g_{g}^{-1}(0)=\left\{p_{1}^{\prime}, \cdots, p_{s}^{\prime}\right\}$. Then we define a mapping $\iota_{A} \times G_{1}:\left(A \cap U_{\delta_{1}}(q)\right) \times$ $V_{\mathfrak{s}_{1}}(p) \longrightarrow X$ by

$$
\begin{aligned}
x^{i}\left(\iota_{A} \times G_{1}\right)\left(q^{\prime}, p^{\prime}\right) & =z^{i} \iota_{A}\left(q^{\prime}\right) & & i=1, \cdots, \alpha \\
y^{i}\left(\iota_{A} \times G_{1}\right)\left(q^{\prime}, p^{\prime}\right) & =y^{i} G_{1}\left(p^{\prime}\right) & & i=1, \cdots, \beta
\end{aligned}
$$

Here for each $p_{j}^{\prime} \in G_{1}^{-1}(q)$, let $J_{\left(p_{j}^{\prime}, q\right)}\left(\iota_{A} \times G_{1}\right)$ be the Jacobian of the mapping $\varepsilon_{A} \times G_{1}$ at $\left(p_{j}^{\prime}, q\right)$, that is,

$$
J_{\left(p_{j}^{\prime}, q\right)}\left(\epsilon_{A} \times G\right)=\left|\frac{\left.\partial z^{1}\left(\epsilon_{A} \times G_{1}\right), \cdots, z^{\alpha}\left(\ell_{A} \times G_{1}\right), y^{1}\left(\iota_{A} \times G_{1}\right), \cdots, y^{\beta}\left(\iota_{A} \times G_{1}\right)\right)}{\partial\left(z^{1}, \cdots z^{\alpha} x^{1}, \cdots x^{\beta}\right)}\right|_{\left(p_{j}^{\prime}, q\right)}
$$

Then it follows from $z^{i}\left(e_{A} \times G_{1}\right)=z^{i}$ that

$$
\begin{align*}
& J_{\left(p_{p}^{\prime}, p\right)\left(\iota_{A} \times G_{1}\right)=}\left|\frac{\partial\left(y^{1}\left(\iota_{A} \times G_{1}\right), \cdots, y^{\beta}\left(\iota_{A} \times G_{1}\right)\right)}{\partial\left(x^{1}, \cdots \cdots x^{\beta}\right)}\right|_{\left(p_{j}^{\prime}, q\right)} \tag{4.22}\\
= & \left|\frac{\partial\left(y^{1} \cdot g_{1}, \cdots, y^{\beta} \cdot g_{1}\right)}{\partial\left(x^{1}, \cdots, x^{\beta}\right)}\right|_{p_{j}^{\prime}} \quad \text { for each } p_{j}^{\prime} \in g_{1}^{-1} \in(0)
\end{align*}
$$

so that, from (4.19), $J_{\left(p_{j}^{\prime}, q\right)}\left(\iota_{A} \times G_{1}\right) \neq 0$ for each p_{j}^{\prime}. Since the right hand side of (4.22) is the Jacobian $J_{p_{j}^{\prime}}\left(g_{1}\right)$ of the mapping $g_{1}: V_{d}(p) \longrightarrow \boldsymbol{R}^{2(n-k+1)}$. at p_{j}^{\prime}, it follows from definition of the intersection number ([5]) that

$$
\begin{equation*}
n\left(V_{s}(p), G_{1}, A\right)=\sum_{j=1}^{s} \operatorname{sign} J_{p_{j}^{\prime} j}\left(g_{1}\right) \tag{4.23}
\end{equation*}
$$

Thus we have: $n(p, f, A)=\sum_{j=1}^{s} \operatorname{sign} J_{p_{j}^{\prime}}\left(g_{1}\right)$ where the p_{j}^{\prime} are points of $g_{1}^{-1}(0)$.
Next we shall calculate $\int_{\partial V_{d}(p)}\left(\gamma_{\dot{j}} G_{1}\right)^{*} \omega_{k}$. Since ω_{k} is the normalized volume
element of $\partial\left(A_{\bar{q}} \cap U_{\delta}(q)\right)$, and for each $p^{\prime} \in\left(V_{s_{1}}(p)-g_{1}^{-1}(0)\right)$

$$
\gamma_{\partial} G_{1}\left(p^{\prime}\right)=h^{-1}\left(\widetilde{0, \cdots} \overline{\cdots, 0}, \delta \frac{y^{1} g_{1}\left(p^{\prime}\right)}{\left\|g_{1}\left(p^{\prime}\right)\right\|}, \cdots, \delta \frac{y^{\beta} g_{1}\left(p^{\prime}\right)}{\left\|g_{1}\left(p^{\prime}\right)\right\|}\right)
$$

where $\| g_{1}\left(p^{\prime}\right) \mid=\sqrt{\sum_{j=1}^{\beta}\left(y^{j}\left(p^{\prime}\right)\right)^{2}}$,
We can reformulate $\int_{\partial V_{d}(p)}\left(\gamma_{\partial} G_{1}\right)^{*} \omega_{k}$ as follows: Let y^{1}, \cdots, y^{n} be coordina es of \boldsymbol{R}^{n} and let S_{n-1} be the unit sphere about the origin in \boldsymbol{R}^{n}. We denote by ω the normalized volume element of S_{n-1}. Let $\gamma: \boldsymbol{R}^{n}-\{0\} \longrightarrow S_{n-1}$ be the boundary mapping defined by

$$
r\left(y^{1}, \cdots, y^{n}\right)=\left(y^{1} /\left(\sqrt{\sum\left(y^{i}\right)^{2}}\right), \cdots, y^{n} /\left(\sqrt{\sum\left(y^{i}\right)^{2}}\right)\right.
$$

Further let D_{1} be a compact domain of \boldsymbol{R}^{n}. Now, given a smooth mapping $g: \boldsymbol{R}^{n} \longrightarrow \boldsymbol{R}^{n}$ such that $g_{1}^{-1}(0) \cap D_{1}=\left\{p_{1}^{\prime}, \cdots, p_{s}^{\prime}\right\}, g_{1}^{-1}(0) \cap \partial D_{1}=\phi$ and for each $p_{j}^{\prime}, J_{p_{j}^{\prime}}\left(g_{1}\right) \neq 0$.

Under this situation, we show that

$$
\begin{equation*}
\int_{\partial D_{1}}\left(\gamma g_{1}\right)^{*} \omega=\sum_{j=1}^{s} \operatorname{sign} J_{p_{j}^{\prime}}\left(g_{1}\right) . \tag{4.24}
\end{equation*}
$$

Indeed, let $V_{\varepsilon}\left(p_{j}^{\prime}\right)$ be ε-balls about p_{j}^{\prime} in D_{1} which are pairwise disjoint. Put $D_{1,}=D-U V_{s}\left(p_{j}^{\prime}\right)$. Then, as $\gamma \cdot g_{1}=g /\left\|g_{1}\right\|$ is differentiable on $D_{1, e}$, we have from Stokes formula, $\int_{\partial D}\left(\gamma g_{1}\right)^{*} \omega=\sum_{j=1}^{s} \int_{\partial V_{c}\left(p_{j}^{\prime}\right)}\left(\gamma g_{1}\right)^{*} \omega$. In terms of $J_{p_{j}^{\prime}}\left(g_{1}\right)=0,(j, \cdots, s)$, we can assume that for each $j,\left\|g_{1}\right\|=\varepsilon$ on $\partial V_{s}\left(p_{j}^{\prime}\right)$, and $J\left(g_{1}\right) \neq 0$ on $V_{s}\left(p_{j}^{\prime}\right)$. Now let $\operatorname{vol}\left(S_{n-1}\right)$ denote the volume of S_{n-1} and let put $\tau=\sum_{j=1}^{n}(-1)^{j-1} y^{j} d y^{1} \wedge \cdots \wedge d y^{j-1} \wedge d y^{j+1} \cdots \wedge d y^{n}$. Then $\omega=\frac{1}{\operatorname{vol}\left(S_{n-1}\right)}$ $\left.\tau\right|_{s_{n-1}}$. By noting that $y^{i}\left(\frac{1}{\varepsilon} g_{1}\right)=\frac{1}{\varepsilon} y^{i}\left(g_{1}\right),(i=1, \cdots, n)$, we have: for each j,

$$
\begin{aligned}
& \int_{\partial V_{d}\left(p_{j}^{\prime}\right)}\left(\gamma g_{1}\right)^{*} \omega=\int_{\partial V_{d}\left(p_{j}^{\prime}\right)}\left(\frac{g_{1}}{\varepsilon}\right)^{*} \omega=\frac{1}{\operatorname{vol}\left(S_{n-1}\right)} \int_{\partial V_{\varepsilon}\left(p_{j}^{\prime}\right)}\left(\frac{g_{1}}{\varepsilon}\right)^{*} \tau \\
& =\frac{1}{\varepsilon^{n} \operatorname{vol}\left(S_{n-1}\right)} \int_{\partial V_{\mathrm{C}}\left(\mathrm{R}_{j}^{\prime}\right)} g_{1}^{*} \tau \\
& =\frac{n}{\varepsilon^{i d} \operatorname{vol}\left(S_{n-1}\right)} \int_{V_{\mathrm{C}}\left(p_{j}^{\prime}\right)} g_{1}^{*}\left(d y^{1} \wedge \cdots \wedge d y^{n}\right) \\
& =\frac{n}{\varepsilon^{n} \operatorname{vol}\left(S_{n-1}\right)} \operatorname{sign} J_{p_{j}^{\prime}}\left(g_{1}\right) \int_{\left(y^{1} g_{1}\right)^{2}+\cdots+\left(y^{n} g_{1}\right)^{2} \leq \varepsilon^{2}} d\left(y^{\prime} g_{1}\right) \cdots d\left(y^{n} g_{1}\right) \\
& =\operatorname{sign} J_{p_{j}^{\prime}\left(g_{1}\right)} \text {. }
\end{aligned}
$$

Tnus (4.24) is proved, so that, we have proved Lemma 4.3.
Q.E.D.

Now we return to the proof of Theorem 4.1. At first it follows from (4.18), (4.21) and $q=f(p)$ that

$$
\int_{\partial V_{\mathrm{t}}(p)}(\psi s f)^{*} \Phi_{k}=o b s_{k}\left(f(p), s, A_{f(p)}^{\perp}\right) n(p, f, A),
$$

that is,

$$
\begin{equation*}
o b s_{k}(p, s f, D)=o b s_{k}\left(f(p), s, A_{f(p)}^{\frac{1}{f}}\right) n(p, f, A) \tag{4.25}
\end{equation*}
$$

In particular, let us take any complemental submanifold $A^{\prime} \frac{1}{q}$ to A at $q \in(A-\partial A)$ as a compact domain D and the inclusion mapping $\iota_{A_{q}^{\prime} \perp} \longrightarrow X$. Then clearly $n\left(q, \iota_{A_{q}^{\prime}} \perp, A\right)=1$, so that, from (4.25) we have

$$
o b s_{k}\left(q, s, A_{q}^{\prime} \perp\right)=o b s_{k}\left(q, s, A_{\bar{q}}\right) .
$$

Thus obs $\frac{1}{k}(q, s, A)$ is independent of $A_{\frac{1}{q}}$. Therefore

$$
o b s_{k}(p, s f, D)=o b s_{\frac{1}{k}}(f(p), s, A) \cdot n(p, f, A)
$$

Hence (4.2) is proved. On the other hand, (4.3) follows immediately from (4.1) and (4.2).
Q.E.D.
4.5. Corollary 4.4, (c.f. [1]). Let E be a Hermitian vector bundle of fibre dimension n over an m-dimensional complex manifold $X,(n \leq m)$ and let $s: X \longrightarrow E$ be a smooth section of E which is $\neq 0$ on ∂X, and which is transversal to the zero of s. Let zero (s) be the set of zeroes of s. Then zero (s) becomes a real $2(m-n)$-dimensional oriented closed submanifold of X and the proper homology class of zero (s) is the Poincaré dual of $C_{n}(E)$.

Proof. Notice that the 1-general Stiefel bundle E_{1} of E is the subbundle of E, i.e., $E_{1}=\{e \in E: e \neq 0\}$. Let q be any point of zero(s). From $q \in X$ $-\partial X$, we can take a neighborhood V in X about q, which admits a trivialization $\varphi: V \times \boldsymbol{C}^{n} \longrightarrow E \mid V$. Here let $\psi: E \mid V \longrightarrow C^{n}$ be a holomorphic mapipng defined by,

$$
\begin{equation*}
\psi \cdot \varphi\left(q^{\prime}, v\right)=v, \quad q^{\prime} \in V, \quad v \in C^{n} \tag{4.26}
\end{equation*}
$$

Then put $\phi s=\left(s_{1}, \cdots, s_{n}\right)$ and $s_{i}=s^{i}+\sqrt{-1} s^{n-i}, i=1, \cdots, n$. That s is transversal to the zero section of X in E, implies that $d s_{q^{\prime}}^{1} \wedge \cdots \wedge d s_{q^{\prime}}^{2 n}=0$
for each $q^{\prime} \in V \cap$ zero(s). We obtain a family of charts $\left\{V_{\alpha}, h_{\alpha}=\left(s_{\alpha}^{1}, \cdots\right.\right.$, $\left.\left.s_{\alpha}^{2 n}, t_{\alpha}^{1}, \cdots, t_{\alpha}^{2(m-n)}\right)\right\}$ of X such that $\left\{V_{\alpha}\right\}$ cover zero(s), and for each α,
(i) $\quad V_{\alpha}$ admits a trivialization $\varphi_{\alpha}: V \times \boldsymbol{C}^{n} \longrightarrow E \mid V_{\alpha}$, and so,

$$
\psi_{\alpha}: E \mid V_{\alpha} \longrightarrow \boldsymbol{C}^{n} \text { defined by (4.26). }
$$

(ii) $s_{\alpha}^{1}, \cdots, s_{\alpha}^{2 n}$ are real-valued functions defined by ψ_{α} and s,

$$
\text { i.e., } \quad \psi_{\alpha} s=\left(s_{a}^{1}+\sqrt{-1} s_{u}^{n}, \cdots, s_{u}^{n}+-1 s_{\alpha}^{2 n}\right)
$$

(iii) $V_{\alpha} \cap$ zero(s) $=\left\{q \in V_{\alpha}: s_{\alpha}^{1}(q)=\cdots=s_{\alpha}^{2 n}(q)=0\right\}$
(iv) h_{α} is the positive coordinate system on V_{α}.

Therefore zero(s) is a real $2(m-n)$-dimensional closed submanifold of X, which admits charts $\left\{V_{\alpha} \cap \operatorname{zero}(\mathrm{s}),\left(t_{\alpha}^{1}, \cdots, t_{\alpha}^{2(m-n)}\right)\right\}$. We want to prove that zero(s) is orientable. Let us suppose $V_{\alpha} \cap V_{\beta} \cap$ zero $(\mathrm{s}) \neq \phi$. Then there exists a translation function $g_{\alpha \beta}=\left\|\left(g_{\alpha \beta}\right)_{j}^{i}\right\|$ on $V_{\alpha} \cap V_{\beta}$ such that

$$
s_{\alpha}^{i}=\sum_{j=1}^{2 n}\left(g_{\alpha \beta}\right)_{j}^{i} s_{\beta}^{j} \quad i=1, \cdots, 2 n, \text { and } \operatorname{det}\left(g_{\alpha \beta}\right)>0
$$

Let us put $a(q)=\operatorname{det}$

for each $q \in V_{\alpha} \cap V_{\beta}$. Hence, as $\partial s_{\alpha}^{i} / \partial t_{\beta}^{j}(q)=0$ for any $q \in V_{\alpha} \cap V_{\beta} \cap$ zero(s), $i=1, \cdots, 2 n, j=1, \cdots, 2(m-n)$, it follows from (iv) that $a(q)=\operatorname{det}\left(\frac{\partial t_{\alpha}^{i}}{\partial t_{\beta}^{i}}\right)$ $\operatorname{det}\left(g_{\alpha \beta}\right)>0 \quad q \in V_{\alpha} \cap V_{\beta} \cap$ zero(s), so that, from $\operatorname{det}\left(g_{\alpha, \beta}\right)>0$, we find that

$$
\operatorname{det}\left(\frac{\partial t_{\alpha}^{i}}{\partial t_{\beta}^{j}}\right)>0 \text { on } V_{\alpha} \cap V_{\beta} \cap \text { zero }(\mathrm{s}) .
$$

Therefore zero(s) is orientable. As $s \neq 0$ on ∂X, zero(s) has not the boundary. We shall next prove the second statement. For simplicity put $A=$ zero(s). Since s is the smooth cross-section of $E \mid(X-A)$. and $\partial A=\phi$, we can define $o b s \frac{\perp}{\perp}(q, s, A)$ for any $q \in A$. Let $q \in V_{\alpha} \cap A$. Then we
calculate $o b s \frac{1}{1}(q, s, A)$. From the condition (iii) the set $A_{\frac{1}{q}}=\left\{q^{\prime} \in V_{\alpha}: t_{\alpha}^{1}\left(q^{\prime}\right)=\right.$ $\left.\cdots=t_{\Omega}^{2(m-n)}\left(q^{\prime}\right)=0\right\}$ becomes a complemental submanifold to A at q. Then, of course, $\left(s_{\alpha}^{1}, \cdots, s_{\alpha}^{2 n}\right)$ is the coordinate system of $A_{\bar{q}} \cap V_{\alpha}$. Hence the restriction of $\psi_{\alpha} \cdot s$ to $A_{\bar{q}}$ is consider as the inclusion mapping as follows: Let us put $v_{\alpha}\left(s_{a}^{1}, \cdots, s_{a}^{2 n}\right)$ and let z^{1}, \cdots, z^{n} be complex coordinates of \boldsymbol{C}^{n}. If $x^{1}, \cdots, x^{2 n}$ are coordinates of $\boldsymbol{R}^{2 n}$ with $x^{i}+\sqrt{-1} x^{n+1}=z_{i}$, then from definition of $s_{a}^{i},(i=1, \cdots, 2 n)$,

$$
x^{i} \psi_{\alpha} s v_{\alpha}^{-1}\left(s_{\alpha}^{1}, \cdots, s_{\alpha}^{2 n}\right)=s_{\alpha}^{i} \quad i=1, \cdots, 2 n .
$$

Therefore we have from $o b s_{1}\left(q, s, A_{\frac{1}{q}}\right)=\operatorname{zero}\left(q, s, A_{\frac{1}{q}}\right), o b s_{1}\left(q, s, A_{\frac{1}{q}}\right)=1$. Thus for any $q \in A$, we obtain

$$
\begin{equation*}
o b s_{\frac{1}{1}}^{\perp}(q, s, A)=1 \quad A=\operatorname{zero}(\mathrm{s}) . \tag{4.27}
\end{equation*}
$$

Now let γ be a smooth singular $2 n$-cycle in the interior of X such that every singular chain σ in γ which intersects zero(s), meets σ in an isolated intersior point. Hence we can apply Theorem 4.1 to each singular chain σ in γ. Then from (4.3) and (4.27),

$$
\int_{\sigma} C_{n}(E)=\int_{\partial \sigma} s^{*} \eta_{n}\left(\pi_{1}^{\sharp} E\right)+n(\sigma, \quad \operatorname{zero}(\mathrm{~s}))
$$

where $n(\sigma$, zero(s) is the intersection number of σ and zero(s). Hence summing over σ in γ, we find

$$
\int_{r} C_{n}(E)=n(r, \quad \operatorname{zero}(\mathrm{~s})) .
$$

Corollary 4.5. [1]. (The relative Causs-Bonnet theorem). Let E be a Hermitian n-bundle over an n-complex manifold X with the boundary ∂X. Now, given a smooth section s of E such that
i) $s \neq 0$ on ∂X, ii) s has isolated zeroes only, then we have

$$
\sum_{j=1}^{l} \text { zero }\left(p_{j} ; s\right)=\int_{X} C_{n}(E)-\int_{\partial X} s^{*} \eta_{n}\left(\tau_{1}^{*} E\right)
$$

where the p_{j} are zeroes of s.
Indeed, if we apply (4.1) to the case when $k=1, \operatorname{dim} X=\operatorname{dim} E=n$, $D=X$, and $f=$ the identity mapping of X, then this corollary follows from the fact that $o b s_{1}\left(p_{j}, s, X\right)=\operatorname{zero}\left(p_{j}: s\right) j=1, \cdots, l$
Q.E.D.

§5. An application to complex projective space

In this section we will inverstigate Levine's "The First Main Theorem" for holomorphic mappings of non-compact, complex manifolds into complex projective space [2].

Let $\boldsymbol{p}^{n}(\boldsymbol{C})$ be n-dimensional complex projective space of all the 1 dimensional subspaces of \boldsymbol{C}^{n+1}, and let V be a non-compact real $2(n-k+1)$ dimensional oriented manifold. Let $D \subset V$ be a compact domain with the smooth boundary ∂D. We assume that there exists a smooth mapping f of V into $\boldsymbol{p}^{n}(\boldsymbol{C})$.

Theorem 5.1, ([2]). Let A be a complex ($k-1$)-dimensional linear subspace. of $\boldsymbol{p}^{n}(\boldsymbol{C})$ such that $f^{-1}(A) \cap D$ is a set of isolated points in $(D-\partial D)$. Let c denoted the inclusion mapping of A into $\boldsymbol{p}^{n}(\boldsymbol{C})$. If $n(D, f, A)$ denotes the intersection number of the singular chains $f: D \longrightarrow \boldsymbol{p}^{n}(\boldsymbol{C})$ and $\subset: A \longrightarrow \boldsymbol{p}^{n}(\boldsymbol{C})$, and if $V(D)$ denotes the volume of $f(D)$, then

$$
\begin{equation*}
V(D)-n(D, f, A)=\int_{\partial D} f^{*} \Lambda \tag{5.1}
\end{equation*}
$$

where Λ is a real $2(n-k)+1$-form on $\left(\boldsymbol{p}^{n}(\boldsymbol{C})-A\right)$, which is given by (5.11).
The volume element of $\boldsymbol{p}^{n}(\boldsymbol{C})$ is the one induced by the standard unitary invariant Kähler metric, normalized so that the volume of $\boldsymbol{p}^{n}(\boldsymbol{C})$ equals 1.
(Levine assumes in [2] that V is a complex manifold and that f is holomorphic.)

Proof. In order to prove this by using Theorem 4.1, let us consider the canonical holomorphic vector bundles L, T, and E over $\boldsymbol{p}^{n}(\boldsymbol{C})$, defined a as follows, ([1]):
(5.2) $\quad T$ is the product bundle $\boldsymbol{p}^{n}(\boldsymbol{C}) \times \boldsymbol{C}^{n+1}$
(5.3) L is the subbundle of T consisting of all the pairs (l, v), where $v \in l$.
(5.4) E is the quotient bundle T / L (Note $\operatorname{dim} E=n$). Then, over $\boldsymbol{p}^{n}(\boldsymbol{C})$ we obtain the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow L \longrightarrow T \longrightarrow E \longrightarrow 0 \tag{5.5}
\end{equation*}
$$

Let N_{0} be the norm on T induced by the inner product (,) of C^{n+1} as before. In terms of (5.5), the norm N_{0} on T induces norms N_{1} on L and N_{2} on E as stated in $\S 2$. We shall apply Theorem 4.1 to this holomorphic
n-bundle E with the norm N_{0}, over $\boldsymbol{p}^{n}(\boldsymbol{C})$. Let $C(E), E_{k}$ and $\eta_{n-k+1}\left(\pi_{k}^{*} E\right)$ be as defined in previous sections. Now let $z^{0}, \cdots z^{n}$ be homogeneous coordinates of $\boldsymbol{p}^{n}(\boldsymbol{C})$ coorresponding to the natural basis e_{0}, \cdots, e_{n} of \boldsymbol{C}^{n+1}. Here put

$$
\begin{equation*}
\Omega=\frac{i}{2 \pi} d^{\prime} d^{\prime \prime} \log \sum_{j=0}^{n} z^{j} \bar{z}^{j} \tag{5.6}
\end{equation*}
$$

It is well-known ([5]) that Ω is the real 2 -form on $\boldsymbol{p}^{n}(\boldsymbol{C})$ induced by the standard, unitary invariant, Kähler metric. Then we have

Lemma 5.2. Let $C_{l}(E)$ be the l th Chern form of E. Then we obtain

$$
\begin{equation*}
C_{l}(E)=\Omega^{l}, \quad(l=1, \cdots, n) \tag{5.7}
\end{equation*}
$$

Proof. Let V_{j} be open sets defined by $V_{j}=\left\{l \in \boldsymbol{p}^{n}(\boldsymbol{C}): z^{j}(l) \neq 0\right\}, i=0$, \cdots, n. For each j let $\left(\xi^{0}, \cdots, \xi^{j-1}, \xi^{j+1}, \cdots, \xi^{n}\right)$ be the coordinate system on V_{j} defined by $\xi^{i}=z^{i} / z^{j}, i=0, \cdots, j-1, j+1, \cdots, n$. Then we obtain a holomorphic nonvanishing section $s_{j} ; V_{j} \longrightarrow L$ given by

$$
s_{j}(l)=\left\{l,\left(\xi^{0}(l), \cdots, \xi^{j-1}(l), 1, \xi^{j+1}(l), \cdots, \xi^{n}(l)\right)\right\}
$$

Of course, from definition of the norm N, on L,

$$
N_{1}\left(s_{j}(l)\right)=1+(\xi(l), \xi(1))_{j} \quad \text { for each } l \in V_{j}
$$

where $\left(\xi(l), \xi(l)_{j}=\xi^{0}(l) \bar{\xi}^{0}(l)+\cdots+\xi^{j-1}(l) \bar{\xi}^{j-1}(l)+\xi^{j+1}(l) \bar{\xi}^{j+1}(l)+\cdots+\xi^{n}(l) \bar{\xi}^{n}(l)\right.$. Therefore it follows from (2.5) that $C_{1}(L) \left\lvert\, V_{j}=-\frac{i}{2 \pi} d^{\prime} d^{\prime \prime} \log \left(1+(\xi, \xi)_{j}\right)\right.$, so that, from (5.6) we have $C_{1}(L)=-\Omega$. However in terms of Corollary 2.7, $C_{l}(E)=\left(-C_{1}(L)\right)^{2} . \quad$ Hence (5.7) is proved.
Q.E.D.

Further we can prove

Lemma 5.3.

$$
\begin{equation*}
\int_{p^{n}(\boldsymbol{C})} C_{n}(E)=1 \tag{5.8}
\end{equation*}
$$

Proof. Let $v \in \boldsymbol{C}^{n+1}$ and let $\hat{s}_{v}: \boldsymbol{p}^{n}(\boldsymbol{C})-[v] \longrightarrow E_{1} \subset E$ be a holomorphic section defined by $\hat{s}_{v}(l)=(l, v / l), \quad l \in \boldsymbol{p}^{n}(\boldsymbol{C})-[v]$. Then from Corollary 4.5 we have

$$
\int_{\boldsymbol{p}^{n}(\boldsymbol{C})} C_{n}(E)=\operatorname{zero}\left([v], \hat{v}_{v}\right) .
$$

It is sufficient to prove zero $\left([v], \hat{s}_{v}\right)=1$. For convernience sake we assume
$v=e_{0}$. Then we obtain a frame $t=\left\{t_{i}\right\}_{1 \leq i \leq n}$ of $E \mid V_{0}$ given by $t_{i}(l)=$ $\left(l,-e_{i} / l\right) \quad l \in V_{0}$. Let $\varphi: V_{0} \times C^{n} \longrightarrow E \mid V_{0}$ be the trivialization defined by

$$
\varphi(l, v)=\sum_{i=1}^{n} z^{i}(v) t_{i}(l) \quad(l, v) \in V_{0} \times C^{n}
$$

where z^{1}, \cdots, z^{n} are complex coordinates of \boldsymbol{C}^{n}. Further let $\psi: E \mid V_{0} \longrightarrow \boldsymbol{C}^{n}$ be a holomorphic mapping defined by φ, i.e., $\psi \varphi(l, v)=v$, for $(l, v) \in V_{0} \times \boldsymbol{C}^{n}$. To show zero $\left(\left[e_{0}\right], \hat{s}_{e_{0}}\right)=1$, we estimate the mapping $\psi \cdot \hat{s}_{e_{0}}: V_{0} \longrightarrow C^{n}$. If ξ^{1}, \cdots, ξ^{n} denote the coordinates on V_{0}, as before, then it is easy to prove that

$$
\phi(l)=\left(\xi^{1}(l), \cdots, \xi^{n}(l)\right) \quad \text { for each } l \in V_{0}
$$

Therefore

$$
\operatorname{zero}\left(\left[e_{0}\right], \hat{s}_{e_{0}}\right)=1
$$

Q.E.D.

From Lemma 5.2 and 5.3, $C_{n}(E)=\Omega^{n}$ becomes the normalized volume element of $\boldsymbol{p}^{n}(\boldsymbol{C})$. Moreover from the fact that $C(E)$ (or Ω) is invariant under unitary transformations it follows that: Let $A \perp$ be any complex $(n-k+1)$-dimensional linear subspace of $\boldsymbol{p}^{n}(\boldsymbol{C})$. Then

$$
\begin{equation*}
\int_{A} C_{n-k+1}(E)=\int_{A} \Omega^{n-k+1}=1 \tag{5.9}
\end{equation*}
$$

Now let $f, D, V(D)$ and A be as described in Theorem 5.1. Then, of course, we have

$$
\begin{equation*}
V(D)=\int_{D} f^{*} \Omega^{n-k+1}=\int_{D} f^{*} C_{n-k+1}(E) \tag{5.10}
\end{equation*}
$$

Let l be any fixed point in A and let us take an orthonormal basis v_{0}, \cdots, v_{n} of \boldsymbol{C}^{n+1} such that
(α) $\quad v_{0}, \cdots, v_{k-1}$ belong to A
(β) $\quad v_{k-1} \in l$.
Then we denote by $A_{t} \frac{1}{l}$ the complex ($n-k+1$)-dimensional projective space consisting of all the 1 -dimensional subspace of $\left[v_{k-1}, \cdots, v_{n}\right]$. Note $A \cap A_{l}=\{l\}$. It is obvious that A_{ι} is a complemental submanifold to A at l without boundary. Moreover we define a holomorphic s section $s:\left(\boldsymbol{p}^{n}(\boldsymbol{C})-A\right) \longrightarrow$ E_{k} by $s(l)=\left\{l,\left(v_{0} / l, \cdots, v_{k-1} / l\right)\right\}$ for all $l \in\left(\boldsymbol{p}^{n}(\boldsymbol{C})-A\right)$. It is clear that s is the well-defined section. Here put

$$
\begin{equation*}
\Lambda=s^{*} \eta_{n-k+1}\left(\pi_{k}^{*} E\right) \quad \text { on } \boldsymbol{p}^{n}(\boldsymbol{C})-A . \tag{5.11}
\end{equation*}
$$

The boundary form $\eta_{n-k+1}\left(\pi_{k}^{\sharp} E\right)$ is a real $2(n-k)+1$-form, and so is. Hence, from (4.3) we have: $\int_{A_{l}^{\frac{1}{l}}} C_{n-k+1}(E)=\int_{A_{l}^{\frac{1}{l}}} \Lambda+o b s_{\frac{1}{k}}(l, s, A) n\left(l, A_{l}^{\frac{1}{l}}, A\right)$ where ${ }_{c_{l}}$: $A_{\iota}^{\perp} \longrightarrow \boldsymbol{p}^{n}(\boldsymbol{C})$ is the inclusion mapping. However $\partial A_{\imath} \frac{1}{}=\phi, n\left(l, A_{\imath}, A\right)=1$, and from (5.9), $\int_{A \frac{1}{l}} C_{n-k+1}(E)=1$. so that, we have: for any $l \in A$ obs $\frac{1}{k}(l, s, A)=1$. Again using (4.3) we have

$$
\begin{equation*}
\int_{D} f^{*} C_{n-k+1}(E)=\int_{\partial D} f^{*} \Lambda+\sum_{j=1}^{l} n\left(p_{j}, f, A\right) \tag{5.12}
\end{equation*}
$$

where

$$
f^{-1}(A) \cap D=\left\{p_{1}, \cdots, p_{l}\right\}
$$

But, from definition of $n(D, f, A), \sum_{j=1}^{l} n\left(p_{j}, f, A\right)=n(D, f, A)$. (5.1) follows from (5.10) and (5.12).

References

[1] R. Bott and S.S. Chern: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math., 114 (1965), 71-112.
[2] H.I. Levine: A theorem on holomorphic mappings into complex projective space. Ann. Math., 71 (1960), 529-535.
[3] S.S. Chern: Characteristic classes of Hermitian manifold. Ann. Math., 47 (1946), 85-121.
[4] N. Steenrod: The topology of fibre bundles. Princeton University Press (1951).
[5] Y. Akizuki: The theory of harmonic integrals. Iwanami (Japan), (1955-1956).
[6] S. Sternberg: Lectures on Differential Geometry. New Jersey, Prentice-Hall, Inc., (1964). Mathematical Institute
Nagoya University

