AN INTEGRAL FORMULA FOR THE CHERN FORM OF A HERMITIAN BUNDLE

HIDEO OMOTO

Introduction

We shall consider a Hermitian *n*-vector bundle E over a complex manifold X. When X is compact (without boundary), S.S. Chern defined in his paper [3] the Chern classes (the basic characteristic classes of E) $\hat{C}_i(E)$, $i = 1, \dots, n$, in terms of the basic forms Φ_i on the Grassmann manifold H(n, N) and the classifying map f of X into H(n, N). Moreover he proved ([3],[4]) that if E_k denotes the k-general Stiefel bundle associated with E, the (n-k+1)-th Chern class $\hat{C}_{n-k+1}(E)$ coincides with the characteristic class $C(E_k)$ of E_k defined as follows: Let K be a simplicial decomposition of X and $K^{2(n-k)+1}$ the 2(n-k)+1- shelton of K. Then there exists a section s of $E_k|K^{2(n-k)+1}$ so that one can define the obstruction cocycle c(s) of s. The cohomology class of c(s) is independent of such a section s. Thus one denotes by $C(E_k)$ the cohomology class of c(s) which is called the characteristic class of E_k . The above fact is well known as the second definition of the Chern classes ([3]).

On the other hand, in case when X is with boundary, R. Bott and S.S. Chern established the so-called Gauss-Bonnet theorem ([1]), which gives an integral formula for the above second definition of the *n*-th Chern class $\hat{C}_n(E)$, that is, if $C_n(E)$ denotes the *n*-th Chern form induced by a norm on E (c.f. Prop. 2.1),

$$\int_{\mathcal{X}} C_n(E) = \int_{\partial \mathcal{X}} s^* \eta_n + \sum_{j=1}^l \operatorname{zero}(p_j; s),$$

where the p_j are the zero points of a section s of X into E, the zero $(p_j; s)$ denote the zero-numbers of s at p_j , and η_n is the *n*-th boundary form of E (cf. Def. 3.1).

Received April 24, 1970.

The main purpose of this paper is to generalize their theorem to give an integral formula (Theorem 4.1) for the *i*-th Chern form $C_i(E)$ $(1 \le i \le n)$ induced by a norm on a Hermitian *n*-vector bundle *E* over a complex manifold *X* of a complex dimension *m*, according to [1] and the obstruction theory [3] and [4].

Roughly speaking, our main theorem 4.1, which is called the general lized realtive Gauss-Bonnet theorem, is as follows: Let E_k be the k-general Stiefel bundle associated with E and $\pi_k^* E$ the induced bundle of E under the projection π_k of E_k onto X. Suppose there exisit a real 2(m-n+k-1)dimensional oriented submanifold A (with smooth boundary ∂A) of X (here $m = \dim_{\mathbf{C}} X$), and a smooth section s of (X - A) into E. Then for any interior point q of A we can define the k-th complement obstruction number $obs_k^{\perp}(q, s, A)$ (c.f. Def. 4.2). Let V be a real 2(n - k + 1)-dimensional oriented manifold and D a compact domain with smooth boundary ∂D . Now given a smooth map f of V into X, we obtain the intersection numbers $n(p_i, f, A)$ of the singular chain $f: D \to X$ and A at the points $p_j \in D \cap f^{-1}$ $(A) (i = 1, \dots, l)$.

Then our integral formula is given by

$$\begin{split} \int_{D} f^* C_{n-k+1}(E) &= \int_{\partial D} f^* s^* \eta_{n-k+1}(\pi_k^* E) \\ &+ \sum_{j=1}^i obs_k^{\perp}(f(p_j), s, A) \cdot n(p_j, f, A). \end{split}$$

As an application of our theorem, we obtain Levine's "The First Main Theorem [7]" concerning holomorphic mappings f from a non-compact complex manifold V into the *n*-complex projective space $P^n(C)$ (c.f. §5).

Finally we note that technics in [2] are used in the proof of Theorem 4.1.

In Section 1 we review the theory of the Chern forms as described in [1]. In Section 2 we refine this theory for the case of complex analytic Hermitian bundles and state the duality formula according to [1]. In Section 3 we define an (n, k)-trivial bundle and its boundary form (c.f. Def. 3.1 and 3.2). Furthermore we study the boundary form $\eta_{n-k+1}(\pi_k^*E)$ of the (n, k)-trivial bundle $\pi_k^*(E)$ associated with a Hermitian *n*-bundle *E* over a complex manifold *X*, which plays an important role in our theorem. In Section 4 we define the *k*-th obstruction number (c.f. Def. 4.1 and 4.2), and prove the generalized relative Gauss-Bonnet theorem.

In preparing this paper, I have received many advices from Dr. N. Tanaka. I would like to express my cordial thanks to him.

§1. The Chern forms

1.1 The Chern forms. Let E be a C^{∞} -vector bundle of fibre dimension n over a C^{∞} -manifold X. We denote by $T^* = T^*(X)$ the cotangent bundle of X and by $A(X) = \sum_j A^j(X)$ the graded ring of C^{∞} -complex valued differential forms on X. More generally we write A(X; E) for the differential forms on X with values in E. Thus if $\Gamma(E)$ denotes the smooth sections of E, then it follows that $A(X; E) = A(X) \bigotimes_{A \in (X)} \Gamma(E)$.

DEFINITION 1.1. A connection on E is a differential operator $D: \Gamma(E) \longrightarrow \Gamma(T^* \otimes E)$ satisfying the following rule:

(1.1)
$$D(f \cdot s) = df \cdot s + f \cdot Ds$$

for $f \in A^0(X)$, $s \in \Gamma(E)$.

Suppose now that *E* has a definite connection *D*. Let $s = \{s_i\}_{1 \le i \le n}$ be a frame of *E* over *V*, where *V* is an open subset of *X*. Then there exist 1-forms θ_{ij} on *V* which satisfy the following relations:

(1.2)
$$Ds_i = \sum_{j=1}^n \theta_{ij} s_j \qquad i = 1, \cdots, n$$

These 1-forms θ_{ij} define a matrix of 1-forms on V, denoted by $\theta(s, D) = ||\theta_{jj}||$, which is called the *connection matrix* relative to the frame s. From $\theta(s, D)$ we now define a matrix $K(s, D) = ||K_{ij}||$ of 2-forms on V by $K_{ij} = d\theta_{ij} - \sum_k \theta_{ik} \wedge \theta_{kj}$. In matrix notation:

(1.3)
$$K(s,D) = d\theta(s,D) - \theta(s,D) \wedge \theta(s,D).$$

K(s, D) is called the *curvature matrix* of D relative to the frame s,

Let us consider any two frames s and s' of E|V. Then there exist elements $A_{ij} \in A^0(V)$ such that $s'_i = \sum_j A_{ij} s_j$ and in matrix notation we write simply s' = As. Then we have the following transformation law

(1.4)
$$AK(s, D) = K(s, D)A$$
 $s' = As.$

From this and the fact that even forms commute with one another, we have

DEFINITION 1.2. The Chern form of E relative to D, denoted by C(E, D), is a global form on X defined as follows: Let us cover X by $\{V_{\alpha}\}$ which

admit frames s^{α} over V_{α} : Let det $\{1_n + iK(s, D)/2\pi\}$ denote determinants of matrices $1_n + iK(s^{\alpha}, D)/2\pi$, where $i = \sqrt{-1}$ and 1_n is the unit matrix. Then we set

(1.5)
$$C(E,D)|V_{\alpha} = \det \{1_n + iK(s^{\alpha},D)/2\pi\}.$$

Moreover in terms of the transformation law (1.4), the curvature matrices $K(s^{\alpha}, D) = ||K_{ij}||$ determine a definite element $K[E, D] \in A^2(X: \operatorname{Hom}(E, E))$ as follows: Let t be any elemet of $\Gamma(E)$. Then for each open set V_{α} there exists elements $f_i^{\alpha} \in A^0(V_{\alpha})$ such that $t = \sum_{i=1}^n f_i^{\alpha} s_i^{\alpha}$, $s^{\alpha} = \{s_i^{\alpha}\}_{1 \leq i \leq n}$. Here we put

(1.6)
$$K[E,D] \cdot t = \sum_{i,j=1}^{n} f_i^{\alpha} K_{ij}^{\alpha} \cdot s_j^{\alpha} \quad \text{on} \quad V_{\alpha}.$$

K[E, D] is called the curvature element of E relative to D.

1.2. Reformulation of the Chern forms. We observe that by using the curvature element K[E, D], we can reformulate the Chern form C(E, D) in the following manner.

DEFINITION 1.3. Let M_n denote the vector space of $n \times n$ matrices over C. A k-linear function φ on M_n is called *invariant* if for any $B \in GL(n; C)$,

(1.7)
$$\varphi(A_1, \cdots, A_k) = \varphi(BA_1B^{-1}, \cdots, BA_kB^{-1}) \text{ for } A_i \in M_n.$$

We denote by $I^{k}(M_{n})$ the vector space of all the k-linear invariant functioons.

Now given $\varphi \in I^k(M_n)$ and an open set V of X, we ixtend φ to a k-linear mapping, denoted by φ_v , from $M_n \otimes A(V)$ into A(V) by putting

$$\omega_{\mathbf{v}}(A_1\omega_1,\cdots,A_k\omega_k)=\varphi(A_1,\cdots,A_k)\omega_1\wedge\cdots\wedge\omega_k$$

for $A_i \in M_n$, $\omega_i \in A(V)$.

On the other hand if $\xi \in A(X: \text{Hom}(E, E))$ and if $s = \{s_i\}$ is a frame of E|V, then ξ determines a matrix of forms $\xi(s) = ||\xi(s)_{ij}|| \in M_n \otimes A(V)$ by $\sum_j \xi(s)_{ij} s = \xi \cdot s_i$, and under the substitution s' = As. these matrices transform by $\xi(s') = A\xi(s)A^{-1}$. Hence given $\xi_i \in A(X: \text{Hom}(E, E))$ $(i = 1, \dots, k)$ and $\varphi \in I^k(M_n)$; we can define a form $\varphi(\xi_1, \dots, \xi_k) \in A(X)$ as follows: Let s be a frame of E|V. Then set

(1.8)
$$\varphi(\xi_1, \cdots, \xi_k) | V = \varphi_v(\xi_1(s), \cdots, \xi_k(s))$$

where the $\xi_i(s)$ are matrices of ξ_i relative to s.

For simplicity we put $\varphi(\xi, \cdot \cdot \cdot, \xi) = \varphi((\xi))$.

Now let D be a connection on E and let C(E, D) and K[E, D] denote the Chern form and the curvature element of E relative to D respectively. Then we want to construct k-linear invariant functions $b_k^n \in I^k(M_n)$ $(k=1, \dots, n)$ such that

$$C(E, D) = 1 + \sum_{k=1}^{n} b_k^n (\kappa K[E, D]))$$
 $\kappa = i/2\pi.$

For this purpose let L be a k-tuples (i_1, \dots, i_k) of integers from $\{1, \dots, n\}$ such that $i_1 < \dots < i_k$. Then we define linear mappings L_i on M_n $(l = 1, \dots, k)$ as follows: For any $A = ||a_{ij}|| \in M_n$, we put

$$L_l(A) = \begin{pmatrix} {}^a i_1 i_1 \\ \vdots \\ {}^a i_k i_l \end{pmatrix} \qquad l = 1, \cdots, k.$$

If $A_{\alpha} = ||a_{ij}^{\alpha}|| \in M_n$, $(a = 1, \dots, k)$, then det $\{L_1(A_1), \dots, L_k(A_k)\}$ denotes the determinant of the matrix $||a_{i_{\beta}i_{\gamma}}^{\alpha}||_{1 \leq \beta, \gamma \leq k}$. With this notation k-linear functions b_k^n are defined as follows: For any $A_{\alpha} \in M_n$ $(a = 1, \dots, k)$,

(1.9)
$$b_k^n(A_1, \cdots, A_k) = \sum_{\sigma, L} \frac{1}{k!} \det \{ L_1(A_{\sigma(1)}), \cdots, L_k(A_{\sigma(k)}) \},$$

where the summation is extended over all permutations σ of $\{1, \dots, k\}$ and all k-tuples $L = (i_1, \dots, i_k)$ of integers from $\{1, \dots, n\}$ such that $i_1 < \dots < i_k$.

It is clear from definition that the b_k^n are symmetric, that is, for any permutation σ of $\{1, \dots, k\}$,

$$b_k^n(A_1, \cdots, A_k) = b_k^n(A_{\sigma(1)}, \cdots, A_{\sigma(k)}) \quad A_i \in M_n$$

Therefore in a case of $A_1 = \cdots = A_k = A$, it follows that

(1.10)
$$b_k^n((A)) = \sum_L \det \{L_1(A), \cdots, L_k(A)\}$$

Hence we find that

(1.11)
$$\det (1_n + A) = 1 + \sum_{k=1}^n b_k^n(A)) \quad A \in M_n,$$

where 1_n is the unit matrix of M_n .

LEMMA 1.1. The k-linear function b_k^n is invariant, i.e., $b_k^n \in I^k(M_n)$.

Proof. Let $\lambda_1, \dots, \lambda_k$ be indeterminates and let A_1, \dots, A_k be any fixed elements of M_n . Then it follows from (1.10) and (1.11) that

(1.12)
$$\det \left(1_n + \sum_{\alpha=1}^k \lambda_\alpha A_\alpha \right) = 1 + \sum_{r=1}^n \left[\sum_{L=(i_1, \dots, i_k) j_1, \dots, j_r=1}^k \lambda_{j_1, \dots, \lambda_{j_r}} \right]$$
$$\det \left\{ L_1(A_{j_1}) \cdot \cdot \cdot L_r(A_{j_r}) \right\} \right]$$

Since both sides of (1.2) are considered smooth functions of k variables $\lambda_1, \dots, \lambda_k$, we operate $\partial^k / \partial \lambda_1 \dots \partial \lambda_k$ on each side of (1.12) at the origin $(\lambda_1, \dots, \lambda_k) = (0, \dots, 0) = 0$. Then from $\frac{\partial^k}{\partial \lambda_1 \dots \partial \lambda_k} \Big|_0 (\lambda_{j_1} \dots \lambda_{j_r})$ $= \begin{cases} 1 \text{ if } r = k \text{ and } \{j_1, \dots, j_r\} = \{1, \dots, k\} \\ 0 \text{ otherwise,} \end{cases}$

(1.13)
$$\frac{\partial^k}{\partial \lambda_1 \cdots \partial \lambda_k} \Big|_0 \det \left(1_n + \sum_{\alpha=1}^k \lambda_\alpha A_\alpha \right) = \sum_{\sigma, L = (i_1, \cdots, i_k)} \det \left\{ L_1(A_{\sigma(1)}), \cdots L_k(A_{\sigma(k)}) \right\}$$

Thus it follows from (1.9) and (1.13) that

(1.14)
$$b_k^n(A_1, \cdots, A_k) = \frac{1}{k!} \frac{\partial^k}{\partial \lambda_1 \cdots \partial \lambda_k} \Big|_0 \det (1_n + \sum_{\alpha=1}^k \lambda_\alpha A_\alpha).$$

It is clear from (1.14) that b_k^n is invariant.

Q.E.D.

Now let C(E, D) and K[E, D] be as before. Then in views of Lemma 1.1 and (1.11), we find that the b_k^n are invariant and satisfy the next relation:

(1.15)
$$C(E,D) = 1 + \sum_{k=1}^{n} b_k^n ((\kappa K[E,D])).$$

Notice that $b_k^n((\kappa K[E, D]))$ becomes a global form of degree 2k on X because of $K[E, D] \in A^2(X: \text{Hom}(E, E))$. Here we have

DEFINITION 1.4. Let K[E, D] be the curvature element of E relative to D. Let b_k^n denote the k-linear invariant function defined by (1.9). Then the 2k-form $b_k^n((\kappa K[E, D]))$ is called the k th Chern form of E relative to D, denoted by $C_k(E, D)$.

With this notation the relation (1.15) becomes

$$(1.15)' C(E,D) = 1 + \sum_{k=1}^{n} C_k(E,D), \ C_k(E,D) = b_k^n((\kappa K[E,D])).$$

Moreover, applying the next proposition to the invariant functions b_k^n , it follows that

(1.16)
$$dC_k(E,D) = 0$$
 $k = 1, \cdots, n$

so that

$$(1.17) dC(E,D) = 0$$

PROPOSITION 1.2. [1]. Let E be a C^{*}-vector bundle of fibre dimension n over a C^{*}-manifold X with a connection D. Let K[E, D] be the curvature element. Given any $\varphi \in I^{k}(M_{n})$, then we obtain

$$(1.18) d\varphi((K[E, D])) = 0.$$

Next we introduce notations used in the later sections, For $\varphi \in I^k(M_n)$ we abbreviate $\sum_{\alpha=1}^k \varphi(A, \dots, B, \dots, A)$ to $\varphi'((A:B))$. We put for any $A, B \in M_n$

$$\widetilde{\det}((A)) = 1 + \sum_{k=1}^{n} b_k^n((A))$$
 and $\widetilde{\det}'((A:B)) = \sum_{k=1}^{n} b_k^n((A:B))$.

Then it follows that

(1.19)
$$\widetilde{\det}'((A:B)) = \frac{\partial}{\partial \lambda}\Big|_{0} \det(1_{n} + A + \lambda B),$$

(1.20)
$$\widetilde{\det}((\kappa K[E,D])) = C(E,D).$$

In order to prove (1.19) it is sufficient to notice that $det(1_n + A + \lambda B) = 1 + \sum_{k=1}^{n} b_k^n((A + \lambda B))$. (1.20) is trivial.

REMARK. A connection D on E is extended uniquely to an antiderivation of the A(X) module A(X: E), so as to satisfy the law:

$$(1.21) D(\theta \cdot s) = d\theta \cdot s + (-1)^p \theta \cdot Ds \theta \in A^p(X), \ s \in \Gamma(E).$$

Then from the definition (1.6) of the curvature element K[E, D], we find that

(1.22)
$$D^2s = K[E, D] \cdot s$$
 for any $s \in \Gamma[E]$.

§2. The duality formula

2.1. The canonical connection of a Hermitian bundle. Let E be a holomorphic vector bundle over a complex manifold X. Then a norm N on E is a real-valued function $N: E \longrightarrow R$ such that the restriction of N to any fibre is a Hermitian norm on that fibre. Thus for each $x \in X$, a positive definite Hermitian form, denoted by $\langle u, v \rangle_N$, or simply $\langle u, v \rangle$, is defined by putting for any $u, v \in E_x$,

$$\langle u, v \rangle_N = \frac{1}{2} \{ N(u+v) - N(u) - N(v) \} + i \frac{1}{2} \{ N(u+iv) - N(u) - N(v) \}.$$

Moreover this Hermitian form \langle , \rangle_N is extended as follows: For any sections s and s', we define $\langle s, s' \rangle$ as the function $\langle s, s' \rangle \langle x \rangle = \langle s(x), s'(x) \rangle$ and we set in general $\langle \theta \cdot s, \theta' \cdot s' \rangle = \theta \wedge \overline{\theta}' \langle s, s' \rangle \theta, \theta' \in A(X)$. A holomorphic vector bundle with a norm is called a hermitian vector bundle. Let E be a Hermitian vector bundle. Then we will find from the following Proposition 2.1 that E has a canonical connection induced by a norm on E. It is our aim to study the Chern form of E relative to this canonical connection.

Now let X be a complex manifold. The complex valued differential froms A(X) split into a direct sum $\sum A^{p,q}(X)$ where $A^{p,q}(X)$ is generated over $A^{0}(X)$ by forms of the type $df_{1} \wedge \cdots \wedge df_{p} \wedge d\bar{f}_{p+1} \wedge \cdots \wedge d\bar{f}_{p+q}$, the f_{i} being local holomorphic functions on X. Therefore d splits into d' + d''where

$$d': A^{p,q} \longrightarrow A^{p+1,q}$$
 and $d'': A^{p,q} \longrightarrow A^{p,q+1}$.

If E is a vector bundle over X, then A(X; E) split into the direct sum $\sum A^{p,q}(X; E) = \sum A^{p,q}(X) \otimes \Gamma(E)$ according to the decomposition of A(X). Hence any connection D on E is decomposed into D' + D'':

$$D': \Gamma(E) \longrightarrow A^{1,0}(X; E) \text{ and } D'': \Gamma(E) \longrightarrow A^{0,1}(X; E).$$

With these preliminaries we obtain

PROPOSITION 2.1. [1]. Let N be a norm on a Hermitian vector bundle E. Then N induces a canonical connection D = D(N) on E which is characterized by the two conditions:

(2.1) D preserves the norm N, i.e., for any $s, s' \in \Gamma(E)$ $d\langle s, s' \rangle = \langle Ds, s' \rangle + \langle s, D' \rangle$.

(2.2) If s is a holomorphic section of E|V, then D''s = 0 on V.

This proposition shows that if $s = \{s_i\}$ is a holomorphic frame of E|Vand if N(s) denotes the matrix of functions $N(s) = ||\langle s_i, s_j \rangle||$, then the connection matrix $\theta(s, N)$ of D(N) relative to the frame s is given by

(2.3)
$$\theta(s, N) = d'N(s) \cdot N(s)^{-1} \quad \text{on} \quad V,$$

and the curvature matrix K(s, N) is expressed as follows:

(2.4)
$$K(s, N) = d''\theta(s, N), \text{ whence } K(s, N) \text{ is of type (1,1)}$$

and $d''K(s, N) = 0.$

It follows from (2.4) and Definition 1.4 that the kth Chern forms C_k (E, D(N)) are of type (k, k).

Suppose now that E is a line bundle. Then a holomorphic frame is a nonvanishing holomorphic section s of E|V, so that, relative to s,

 $\theta(s, N) = d' \log N(s)$ and $K[E, D(N)] \cdot s = d''d' \log N(s)$.

Thus if E admits a global nonvanishing holomorphic sections s, then

(2.5)
$$C_1(E, D(N)) = -\frac{i}{2\pi} d'' d' \log N(s).$$

(Note that the invariant function b_1^i defining $C_1(E, D(N))$ becomes the identity mapping of $M_1 = C$.)

2.2. Homotopy lemma. We state the homotopy lemma on which the duality formula is based.

DEFINITION 2.1. A connection D on a holomorphic bundle E over X, is called of type (1,1) if

(i) For any holomorphic section s of E|V, D''s = 0

(ii) The curvature matrix K(s, D) relative to a holomorphic frame s over V, are of type (1, 1), i.e., $K[E, D] \in A^{1,1}(X: \text{Hom } (E, E))$.

It is obvious from (2.4) that a cannonical connection D(N) is of type (1.1).

DEFINITION 2.2. A family of connections Dt of type (1,1) will be called bounded by $L_t \in A^0(X: \text{Hom } (E, E))$ if for any frame s,

$$dD_t(s)/dt = d'L_t(s) + \{L_t(s) \cdot \theta(s, D_t) - \theta(s, D_t)L_t(s)\}.$$

Then we obtain the following homotopy lemma.

PROPOSITION 2.2. [1]. Let D_t be a smooth family of connections of type (1,1) on a holonorphic vector bundle E. Suppose that D_t is bounded by $L_t \in A(X: \text{Hom}(E, E))$. Then for any $\varphi \in I^k(M_n)$, $n = \dim E$,

(2.6)
$$\varphi((K[E, D_b])) - \varphi((K[E, D_a]))$$
$$= d''d' \int_a^b \varphi'((K[E, D_t]; L_t)) dt$$

2.3. The duality formula. Now let us consider an exact sequence of holomorphic vector bundles:

$$(2.7) 0 \longrightarrow E_I \longrightarrow E \longrightarrow E_{II} \longrightarrow 0$$

over a complex manifold X. We twrite ξ for the homomorphism from E onto E_{II} defining (2.7). Let N be a norm on E. Then the norm N on E induces norms N_I on E_I and N_{II} on E_{II} as follows: Let E_T^{\perp} be the orthocomplement of E_I , i.e., if for each $x \in X$, we put $(E_I^{\perp})_x = \{a \in E_x : \langle a, b \rangle_N = 0, \}$

for all $b \in E_x$, then $E_I^{\perp} = \bigcup_{x \in X} (E_I^{\perp})_x$.

Hence E_{I}^{\perp} becomes the C^{∞} -vector bundle over X. The restriction of ξ to E_{I}^{\perp} is the C^{∞} -isomorphism of E_{I}^{\perp} and E_{II} . Let $\hat{\xi}$ denote the inverse mapping of $\xi | E_{I}^{\perp}$. Then the norm N_{II} on E_{II} is defined by

$$N_{II}(a') = N(\hat{\boldsymbol{\xi}} \cdot a')$$
 for any $a' \in E_{II}$

On the other hand, the norm N_I on E_I is the restriction of N to E_I .

To the exact sequence (2.7), there correspond the canonical connections D(N) = D (on E), $D(N_i)$ (on E_i) and the Chern forms C(E) = C(E, D((N))), $C(E_i, D(N_i))$.

Now let $P_i(i = I, II)$ be the orthogonal projections

$$(2.8) P_I: E \longrightarrow E_I and P_{II}: E \longrightarrow E_{\downarrow}.$$

Since $P_i(i = I, II)$ are elements of $\Gamma(\text{Hom}(E, E))$, these are interpreted as degree zero operator, that is, $P_i(\theta \cdot s) = \theta \cdot P_i \cdot s$, $\theta \in A(X)$, $s \in \Gamma(E)$. Then the connection D = D(N) is decomposed into four parts

$$(2.9) D = \sum_{i,j} P_i D P_j j, i = I, II.$$

With these preliminaries we obtain

LEMMA 2.3, [1]. In the decomposition

(i) P_iDP_i $(i \neq j)$ are degree zero operators of type (1.0) and (0,1) respectively:

(2.10)
$$P_{II}D''P_I = 0, \ P_ID'P_{II} = 0.$$

(ii) P_iDP_i induces the connection $D(N_i)$ on $E_i \cdot i = I$, II.

Proof. The first statement is already proved in [1]. We shall prove only (ii). Let ξ , $\hat{\xi}$ be as above. Then ξ and $\hat{\xi}$ are considered as degree zero operators. Therefore it is clear that $\xi D\hat{\xi}$ defines a connection on E_{II} . We show that $\xi D\hat{\xi}$ is the canonical connection $D(N_{II})$. In order to prove this, it is sufficient to check the conditions (2.1) and (2.2) in Proposition

2.1. At first, (2.1) follows directly from the definition of N_{II} and the fact that D preserves the inner product \langle , \rangle_N :

Let t, t' be sections of E_{II} . Then it follows that

$$\begin{aligned} d\langle t, t' \rangle_{N_{II}} &= d\langle \hat{\xi}t, \hat{\xi}t' \rangle = \langle D\hat{\xi}t, \hat{\xi}t' \rangle_N + \langle \hat{\xi}t, D\hat{\xi}t' \rangle_N \\ &= \langle \xi D\hat{\xi}t, t' \rangle_{N_{II}} + \langle t, \xi D\hat{\xi}t' \rangle_{N_{II}}. \end{aligned}$$

For (2.2), let s be a holomorphic section of E|V. Then, D satisfying the condition (2.2), it follows that D''s = 0 on V. Hence from (2.9) we have

$$0 = D''s = (P_I D'' P_{II} + P_I D'' P_I) \cdot s + P_{II} D' P_{II} s + P_{II} D'' P_I s.$$

Thus we find from (2.10) that if s is a holomorphic section of E|V, then

(2.11)
$$P_{II}D''P_{II}s = 0$$
 on V.

Now let t be a holomorphic section of $E_{II}|V$. Then for each $x \in V$, there exist a neighborhood $V(x) \subset V$ of x and a holomorphic section s of E|V(x) such that $\xi \cdot s = t$ on V(x). On the other hand, it is clear that $(\xi D\hat{\xi})'' = \xi D''\hat{\xi}, \ \xi = \xi P_{II}$ and $\hat{\xi}\xi = P_{II}$. Therefore we have

$$(\xi D\hat{\xi})^{\prime\prime} \cdot t = \xi D^{\prime\prime} \hat{\xi} \cdot t = \xi D^{\prime\prime} \hat{\xi} \cdot \xi s = \xi P_{II} D^{\prime\prime} P_{II} s.$$

From (2.11) it follows that $(\xi D\hat{\xi})''t = 0$ on V(x). Thus we have proved that $(\xi D\hat{\xi})''t = 0$ on V. Therefore $\xi D\hat{\xi}$ is the canonical connection $D(N_{II})$.

Hence if we identify E_{I}^{\perp} and E_{II} under the isomorphism $\hat{\xi}$, then we can zalso identify $P_{II}DP_{II}$ and $\xi D\hat{\xi}$. Therefore, as we have proved, $P_{II}DP_{II}$ is regarded as the connection $D(N_{II})$ on E_{II} . Similarly it is proved that P_IDP_I induces the connection $D(N_I)$ on E_I . Q.E.D.

Now a family D_t which we need for the duality theorem is given by

$$(2.12) D_t = D + (e^t - 1)P_{II}DP_I for all t \in \mathbf{R}.$$

From (i) in Lemma 2.3 and the fact that D is the connection of type (1.1), D_t is a connection of type (1,1) for every $t \in \mathbf{R}$. We have further

LEMMA 2.4, [1]. The family D_t defined by (2.12) is "bounded" by the element $P_I \in \Gamma$ (Hom (E, E)).

Using the identifications $P_i DP_i = D(N_i)$ (i = I, II), we obtain the following decompositions of $K[E, D_i]$ according to P_i (i = I, II), [1]: Let $P_i K$ $[E, D_i]P_j$ be denoted by $K_{f_i}[E, D_i]$. Then we have

(2.13)
$$K_{II}[E, D_t] = K[E_I, D(N_I)] + e^t \Box_I$$

(2.14)
$$K_{II II}[E, D_t] = K[E_{II}, D(N_{II})] + e^t \Box_{II}$$

(2.15)
$$K_{III}[E, D_t] = e^t K_{III}[E, D], K_{III}[E, D_t] = K_{III}[E, D]$$

where $\Box_I = P_I D P_{II} D P_I$ and $\Box_{II} = P_{II} D P_I D P_{II}$.

Notice that $\xi K[E, D]\hat{\xi} \in A^{1,1}(X; \operatorname{Hom}(E_{II}, E_{II}))$ is identified with $K_{II,II}[E, D]$ under the isomorphism $\hat{\xi}: E_{II} \longrightarrow E_{I}^{\perp}$. Under this identification, \Box_{II} is also considered as the element of $A^2(X: \operatorname{Hom}(E_{II}, E_{II}))$, that is, from (2.14),

 $\Box_{II} = K_{II II}[E, D] - K[E_{II}, D(N_{II})] \in A^{2}(X: \text{Hom}(E_{II}, E_{II})).$

We are now in a position to state the duality theorem. Let us suppose that dim E=n and let $b_k^n \in I^k(M_n)$. $(k=1, \dots, n)$ and let det be as defined in §1. Then from Lemma 2.4 we can apply Proposition 2.2 to D_t, P_I and det. Here it follows that

(2.16)
$$C(E,D) - C(E,D_t) = d^{\prime\prime}d^{\prime}\int_t^0 \widetilde{\det}^{\prime}\left((\kappa K[E,D_t];\kappa P_I)\right).$$

In the case of dim $E_I = 1$, we calculate (2.16). Let us take a frame $u = \{u_i\}_{1 \le i \le n}$ of E over an open set V of X such that u_1 and $v = \{u_i\}_{2 \le i \le n}$, respectively, form frames of $E_I | V$ and $E_I^+ | V$. Then $v = \{u_i\}_{2 \le i \le n}$ is considered as the frame of $E_{II} | V$. As, relative to the frame u, $P_I(u) = \left(\frac{1}{0} \mid -\frac{0}{0}\right)$ we find from (1.19), (2.13), (2.14) and (2.15) that $\det'(\kappa K[E, D_i]: \kappa P_I))|_V =$. $\frac{\partial}{\partial \lambda}\Big|_{\lambda=0}\{1_n + \kappa K[E, D_i](u) + \lambda \kappa P_I(u)\} = \frac{\partial}{\partial \lambda}\Big|_{\lambda=0} \det \left(\frac{1 + \kappa K[E_I, D(N_I)](u_1) + \kappa e^t \Box_I(u_1) + \lambda \kappa}{\kappa K_{III}[E, D](u)} \mid \frac{\kappa e^t K_{III}[E, D](u)}{\kappa K_{III}[E, D](u)}\right)$ $= \kappa \det \{1_{n-1} + \kappa K[E_{II}, D(N_{II})](v) + e^t \kappa \Box_{II}(v)\}$ $= \kappa \{1 + \sum_{k=1}^{n-1} b_k^{n-1} v((\kappa K[E_{II}, D(N_{II})](v) + \kappa e^t \Box_{II}(v))\}$

$$= \kappa \{1 + \sum_{k=1}^{n-1} b_k^{n-1} ((\kappa K [E_{II}, D(N_{II})] + \kappa e^t []_{II}))\} | V,$$

so that, $\widetilde{\det}'((\kappa K[E, D_t]: \kappa P_I)) = \kappa \{1 + \sum_{k=1}^{n-1} b_k^{n-1}((\kappa K[E_{II}, D(N_{II})] + e^t \kappa \Box_{II})) \text{ on } X.$ For simplicity put $b_a^{n-1}((A:(l)B)) = b_a^{n-1}(\widetilde{A}, \cdots, \widetilde{A}, \widetilde{B}, \cdots, \widetilde{B}) A, B \in M_{n-1}$ and set $b_0^{n-1}((A)) = 1$, $A \in M_{n-1}$. Then in terms of the symmetry of b_a^{n-1} and $K[E_{II}, D(N_{II})], \Box_{II} \in A^2(X: \operatorname{Hom}[E_{II}, E_{II}]))$, it follows that $b_a^{n-1}((\kappa K[E_{II}] + e^t \kappa \Box_{II})))$ $= \sum_{l=1}^{\alpha} \binom{\alpha}{l} e^{lt} b_a^{n-1}((\kappa K[E_{II}]: (l)\kappa \Box_{II})))$ where $K[E_{II}] = K[E_{II}, D(N_{II})]$ and $\binom{\alpha}{0} = 1$ for l = 0. Therefore it follows that

$$\begin{split} & \widetilde{\det}'\left((\kappa K[E,D_t]:\kappa P_I)\right) \\ &= \kappa \sum_{\alpha=0}^{n-1} b_{\alpha}^{n-1}\left((\kappa K[E_{II}])\right) + \kappa \sum_{\alpha=0}^{n-1} \sum_{l=1}^{\alpha} {\binom{\alpha}{l}} e^{lt} b_{\alpha}^{n-1}\left((\kappa K[E_{II}]:(l)\kappa \Box_{II})\right). \quad \text{Hence as} \\ & d''d'(\sum_{\alpha=0}^{n-1} b_{\alpha}^{n-1}((\kappa K[E_{II}])) = d''d'C_{\alpha}(E_{II}) = 0, \text{ we have} \end{split}$$

$$\begin{split} \lim_{t = -\infty} d^{\prime \prime} d^{\prime} \int_{t}^{0} \widetilde{\det}^{\prime} \left((\kappa K[E, D_{t}]: \kappa P_{I}) \right) \\ &= \kappa \sum_{\alpha=1}^{n-1} \sum_{l=1}^{\alpha-1} \frac{1}{l} \binom{\alpha}{l} b_{\alpha}^{n-1} ((\kappa K[E_{II}, D(N_{II})]: (l) \kappa \Box_{II})). \end{split}$$

On the other hand, it is obvious that

$$\lim_{t=-\infty} C(E, D_t) = C(E_I) \cdot C(E_{II}).$$

Thus we obtain from (2.16) the duality formula for the case of dim $E_I = 1$:

$$(2.17) C(E) - C(E_I) \cdot C(E_{II}) = \kappa d^{\prime\prime} d^{\prime} \sum_{\alpha=1}^{n-1} \sum_{l=1}^{\alpha} \frac{1}{l} {\alpha \choose l} b_{\alpha}^{n-1} ((\kappa K[E_{II}, D(N_{II})]; (l)\kappa \Box_{II})).$$

Here we put, in general,

$$C_0(E) = 1$$
 and $C_\alpha(E) = 0$ if $\alpha > \dim E$.

Then using $b_{\alpha}^{n-1}((\kappa K[E_{II}, D(N_{II})]; (l)\kappa \square_{II})) \in A^{2\alpha}(X)$, we obtain from (2.17) the following

PROPOSITION 2,5. Let $0 \longrightarrow E_I \longrightarrow E \longrightarrow E_{II} \longrightarrow 0$ be an exact sequence of holomorphic vector bundles over a complex manifold X, and let C(E), and $C(E_i)$ i = I, II be the Chem forms induced by a norm N on E. Suppose now dim E=n. Then if dem $E_I = 1$, we obtain

(2.18)
$$C_{n-k+1}(E) - C_{1}(E_{I}) \cdot C_{n-k}(E_{II}) - C_{n-k+1}(E_{II})$$
$$= \kappa d'' d' \sum_{l=1}^{n-k} \frac{1}{l} {n-k \choose l-k} (\kappa K[E_{II}, D(N_{II})]: (l) \kappa \Box_{II})),$$
$$k = 1, \cdots, n,$$

where $\Box_{II} = P_{II}K[E, D(N)]P_{II} - K[E_{II}, D(N_{II})] \in A^2(X: \text{Hom } (E_{II}, E_{II})).$

Here we require explicit representations of $K[E_{II}, D(N_{II})]$ and \Box_{II} .

LEMMA 2.6. Notations being as above, let $u = \{u_i\}_{1 \le i \le n}$ be a frame of E|V such that u_1 and $v = \{u_i\}_{2 \le i \le n}$, respectively, are frames of $E_I|V$ and $E_T^{\perp}|V$. Then, relative to the frame v,

(2.19)
$$K[E_{II}, D(N_{II})](v) = \|d\theta_{ij} - \sum_{k=2}^{n} \theta_{ik} \wedge \theta_{kj}\|_{2 \le i, j \le n}$$

(2.20)
$$\square_{II}(v) = \| - \theta_{i1} \wedge \theta_{1j} \|_{2 \le i,j \le n}$$

Proof. It is trivial from assumptions that

$$P_{II}DP_{II} \cdot u_i = \sum_{j=2}^n \theta_{ij} \cdot u_j$$
 $i = 2, \cdots, n.$

Therefore it follows from (1.22) and $P_{II}DP_{II} = D(N_{II})$ that

$$\begin{split} K[E_{II}, D(N_{II})] \cdot u_i &= (P_{II}DP_{II})^2 \cdot u_i \\ &= \sum_{j=2}^n (d\theta_{ij} - \sum_{k=2}^n \theta_{ik} \wedge \theta_{kj}) u_j, \ 2 \leq i \leq n. \end{split}$$

Thus (2.19) is proved. On the other hand, it follows that; for each integer $i \ (2 \le i \le n)$,

$$P_{II}K[E, D]P_{II} \cdot u_i = P_{II}D^2P_{II}u_i = P_{II}D^2u_i$$
$$= \sum_{j=2}^n (d\theta_{ij} - \sum_{k=1}^n \theta_{ik} \wedge \theta_{kj})u_j$$

Then, relative to the frame v,

$$P_{II}K[E,D]P_{II}(v) = \|d\theta_{ij} - \sum_{k=1}^n \theta_{ik} \wedge \theta_{kj}\|_{2 \le i,j \le n}.$$

Therefore (2.20) follows immediately:

$$\Box_{II}(v) = P_{II}K[E, D]P_{II}(v) - K[E_{II}, D(N_{II})](v).$$

= $\| - \theta_{i1} \wedge \theta_{1j} \|_{2 \le i, j \le n}$. Q.E.D.

Using these relations (2.19) and (2.20), we shall apply Proposition 2.5 to the case when E is the product bundle $X \times \mathbb{C}^n$ over X. Let (,) be the inner product of \mathbb{C}^n defined as follows: Let e_1, \dots, e_n be the natural basis of \mathbb{C}^n and let z^1, \dots, z^n denote the complex coordinates corresponding to this basis. Then put

$$(2.21) (u,v) = \sum_{i=1}^{n} \overline{z}^{i}(u) \overline{z}^{i}(v) u, v \in \mathbb{C}^{n}.$$

We take a norm N_0 on the product bundle E to be one induced by the inner product (,) of C^n . Then we have

COROLLARY 2.7. Let $0 \longrightarrow E_I \longrightarrow E \longrightarrow E_{II} \longrightarrow 0$ be as in Proposition 2.5. Suppose that E is the product bundle $X \times \mathbb{C}^n$ over X and that dim $E_I = 1$. Then it follows that

(2.22)
$$C_k(E_{II}) = (-C_1(E_I))^k \quad 1 \le k.$$

Proof. Let $s = \{s_i\}_{1 \le i \le n}$ be a global holomorphic frame of E defined by $s_i(x) = (x, e_i)$ $x \in X$, $i = 1, \dots, n$

Further let E_I denote the orthocomplement to E_I and let us take a frame $u = \{u_i\}_{1 \le i \le n}$ of E|V as defined in Lemma 2.6. Then there exist elements $a_{ij} \in A(V)$ such that $v_i = \sum_{j=1}^n a_{ij} \cdot s_j$ $i = 1, \dots, n$. Let A be the matrix of functions $||a_{ij}||$, and let put $A^{-1} = ||b_{ij}||$. Then from $D(N_0) \cdot s_i = 0$ $(i = 1, \dots, n)$ we have

$$D(N_0) \cdot u_i = \sum_{k=1}^n (\sum_{k=1}^n da_{ik} b_{kj}) \cdot u_j.$$

Therefore if we put $\omega_{ij} = \sum_{k=1}^{n} da_{ik}b_{kj}$ $(i, j = 1, \dots, n)$, it follows that, relative to the frame u,

$$\theta(u, D(N_0)) = \|\omega_{ij}\|_{1 \leq i,j \leq n}$$

Thus if N_{oII} denotes a norm on E_{II} induced by N_0 , we find from (2.19) and (2.20) that, relative to the frame $v = \{u_i\}_{2 \le i \le n}$,

(2.23)
$$K[E_{II}, D[N_{oII}]](v) = \|d\omega_{ij} - \sum_{k=2}^{n} \omega_{ik} \wedge \omega_{kj}\|$$

(2.24)
$$\square_{II}(v) = \| - \omega_{i1} \wedge \omega_{1j} \|.$$

On the other hand, it is proved that

$$(2.25) d\omega_{ij} - \sum_{k=1}^{n} \omega_{ik} \wedge \omega_{kj} = 0, \quad i, j = 1, \cdots, n$$

We obtain from (2.23), (2.24) and (2.25),

•

$$(2.26) K[E_{II}, D(N_{oII})] = - \Box_{II}.$$

Hence the right hand side of (2.17) equals zero. Indeed it follows that, for each k, $(1 \le k \le n)$,

$$b_{n-k}^{n-1}((\kappa K[E_{II}, D(N_{oII})]; (l)\kappa \square_{II})) = (-1)^{l} b_{n-k}^{n-1}((\kappa K[E_{II}, D(N_{oII})])$$
$$= (-1)^{l} C_{n-k}(E_{II}).$$

From $dC_{n-k}(E_{II}) = 0$, we find that $d''d'b_{n-k}^{n-1}((\kappa K[E_{II}]; (l)\kappa \square_{II})) = 0$ Thus we have from (2.17)

(2.27)
$$C_{n-k+1}(E) - C_1(E_I) \cdot C_{n-k}(E_{II}) = C_{n-k+1}(E_{II}), \quad k = 1, \cdots, n.$$

It is trivial that C(E) = 1, that is, $C_o(E) = 1$ and $C_k(E) = 0$, if $k \ge 1$. Therefore from (2.27)

(2.28)
$$C_l(E_{II}) = -C_l(E_I) \cdot C_{l-1}(E_{II})$$
 $l = 1, \dots, n.$

By noting $C_n(E_{II}) = 0$ and $C_o(E_{II}) = 1$, (2.22) follows directly from (2.28). Q.E.D.

§ 3. The (n, k)-trivial bundle

3.1. Let *E* be a Hermitian vector bundle of fibre dimension *n* over a complex manifold *X*, which admits *k* linearly independent holomorphic sections, say s_1, \dots, s_k , $(1 \le k \le n)$. At first, let us introduce the next notation: Let *V* be a complex vector space and let v_1, \dots, v_k be *k* vectors of *V*. Then we denote by $[v_1, \dots, v_k]$ the linear subspace of *V* spanned by the vectors v_1, \dots, v_k .

Since s_1, \dots, s_k are k linearly independent holomorphic sections of E, we can define, with the notation above, the following holomorphic vector bundles over X:

 $(3.1) E_0^I = \bigcup_{x \in X} [s_1(x)]$

(3.2)
$$E_i^I = \bigcup_{x \in X} [s_{i+1}(x)]/[s_1(x), \cdots, s_i(x)] \qquad i = 1, \cdots, k-1$$

$$(3.3) E_i^{II} = \bigcup_{x \in X} E_x / [s_1(x), \cdots, s_i(x)] i = 1, \cdots, k.$$

For convenience sake put $E_0^{II} = E$. Then one notes that each E_i^I is a subbundle of E_i^{II} of fibre dimension 1, and that E_i^{II} is of fibre dimension (n-i) for $i = 0, \dots, k$. Now let $\xi_i \colon E_{i-1}^{II} \longrightarrow E_i^{II}$ $(i = 1, \dots, k)$ be homomorphisms defined by setting, for each $x \in X$

$$\xi_1(e) = e/[s_1(x)]$$
 and $\xi_i(e/[s_1(x), \cdots, s_i(x)]) = e/[s_1(x), \cdots, s_{i+1}(x)],$
 $i = 2, \cdots, k$

for any $e \in E_x$. Then there exists a system of exact sequences:

$$(3.4) 0 \longrightarrow E_{i-1}^{I} \longrightarrow E_{i-1}^{II} \longrightarrow E_{i}^{II} \longrightarrow 0 (i = 1, \cdots, k)$$

over X. Let N be a norm on E. First of all, in terms of the exact sequence: $0 \longrightarrow E_0^I \longrightarrow E_0^{II} \longrightarrow E_1^{II} \longrightarrow 0$, the norm N on $E = E_0^{II}$ induces norms N_0^I on E_0^I and N_1^{II} on E_1^{II} as defined in § 2. Next N_1^{II} induces norms N_1^{II} on E_1^I and N_2^{II} on E_2^{II} from $0 \longrightarrow E_1^I \longrightarrow E_1^{II} \longrightarrow E_2^{II} \longrightarrow 0$. Thus the norm N on E induces norms N_{i-1}^I on E_{i-1}^I and N_i^{II} on E_i^{II} induces norms number of the norm N on E induces norms N_{i-1}^I on E_{i-1}^I and N_i^{II} on E_i^{II} induces norms induced by the norm N. We shall now apply the duality formula (2.17) to each exact sequence of (3.4). Let $0 \longrightarrow E_{i-1}^I \longrightarrow E_{i-1}^{II} \longrightarrow E_{i-1}^{II} \longrightarrow E_{i-1}^{II}$

and let $P_{i-1}^{II}: E_{i-1}^{II} \longrightarrow (E_{i-1}^{I})^{\perp}$ be the projection. Then we define an element $\Box_i \in A^2(X: \text{Hom}(E_i^{II}, E_i^{II}))$ by

(3.5)
$$\Box_i = P_{i-1}^{II} K[E_{i-1}^{II}, D(N_{i-1}^{II})] P_{i-1}^{II} - K[E_i^{II}, D(N_i^{II})]$$

where $K(E_{\alpha}^{II}, D(N_{\alpha}^{II})]$ is the curvature element of the cannonical connection $D(N_{\alpha}^{II})$ induced by N_{α}^{II} ($\alpha = i - 1, i$). Then noting that dim $E_{i-1}^{II} = (n-i+1)$, we have from (2.17)

$$(3.6) C_{n-k+1}(E_{i-1}^{II}) - C_1(E_{i-1}^{I}) \cdot C_{n-k}(E_i^{II}) - C_{n-k+1}(E_i^{II}) \\ = \kappa d'' d' \sum_{l=1}^{n-k} \frac{1}{l} {n-k \choose l} b_{n-k}^{n-1} ((\kappa K E_i^{II}, D(N_i^{II})]; (l) \kappa \Box_i)), i = 1, \cdots, k.$$

Let $\tilde{s}_i: X \to E_{i-1}^I$ $(i = 1, \dots, k)$ be holomorphic sections defined as follows: For each $x \in X$,

(3.7)
$$\tilde{s}_1(x) = s_1(x)$$
, and $\tilde{s}_i(x) = s_i(x)/[s_1(x), \cdots, s_{i-1}(x)]$ for $i = 2, \cdots, k$.

Then these sections become global nonvanishing holomorphic sections, so that from (2.5)

(3.8)
$$C_1(E_{i-1}^I) = \chi d'' d' \log N_{i-1}^I(s_i)$$
 $i = 1, \dots, k.$

As $\sum_{i=1}^{k} \{C_{n-k+1}(E_{i-1}^{II}) - C_{n-k+1}(E_{i}^{II})\} = C_{n-k+1}(E)$ and $d'C_{n-k}(E_{i}^{II}) = 0$ $i = 1, \dots, k$, it follows from (3.6) and (3.8) that

(3.9)
$$C_{n-k+1}(E) = \kappa d'' d' \sum_{i=1}^{k} \{ \log N_{i-1}^{I}(\tilde{s}_{i}) C_{n-k}(E_{i}^{II}) + \sum_{l=1}^{n-k} \frac{1}{l} {n-k \choose l} b_{n-k}^{n-i}$$
$$((\kappa K E_{i}^{II}, D N_{i}^{II})]: \kappa \Box_{i})).$$

Put

$$(3.10) \qquad \eta_{n-k+1}(E, N, \{s_i\}_{1 \le i \le k}) \\ = -\frac{1}{4} d^c \sum_{i=1}^{k} \Big\{ \log N_{i-1}^{I}(\tilde{s}_i) \cdot C_{n-k}(E_i^{II}) + \sum_{l=1}^{n-k} \frac{1}{l} \binom{n-k}{l} b_{n-k}^{n-i} \\ ((\kappa K[E_i^{II}, D(N_i^{II}): (l)\kappa \Box_i))) \Big\}.$$

where $d^{c} = i(d' - d')$.

Then from $dd^{c} = -2id''d'$, $C_{n-k+1}(E) = d\eta_{n-k+1}(E, N, \{s_i\}_{1 \le i \le k})$. One notes that $\eta_{n-k+1}(E, N, \{s_i\}_{1 \le i \le k})$ is an element of $A^{2(n-k)+1}(X)$.

DEFINITION 3.1. Let E be a holomorphic vector bundle of fibre dimension n with a norm N, over a complex manifold X. Suppose further *E* admits *k* linearly independent holomorphic sections s_1, \dots, s_k . Then *E* is called the (n, k)-trivial bundle with the norm *N* and the *k*-frames = $\{s_i\}_{1 \le i \le k}$, over *X*, or simply the (n, k)-trivial bundle with (N, s) over *X*. Moreover the 2(n-k) + 1-form $\eta_{n-k+1}(E, N, s)$ on *X* defined by (3.10) is called the boundary form of the (n, k)-trivial bundle *E*.

With this definition, we resume discussions above as

PROPOSITION 3.1. Let E be an (n,k)-trivial bundle with (N,s), over a complex manifold X, and let $\eta_{n-k+1}(E, N, s)$ be the boundary form of E. If $C_{n-k+1}(E)$ denotes the (n-k+1) th Chern form induced by the norm N on E, then

(3.11)
$$C_{n-k+1}(E) = d\eta_{n-k+1}(E, N, s).$$

3.2. The properties of boundary forms. We shall next study a local expression of the boundary form $\eta_{n-k+1}(E, N, s)$. Let E be an (n, k)-trivial bundle with $(N, s = \{s_i\})$ over X. Then a frame $u = \{u_i\}_{1 \le i \le n}$ of E over an open set V of X, is called a *compatible frame* with the k-frame s if:

- (i) u is an orthonormal frame of E|V.
- (ii) For each $x \in X$, $[u_1(x), \dots, u_i(x)] = [s_1(x), \dots, s_i(x)]$ $i = 1, \dots, k$, i.e., u_1, \dots, u_k are global orthonormal sections constructed from the k-frame s, in terms of Schmidt's orthogonalization.

Let $0 \to E_{i-1}^I \to E_{i-1}^{II} \to E_i^{II} \to 0$ be as defined in (3.4) and put $\xi_0 =$ identity mapping of E. Let $u = \{u_i\}_{1 \le i \le n}$ be a compatible frame of E|V with the k-frame s. Then for each i, $(1 \le i \le k)$, $\{\xi_{i-1} \cdots \xi_0 u_i\}_{i \le t \le n}$ becomes an orthonormal frame of E_{i-1}^{II} such that $\xi_{i-1} \cdots \xi_0 u_i$ and $\{\xi_i \cdots \xi_1 u_t\}_{i+1 \le t \le n}$ form orthonormal frames of $E_{i-1}^I|V$ and $E_i^{II}|V$ respectively. Moreover if $\xi_i : E_i^{II} \to (E_{i-1}^I)^{\perp}$ denotes the inverse mapping of $\xi_i|(E_{i-1}^I)^{\perp}$, $i = 1, \cdots, k$, then from (ii) in Lemma 2.3 it follows that $D(N_i^{II}) = \xi_i \cdots \xi_1 D \xi_1 \cdots \xi_i, i = 1, \cdots, k$. Combining these facts with Lemma 2.6, we can prove inductively

LEMMA 3.2. Let u be a compatible frame of E|V with the k-frame θ and let $\theta(u, D(N)) = ||\theta_{ij}||$ be the connection matrix of the connection D(N) relative to the frame u. Let us put, for each i, $(i = 1, \dots, k)$,

- (3.12) $\Theta_{ii} = \|d\theta_{st} \sum_{l=i+1}^{n} \theta_{sl} \wedge \theta_{lt}\|_{i+1 \le s, t \le n}$
- $(3.13) \qquad \qquad \Theta_i = \| \theta_{si} \wedge \theta_{it} \|_{i+1 \le s, t \le n}$

(3.14)
$$s_i = \sum_{j=1}^i g_{ij} u_j, \quad g_{ij} \in A^o(X).$$

Then relative to the frame $\{\xi_{i-1} \cdots \xi_1 u_t\}_{i+1 \le t \le n}$,

$$(3.15) K[E_i^{II}, D(N_i^{II})] = \Theta_{ii}$$

$$(3.16) \qquad \qquad \square_i = \Theta_i$$

(3.17) $N_{i-1}^{I}(\tilde{s}_{i}) = |g_{ii}|^{2}, \text{ for } i = 1, \cdots, k.$

Therefore we obtain from (3.10)

$$\begin{aligned} \eta_{n-k+1}(E, N, s) | V \\ &= \frac{-1}{4\pi} d^{c} \sum_{i=1}^{k} \Big\{ \log |g_{ii}|^{2} b_{n-k}^{n-i} \left((\kappa \Theta_{ii}) \right) + \sum_{l=1}^{n-k} \frac{1}{l} {n-k \choose l} b_{n-k}^{n-i} \left((\kappa \Theta_{ii}) \right) \Big\}. \end{aligned}$$

From this lemma we have

COROLLARY 3.3. The boundary form $\eta_{n-k+1}(E, N, s)$ is a real form on X.

Proof. At first, let $u = \{u_i\}_{1 \le i \le n}$ be a compatible frame of E|V with s and put $\theta(u, D(N)) = ||\theta_{ij}||$. Then since D(N) preserves the inner product \langle , \rangle_N and $\langle u_i, u_j \rangle_N = \delta_{ij}$, $i, j = 1, \dots, n$, we observe that $\overline{\theta}_{ij} = -\theta_{ji}$ $i, j = 1, \dots, n$. Therefore if Θ_{ii} and Θ_i are as defined by (3.12) and (3.13) respectively, then $\overline{\Theta}_{ii} = -{}^t\Theta_{ii}$ and $\overline{\Theta}_i = -{}^t\Theta_i$ for each i. On the other hand, from the definition (1.9) of b_k^n ,

$$b_k^n(A_1, \cdots, A_k) = b_k^n({}^tA_1, \cdots, {}^tA_k) \qquad A_i \in M_n.$$

Hence, $b_{n-k}^{n-i}((\overline{\kappa}\overline{\Theta}_{ii})) = b_{n-k}^{n-i}((\kappa^{t}\Theta_{ii})) = b_{n-k}^{n-i}((\kappa\Theta_{ii}))$, and $b_{n-k}^{n-i}((\overline{\kappa}\overline{\Theta}_{ii}; (l)\overline{\kappa}\overline{\Theta}_{i})) = b_{n-k}^{n-i}((\kappa\Theta_{ii}; (l)\kappa\overline{\Theta}_{ii}))$. Further, as $\overline{d}^{c} = d^{c}$ this corollary is proved. Q.E.D.

3.3 Naturality of boundary forms. We shall next state the naturality of the boundary form. For this purpose, in general, let E be a Hermitian vector bundle over a complex manifold X, and let Y be a complex manifold. Now given a holomorphic mapping $f: Y \longrightarrow X$, we have the induced bundle, denoted by f^*E , of E under f defined as follows: Let $\Pi: E \longrightarrow X$ be the projection. Then

$$f^*E = \{(y, e) \in Y \times E \colon f(y) = \Pi(e)\}.$$

If $t \in \Gamma(E)$, then t.f is considered as an element of $\Gamma(f^*E)$. Let N be a norm on E. Then a norm f^*N on f^*E is defined by, $f^*N(y,e) = N(e)$, $(y,e) \in f^*E$. This norm f^*N is called the *induced norm* of N under f. It is

trivial from definition that

(3.20) $f^*\langle t, t' \rangle_N = \langle t, f, t', f \rangle_{f^*N}, \quad t, t' \in \Gamma(E).$

Moreover we can define a connection f^*D on f^*E as follows: Let $t \in \Gamma(f^*E)$. For each $x \in X$, we take a neighborhood V of x such that there exists a frame $s = \{s_i\}$ of E | V. Then there exist elements such $f_i \in A^o(f^{-1}(V))$ that $t = \sum_i f_i \cdot (s \cdot f)$ on $f^{-1}(V)$. If $\theta(s, D(N)) = ||\theta_{ij}||$ the connection matrix relative to the frame s, then put

(3.21)
$$f^*D \cdot t = \sum_i df_i \cdot (s_i f) + \sum_{i,j} f_i \cdot f^*\theta_{ij}(s_j f) \text{ on } V.$$

That this definition is well-defined need not the assumption that f is holomorphic. However the next Lemma 3.4 follows from the facts that f is holomorphic and that D(N) = D is the cannonical connection induced by the norm N on E.

LEMMA 3.4. The connection f^*D is equal to the canonical connection $D(f^*N)$, i.e., $f^*D(N) = D(f^*N)$.

This is proved as (ii) in Lemma 2.3. Let $u = \{u_i\}$ be a frame of E|V. Then we denote by $f^*u = \{u_i \cdot f\}$ the induced frame of $f^*E|f^{-1}(V)$. Then we observe from Lemma 3.4 that

(3.22)
$$f^*\theta(u, D(N)) = \theta \ (f^*u, D(f^*N)).$$

If C(E) and $C(f^*E)$ denote the Chern form induced by norms N and f^*N , respectively, then

(3.23)
$$f^*C(E) = C(f^*E).$$

Now let *E* be an (n, k)-trivial bundle with (N, s) over a complex manifold *X*. Let *Y* be a complex manifold and let $f: Y \longrightarrow X$ be a holomorphic mapping. Then the induced bundle f^*E becomes the (n, k)-trivial bundle with (f^*N, f^*s) over *Y*. Hence if $\eta_{n-k+1}(E, N, s)$ and $\eta_{n-k+1}(f^*E, f^*N, f^*s)$ denote the boundary forms of *E* and f^*E respectively, then we obtain

PROPOSITION 3.5. (Naturality of boundary form)

(3.24)
$$f^*\eta_{n-k+1}(E, N, s) = \eta_{n-k+1}(f^*E, f^*N, f^*s)$$

Proof. As $d^c f^* = f^* d^c$, this proposition follows directly from (3.18), (3.20) and (3.22). Q.E.D.

3.4. The *k*-general Stiefel bundle. We shall study properties of the boundary form of an (n,k)-trivial bundle constructed from a Hermitian vector bundle. At first let V be a complex vector space of dimension n. Then we denote by $F_k(V)$ the k-general Stiefel manifold consisting of all the k-frames (v_1, \dots, v_k) of V. Now let E be a Hermitian vector bundle of fibre dimension n over a complex manifold X. Then let E_k be a holomorphic bundle defined by

$$(3.25) E_k = \bigcup_{x \in X} F_k(E_x).$$

This bundle E_k is called the *k*-general Stiefel bundle of *E*. Clearly E_k has the *k*-general Stiefel manifold $F_k(\mathbb{C}^n)$ as fibre. Let $\pi_k: E_k \longrightarrow X$ be the projection. Then we obtain the induced bundle $\pi_k^{\sharp}E$ of *E* under π_k . This induced bundle $\pi_k^{\sharp}E$ is a holomorphic vector bundle of fibre dimension *n* over E_k , which admits *k* linearly independent holomorphic sections of $\pi_k^{\sharp}E$, say s_1, \dots, s_k , defined by setting

$$(3.26) \qquad s_i(v_1, \cdots, v_k) = \{(v_1, \cdots, v_k), v_i\}, \ (v_1, \cdots, v_k) \in E_k \ i = 1, \cdots, k.$$

Moreover let N be a norm on E. Then $\pi_k^{\sharp}E$ becomes the (n,k)-trivial bundle with the induced norm $\pi_k^{\sharp}N$ and the k-frame $s = \{s_i\}_{1 \le i \le k}$, over E_k . Therefore if $\eta_{n-k+1}(\pi_k^{\sharp}E \ \pi_k^{\sharp}N, s)$ denotes the boundary form of $\pi_k^{\sharp}E$, and if $C_{n-k+1}(\pi_k^{\sharp}E)$ is the (n-k+1) th Chern form induced by the norm $\pi_k^{\sharp}N$ on $\pi_k^{\sharp}E$, then from Proposition 3.1, $C_{n-k+1}(\pi_k^{\sharp}E) = d\eta_{n-k+1}(\pi_k^{\sharp}E, \ \pi_k^{\sharp}N, s)$. Further let $C_{n-k+1}(E)$ be the (n-k+1) the Chern form induced by the norm N on E. Then it follows from (3.23) that $\pi_k^{\sharp}C_{n-k+1}(E) = C_{n-k+1}(\pi_k^{\sharp}E)$. We have

(3.27)
$$\pi_k^* C_{n-k+1}(E) = d\eta_{n-k+1}(\pi_k^* E, \pi_k^* N, s)$$
 on E_k .

Let x be any fixed point of X, and let us take a neighborhood V of x such that $\varphi: V \times F_k(\mathbb{C}^n) \longrightarrow \pi_k^{-1}(V)$ is a trivialization of $E_k|V$. Then we define a holomorphic mapping $\varphi_x: F_k(\mathbb{C}^n) \longrightarrow E_k$ by

$$(3.28) \qquad \varphi_x(v_1, \cdots, v_k) = \varphi\{x, (v_1, \cdots, v_k)\} (v_1, \cdots, v_k) \in F_k(\mathbb{C}^n).$$

This mapping φ_x is called the inclusion map at x. Then it is obvious from (3.27) that a 2(n-k) + 1-form

$$\varphi_x^* \eta_{n-k+1}(\pi_k^* E, \pi_k^* N, s)$$
 on $F_k(\mathbb{C}^n)$ is a closed form, i.e.,
$$d\varphi_x^* \eta_{n-k+1}(\pi_k^* E, \pi_k^* N, s), = 0,$$

and that $\varphi_x^* \pi_k^* E = (\pi_k \cdot \varphi_x)^* E$ is the product bundle $F_k(\mathbb{C}^n) \times E_x$ over $F_k(\mathbb{C}^n)$. Let us consider the product bundle $F_k(\mathbb{C}^n) \times \mathbb{C}^n$ over $F_k(\mathbb{C}^n)$. We consider $F_k(\mathbb{C}^n) \times \mathbb{C}^n$ as the (n, k)-trivial bundle with (No. s^o) defined as follows: We take a norm No to be one induced by the inner product (,) of \mathbb{C}^n as defined in § 2, and we define a k-frame $s^o = \{s_i^o\}_{1 \le i \le k}$ by $s_i^o(v_1, \cdots, v_k) = \{(v_1, \cdots, v_k), v_i\}$ for $(v_1, \cdots, v_k) \in F_k(\mathbb{C}^n)$, $i = 1, \cdots, k$.

Then the boundary form of $F_k(\mathbb{C}^n) \times \mathbb{C}^n$ is also a cocycle form.

DEFINITION 3.2. Let $-\Phi_k$ be the boundary form of the (n, k)-trivial bundle $F_k(\mathbb{C}^n) \times \mathbb{C}^n$ with (No, s°). Then Φ_k is called *the obstruction form* of $F_k(\mathbb{C}^n)$.

PROPOSITION 3.6. Notations being as above, let $\{\varphi_x^*\eta_{n-k+1}(\pi_k^*E, \pi_k^*N, s)\}$ and $\{\Phi\}_k$, respectively, denote the cohomology class of $\varphi_x^*\eta_{n-k+1}(\pi_k^*E, \pi_k^*N, s)$ and Φ_k . Then

- (3.29) $\{ \Phi_k \} = \{ \varphi_x^* \eta_{n-k+1}(\pi_k^* E, \pi_k^* N, s) \}$
- (3.30) { Φ_k } is a generator of 2(n-k) + 1-dimensional cohomology group of $F_k(\mathbb{C}^n)$, $H^{2(n-k)+1}(F_k(\mathbb{C}^n); \mathbb{Z}) = \mathbb{Z}$.

Proof. At first we shall prove (3.29). Since φ_x is a holomorphic map, it follows from (3.24) that

$$\varphi_x^* \eta_{n-k+1}(\pi_k^{\sharp} E, \ \pi_k^{\sharp} N, s) = \eta_{n-k+1}((\pi_k \varphi_x)^{\sharp} E, \ (\pi_k \varphi_x)^{\sharp} N, \ \varphi_x^{\sharp} s).$$

There exists an element $g \in GL(n; \mathbb{C})$ such that the (n, k)-trivial bundle $(\pi_k \varphi_x)^{\sharp} \mathbb{E}$ with $\{(\pi_k \varphi_x)^{\sharp} N, \varphi_x^{\sharp} s\}$ is identified with the (n, k)-trivial bundle $F_k(\mathbb{C}^n) \times \mathbb{C}^n$ with (No, s^o) under the transformation T_g of $F_k(\mathbb{C}^n)$ defined by, $T_g(v_1, \dots, v_k) = (g \cdot v_1, \dots, g \cdot v_k)$ for any $(v_1, \dots, v_k) \in F_k(\mathbb{C}^n)$, that is,

$$\begin{split} T_g^*\eta_{n-k+1}((\pi_k\varphi_x)^*E, & (\pi_k\varphi_x)^*N, \ \varphi_x^*s) \\ &= \eta_{n-k+1}(T_g^*(\pi_k\varphi_x)^*E, \quad T_g^*(\pi_k\varphi_x)^*N, \quad T_g^*\varphi_x^*s) \\ &= \eta_{n-k+1}(F_k(C^n) \times C^n, \quad \text{No, } s^o) = - \mathcal{P}_k. \end{split}$$

However T_g is homotopic to the identity mapping of $F_k(\mathbb{C}^n)$. Thus, (3.29) is proved. On the other hand, (3.30) follows from the next lemma.

LEMMA 3.7. Let $F: \mathbb{C}^{n-k+1} - \{0\} - F_k(\mathbb{C}^n)$ be a mapping defined by $F(v) = (e_1, \cdots, e_{k-1}, v)$ for any $v \in \mathbb{C}^{n-k+1} - \{0\}$

where C^{n-k+1} is regarded as the subspace $0 \times \cdots \times 0 \times C^{n-k+1}$ of C^n , and e_1, \cdots, e_n is the natural basis of C^n .

Then if $S_{n-k+1}(C)$ is the unit sphare about the origin in C^{n-k+1} , it follows that the restriction of $F^*\Phi_k$ to $S_{n-k+1}(C)$ becomes the normalized volume element of $S_{n-k+1}(C)$, i.e.,

$$(3.31) \qquad \qquad \int_{\mathcal{S}^{n-k+1(c)}} F^* \mathcal{O}_k = 1.$$

Proof. For simplicity put $E = F_k(\mathbb{C}^n) \times \mathbb{C}^n$. Since $- \Phi_k$ is the boundary form of E with (No, s^o) and $F: \mathbb{C}^{n-k+1} - \{0\} \longrightarrow F_k(\mathbb{C}^n)$ is holomorphic, $F^*(-\Phi_k)$ is the boundary form of the (n, k)-trivial bundle F^*E with $(F^* \operatorname{No}, F^*s^o)$, over $\mathbb{C}^{n-k+1} - \{0\}$. In terms of the definitions of F and the k-frame s^o , we have

$$s_i^o F(v) = e_i$$
 $i = 1, \dots, k-1$, and $s_k^o F(v) = v$ for $v \in C^{n-k+1} - \{0\}$.

Hence $F^*(-\Phi_k)$ is equal to the boundary form of the (n-k+1,1)-trivial bundle $E(\mathbf{C}) = (\mathbf{C}^{n-k+1} - \{0\}) \times \mathbf{C}^{n-k+1}$ with the norm No and the 1-frame s_1 defined by $s_1(v) = v \times v$, $v \in \mathbf{C}^{n-k+1} - \{0\}$. Here let us consider the following exact sequence:

$$0 \longrightarrow E(\boldsymbol{C})_0^I \longrightarrow E(\boldsymbol{C}) \longrightarrow E(\boldsymbol{C})_1^{II} \longrightarrow 0$$

where $E(C)_{0}^{I} = \bigcup_{v \in C^{n-k+1}-\{0\}} [s_{1}(v)]$ and $E(C)_{1}^{II} = \bigcup_{v \in C^{n-k+1}-\{0\}} C^{n-k+1}/[s_{1}(v)]$. Then $C_{1}(E(C)_{0}^{I}) = \frac{i}{2\pi} d''d' \log \operatorname{No}(s_{1})$, so that, from Corollary 2.7, $C_{n-k}(E(C)_{1}^{II}) = \left(-\frac{i}{2\pi} d''d' \log \operatorname{No}(s_{1})\right)^{n-k}$. Let z^{1}, \dots, z^{n-k+1} be complex coordinates of C^{n-k+1} . Then as $\operatorname{No}(s_{1}(v)) = (v, v) = \sum_{j=1}^{n-k+1} z^{j}(v) \overline{z}^{j}(v)$, we obtain

$$F^*(-\varPhi_k) = -\frac{1}{4\pi} d^c \log \operatorname{No} (s_1) \cdot C_{n-k}(E(C)_1^{II})$$

= $-\frac{1}{4\pi} d^c \log \sum_{j=1}^{n-k+1} |z^j|^2 \cdot \left(-\frac{i}{2\pi} d^{\prime\prime} d^\prime \log \sum_{j=1}^{n-k+1} |z^j|^2\right)^{n-k}.$

Therefore $F^* \Phi_k$ is the normalized volume element of $S_{n-k+1}(C)$, [2]. Q.E.D.

One notes that in the case of k = 1, the mapping F defined in Lemma 3.7 becomes the identity mapping of $C^n - \{0\}$, so that, the restriction of the

obstruction from Φ_1 of $F_2(\mathbb{C}^n) = \mathbb{C}^n - \{0\}$ to the unit sphere $S_{n-1}(\mathbb{C}^n), \Phi_1 | S_{n-1(\mathbb{C})},$ is the normalized volume element of $S_{n-1}(\mathbb{C})$.

§4. The generalized relative Gauss-Bonnet formula.

4.1. In this section we shall establish an integral formula for the *i*th Chern form $C_i(E)$. In the case of $i = \dim E = \dim X$, Bott and Chern established the integral formula of $C_n(E)$ as the relative Gauss-Bonnet theorem. Here we want to extend this theorem.

Let E be a holomorphic vector bundle of fibre dimension n with a norm N, over an m-dimensional complex manifold X, and let E_k be the kgeneral Stiefel bundle of E with the projection $\pi_k \colon E_k \longrightarrow X$. Let $\pi_k^{\sharp}E$ be the (n, k)-trivial bundle with the induced norm $\pi_k^{\sharp}N$ and the k-frame defined by (3.26). We denote by $\eta_{n-k+1}(\pi_k^{\sharp}E)$ the boundary form of $\prod_k^{\sharp}E$ and by $C_{n-k+1}(E)$ the (n-k+1) th Chern form induced by the norm N on E. Now let A be a real 2(m-n+k-1)-dimensional oriented submanifold of X with boundary ∂A , and let $s \colon (X-A) \longrightarrow E_k$ be a smooth section. Moreover let V be a real 2(n-k+1)-dimensional (non-compact) oriented manifold and let $D \subset V$ be a compact domain with the smooth boundary ∂D . Then we obtain

THEOREM 4.1. Let us suppose that there exists a smooth mapping $f: V \longrightarrow X$ such that $f^{-1}(A) \cap D = \{p_1, \dots, p_l\}$ is a set of isolated points, $f^{-1}(A) \cap \partial D = \phi$, and $f(D) \cap \partial A = \phi$. If $n(p_j, f, A)$ denotes the intersection number at $(p_j; f(p_j))$ of the singular chains $f: D \longrightarrow X$ and $e_A: A \longrightarrow X$ (e_A = the inclusion map), for each j, then

(4.1)
$$\int_{D} f^{*}C_{n-k+1}(E) = \int_{\partial D} f^{*} s^{*}\eta_{n-k+1}(\pi_{k}^{*}E) + \sum_{j=1}^{l} obs_{k}(p_{j}, sf, D)$$

(4.2)
$$obs_k(p_j, sf, D) = obs_k^{\perp}(f(p_j), s, A)n(p_j, f, A), \quad j = 1, \cdots,$$

(4.3)
$$\int_{D} f^{*}C_{n-k+1}(E) = \int_{\partial D} f^{*} s^{*}\eta_{n-k+1}(\pi_{k}^{*}E) + \sum_{j=1}^{l} obs_{k}^{\perp}(f(p_{j}), s, A)n(p_{j}, f, A)$$

where $obs_k(p_j, sf, D)$ and $obs_k^{\perp}(f(p_j), s, A)$ are integers defined in Definition 4.1 and 4.2, respectively.

4.2. Definition of obstruction numbers. Before the proof of this theorem we define $obs_k(p_j, sf, D)$ and $obs_k^{\perp}(f(p_j), s, A)$. Let Φ_k be the obstruction form of the k-general Stiefel manifold $F_k(\mathbb{C}^n)$. Let Y be a real 2(n-k+1)-

demensional oriented manifold Y with boundary ∂Y . Let p be any point in $(Y - \partial Y)$. Now, given a smooth mapping $t: Y - \{p\} \longrightarrow E_k$ such that $\pi_k t$ can be regarded as the smooth mapping from Y into X, we define an integer, denoted by $obs_k(p, t, Y)$ as follows: Let $\pi_k t(p) = q \in X$ and choose a neighborhood V(q) of q which admits a trivialization $\varphi: V(q) \times F_k(\mathbb{C}^n) \longrightarrow \pi_k^{-1}(V(q))$ of $E_k|V(q)$. Then let $\psi: \pi_k^{-1}(V(q)) \longrightarrow F_k(\mathbb{C}^n)$ be a holomorphic mapping defined by

$$(4.4) \qquad \psi \cdot \varphi \{q', (v_1, \cdots, v_k)\} = (v_1, \cdots, v_k), \quad q' \in V(q), \quad (v^1, \cdots, v^k) \in F_k(\mathbb{C}^n).$$

Next take a chart $(U_{\delta}(p), h = (y^1, \dots, y^{2(n-k+1)}))$ of Y at p such that h(p)=0, $h(U_{\delta}(p))$ is the ball of raduis $U\delta$, $(\delta > 0)$ and $\pi_k t$ $(U_{\delta}(p)) \subset V(q)$. For an ε -ball $U_{\epsilon}(p), 0 < \varepsilon < \delta$, let us take the normalized volume element ω_k of $\partial U_{\epsilon}(p)$. Further let $\gamma: U_{\delta}(p) - \{p\} \longrightarrow \partial U_{\epsilon}(p)$ be a smooth mapping defined by

(4.5)
$$\Upsilon_{\epsilon}(p') = h^{-1} \left(\varepsilon \; \frac{y^{1}(p')}{\|h(p')\|}, \cdots, \varepsilon \; \frac{y^{2(p-k+1)}(p')}{\|h(p')\|} \right) \; p' \in U_{\delta}(p),$$

where $||h(p')|| = (\sum_{j=1}^{2(n-k+1)} (y^j(p')^2))$

Then $\tau_i^* \omega_k$ becomes a cocycle form on $(U_{\delta}(p) - \{p\})$ whose cohomology class $\{\tau^* \omega_k\}$ is a generator of $H^{2(n-k)+1}(U_{\delta}(p) - \{p\}; \mathbb{Z}) = \mathbb{Z}$. On the other hand as $\{\Phi_k\}$ is also a generator of $H^{2(n-k)+1}(F_k(\mathbb{C}^n); \mathbb{Z}) = \mathbb{Z}$, it follows from the fact that $\varphi \cdot t$ is a smooth mapping of $(U_{\delta}(p) - \{p\})$ into $F_k(\mathbb{C}^n)$ that there exists an integer n such that

(4.6)
$$\{(\psi \cdot t)^* \Phi_k\} = n\{\gamma_*^* \omega_k\}, \text{ i.e.,}$$

$$(4.6)' n = \int_{\partial U_{\epsilon}(\mathcal{D})} (\mathcal{O}t)^* \mathcal{O}_k.$$

Here put, $obs_k(p, t, Y) = n = \int_{\partial U_k(p)} (\psi \cdot t)^* \Phi$

DEFINITION 4.1. The integer $obs_k(p, t, Y)$ defined by (4.6) or (4.6)' is called *the k th obstruction number of t at p relative to Y*. We show that (4.6)' is independent of $U_{\epsilon}(p)$ and ϕ . It is clear from $d\Phi_k = 0$ and Stockes formula that

(4.7)
$$\int_{\partial U_{\epsilon}(p)} (\psi t)^{*} \Phi_{k} = \lim_{\varepsilon \to 0} \int_{\partial U_{\epsilon}(p)} (\psi t)^{*} \Phi_{k}$$

We have

LEMMA 4.2. Let notations be as above. Then

(4.8)
$$\int_{\partial U_{\varepsilon}(p)} (\psi \cdot t)^* \varPhi_k = \lim_{\varepsilon \to 0} \int_{\partial U_{\varepsilon}(p)} t^* \eta_{n-k+1}(\pi_k E), \quad 0 < \varepsilon < \delta.$$

Proof. Let $\varphi_q \colon F_k(\mathbb{C}^n) \longrightarrow E_k$ be the inclusion map at $q = \pi_k t(p)$ defined from the trivialization $\varphi \colon V(q) \times F_k(\mathbb{C}^n) \longrightarrow \pi_k^{-1}(V(q))$. From $d\eta_{n-k+1}(\pi_k^* E) = \pi_k^* C_{n-k+1}(E)$, we have

$$d\varphi^*\eta_{n-k+1}(\pi_k^*E) = C_{n-k+1}(E) \quad \text{on} \quad V(q) \times F_k(C^n).$$

Moreover, as $dC_{n-k+1}(E) = 0$, we obtain a 2(n-k) + 1-form ω on U(q) such that $C_{n-k+1}(E)|V(q) = d\omega$. Then $\varphi^*\eta_{n-k+1}(\pi_k E) - \omega$ is a cocycle form on $V(q) \times F_k(\mathbb{C}^n)$. However $H^{2(n-k)+1}(V(q) \times F_k(\mathbb{C}^n)) = H^{2(n-k)+1}(F_k(\mathbb{C}^n)) = \mathbb{R}$. Therefore there exists a real number a such that

$$\{\varphi^*\eta_{n-k+1}(\pi_k E) - \omega\} = a\{\varphi_k\} \text{ on } V(q) \times F_k(\mathbb{C}^n).$$

Let $j_q: F_k(\mathbb{C}^n) \longrightarrow V(q) \times F_k(\mathbb{C}^n)$ be a mapping defined by

$$j_q(v_1, \cdots, v_k) = \{q, (v_1, \cdots, v_k)\} \quad (v_1, \cdots, v_k) \in F_k(\mathbb{C}^n).$$

Then from (3.29), $a\{\Phi_k\} = a\{j_q^*\Phi_k\} = \{(\varphi j_q)^*\eta_{n-k+1}(\pi_k^*E) - j_q^*\omega\} = \{\varphi_q^*\eta_{n-k+1}(\pi_k^*E)\}$ = $-\{\Phi_k\}$. Hence a = -1. Therefore we have

$$(4.9) \qquad \qquad \{\varphi^*\eta_{n-k+1}(\pi_k E) - \omega\} = -\{\varphi_k\} \text{ on } V(q) \times F_k(\mathbb{C}^n).$$

Since $\pi_k t$ is a smooth mapping of $U_{\delta}(p)$ into V(q), Lemma 4.2 follows directly from (4.7) and (4.9) as follows:

$$\begin{split} \int_{\partial U_{\epsilon}(p)} (\varphi t)^{*} \varPhi_{k} &= \lim_{\epsilon \to 0} \int_{\partial U_{\epsilon}(p)} (\varphi t)^{*} \varPhi_{k} = \lim_{\epsilon \to 0} \int (\varphi^{-1} t)^{*} \varPhi_{k} \\ &= \lim_{\epsilon \to 0} \int_{\partial U_{\epsilon}(p)} (\varphi^{-1} t)^{*} (\omega - \varphi^{*} \eta_{n-k+1}(\pi_{k}^{*} E)) \\ &= \lim_{\epsilon \to 0} \int_{\partial U_{\epsilon}(p)} (\pi_{k} t)^{*} \omega - \lim_{\epsilon \to 0} \int_{\partial U_{\epsilon}(p)} t^{*} \eta_{n-k+1}(\pi_{k}^{*} E) \\ &= -\lim_{\epsilon \to 0} \int_{\partial U_{\epsilon}(p)} t^{*} \eta_{n-k+1}(\pi_{k}^{*} E). \end{split}$$
Q.E.D.

Thus Definition 4.1. is well-defined. This definition is extended as follows: Let $p \in Y - \partial Y$. If p is an isolated singular point of a smooth mapping t, that is, there exists a neighborhood U(p) of p such that t is a smooth mapping of $(U(p) - \{p\})$ into E_k , and $\pi_k t$ is differentiable on U(p), then we can

define $obs_k(p, t, U(p))$. Then put

$$obs_k(p, t, Y) = obs_k(p, t, U(p)).$$

In particular, the 1 th obstruction, $obs_1(p, t, Y)$, becomes the degree of t at p because Φ_1 is regarded as the normalized volume element of the unit sphere in \mathbb{C}^n . If t is a smooth mapping of Y into E such that

- $\alpha) \quad t \neq 0 \text{ on } \partial Y$
- β) t has isolated zeroes only, say p_1, \dots, p_l ,

then for each point p_j , $obs_1(p_j, t, Y)$ is the order of vanishing of t, so that we write by zero (p_j, t, Y) the 1 th obstruction of t at p_j relative to Y.

4.3. Let A be the submanifold of X as defined in Theorem 5.1. Let q be a point in $(A - \partial A)$. Then a complemental submanifold to A at q, denoted by A_{q}^{\perp} , is a real 2(n - k + 1)-dimensional oriented submanifold of X (with boundary A_{q}^{\perp}) satisfying the following conditions:

(4.11) There exists a chart $(U, h = (z^1, \dots, z^{2(n-z_0+k-1)})$ $y^1, \dots, y^{2(n-k+1)})$ at q in X such that, $h(q) = (0, \dots, 0)$ $A_{\frac{1}{q}} \cap U = \{q' \in U : z^1(q') = \dots = z^{2(m-n+k-1)}(q') = 0\}$ $A \cap U = \{q' \in U : y^1(q') = \dots = y^{2(n-k+1)}(q') = 0\}$

(4.12) $A_{\frac{1}{q}}$ is compact.

Then we choose the orientation of $A_{\overline{q}}^{\perp}$ as follows: Put $u = (z^1, \dots, z^{2(m-n+k-1)})$ and $u = (y^1, \dots, y^{2(n-k+1)})$. If *h* and *u* are positive coordinates systems on *U* and $A \cap U$ respectively, then *v* is also the positive coordinates system on $A_{\overline{q}}^{\perp} \cap U$.

Since A is the submanifold of X, there exists, of course, such a submanifold of X. Now let $s: (X - A) \longrightarrow E_k$ be the smooth cross section and let $q \in (A - \partial A)$. Then taking a complemental submanifold $A_{\frac{1}{q}}$ to A at q, we can define the k th obstruction number $obs_k(q, s, A_{\frac{1}{q}})$. It will be shown in the proof of Theorem 4.1 that $obs_k(q, s, A_{\frac{1}{q}})$ is independent of $A_{\frac{1}{q}}$.

DEFINITION 4.2. For any point $q \in (A - \partial A)$, $obs_{k}^{\perp}(q, s, A)$ which is called the kth obstruction number of s at q corresponding to A, is defined as follows:

Let A_q^{\perp} be a complemental sybmanifold to A at q. Then put

$$(4.13) \qquad obs_{k}(q, s, A) = obs_{k}(q, s, A_{q}).$$

4.4. Proof of Theorem 4.1. Withoutloss of generality we can assume that $f^{-1}(A) \cap D = \{p\}$, $p \notin \partial D$ and $f(p) \notin \partial A$. and that f(d) is contained in a coordinate δ_1 -ball U_{δ_1} of f(p) which admits a trivialization $\varphi: U_{\delta_1} \times F_k(\mathbb{C}^n) \longrightarrow \pi_k^{-1}(U_{\delta_1})$ of $E_k|U_{\delta_1}$. Let $V_{\epsilon_1}(p)$ be an ϵ_1 -ball of p contained completely in D and let put $D_{\epsilon_1} = D - V_{\epsilon_1}(p)$. Since $s.f: D_{\epsilon_1} \longrightarrow E_k$ is the smooth mapping and $\pi_k^* C_{n-k+1}(E) = d\eta_{n-k+1}(\pi_k^* E)$ on E_k , we obtain from Stokes formula

$$\int_{D_{\ell_1}} f^* C_{n-k+1}(E) = \int_{\partial D} f^* \left\{ s^* \eta_{n-k+1}(\pi_k^* E) \right\} - \int_{\partial_\ell V_1(p)} (s \cdot f)^* \eta_{n-k+1}(\pi_k^* E).$$

Here let $\psi: \pi_k^{-1}(U_{\delta_1}) \longrightarrow F_k(\mathbb{C}^n)$ be as defined by (4.4). Then from (4.7),

$$-\lim_{\varepsilon\to 0}\int_{\partial V_{\epsilon}(\mathcal{D})}(s\cdot f)^*\eta_{n-k+1}(\pi_k E) = \int_{\partial V_{\epsilon}(\mathcal{D})}(\phi(sf))^*\varPhi_k \qquad 0<\varepsilon<\varepsilon_1.$$

Therefore

$$\int_{D} f^{*}C_{n-k+1}(E) = \int_{\partial D} f^{*} \{ s^{*}\eta_{n-k+1}(\pi_{k}E) \} + \int_{\partial V_{\epsilon}(\mathcal{D})} (\psi(sf))^{*} \Phi_{k}.$$

This relation implies (4.1) because of $\int_{\partial V_{\epsilon}(p)} (\mathcal{O}(s \cdot f)^* \Phi_k = obs_k(p, s. f, D)$. In order to prove (4.2) and (4.3), we calculate the integration $\int_{\partial V_{\epsilon}(p)} (\mathcal{O}(sf))^* \Phi_k$, Let ε be fixed $(0 < \varepsilon < \varepsilon_1)$. Let us put $q = f(p) \in X$ and take a complemental submanifold A_q^{\perp} to A at q. Then from the conditions (4.10) and (4.11) it follows that $A_q^{\perp} \cap A = \{q\}$ and that there exists a chart $\{U, h = (z^1, \cdots, z^{2(z_k - n + k - 1)}, y^1, \cdots, y^{2(n - k + 1)})\}$ in X at q such that h(q) = 0

$$\begin{aligned} A \cap U &= \{q' \in U \colon y^1(q') = \cdot \cdot \cdot = y^{2(n-k+1)}(q') = 0\} \\ A_{\overline{q}}^\perp \cap U &= \{q' \in U \colon z^1(q') = z^{2(m-n+k-1)}(q') = 0\} \end{aligned}$$

Assume $U = U_{\delta_1}$ and put $U_{\delta_1}(q) = U_{\delta_1}$. Further we assume that $f(V_{\epsilon}(p)) \subset U_{\delta}(q)$ $\subseteq U_{\delta_1}(q), \ 0 < \delta < \delta_1$. Let put $u = (z^1, \dots, z^{2(m-n+k-1)})$ and $v = (y^1, \dots, y^{2(n-k+1)})$. Then let us consider a homotopy mapping H_t given by

$$H_t = h^{-1}\{(1-t)u \times v)f\} \colon V_{\epsilon_1}(p) \longrightarrow U_{\delta_1}(q), \text{ for all } t \in [0,1].$$

For t = 1, H_1 is the smooth mapping of $V_{\epsilon_1}(p)$ into $A_q^{\perp} \cap U_{\delta_1}(q)$, and for each $t \in [0, 1]$, $V(p) \cap H_t^{-1}(A) = \phi$ and $H_t(V_{\epsilon}(p)) \cap A = \{q\}$. Hence, as $f = H_0$ is ho-

motopic to H_1 , we obtain

(4.14)
$$\int_{\partial V_{\epsilon}(p)} (\varphi sf)^* \Phi_k = \int_{\partial V_{\epsilon}(p)} H_1^* (\psi s)^* \Phi_k$$

If $\iota_{A_{\overline{q}}^{\perp}}: A_{\overline{q}}^{\perp} \longrightarrow X$ denotes the inclusion mapping, then from $H_1(V_{\iota}(p)) \subset A_{\overline{q}}^{\perp} \cap U_{\delta}(q)$, (note $f(V_{\iota}(p)) \subset U_{\delta}(q)$),

(4.15)
$$\int_{\partial V_{\epsilon}(p)} H^{*}(\psi s)^{*} \Phi_{k} = \int_{\partial V_{\epsilon}(p)} H^{*}_{1}(\psi s \iota_{A_{q}})^{*} \Phi_{k},$$

Here if ω_k denotes the normalized volume element of $\partial(A_q^{\perp} \cap U_{\delta}(q))$, and if $\gamma_{\delta}: (A_q^{\perp} \cap U_{\delta_1}(q) - \{q\}) \longrightarrow \partial(A_q^{\perp} \cap U_{\delta}(q))$ denotes a smooth mapping as defined by (4.5), then from $\{(\psi_{\delta_{\ell_q}})^* \Phi_k\} = obs_k(q, s, A_q^{\perp})\{\gamma_{\delta}^* \omega_k\},$

(4.16)
$$\int_{\partial V_{\epsilon}(\mathcal{D})} H_{1}^{*}(\psi, s, A_{\overline{q}}^{\perp})^{*} \Phi_{k} = obs_{k}(q, s, A_{\overline{q}}^{\perp}) \int_{\partial V_{\epsilon}(\mathcal{D})} (\tilde{r}_{\delta} H_{1})^{*} \omega_{k}$$

It follows from (4.14), (4.16) and (4.16) that

(4.17)
$$\int_{\partial V_{\epsilon}(p)} (\psi \cdot sf)^* \Phi_k = obs_k(q, s, A_{\frac{1}{q}}) \int_{\partial V_{\epsilon}(p)} (\gamma_{\delta} H_1)^* \omega_k$$

where H_1 is homotopic to f.

To prove that $\int_{\partial V_{\epsilon}(p)} (\mathcal{I}_{\delta}H_{1})^{*} \omega_{k}$ is equal to the intersection number at $(p, H_{1}(p) = q)$ of the singular chains $H_{1} = h^{-1}(0 \times vf) : V_{\epsilon}(p) \longrightarrow X$ and $\epsilon_{A} : A \longrightarrow X$, we change the mapping v.f for a mapping g_{1} . $V_{\epsilon_{1}}(p) \longrightarrow v(U_{\delta_{1}}(q)) \subset \mathbb{R}^{2(n-k+1)}$ which agrees with v.f on a neighborhood of the boundary $\partial V_{\epsilon}(p)$, which is homotopic to v.f, and which has a maximal rank at each $p' \in g_{1}^{-1}(0)$. In terms of Thom's Transversality Lemma [6], there exists such a mapping g_{1} . Hence put $G_{1} = h^{-1}(0 \times g_{1})$. Then G_{1} is, of course, homotopic to H_{1} . Thus from (4.17),

(4.18)
$$\int_{\partial V_{\epsilon}(p)} (\psi sf)^* \Phi_k = obs_k(q, s, s, A_{\frac{1}{q}}) \int_{\partial V_{\epsilon}(p)} (\tilde{\tau}_{\delta} G_1)^* \omega_k$$

- $(4.19) \qquad G_1 = h^{-1}(0 \times g_1) \colon V_{\epsilon_1}(p) \longrightarrow U_{\delta_1}(q), \text{ has a maximal rank at each } p' \in G_1^{-1}(q).$
- (4.20) G_1 is homotopic to f, and each $p' \in G_1^{-1}(q)$ belongs to $V_*(p) \partial V_*(p)$

Then we have

LEMMA 4.3.

(4.21)
$$\int_{\partial V_{\bullet}(\mathcal{D})} (\mathcal{T}_{\delta}G_{1})^{*} \omega_{k} = n(q, f, A).$$

Proof. From definition of G_1 it is clear that $G_1(V_{\epsilon}(p)) \cap A = \{q\}$, $G_1(\partial V_{\epsilon}(p)) \cap A = \phi$ and $G_1(V_{\epsilon}(p)) \cap \partial A = \phi$. Therefore from (4.20), $n(p, f, A) = n(V_{\epsilon}(p), G_1, A)$. Hence, at first, we compute $n(V_{\epsilon}(p), G_1, A)$. Let put $\alpha = 2(m - n + k - 1)$ and $\beta = 2(n - k + 1)$. Let $h = (z^1, \dots, z^a, y^1, \dots, y^{\beta})$, $u = (z^1, \dots, z^a)$ and $v = (y^1, \dots, y^{\beta})$, respectively, be coordinate systems on $U_{\delta_1}(q), A \cap U_{\delta_1}(q)$ and $A_q^{\perp} \cap U_{\delta_1}(q)$, as before. Assume now that h and u are positive coordinate systems. Then, from the choice of the orientation of A_q^{\perp}, v is also the positive coordinate system. Let (x^1, \dots, x^{β}) be a coordinate system of $V_{\epsilon_1}(p)$ which is positive. Let us put $G_1^{-1}(q) = \{p'_1, \dots, p'_s\}$, that is, $g_q^{-1}(0) = \{p'_1, \dots, p'_s\}$. Then we define a mapping $\epsilon_A \times G_1: (A \cap U_{\delta_1}(q)) \times$ $V_{\epsilon_1}(p) \longrightarrow X$ by

$$\begin{aligned} x^{i}(\iota_{A} \times G_{1})(q', p') &= z^{i}\iota_{A}(q') \qquad i = 1, \cdots, \alpha \\ y^{i}(\iota_{A} \times G_{1})(q', p') &= y^{i}G_{1}(p') \qquad i = 1, \cdots, \beta \end{aligned}$$

Here for each $p'_j \in G_1^{-1}(q)$, let $J_{(p'_j,q)}(\iota_A \times G_1)$ be the Jacobian of the mapping $\iota_A \times G_1$ at (p'_j,q) , that is,

$$J_{(p'_j,q)}(\iota_A \times G) = \left| \frac{\partial z^1(\iota_A \times G_1), \cdots, z^{\alpha}(\iota_A \times G_1), y^1(\iota_A \times G_1), \cdots, y^{\beta}(\iota_A \times G_1))}{\partial (z^1, \cdots, z^{\alpha} \quad x^1, \cdots, x^{\beta})} \right|_{(p'_j,q)}$$

Then it follows from $z^i(\iota_A \times G_1) = z^i$ that

(4.22)
$$J_{(p'_p,p)}(\iota_A \times G_1) = \left| \frac{\partial (y^1(\iota_A \times G_1), \cdots, y^{\beta}(\iota_A \times G_1))}{\partial (x^1, \cdots, x^{\beta})} \right|_{(p',q)}$$
$$= \left| \frac{\partial (y^1 \cdot g_1, \cdots, y^{\beta} \cdot g_1)}{\partial (x^1, \cdots, x^{\beta})} \right|_{p'} \quad \text{for each } p'_j \in g_1^{-1} \in (0)$$

so that, from (4.19), $J_{(p'_j,q)}(\iota_A \times G_1) \neq 0$ for each p'_j . Since the right hand side of (4.22) is the Jacobian $J_{p'_j}(g_1)$ of the mapping $g_1: V_{\epsilon}(p) \longrightarrow \mathbb{R}^{2(n-k+1)}$. at p'_j , it follows from definition of the intersection number ([5]) that

(4.23)
$$n(V_{s}(p), G_{1}, A) = \sum_{j=1}^{s} \operatorname{sign} J_{p'_{s}}(g_{1})$$

Thus we have: $n(p, f, A) = \sum_{j=1}^{s} \operatorname{sign} J_{p'_{j}}(g_{1})$ where the p'_{j} are points of $g_{1}^{-1}(0)$. Next we shall calculate $\int_{\partial T_{j}} (\tau_{j} G_{1})^{*} \omega_{k}$. Since ω_{k} is the normalized volume

element of $\partial(A_{\overline{q}} \cap U_{\delta}(q))$, and for each $p' \in (V_{\epsilon_1}(p) - g_1^{-1}(0))$

$$\Upsilon_{\delta}G_{1}(p') = h^{-1}\left(\overbrace{0, \cdots, 0}^{\alpha}, \delta \frac{y^{1}g_{1}(p')}{\|g_{1}(p')\|}, \cdots, \delta \frac{y^{\beta}g_{1}(p')}{\|g_{1}(p')\|}\right)$$

where $||g_{1}(p')| = \sqrt{\sum_{j=1}^{\beta} (y^{j}(p'))^{2}}$,

We can reformulate $\int_{\delta V_{\epsilon}(p)} (\tau_{\delta}G_{1})^{*}\omega_{k}$ as follows: Let y^{1}, \dots, y^{n} be coordina es of \mathbf{R}^{n} and let S_{n-1} be the unit sphere about the origin in \mathbf{R}^{n} . We denote by ω the normalized volume element of S_{n-1} . Let $\tau: \mathbf{R}^{n} - \{0\} \longrightarrow S_{n-1}$ be the boundary mapping defined by

$$\Upsilon(y^1, \cdots, y^n) = (y^1/(\sqrt{\sum(y^i)^2}), \cdots, y^n/(\sqrt{\sum(y^i)^2}).$$

Further let D_1 be a compact domain of \mathbb{R}^n . Now, given a smooth mapping $g: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ such that $g_1^{-1}(0) \cap D_1 = \{p'_1, \cdots, p'_s\}, g_1^{-1}(0) \cap \partial D_1 = \phi$ and for each $p'_j, J_{p'_j}(g_1) \neq 0$.

Under this situation, we show that

(4.24)
$$\int_{\partial D_1} (\gamma g_1)^* \omega = \sum_{j=1}^s \operatorname{sign} J_{\mathcal{D}'_j}(g_1).$$

Indeed, let $V_{\epsilon}(p'_{j})$ be ε -balls about p'_{j} in D_{1} which are pairwise disjoint. Put $D_{1,} = D - \bigcup V_{\epsilon}(p'_{j})$. Then, as $\tau \cdot g_{1} = g/||g_{1}||$ is differentiable on $D_{1,\epsilon}$, we have from Stokes formula, $\int_{\partial D} (\tau g_{1})^{*} \omega = \sum_{j=1}^{s} \int_{\partial V_{\epsilon}(p'_{j})} (\tau g_{1})^{*} \omega$. In terms of $J_{p'_{j}}(g_{1}) = 0$, (j, \dots, s) , we can assume that for each j, $||g_{1}|| = \varepsilon$ on $\partial V_{\epsilon}(p'_{j})$, and $J(g_{1}) \neq 0$ on $V_{\epsilon}(p'_{j})$. Now let $\operatorname{vol}(S_{n-1})$ denote the volume of S_{n-1} and let put $\tau = \sum_{j=1}^{n} (-1)^{j-1} y^{j} dy^{1} \wedge \cdots \wedge dy^{j-1} \wedge dy^{j+1} \cdots \wedge dy^{n}$. Then $\omega = \frac{1}{\operatorname{vol}(S_{n-1})}$ $\tau|_{S_{n-1}}$. By noting that $y^{i} \left(\frac{1}{\varepsilon} g_{1}\right) = \frac{1}{\varepsilon} y^{i}(g_{1}), (i = 1, \dots, n)$, we have: for each j,

$$\begin{split} \int_{\partial \mathcal{V}_{\epsilon}(p'_{j})} (\mathcal{V}g_{1})^{*} \omega &= \int_{\partial \mathcal{V}_{\epsilon}(p'_{j})} \left(\frac{g_{1}}{\varepsilon}\right)^{*} \omega = \frac{1}{\operatorname{vol}(S_{n-1})} \int_{\partial \mathcal{V}_{\epsilon}(p'_{j})} \left(\frac{g_{1}}{\varepsilon}\right)^{*} \tau \\ &= \frac{1}{\varepsilon^{n} \operatorname{vol}(S_{n-1})} \int_{\partial \mathcal{V}_{\epsilon}(p'_{j})} g_{1}^{*} \tau \\ &= \frac{n}{\varepsilon^{n} \operatorname{vol}(S_{n-1})} \int_{\mathcal{V}_{\epsilon}(p'_{j})} g_{1}^{*} (dy_{1} \wedge \cdots \wedge dy_{n}) \\ &= \frac{n}{\varepsilon^{n} \operatorname{vol}(S_{n-1})} \operatorname{sign} J_{p'_{j}}(g_{1}) \int_{(y^{1}g_{1})^{2} + \cdots + (y^{n}g_{1})^{2} \leq \varepsilon^{2}} d(y'g_{1}) \cdots d(y^{n}g_{1}) \\ &= \operatorname{sign} J_{p'_{j}}(g_{1}). \end{split}$$

Thus (4.24) is proved, so that, we have proved Lemma 4.3. Q.E.D.

Now we return to the proof of Theorem 4.1. At first it follows from (4.18), (4.21) and q = f(p) that

$$\int_{\partial V_{\mathfrak{s}}(p)} (\psi s f)^* \Phi_k = obs_k(f(p), s, A_{f(p)}^{\perp}) n(p, f, A),$$

that is,

(4.25)
$$obs_k(p, sf, D) = obs_k(f(p), s, A_{f(p)}^{\perp}) n(p, f, A).$$

In particular, let us take any complemental submanifold $A'_{\frac{1}{q}}$ to A at $q \in (A - \partial A)$ as a compact domain D and the inclusion mapping $\iota_{A'_{q}} \perp \longrightarrow X$. Then clearly $n(q, \iota_{A'_{q}} \perp, A) = 1$, so that, from (4.25) we have

$$obs_k(q, s, A'_q \perp) = obs_k(q, s, A_{\frac{1}{q}}).$$

Thus $obs_{\overline{k}}^{\perp}(q, s, A)$ is independent of $A_{\overline{q}}^{\perp}$. Therefore

$$obs_k(p, sf, D) = obs_k^{\perp}(f(p), s, A) \cdot n(p, f, A).$$

Hence (4.2) is proved. On the other hand, (4.3) follows immediately from (4.1) and (4.2). Q.E.D.

4.5. COROLLARY 4.4, (c.f. [1]). Let E be a Hermitian vector bundle of fibre dimension n over an m-dimensional complex manifold X, $(n \le m)$ and let $s: X \longrightarrow E$ be a smooth section of E which is $\neq 0$ on ∂X , and which is transversal to the zero of s. Let zero (s) be the set of zeroes of s. Then zero (s) becomes a real 2(m - n)-dimensional oriented closed submanifold of X and the proper homology class of zero (s) is the Poincaré dual of $C_n(E)$.

Proof. Notice that the 1-general Stiefel bundle E_1 of E is the subbundle of E, i.e., $E_1 = \{e \in E : e \neq 0\}$. Let q be any point of zero(s). From $q \in X$ $\longrightarrow \partial X$, we can take a neighborhood V in X about q, which admits a trivialization $\varphi: V \times \mathbb{C}^n \longrightarrow E | V$. Here let $\varphi: E | V \longrightarrow \mathbb{C}^n$ be a holomorphic mapipng defined by,

(4.26)
$$\psi \cdot \varphi(q', v) = v, \qquad q' \in V, \quad v \in \mathbb{C}^n.$$

Then put $\psi s = (s_1, \dots, s_n)$ and $s_i = s^i + \sqrt{-1} s^{n-i}$, $i = 1, \dots, n$. That s is transversal to the zero section of X in E, implies that $ds_{q_i}^1 \wedge \dots \wedge ds_{q_i}^{2n} = 0$

for each $q' \in V \cap \text{zero}(s)$. We obtain a family of charts $\{V_{\alpha}, h_{\alpha} = (s_{\alpha}^{1}, \cdots, s_{\alpha}^{2n}, t_{\alpha}^{1}, \cdots, t_{\alpha}^{2(m-n)})\}$ of X such that $\{V_{\alpha}\}$ cover zero(s), and for each α ,

(i) V_{α} admits a trivialization $\varphi_{\alpha}: V \times \mathbb{C}^{n} \longrightarrow E | V_{\alpha}$, and so,

 $\psi_{\alpha}: E | V_{\alpha} \longrightarrow C^n$ defined by (4.26).

(ii) $s_{\alpha}^{1}, \dots, s_{\alpha}^{2n}$ are real-valued functions defined by ψ_{α} and s,

i.e.,
$$\psi_{\alpha}s = (s_{\alpha}^1 + \sqrt{-1} s_{\alpha}^n, \cdots, s_{\alpha}^n + -1s_{\alpha}^{2n}).$$

- (iii) $V_{\alpha} \cap \operatorname{zero}(s) = \{q \in V_{\alpha} : s_{\alpha}^{1}(q) = \cdots = s_{\alpha}^{2^{n}}(q) = 0\}$
- (iv) h_{α} is the positive coordinate system on V_{α} .

Therefore zero(s) is a real 2(m-n)-dimensional closed submanifold of X, which admits charts $\{V_{\alpha} \cap \text{zero}(s), (t_{\alpha}^{1}, \dots, t_{\alpha}^{2(m-n)})\}$. We want to prove that zero(s) is orientable. Let us suppose $V_{\alpha} \cap V_{\beta} \cap \text{zero}(s) \neq \phi$. Then there exists a translation function $g_{\alpha\beta} = ||(g_{\alpha\beta})_{\beta}^{i}||$ on $V_{\alpha} \cap V_{\beta}$ such that

$$s^i_{\mathfrak{a}} = \sum_{j=1}^{2n} (g_{\alpha\beta})^i_j s^j_{\beta}$$
 $i = 1, \cdots, 2n$, and $\det(g_{\alpha\beta}) > 0$.

Let us put
$$a(q) = \det \begin{pmatrix} \frac{\partial t_a^1}{\partial t_b^1}, \dots, \frac{\partial t_a^1}{\partial t_{\beta}^{2(m-n)}}, \frac{\partial t_a^1}{\partial s_{\beta}^1}, \dots, \frac{\partial t_a^1}{\partial s_{\beta}^{2n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial t_a^{2(m-n)}}{\partial t_{\beta}^1}, \dots, \frac{\partial t_a^1}{\partial t_{\beta}^{2(m-n)}}, \frac{\partial t_a^{2(m-n)}}{\partial s_{\beta}^1}, \dots, \frac{\partial t_a^{2(m-n)}}{\partial s_{\beta}^{2n}} \\ \frac{\partial s_a^1}{\partial t_{\beta}^1}, \dots, \frac{\partial s_a^1}{\partial t_{\beta}^{2(m-n)}}, \frac{\partial s_a^1}{\partial s_{\beta}^1}, \dots, \frac{\partial s_a^1}{\partial s_{\beta}^{2n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial s_a^2}{\partial t_{\beta}^1}, \dots, \frac{\partial s_a^2}{\partial t_{\beta}^{2(m-n)}}, \frac{\partial s_a^1}{\partial s_{\beta}^1}, \dots, \frac{\partial s_a^1}{\partial s_{\beta}^{2n}} \end{pmatrix}_q$$

for each $q \in V_{\alpha} \cap V_{\beta}$. Hence, as $\partial s_{\alpha}^{i} / \partial t_{\beta}^{j}(q) = 0$ for any $q \in V_{\alpha} \cap V_{\beta} \cap$ zero(s), $i = 1, \dots, 2n, \ j = 1, \dots, 2(m-n)$, it follows from (iv) that $a(q) = \det\left(\frac{\partial t_{\alpha}^{i}}{\partial t_{\beta}^{j}}\right)$ $\det(g_{\alpha\beta}) > 0 \ q \in V_{\alpha} \cap V_{\beta} \cap \text{zero}(s)$, so that, from $\det(g_{\alpha,\beta}) > 0$, we find that

$$\det\left(\frac{\partial t_{\mathfrak{a}}^{j}}{\partial t_{\beta}^{j}}\right) > 0 \text{ on } V_{\mathfrak{a}} \cap V_{\beta} \cap \operatorname{zero}(s).$$

Therefore zero(s) is orientable. As $s \neq 0$ on ∂X , zero(s) has not the boundary. We shall next prove the second statement. For simplicity put A = zero(s). Since s is the smooth cross-section of E|(X-A), and $\partial A = \phi$, we can define $obs \pm (q, s, A)$ for any $q \in A$. Let $q \in V_a \cap A$. Then we

calculate $obs_{\frac{1}{4}}(q, s, A)$. From the condition (iii) the set $A_{\overline{q}}^{\perp} = \{q' \in V_a : t_a^{\perp}(q') = \cdots = t_a^{2(m-n)}(q') = 0\}$ becomes a complemental submanifold to A at q. Then, of course, $(s_a^{\perp}, \dots, s_a^{2n})$ is the coordinate system of $A_{\overline{q}}^{\perp} \cap V_a$. Hence the restriction of $\psi_a \cdot s$ to $A_{\overline{q}}^{\perp}$ is consider as the inclusion mapping as follows: Let us put $v_a(s_a^{\perp}, \dots, s_a^{2n})$ and let z^1, \dots, z^n be complex coordinates of C^n . If x^1, \dots, x^{2n} are coordinates of \mathbb{R}^{2n} with $x^i + \sqrt{-1} x^{n+1} = z_i$, then from definition of s_a^i , $(i = 1, \dots, 2n)$,

$$x^i \phi_{\alpha} s v_{\alpha}^{-1}(s_{\alpha}^1, \cdots, s_{\alpha}^{2n}) = s_{\alpha}^i \qquad i = 1, \cdots, 2n.$$

Therefore we have from $obs_1(q, s, A_{\overline{q}}^{\perp}) = \operatorname{zero}(q, s, A_{\overline{q}}^{\perp})$, $obs_1(q, s, A_{\overline{q}}^{\perp})=1$. Thus for any $q \in A$, we obtain

$$(4.27) obs_{1}^{\perp}(q, s, A) = 1 A = \operatorname{zero}(s).$$

Now let τ be a smooth singular 2n-cycle in the interior of X such that every singular chain σ in τ which intersects zero(s), meets σ in an isolated intersior point. Hence we can apply Theorem 4.1 to each singular chain σ in τ . Then from (4.3) and (4.27),

$$\int_{\sigma} C_n(E) = \int_{\partial \sigma} s^* \eta_n(\pi_1^* E) + n(\sigma, \text{ zero(s)})$$

where $n(\sigma, \text{zero}(s))$ is the intersection number of σ and zero(s). Hence summing over σ in τ , we find

$$\int_{\tau} C_n(E) = n(\tau, \text{ zero(s)}). \qquad Q.E.D.$$

COROLLARY 4.5. [1]. (The relative Causs-Bonnet theorem). Let E be a Hermitian n-bundle over an n-complex manifold X with the boundary ∂X . Now, given a smooth section s of E such that

i) $s \neq 0$ on ∂X , ii) s has isolated zeroes only, then we have

$$\sum_{j=1}^{l} \text{zero } (p_j; s) = \int_{X} C_n(E) - \int_{\partial X} s^* \eta_n(\pi_1^* E)$$

where the p_j are zeroes of s.

Indeed, if we apply (4.1) to the case when k = 1, dim $X = \dim E = n$, D = X, and f = the identity mapping of X, then this corollary follows from the fact that $obs_1(p_j, s, X) = zero(p_j; s)$ $j = 1, \dots, l$ Q.E.D.

§5. An application to complex projective space

In this section we will inverstigate Levine's "The First Main Theorem" for holomorphic mappings of non-compact, complex manifolds into complex projective space [2].

Let $p^n(C)$ be *n*-dimensional complex projective space of all the 1dimensional subspaces of C^{n+1} , and let V be a non-compact real 2(n-k+1)dimensional oriented manifold. Let $D \subset V$ be a compact domain with the smooth boundary ∂D . We assume that there exists a smooth mapping f of V into $p^n(C)$.

THEOREM 5.1, ([2]). Let A be a complex (k-1)-dimensional linear subspace of $\mathbf{p}^n(\mathbf{C})$ such that $f^{-1}(A) \cap D$ is a set of isolated points in $(D - \partial D)$. Let ι denoted the inclusion mapping of A into $\mathbf{p}^n(\mathbf{C})$. If n(D, f, A) denotes the intersection number of the singular chains $f: D \longrightarrow \mathbf{p}^n(\mathbf{C})$ and $\iota: A \longrightarrow \mathbf{p}^n(\mathbf{C})$, and if V(D) denotes the volume of f(D), then

(5.1)
$$V(D) - n(D, f, A) = \int_{\partial D} f^* A$$

where Λ is a real 2(n-k) + 1-form on $(p^n(C) - A)$, which is given by (5.11).

The volume element of $p^n(C)$ is the one induced by the standard unitary invariant Kähler metric, normalized so that the volume of $p^n(C)$ equals 1.

(Levine assumes in [2] that V is a complex manifold and that f is holomorphic.)

Proof. In order to prove this by using Theorem 4.1, let us consider the canonical holomorphic vector bundles L, T, and E over $p^{n}(C)$, defined a as follows, ([1]):

- (5.2) T is the product bundle $p^n(C) \times C^{n+1}$
- (5.3) L is the subbundle of T consisting of all the pairs (l, v), where $v \in l$.
- (5.4) E is the quotient bundle T/L (Note dim E = n). Then, over $p^n(C)$ we obtain the following exact sequence:

$$(5.5) \qquad 0 \longrightarrow L \longrightarrow T \longrightarrow E \longrightarrow 0.$$

Let N_0 be the norm on T induced by the inner product (,) of C^{n+1} as before. In terms of (5.5), the norm N_0 on T induces norms N_1 on L and N_2 on E as stated in §2. We shall apply Theorem 4.1 to this holomorphic

n-bundle E with the norm N_0 , over $p^n(C)$. Let C(E), E_k and $\eta_{n-k+1}(\pi_k^*E)$ be as defined in previous sections. Now let $z^0, \cdots z^n$ be homogeneous coordinates of $p^n(C)$ coorresponding to the natural basis e_0, \cdots, e_n of C^{n+1} . Here put

(5.6)
$$\Omega = \frac{i}{2\pi} d' d'' \log \sum_{j=0}^{n} z^j \bar{z}^j.$$

It is well-known ([5]) that Ω is the real 2-form on $p^n(C)$ induced by the standard, unitary invariant, Kähler metric. Then we have

LEMMA 5.2. Let $C_l(E)$ be the *l* th Chern form of *E*. Then we obtain (5.7) $C_l(E) = Q^l, \quad (l = 1, \dots, n)$

Proof. Let V_j be open sets defined by $V_j = \{l \in p^n(C) : z^j(l) \neq 0\}, i = 0, \dots, n$. For each j let $(\xi^0, \dots, \xi^{j-1}, \xi^{j+1}, \dots, \xi^n)$ be the coordinate system on V_j defined by $\xi^i = z^i/z^j, i = 0, \dots, j-1, j+1, \dots, n$. Then we obtain a holomorphic nonvanishing section $s_j; V_j \longrightarrow L$ given by

$$s_j(l) = \{l, (\xi^0(l), \cdots, \xi^{j-1}(l), 1, \xi^{j+1}(l), \cdots, \xi^n(l))\}.$$

Of course, from definition of the norm N, on L,

 $N_1(s_j(l)) = 1 + (\xi(l), \xi(l))_j$ for each $l \in V_j$

where $(\xi(l), \xi(l)_j = \xi^0(l)\bar{\xi}^0(l) + \cdots + \xi^{j-1}(l)\bar{\xi}^{j-1}(l) + \xi^{j+1}(l)\bar{\xi}^{j+1}(l) + \cdots + \xi^n(l)\bar{\xi}^n(l)$. Therefore it follows from (2.5) that $C_1(L)|V_j = -\frac{i}{2\pi} d' d'' \log(1 + (\xi, \xi)_j)$, so that, from (5.6) we have $C_1(L) = -\Omega$. However in terms of Corollary 2.7, $C_l(E) = (-C_1(L))^l$. Hence (5.7) is proved. Q.E.D.

Further we can prove

LEMMA 5.3.

(5.8)
$$\int_{p^n(\boldsymbol{C})} C_n(\boldsymbol{E}) = 1$$

Proof. Let $v \in \mathbb{C}^{n+1}$ and let $\hat{s}_v : p^n(\mathbb{C}) - [v] \longrightarrow E_1 \subset E$ be a holomorphic section defined by $\hat{s}_v(l) = (l, v/l), \ l \in p^n(\mathbb{C}) - [v]$. Then from Corollary 4.5 we have

$$\int_{\boldsymbol{p}^n(\boldsymbol{C})} C_n(\boldsymbol{E}) = \text{zero } ([v], \, \hat{s}_v).$$

It is sufficient to prove zero $([v], \hat{s}_v) = 1$. For convernience sake we assume

 $v = e_0$. Then we obtain a frame $t = \{t_i\}_{1 \le i \le n}$ of $E|V_0$ given by $t_i(l) = (l, -e_i/l)$ $l \in V_0$. Let $\varphi: V_0 \times \mathbb{C}^n \longrightarrow E|V_0$ be the trivialization defined by

$$\varphi(l, v) = \sum_{i=1}^{n} z^{i}(v) t_{i}(l) \qquad (l, v) \in V_{0} \times C^{n}$$

where z^1, \dots, z^n are complex coordinates of \mathbb{C}^n . Further let $\psi: E|V_0 \longrightarrow \mathbb{C}^n$ be a holomorphic mapping defined by φ , i.e., $\psi\varphi(l, v) = v$, for $(l, v) \in V_0 \times \mathbb{C}^n$. To show zero $([e_0], \hat{s}_{e_0}) = 1$, we estimate the mapping $\psi \cdot \hat{s}_{e_0}: V_0 \longrightarrow \mathbb{C}^n$. If ξ^1, \dots, ξ^n denote the coordinates on V_0 , as before, then it is easy to prove that

Therefore

From Lemma 5.2 and 5.3, $C_n(E) = \Omega^n$ becomes the normalized volume element of $p^n(C)$. Moreover from the fact that C(E) (or Ω) is invariant under unitary transformations it follows that: Let A^{\perp} be any complex (n-k+1)-dimensional linear subspace of $p^n(C)$. Then

(5.9)
$$\int_{A} C_{n-k+1}(E) = \int_{A} \Omega^{n-k+1} = 1.$$

Now let f, D, V(D) and A be as described in Theorem 5.1. Then, of course, we have

(5.10)
$$V(D) = \int_{D} f^* \Omega^{n-k+1} = \int_{D} f^* C_{n-k+1}(E).$$

Let l be any fixed point in A and let us take an orthonormal basis v_0, \dots, v_n of C^{n+1} such that

- (a) v_0, \dots, v_{k-1} belong to A
- $(\beta) \qquad v_{k-1} \! \in \! l.$

Then we denote by A_{l}^{\perp} the complex (n - k + 1)-dimensional projective space consisting of all the 1-dimensional subspace of $[v_{k-1}, \dots, v_n]$. Note $A \cap A_{l}^{\perp} = \{l\}$. It is obvious that A_{l}^{\perp} is a complemental submanifold to A at l without boundary. Moreover we define a holomorphic s section $s: (p^n(C) - A) \longrightarrow E_k$ by $s(l) = \{l, (v_0/l, \dots, v_{k-1}/l)\}$ for all $l \in (p^n(C) - A)$. It is clear that s is the well-defined section. Here put

(5.11)
$$\Lambda = s^* \eta_{n-k+1}(\pi_k^* E) \quad \text{on } p^n(C) - A$$

The boundary form $\eta_{n-k+1}(\pi_k^{\sharp}E)$ is a real 2(n-k) + 1-form, and so is. Hence, from (4.3) we have: $\int_{A_t^{\perp}} C_{n-k+1}(E) = \int_{A_t^{\perp}} A + obs_k^{\perp}(l, s, A)n(l, A_t^{\perp}, A)$ where $\iota_{A_t^{\perp}}$: $A_t^{\perp} \longrightarrow p^n(C)$ is the inclusion mapping. However $\partial A_t^{\perp} = \phi$, $n(l, A_t^{\perp}, A) = 1$, and from (5.9), $\int_{A_t^{\perp}} C_{n-k+1}(E) = 1$. so that, we have: for any $l \in A \ obs_k^{\perp}(l, s, A) = 1$. Again using (4.3) we have

(5.12)
$$\int_{D} f^{*}C_{n-k+1}(E) = \int_{\partial D} f^{*}A + \sum_{j=1}^{l} n(p_{j}, f, A)$$

where

$$f^{-1}(A)\cap D = \{p_1, \cdots, p_l\}.$$

But, from definition of n(D, f, A), $\sum_{j=1}^{l} n(p_j, f, A) = n(D, f, A)$. (5.1) follows from (5.10) and (5.12). Q.E.D.

References

- [1] R. Bott and S.S. Chern: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math., 114 (1965), 71-112.
- H.I. Levine: A theorem on holomorphic mappings into complex projective space. Ann. Math., 71 (1960), 529-535.
- [3] S.S. Chern: Characteristic classes of Hermitian manifold. Ann. Math., 47 (1946), 85-121.

[4] N. Steenrod: The topology of fibre bundles. Princeton University Press (1951).

[5] Y. Akizuki: The theory of harmonic integrals. Iwanami (Japan), (1955-1956).

[6] S. Sternberg: Lectures on Differential Geometry. New Jersey, Prentice-Hall, Inc., (1964). Mathematical Institute

Nagoya University