SOME IDENTITIES ON THE CHARACTER SUM CONTAINING $\mathbf{x}(x-1)(x-\lambda)$

MASATOSHI YAMAUCHI

Let \boldsymbol{F}_{p} be the prime field of characteristic p (p : an odd prime), and put $\boldsymbol{F}_{P}^{\prime}=\boldsymbol{F}_{p}-\{0,1\}$. Then for $\boldsymbol{\lambda} \in \boldsymbol{F}_{p}^{\prime}$ we define

$$
a_{p}(\lambda)=-\sum_{x \in \boldsymbol{F}_{p}}\left(\frac{x(x-1)(x-\lambda)}{p}\right),
$$

where $\left(\frac{*}{p}\right)$ denotes the Legendre symbol, and consider the sum

$$
S_{m}(\lambda)=\sum_{i \in F_{p}^{\prime}} a_{p}(\lambda)^{m} .
$$

The purpose of this note is to prove the following:
Theorem.

$$
\begin{aligned}
& S_{2}(p)=p^{2}-2 p-3 \\
& S_{4}(p)=2 p^{3}-4 p^{2}-9 p-3-b_{p} \\
& S_{6}(p)=5 p^{4}-10 p^{3}-27 p^{2}-15 p-3-5 p b_{p}-2 c_{p}
\end{aligned}
$$

where b_{p} and c_{p} are obtained from

$$
\begin{aligned}
& q \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{12}=\sum_{n=1}^{\infty} b_{n} q^{n}, \\
& q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{8}\left(1-q^{2 n}\right)^{8}=\sum_{n=1}^{\infty} c_{n} q^{n} .
\end{aligned}
$$

The sum $S_{m}(p)$ is analogous to the sum considered by Birch [1]. We note that b_{p} and c_{p} are the eigen-values of Hecke operators acting on the space of cusp forms of weight 6 or 8 respectively, with respect to the elliptic modular group $\Gamma_{0}(4)$ (or $\Gamma(2)$), and the meaning of the above theorem is that the eigen-value of Hecke operators of higher weight appears in the

[^0]congruence zeta function of a certain variety which have been found by Sato firstly.

1. The proof of the theorem

1.1. For $\lambda \in F_{p}^{\prime}$, let E_{λ} be an elliptic curve defined by the affine coordinate as follows with identity element (∞, ∞) as an additive group.

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda),
$$

then it is well known that the order $N_{p}(\lambda)$ of the group of \boldsymbol{F}_{p}-rational points is $N_{p}(\lambda)=1+p-a_{p}(\lambda)$ and since $(0,0),(1,0),(\lambda, 0)$ and (∞, ∞) are all points of order 2 on E_{λ}, which are rational over \boldsymbol{F}_{p}.

$$
N_{p}(\lambda) \equiv 0(\bmod 4) \text { or } a_{p}(\lambda) \equiv 1+p \bmod 4
$$

For a moment, take $\lambda^{\prime} \in \overline{\boldsymbol{F}}_{p}$: the algebraic closure of \boldsymbol{F}_{p}, and define

1.2. For $\lambda \in \boldsymbol{F}_{p}^{\prime}-S$, the endomorphism ring $\mathscr{A}\left(E_{\lambda}\right)=\mathcal{O}_{\lambda}$ is an order in the imaginary quadratic field $K=\boldsymbol{Q}\left(\sqrt{a_{p}(\lambda)^{2}-4 p}\right)$, and contains an order of discriminant $a_{p}(\lambda)^{2}-4 p$, since $a_{p}(\lambda)$ is the trace of the p-th power endomorphism π_{2} which satisfies the equation $X^{2}-a_{p}(\lambda) X+p=0$.

Lemma. Assume the discriminant of \mathcal{O}_{2} is $\left(a_{p}(\lambda)^{2}-4 p\right) f^{-2}$ then $f \equiv \bmod 2$. Conversely, for an order \mathcal{O} of discriminant $\left(s^{2}-4 p\right) f^{-2}$ with $s \equiv 1+p \bmod 4$ and $f \equiv 0 \bmod 2$, there exists $\lambda \in \boldsymbol{F}_{p}^{\prime}-S$ such that $\mathscr{A}\left(E_{\lambda}\right)=\mathcal{O}$.

Proof. Let $\lambda(z)$ be a modular function for the principal congruence subgroup $\Gamma(2)$ of level 2 defined by $\lambda(z)=\left(e_{1}+2 e_{3}\right)\left(e_{3}-e_{1}\right)^{-1}$ where $e_{1}=\mathscr{P}$ $\left(\frac{1}{2} ; z, 1\right), e_{3}=\mathscr{P}\left(\frac{z}{2} ; z, 1\right)$, and let τ be an element of imaginary quadratic field $K=\boldsymbol{Q}\left(\sqrt{s^{2}-4 p}\right)$ with $s \equiv p+1 \bmod 4$, and denote the discriminant $D(\tau)$ of τ by $D(\tau)=\left(s^{2}-4 p\right) f^{-2}$, then $K(\lambda(\tau))$ generates a ring class field over K. There exists $\pi \in K$ such that $p=\pi \cdot \pi^{\prime}\left(\pi^{\prime}\right.$: the conjugate of π), and we see π decomposes completely in $K(\lambda(\tau))$ if and only if $f \equiv 0(\bmod 2)$, because the corresponding ideal group H for $K(\lambda(\tau))$ is $H=\left\{\alpha \in \mathcal{O}_{0} \mid \alpha=1\right.$ $\left.+2 a+2 m \beta, a \in \boldsymbol{Z}, \beta \in \mathcal{O}_{0}\right\}$, where \mathcal{O}_{0} is the maximal order in K and $s^{2}-4 p=$ $f^{2} m^{2} d\left(d\right.$: the discriminant of $\left.\mathcal{O}_{0}\right)$, and we see easily that $\pi \in H$ if and only if $f \equiv 0 \bmod 2$. Let $E_{\lambda(\tau)}$ be an elliptic curve defined by $y^{2}=x(x-1)(x-\lambda(\tau))$,
if $f \equiv 0 \bmod 2$, then, for a prime ideal $\mathfrak{P} \mid \pi$ in $K(\lambda(\tau))$, whose absolute norm is p, the reduction $\bmod \mathfrak{F}$ of $E_{\lambda(\tau)}$ defines an elliptic curve $E_{\lambda}\left(\lambda \in \boldsymbol{F}_{p}^{\prime}-S\right)$, by the isomorphism $\mathcal{O}_{0} / \mathfrak{F} \cong \boldsymbol{F}_{p}$ and $\mathscr{A}\left(E_{\lambda(\tau)}\right)=\mathscr{A}\left(E_{\lambda}\right)$, hence the discriminant of $\mathscr{A}\left(E_{2}\right)$ is $\left(s^{2}-4 p\right) f^{-2}$. If f is odd, the reduction mod \mathfrak{B} of $E_{\lambda(\tau)}$ does not define an elliptic curve $E_{\lambda}\left(\lambda \in \boldsymbol{F}_{p}^{\prime}-S\right)$, since the degree of \mathfrak{B} is greater than 1 hence $\mathcal{O}_{0} \mid \mathscr{B} \neq \boldsymbol{F}_{p}$. This completes the proof of the lemma.
1.3. For an order \mathcal{O} as. the lemma in 1.2, there are $6 \cdot \frac{h\left(\left(s^{2}-4 p\right) f^{-2}\right)}{w\left(\left(s^{2}-4 p\right) f^{-2}\right)}$ distinct $\lambda \in \boldsymbol{F}_{p}^{\prime}-S$ such that $\mathscr{A}\left(E_{\lambda}\right)=\mathcal{O}$, For $\lambda^{ \pm 1},(1-\lambda)^{ \pm 1},\left(\lambda^{-1}(\lambda-1)\right)^{ \pm 1}$ give the same absolute invariant $j=2^{8}\left(\lambda^{2}-\lambda+1\right)^{3} / \lambda^{2}(1-\lambda)^{2}$, and for a fixed $j \in \boldsymbol{F}_{p}$ there exist precisely $h\left(\left(s^{2}-4 p\right) f^{-2}\right)$ elliptic curves with the same endomorphism ring \mathcal{O}, where $h(D)$ and $w(D)$ denote the class number of an order \mathcal{O} of discriminant D and a half of the number of units in \mathcal{O}, respectively.
1.4. We see that

$$
6 \cdot \frac{h(D)}{w(D)}= \begin{cases}3 h(4 D) & , \\ 2 h(4 D) & \text { if } D \equiv 0(\bmod 4) \\ 3 h(4 D)+3 h(D), & \text { if } D \equiv 5(\bmod 8) \\ 2(\bmod 8)\end{cases}
$$

hence we obtain

$$
\begin{gathered}
6 \cdot \Sigma_{1} \frac{h\left(\left(s^{2}-4 p\right) f^{-2}\right)}{w\left(\left(s^{2}-4 p\right) f^{-2}\right)}=\Sigma_{2} \frac{\delta\left(\left(s^{2}-4 p\right) f^{-2}\right)}{2}\left(1+\left\{\frac{\left(s^{2}-4 p\right) f^{-2}}{2}\right\}\right) \\
\times\left\{\frac{\left(s^{2}-4 p\right) f^{-2}}{2}\right\} h\left(\left(s^{2}-4 p\right) f^{-2}\right),
\end{gathered}
$$

where Σ_{1} runs over all s, f with $s \equiv p+1 \bmod 4|s|<2 \sqrt{p}$ and with $f \equiv 0$ $\bmod 2 f>0, \Sigma_{2}$ runs over all s, f with $|s|<2 \sqrt{p}$ and with $\left(s^{2}-4 p\right)^{-2} \equiv 0,1$ $\bmod 4 f>0, \delta(D)=2$ or 3 according as $D / 4 \equiv 5 \bmod 8$ or not, and $\left\{\frac{D}{2}\right\}=1$ or $\left(\frac{D}{2}\right)$ according as $D / 4 \equiv 0,1 \bmod 4$ or not.
1.5. Now we shall prove the theorem. First

$$
\begin{aligned}
S_{2}(p) & =\sum_{x, y, \lambda \in F_{p}}\left(\frac{x(x-1)(x-\lambda)}{p}\right)\left(\frac{y(y-1)(y-\lambda)}{p}\right)-2 \\
& =\sum_{x, y \in \boldsymbol{F}_{p}}\left(\frac{x(x-1) y(y-1)}{p}\right) \cdot \sum_{\lambda \in \boldsymbol{F}_{p}}\left(\frac{(\lambda-x)(\lambda-y)}{p}\right)-2 .
\end{aligned}
$$

By decomposing the above sum into two parts with $x=y$ and $x \neq y$, we see easily $S_{2}(p)=p^{2}-2 p-3$. As for the sum $S_{4}(p)$,

$$
\begin{aligned}
& S_{4}(p)=\sum_{\lambda \in F_{p}^{\prime}} a_{p}(\lambda)^{4}=\frac{1}{2} \sum_{i s s^{\prime}<\lambda_{1}^{\prime \prime} p} s^{4} \cdot \underset{\mathscr{N}\left(E_{i}\right)=\boldsymbol{Q}\left(\sqrt{s^{2}-4 p}\right)}{\sum^{\prime} \cdot 1} \\
& =\frac{1}{2} \sum_{|s|<2 \sqrt{\bar{p}}} s^{4} \cdot \sum_{2} \frac{\delta(D)}{2} \cdot\left(1+\left\{\frac{D}{2}\right\}\right)\left\{\frac{D}{2}\right\} h(D)
\end{aligned}
$$

where the sum Σ^{\prime} denotes the number of elliptic curves E_{λ} for which the discriminant of $\mathscr{A}\left(E_{2}\right)$ is $\left(s^{2}-4 p\right) f^{-2}$, and other notations are the same as in 1.4 with $D=\left(s^{2}-4 p\right) f^{-2}$. By the trace formula of Hecke operators for $\Gamma_{0}(4)$ obtained in [3], we see

$$
b_{p}=-\frac{1}{2} \Sigma_{2} \frac{\delta(D)}{2}\left(1+\left\{\frac{D}{2}\right\}\right)\left\{\frac{D}{2}\right\} h(D) \cdot \frac{\rho^{5}-\rho^{\prime 5}}{\rho-\rho^{\prime}}-3,
$$

where ρ, ρ^{\prime} are the roots of $x^{2}-s x+p=0$.
Hence $\frac{\rho^{5}-\rho^{\prime 5}}{\rho-\rho}=s^{4}-3 p s^{2}+p^{2}$.
Therefore

$$
\begin{aligned}
S_{4}(p) & =-b_{p}-3+3 p S_{2}(p)-p^{2}(p-2) \\
& =2 p^{3}-4 p^{2}-9 p-3-b_{p} .
\end{aligned}
$$

For the sum $S_{6}(p)$, this can be proved similarly so we may omit it. Hence this completes our proof of the theorem.

2. Some corollaries

2.1 For the set S defined in 1.1, $\# S=\frac{p-1}{2}$, (\# denotes the cardinality of the set) and we know $S \cap \boldsymbol{F}_{p}=\left\{\lambda \in \boldsymbol{F}_{p}^{\prime} \mid a_{p}(\lambda)=0\right\}$.

Corollary 1.

$$
\#\left(S \cap \boldsymbol{F}_{p^{\prime}}\right)= \begin{cases}0, & \text { if } p \equiv 1 \bmod 4 \\ 3 h(-p), & \text { if } p \equiv 3 \bmod 4,\end{cases}
$$

where $h(-p)$ denotes the class number of $\boldsymbol{Q}(\sqrt{-p})$.
Proof. By 1.3 and 1.4, we obtain

$$
\#\left(\boldsymbol{F}_{p}^{\prime}-S\right)=\frac{1}{2} \sum_{s \neq 0} \frac{\delta(D)}{2}\left(1+\left\{\frac{D}{2}\right\}\right)\left\{-\frac{D}{2}\right\} h(D),
$$

hence $p-2=\# \boldsymbol{F}_{p}^{\prime}=\frac{1}{2} \sum_{s \neq 0} \frac{\delta(D)}{2}\left(1+\left\{\frac{D}{2}\right\}\right)\left\{\frac{D}{2}\right\} h(D)+\#\left(S \cap \boldsymbol{F}_{p}\right)$ and by
the trace formula of Hecke operators for $\Gamma_{0}(4)$ with weight 2, we have

$$
p-2=\frac{1}{2} \sum_{s \neq 0} \frac{\delta(D)}{2}\left(1+\left\{\frac{D}{2}\right\}\right)\left\{\frac{D}{2}\right\} h(D)+h^{\prime},
$$

where

$$
h^{\prime}= \begin{cases}0 & , \text { if } p \equiv 1 \bmod 4 \\ \frac{3}{2} h(-4 p)+\frac{3}{2} h(-p)=3 h(-p), & \text { if } p \equiv 7 \bmod 8 \\ h(-4 p)=3 h(-p) & , \text { if } p \equiv 3 \bmod 8\end{cases}
$$

This completes the proof.
2.2 By 1.1, $a_{p}(\lambda) \equiv 1+p \bmod 4$, hence $a_{p}(\lambda)^{4} \equiv(1+p)^{4} \bmod 2^{8}$ therefore $S_{4}(p) \equiv(p-2)(p+1)^{4} \bmod 2^{8}$. According to our theorem for $S_{4}(p), b_{p}$ satisfies the following congruence property;

Corollary 2.

$$
-b_{p} \equiv p^{5}+1+2 p\left(p^{3}+1\right)-4 p^{2}(p+1) \bmod 2^{8}
$$

or in other words,

$$
b_{p} \equiv p^{5}+1 \bmod 2^{8} .
$$

References

[1] B.J. Birch, How the number of points of elliptic curves over a fixed prime field varies, J. London Math. Soc., 43 (1968), 57-60.
[2] Weber's class invariants, Mathematika, 16 (1969), 283-294.
[3] M. Yamauchi, On the trace of Hecke operators for certain modular groups, to appear.

Mathematical Institute
Nagoya University

[^0]: Received August 10, 1970.

