A CHARACTERIZATION OF THE FINITE SIMPLE GROUPS PSp(4, $\mathbf{q}), \mathbf{G}_{\mathbf{2}}(\mathbf{q}), \mathbf{D}_{4}^{2}(\mathbf{q}), \mathbf{I}$

PAUL FONG and W.J. WONG ${ }^{1)}$

Suppose that G is the projective symplectic group $P S p(4, q)$, the Dickson group $G_{2}(q)$, or the Steinberg "triality-twisted" group $D_{4}^{2}(q)$, where q is an odd prime power. Then G is a finite simple group, and G contains an involution j such that the centralizer $C(j)$ in G has a subgroup of index 2 which contains j and which is the central product of two groups isomorphic with $S L\left(2, q_{1}\right)$ and $S L\left(2, q_{2}\right)$ for suitable q_{1}, q_{2}. We wish to show that conversely the only finite simple groups containing an involution with this property are the groups $\operatorname{PSp}(4, q), G_{2}(q), D_{4}^{2}(q)$. In this first paper we shall prove the following result.

Theorem. Let G be a finite group with subgroups L_{1}, L_{2} such that $L_{1} \simeq$ $S L\left(2, q_{1}\right), L_{2} \simeq S L\left(2, q_{2}\right),\left[L_{1}, L_{2}\right]=1, L_{1} \cap L_{2}=\langle j\rangle$, where j is an involution, and $\left|C(j): L_{1} L_{2}\right|=2$. Suppose that $G \neq C(j) O(G)$. Then one of the following holds:
(a) $q_{1}=q_{2}$, and L_{1}, L_{2} are not normal in $C(j)$.
(b) $q_{1}=q_{2}$, and L_{1}, L_{2} are both normal in $C(j)$.
(c) One of the numbers q_{1}, q_{2} is the cube of the other.

Furthermore, in each case, $C(j)$ is uniquely determined to within isomorphism.
Here $O(G)$ denotes the largest normal subgroup of odd order in G, and the condition $G \neq C(j) O(G)$ is obviously satisfied if G is simple. The groups $\operatorname{PSp}(4, q)$, $G_{2}(q), D_{4}^{2}(q)$ satisfy the hypotheses of the theorem, and belong to the cases (a), (b), (c) respectively. By the uniqueness statement of the theorem, $C(j)$ is isomorphic with the centralizer of an involution in $\operatorname{PSp}(4, q), G_{2}(q)$ or $D_{4}^{2}(q)$, where $q=\min \left\{q_{1}, q_{2}\right\}$. In case (a) it follows that G must be isomorphic with $\operatorname{PSp}(4, q)$ [18]. In the sequel to this paper it will be shown that, in cases (b), (c), G must be isomorphic with $G_{2}(q), D_{4}^{2}(q)$ respectively [12].

[^0]The proof of the theorem is begun by a study of the possible fusions of involutions of $C(j)$ in G, which shows that either (a) holds and the structure of $C(j)$ is uniquely determined, or else L_{1} and L_{2} are both normal in $C(j)$ and the structure of $C(j)$ is again uniquely determined. In the latter case we use the Brauer-Wielandt theorem, a knowledge of the irreducible representations of $S L(2, q)$ over finite fields, and results and methods of Brauer concerning groups with prescribed S_{2}-groups, first to show that q_{1} and q_{2} are powers of the same prime p, and then to show that (b) or (c) holds provided $\left(q_{1} q_{2}\right)^{3}$ divides the order of $C\left(X_{b}\right)$, where X_{b} is a S_{p}-group of $L_{b}, b=1$ or $2, q_{b}=\min \left\{q_{1}, q_{2}\right\}$. By using the theory of blocks of group characters we show that if (b) does not hold then $\left(q_{1} q_{2}\right)^{3}$ divides the order of G, and hence $\left(q_{1} q_{2}\right)^{3}$ divides the order of $C\left(X_{\beta}\right)$, where X_{β} is a S_{p}-group of $L_{\beta}, \beta=1$ or 2 . Finally, by forming a (B, N)-pair, we construct a subgroup \hat{G} of G of known order and show by means of a result of Brauer that \hat{G} induces a group of collineations of a Desarguesian projective plane of order q_{β}, containing the little projective group $\operatorname{PSL}\left(3, q_{\beta}\right)$. This gives an inequality between orders which implies that $\beta=b$, completing the proof of the theorem.
§1. In this section we fix notation for $L=S L(2, q)$, where $q=p^{n}$ for an odd prime p, and set down some facts about its automorphisms and representations. Let

$$
q-\varepsilon=2^{\alpha} u, \quad q+\varepsilon=2 v,
$$

where $\varepsilon= \pm 1, \alpha \geq 2$, and u, v are odd. L contains elements ρ, σ of order $q-\varepsilon, q+\varepsilon$ respectively. Indeed, we may take

$$
\rho=\left(\begin{array}{cc}
\gamma & \\
& \gamma^{-1}
\end{array}\right), \quad \sigma=\left(\begin{array}{cc}
\lambda & \mu \\
-\delta \mu & \lambda
\end{array}\right) \text { if } \varepsilon=1,
$$

and

$$
\rho=\left(\begin{array}{rr}
\lambda & \mu \\
-\mu & \lambda
\end{array}\right), \quad \sigma=\left(\begin{array}{ll}
\gamma & \\
& \gamma^{-1}
\end{array}\right) \text { if } \varepsilon=-1 .
$$

Here γ is a primitive root of F_{q}, δ is a non-square in F_{q}, and $\lambda+\mu \sqrt{-\delta}$ or $\lambda+\mu \sqrt{-1}$ is a generator for the group of elements in $F_{q^{2}}$ of $F_{q^{\prime}}$-norm 1 respectively in the cases $\varepsilon=1, \varepsilon=-1$. Set

$$
a=\rho^{u}, \quad \tau=a^{2 \alpha-2},
$$

so that a and τ have orders 2^{α} and 4 respectively. The involution

$$
j=\tau^{2}=\left(\begin{array}{cc}
-1 & \\
& -1
\end{array}\right)
$$

generates the center of L. We have

$$
\begin{equation*}
C_{L}\left(\rho^{i}\right)=\langle\rho\rangle \text { if } \rho^{i} \notin\langle j\rangle . \tag{1.1}
\end{equation*}
$$

For $g \in L$ denote by $C_{L}^{*}(g)$ the projective centralizer of g in L, i.e.

$$
C_{L}^{*}(g)=\left\{h \in L: g^{h}=g \text { or } g j\right\}
$$

$C_{L}^{*}(g)$ is a subgroup of L with $C_{L}(g)$ as a subgroup of index 1 or 2 . Then

$$
\begin{equation*}
C_{L}^{*}(\tau)=\langle\rho, b\rangle, \tag{1.2}
\end{equation*}
$$

where b is an element satisfying the relations

$$
b^{2}=j, \quad \rho^{b}=\rho^{-1} .
$$

Indeed, we may take

$$
b=\left\{\begin{array}{lll}
\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) & \text { if } & \varepsilon=1 \tag{1.3}\\
\left(\begin{array}{rr}
\lambda & \mu \\
\mu-\lambda
\end{array}\right) & \text { if } & \varepsilon=-1
\end{array}\right.
$$

where in the case $\varepsilon=-1, \lambda^{2}+\mu^{2}=-1$. We have

$$
\begin{equation*}
N_{L}\left(\left\langle\rho^{i}\right\rangle\right)=\langle\rho, b\rangle \quad \text { if } \quad \rho^{i} \notin\langle j\rangle . \tag{1.4}
\end{equation*}
$$

The subgroup $Q=\langle a, b\rangle$ is a generalized quaternion group of order $2^{\alpha+1}$, and is an S_{2}-subgroup of L. We also have

$$
\begin{equation*}
C_{L}\left(\sigma^{i}\right)=\langle\sigma\rangle \quad \text { if } \quad \sigma^{i} \notin\langle j\rangle \tag{1.5}
\end{equation*}
$$

and

$$
\sigma^{\tau}=\sigma^{-1}, \quad \sigma^{\frac{1}{2}(q+\varepsilon)}=j,
$$

so that

$$
\begin{equation*}
N_{L}\left(\left\langle\sigma^{i}\right\rangle\right)=\langle\sigma, \tau\rangle \quad \text { if } \quad \sigma^{i} \notin\langle j\rangle . \tag{1.6}
\end{equation*}
$$

The automorphism group $\operatorname{Aut}(L)$ is isomorphic to the projective semili-
near group $P \Gamma L(2, q)$ by [11]. Thus the outer automorphism group $\operatorname{Out}(L)$ is given by

$$
\operatorname{Out}(L) \simeq P \Gamma L(2, q) / P S L(2, q)
$$

which is the direct product of the group $\operatorname{PGL}(2, q) / P S L(2, q)$ of order 2 and a cyclic group of order n, where $q=p^{n}$ and p is the characteristic of the Galois field F_{q}. The latter group arises from the automorphisms of L induced by field automorphisms of F_{q}. Referring to elements of Out (L) as automorphism classes, we have
(1A) If q is not a square, then L has exactly one automorphism class T_{1} of order 2. If q is a square, then L has exactly three automorphism classes T_{1}, T_{2}, T_{3} of order 2.

We denote the class of inner automorphisms of L by T_{0}; the identity automorphism θ_{0} is a representative of this class. The class T_{1} of outer automorphisms corresponding to elements of $\operatorname{PGL}(2, q)$ not in $\operatorname{PSL}(2, q)$ may be represented by the automorphism θ_{1} of order 2 defined by

$$
\begin{equation*}
\theta_{1}: g \longrightarrow k^{-1} g k, \tag{1.7}
\end{equation*}
$$

where

$$
k=\left\{\begin{array}{lll}
\left(\begin{array}{cc}
& 1 \\
-\delta &
\end{array}\right) & \text { if } & \varepsilon=1 \\
\left(\begin{array}{ll}
-1 & \\
& 1
\end{array}\right) & \text { if } & \varepsilon=-1
\end{array}\right.
$$

and δ is a non-square in F_{q}. If we choose $\delta=\gamma^{u}$, then in the case $\varepsilon=1$

$$
\begin{equation*}
\theta_{1}: \rho \rightarrow \rho^{-1}, a \rightarrow a^{-1}, b \rightarrow b a . \tag{1.8}
\end{equation*}
$$

In the case $\varepsilon=-1$, we find that $\theta_{1}: \rho \rightarrow \rho^{-1}, b \rightarrow b \rho^{i}$ for some integer i. Then $\theta_{1}: b \rho^{m} \rightarrow\left(b \rho^{m}\right) \rho^{i-2 m}$, so that by replacing b by $b \rho^{m}$ for suitable m, we may assume that either $\theta_{1}: b \rightarrow b a$ or $\theta_{1}: b \rightarrow b$. The latter is impossible, since the element μ of (1.3) would be 0 so that $\lambda^{2}=-1$, which is impossible. Hence we may assume that (1.8) holds in the case $\varepsilon=-1$ as well.

For any $\theta \in \operatorname{Aut}(L)$, define

$$
\begin{aligned}
& C_{L}(\theta)=\left\{g \in L: g^{\theta}=g\right\}, \\
& C_{L}^{*}(\theta)=\left\{g \in L: g^{\theta}=g \text { or } g j\right\} .
\end{aligned}
$$

$C_{L}^{*}(\theta)$ is a subgroup of L containing $C_{L}(\theta)$ as a subgroup of index 1 or 2. We have

$$
\begin{equation*}
C_{L}\left(\theta_{1}\right)=\langle\sigma\rangle, \quad C_{L}^{*}\left(\theta_{1}\right)=\langle\sigma, \tau\rangle . \tag{1.9}
\end{equation*}
$$

If q is a square, say $q=r^{2}$, then $\varepsilon=1$. For $\beta \in F_{q}$ we write $\bar{\beta}=\beta^{r}$, so that $\beta \rightarrow \bar{\beta}$ is the automorphism of F_{q} of order 2. If $g=\left(\beta_{i j}\right) \in L$, let $\bar{g}=\left(\bar{\beta}_{i j}\right) . \quad$ Then

$$
\begin{equation*}
\theta_{2}: g \rightarrow \bar{g} \tag{1.10}
\end{equation*}
$$

defines an automorphism of L of order 2 belonging to an automorphism class T_{2} distinct from T_{0} and T_{1}. We have

$$
\begin{equation*}
\theta_{2}: a \rightarrow a^{r}, \quad b \rightarrow b, \tag{1.11}
\end{equation*}
$$

where we note that $a^{r}=j a$ or $j a^{-1}$ according as to whether $r \equiv 1(\bmod 4)$ or $r \equiv-1(\bmod 4)$. Also

$$
\begin{equation*}
C_{L}\left(\theta_{2}\right) \simeq S L(2, r), \quad C_{L}^{*}\left(\theta_{2}\right)=\left\langle C_{L}\left(\theta_{2}\right), g\right\rangle \tag{1.12}
\end{equation*}
$$

where g is an element whose spuare may be taken to be j.
Finally we represent the class T_{3} by the automorphism θ_{3} of L which is θ_{2} followed by $\theta_{1} . \quad\left(\theta_{3}\right)^{2}$ is then the inner automorphism

$$
\begin{equation*}
\left(\theta_{3}\right)^{2}: g \rightarrow a^{\frac{1}{2}(r-1)} g a^{-\frac{1}{2}(r-1)}, \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{3}: a \rightarrow a^{-r}, \quad b \rightarrow b a . \tag{1.14}
\end{equation*}
$$

(1B) All automorphisms of order 2 in T_{1} are conjugate in $\operatorname{Aut}(L)$.
Proof. This is the well-known fact that all involutions in $\operatorname{PGL}(2, q)$, but not in $\operatorname{PSL}(2, q)$, are conjugate.
(1C) Let q be a square. Then all automorphisms of order 2 in T_{2} are conjugate in $\operatorname{Aut}(L)$.

Proof. For $z \in L$ denote by θ_{z} the automorphism of L given by

$$
\theta_{z}: g \rightarrow z^{-1}\left(g^{\theta_{2}}\right) z .
$$

Let $\Omega=\left\{z \in L:\left(\theta_{z}\right)^{2}=1\right\}$. If $y \in G L(2, q)$ induces the automorphism η on L, then

$$
\eta^{-1} \theta_{z} \eta=\theta_{w},
$$

where $w=(\operatorname{det} y)^{\frac{1}{2}(r-1)} \bar{y}^{-1} z y \in L$. Thus

$$
z^{y}=(\operatorname{det} y)^{\frac{1}{2}(r-1)} \bar{y}^{-1} z y
$$

determines an action of $G L(2, q)$ on Ω, and it is sufficient to show this action is transitive. Now $\Omega=\Omega_{1} \cup \Omega_{2}$, where $\Omega_{1}=\{z \in L: \bar{z} z=1\}, \Omega_{2}=\{z \in L: \bar{z} z=j\}$. If $y \in G L(2, q)$ and det y is a non-square, then $\overline{z^{y}} z^{y}=(\operatorname{det} y)^{\frac{1}{2}(q-1)} \bar{z} z=-\bar{z} z$ $=j \bar{z} z$, so that y interchanges Ω_{1} and $\Omega_{2} . \quad \Omega_{1}$ is invariant under the subgroup L, and thus it suffices to show L acts transitively on Ω_{1}.

The stabilizer in L of the element 1 in Ω_{1} is $\{y \in L: \bar{y}=y\}$, a group isomorphic to $S L(2, r)$. Since $|L|=q\left(q^{2}-1\right)=r^{2}\left(q^{2}-1\right)$ and $|S L(2, r)|=r\left(r^{2}-1\right)$ $=r(q-1)$, the orbit of 1 under L contains $r(q+1)$ elements. Now $z \in \Omega_{1}$ if and only if

$$
z=\left(\begin{array}{ll}
\lambda & \mu \\
\nu & \bar{\lambda}
\end{array}\right), \lambda \bar{\lambda}-\mu_{\nu}=1, \bar{\mu}=-\mu, \bar{\nu}=-\nu
$$

Since $\bar{\nu}=-\nu$ if and only if $\nu \gamma^{\frac{1}{2}(r+1)} \in F_{r}$, there are r possibilities for ν. Similarly there are r possibilities for μ. For $r-1$ choices of μ, ν, we have $\mu_{\nu}=-1, \lambda=0$. In the remaining $r^{2}-r+1$ cases, $\lambda \bar{\lambda}=1+\mu_{\nu} \in F_{r}$, and there are $r+1$ choices for λ. Hence

$$
\left|\Omega_{1}\right|=r-1+\left(r^{2}-r+1\right)(r+1)=r^{3}+r=r(q+1) .
$$

Hence L acts transitively on Ω_{1} as asserted.
(1D) There are no automorphisms of order 2 in T_{3}.
Proof: For $z \in L$, denote by φ_{z} the automorphism of L given by

$$
\varphi_{z}: g \rightarrow z^{-1}\left(g^{\theta_{\mathbf{3}}}\right) z
$$

Then φ_{z}^{2} is the inner automorphism of L corresponding to the element $a^{-\frac{1}{2}(r-1)}\left(z^{\theta_{s}}\right) z$. If $\varphi_{z}^{2}=1$, then $z^{\theta_{s}}= \pm a^{\frac{1}{2}(r-1)} z^{-1}$. If $z=\left(\begin{array}{ll}\lambda & \mu \\ \nu & \pi\end{array}\right)$, this is equivalent to the equations

$$
\bar{\lambda}=\eta \delta^{-\frac{1}{2}(r-1)} \lambda, \quad \bar{\mu}=\eta \delta^{-\frac{1}{2}(r+1)} \nu,
$$

$$
\bar{\nu}=\eta \delta^{\frac{1}{2}(r+1)} \mu, \quad \bar{\pi}=\eta \delta^{\frac{1}{2}(r-1)} \pi
$$

where $\eta= \pm 1$. Now

$$
\begin{aligned}
& \lambda=\overline{\bar{\lambda}}=\eta \bar{\delta}^{-\frac{1}{2}(r-1)} \bar{\lambda}=(\delta \bar{\delta})^{-\frac{1}{2}(r-1)} \lambda, \\
& \mu=\overline{\bar{\mu}}=\eta \bar{\delta}^{-\frac{1}{2}(r+1)} \bar{\nu}=\left(\delta \bar{\delta}^{-1}\right)^{-\frac{1}{2}(r+1)} \mu .
\end{aligned}
$$

Since $(\delta \bar{\delta})^{-\frac{1}{2}(r-1)}=\left(\delta \bar{\delta}^{-1}\right)^{\frac{1}{2}(r+1)}=\delta^{-\frac{1}{2}(q-1)}=-1$, we have $\lambda=\mu=0$, which is impossible.
(1E) Let V be a vector space over F_{p} of dimension m on which L acts irreducibly and nontrivially. Then $m \geq 2 n$. If moreover L is faithfully represented on V, then $m=2 n, m=\frac{8}{3} n$, or $m \geq 4 n$. The second case occurs only if 3 divides n.

Proof. Let Γ be the natural representation of L as 2×2 matrices over F_{q}. For any integer k, where $0 \leq k \leq p-1$, let $\Gamma^{(k)}$ be the representation of L induced from Γ on forms of degree k; the degree of the representation $\Gamma^{(k)}$ is $k+1$. Let θ be the field automorphism of F_{q} defined by $\theta: x \rightarrow x^{p}$ for $x \in F_{q}$. It is known [6] that every irreducible representation of L over an algebraic closure of F_{q} is equivalent to one and only one of the form

$$
\begin{equation*}
\Gamma^{\left(k_{0}\right)} \times \Gamma^{\left(k_{1}\right) \theta} \times \cdots \times \Gamma^{\left(k_{n-1}\right)^{\theta n-1}} \tag{1.15}
\end{equation*}
$$

where $0 \leq k_{i} \leq p-1, \quad 0 \leq i \leq n-1, \quad$ and $\Gamma^{\left(k_{i}\right) \theta^{t}}$ is the representation of L obtained by applying θ^{i} to the matrix coefficients of $\Gamma^{\left(k_{t}\right)}$.

Suppose \mathfrak{B} is a non-trivial absolutely irreducible representation of L of form (1.15): the corresponding n-tuple $\left(k_{0}, k_{1}, \cdots, k_{n-1}\right) \neq(0,0, \cdots, 0)$. Let s be the smallest positive integer such that \mathfrak{F} and $\mathfrak{F}^{\sigma^{\circ}}$ are equivalent. Since s divides n, we have $n=s t$ for some integer t. $k_{0}, k_{1}, \cdots, k_{s-1}$ can be arbitrary subject to the requirement not all of them are zero; the remaining k_{i} are then uniquely determined. The degree of \mathfrak{F} is then $\prod_{i=0}^{s-1}\left(k_{i}+1\right)^{t}$. An irreducible representation of L over F_{p} containing \mathfrak{B} as an absolutely irreducible constituent thus has degree $s \prod_{i=0}^{s}\left(k_{i}+1\right)^{t} \geq s 2^{t} \geq 2 s t=2 n . \quad \mathfrak{F}$ is faithful if and only if t is odd and the number of odd k_{i} for $0 \leq i \leq s-1$ is odd. Since $s \prod_{i=0}^{s-1}\left(k_{i}+1\right)^{t}<4 s t$ holds only if $t=1,2$, or 3 , this completes the proof of (1 E).
(1F) Let V be a vector space over F_{l} of dimension m, where l is an odd prime different from p. If L acts irreducibly and non-trivially on V, then $m \geq \frac{1}{2}(q-1)$. If l^{b} is the full power of l in $|L|$, then $m \geq 4 b$.

Proof. By [16] the irreducible characters of L have degrees $1, q, q \pm 1$, $\frac{1}{2}(q \pm 1)$. The four characters of degree $\frac{1}{2}(q \pm 1)$ are irrational, their irrationalities being of the form $\frac{1}{2}(\varepsilon \pm \sqrt{\varepsilon q})$. Since the S_{l}-subgroups of L are cyclic, we can apply the results of Dade [9]. If D is any non-trivial l-subgroup of L, then $\left|N_{L}(D): C_{L}(D)\right|=2$ by (1.4), (1.6). Thus the tree associated with an l-block of positive defect has at most two edges. Every irreducible Brauer character of L with respect to the prime l is then the restriction of an ordinary irreducible character to l-regular elements of L. Thus $m \geq \frac{1}{2}(q-1)$.

Let \mathfrak{B} be an absolutely irreducible constituent of the representation of L on V. If s is the number of non-equivalent algebraic conjugates of \mathfrak{B} over F_{l}, then $m=s \cdot \operatorname{deg} \mathfrak{B}$. Now $2 l^{b}$ divides $q-1$ or $q+1$. Hence if $\operatorname{deg} \mathfrak{B} \geq q-1$, then $m \geq 2 l^{b}-2 \geq 4 b$. Suppose then that $\operatorname{deg} \mathfrak{B}=\frac{1}{2}(q \pm 1)$. If $s \geq 2$, the preceding argument applies. If $s=1$, the argument fails in the case $l^{b}=3$ and $q=5$ or 7. Since $s=1, \varepsilon q$ must be a quadratic-residue modulo l. Since 5 and -7 are non-residues modulo 3 , these last cases do not occur.
§2. Throughout this section we shall assume G is a finite group satisfying
(*) G has subgroups L_{1}, L_{2} such that $L_{1} \simeq S L\left(2, q_{1}\right), L_{2} \simeq S L\left(2, q_{2}\right),\left[L_{1}, L_{2}\right]$ $=1, L_{1} \cap L_{2}=\langle j\rangle$, where j is an involution, and $\left|C(j): L_{1} L_{2}\right|=2$.

Clearly $j \in Z\left(L_{1}\right) \cap Z\left(L_{2}\right)$, so that q_{1}, q_{2} are odd, and $Z\left(L_{1}\right)=Z\left(L_{2}\right)=\langle j\rangle$. The considerations of $\S 1$ apply to L_{1} and L_{2}. In particular, we can speak of automorphisms of L_{1} and L_{2} of class T_{0}, T_{1}, T_{2}, or T_{3}. We fix isomorphisms ϕ_{i} from $S L\left(2, q_{i}\right)$ onto L_{i}, and attach a subscript i to the symbols used in $\S 1$ for various objects defined for $S L(2, q)$ to denote the corresponding objects for $S L\left(2, q_{i}\right)$. Thus we have

$$
q_{i}-\varepsilon_{i}=2^{\alpha}{ }_{i} u_{i}, \quad q_{i}+\varepsilon_{i}=2 v_{i}, \quad i=1,2,
$$

where $\varepsilon_{i}= \pm 1, \alpha_{i} \geq 2$, and u_{i}, v_{i} are odd. Suppressing the symbol ϕ_{i} for
the moment, we have that $Q_{i}=\left\langle a_{i}, b_{i}\right\rangle$ is an S_{2}-subgroup of L_{i} of order $2^{\alpha_{i}+1}$. j is the central involution of Q_{1} and of Q_{2}.

We shall prove the following result:
(2A) Let G be a finite group with property (*). Then one of the following holds:
(i) $G=C(j) O(G)$.
(ii) $C(j)=L_{1} L_{2}\langle n\rangle$, where $n^{2}=1, L_{1}^{n}=L_{2}, q_{1}=q_{2}$.
(iii) $C(j)=L_{1} L_{2}\langle n\rangle$, where $n^{2}=1, L_{1}^{n}=L_{1}, L_{2}^{n}=L_{2}, n$ induces automorphisms of class T_{1} on L_{1} and $L_{2}, \alpha_{1}=\alpha_{2}$, and G has only one class of involutions.

We remark that in cases (ii) and (iii) the structure of $C(j)$ is uniquely determined. In case (ii) either (i) holds or $G \simeq P S p(4, q)$ with $q=q_{1}=q_{2}$, [18]. In case (iii) the structure of $C(j)$ is uniquely determined by (1B), (i) cannot hold, and $G \simeq G_{2}(q)$ or $D_{4}^{2}(q)$, [12].

Condition (*) allows a number of possibilities for the structure of $C(j)$. The proof of (2A) involves examination of the fusion of involutions of an S_{2}-subgroup of G. We write $g \sim h$ if g and h are fused in $G, g+h$ if not. We begin with a simple remark.
(2B) If $H \leqslant G, T$ is an S_{2}-subgroup of $H \cap C(j)$, and $\langle j\rangle$ is characteristic in T, then T is an S_{2}-subgroup of H. In particular, an S_{2}-subgroup S of $C(j)$ is one of G.

Proof. Since $\langle j\rangle$ is characteristic in $T, N(T) \leq N(\langle j\rangle)=C(j)$. If U is an S_{2}-subgroup of H containing T, then $N_{U}(T) \leq C(j) \cap U=T$, so that $U=T$. If S is an S_{2}-subgroup of $C(j)$ containing $Q_{1} Q_{2}$, then $\left|S: Q_{1} Q_{2}\right|=2$, so that $S^{\prime} \leq Q_{1} Q_{2}$. Since $Z\left(Q_{1} Q_{2}\right)=\langle j\rangle$, it follows that $\langle j\rangle=S^{\prime} \cap Z(S)$ is characteristic in S. Taking $H=G$ in the first part of the lemma, we see that S is an S_{2}-subgroup of G.

We define

$$
\begin{equation*}
x=\tau_{1} \tau_{2}, \quad y=b_{1} b_{2} . \tag{2.1}
\end{equation*}
$$

Since $\tau_{1}^{2}=\tau_{2}^{2}=b_{1}^{2}=b_{2}^{2}=j, x$ and y are involutions of $L_{1} L_{2}$ distinct from j.
(2C) $L_{1} L_{2}$ has exactly two classes of involutions, represented by j and x.

Proof. If $g \in L_{1}, \quad h \in L_{2}, \quad(g h)^{2}=1$, then $g^{2}=h^{-2} \in L_{1} \cap L_{2}=\langle j\rangle$. If $g^{2}=h^{-2}=1$, then g and h are j or 1 , and $g h=1$ or j. If $g^{2}=h^{-2}=j$, then $g h \sim x$ in $L_{1} L_{2}$, since L_{1}, L_{2} each have only one conjugacy class of elements of order 4.
(2D) $C(j)=L_{1} L_{2}\langle n\rangle$, where one of the following holds:
(i) $L_{1}^{n}=L_{1}$ and $L_{2}^{n}=L_{2}$.
(ii) $L_{1}^{n}=L_{2}, n^{2}=1$ or j, and $q_{1}=q_{2}$.

Proof: Choose $n \in C(j)-L_{1} L_{2}$, so that $C(j)=L_{1} L_{2}\langle n\rangle$. Since $L_{i} \mid\langle j\rangle \simeq$ $\operatorname{PSL}\left(2, q_{i}\right)$ is an indecomposable group with a trivial center, it follows by the Krull-Schmidt Theorem that $L_{1}^{n}=L_{1}, L_{2}^{n}=L_{2}$, or $L_{1}^{n}=L_{2}, \quad L_{2}^{n}=L_{1}$. In the first case, (i) holds. In the second case, $L_{1} \simeq L_{2}$ so that $q_{1}=q_{2}$. Since $n_{2} \in L_{1} L_{2}$, we have $n^{2}=g h$ with $g \in L_{1}, \quad h \in L_{2}$. Since $n^{-1} h n \in L_{1}, n g^{-1} n^{-1}$ $\in L_{2}$, we also have

$$
\begin{aligned}
& \left(n g^{-1}\right)^{2}=n^{-1} n^{2} g^{-1} n g^{-1}=\left(n^{-1} h n\right) g^{-1} \in L_{1}, \\
& \left(n g^{-1}\right)^{2}=n g^{-1} n^{-1} n^{2} g^{-1}=\left(n g^{-1} n^{-1}\right) h \in L_{2},
\end{aligned}
$$

and so $\left(n g^{-1}\right)^{2} \in L_{1} \cap L_{2}=\langle j\rangle$. Replacing n by $n g^{-1}$, we have $n^{2} \in\langle j\rangle$, which completes the proof of (ii).
(2E) If $C(j)=L_{1} L_{2}\langle n\rangle, L_{1}^{n}=L_{2}$, and $n^{2}=j$, then $G=C(j) O(G)$.
Proof. We may assume the isomorphisms ϕ_{i} of $S L\left(2, q_{i}\right)$ onto L_{i} are chosen so that $a_{1}^{n}=a_{2}, b_{1}^{n}=b_{2}$, etc. Suppose $(g h n)^{2}=1$ for some $g \in L_{1}$, $h \in L_{2}$. Then

$$
1=g h n^{2} g^{n} h^{n}=j g h^{n} h g^{n}
$$

Since $j g h^{n} \in L_{1}, h g^{n} \in L_{2}$, and $L_{1} \cap L_{2}=\langle j\rangle$, it follows that $g h^{n}=1, h g^{n}=j$, or $g h^{n}=j, h g^{n}=1$. $\operatorname{But}\left(g h^{n}\right)^{g n}=h g^{n}$, so both cases are impossible. Thus $C(j)-L_{1} L_{2}$ contains no involutions, and every involution in $C(j)-\langle j\rangle$ is conjugate to x by (2C).

Now (1.1), (1.2), (2.1) imply that

$$
C(x, j)=\left\langle\rho_{1}, \rho_{2}, y, n\right\rangle
$$

which has the S_{2}-subgroup

$$
T=\left\langle a_{1}, a_{2}, y, n\right\rangle
$$

$|T|=2^{2 \alpha+1}$, where $\alpha=\alpha_{1}=\alpha_{2} ; T$ is defined by the relations

$$
\begin{aligned}
& j^{2}=1, a_{1}^{2 \alpha-1}=a_{2}^{2 \alpha-1}=j,\left[a_{1}, a_{2}\right]=1, a_{1}^{y}=a_{1}^{-1}, \\
& a_{2}^{y}=a_{2}^{-1}, y^{2}=1, a_{1}^{n}=a_{2}, y^{n}=y, n^{2}=j .
\end{aligned}
$$

In particular $Z(T)=\langle x, j\rangle$.
For any element g of a group X, let $r_{X}(g)$ be the number of roots of g in X, i.e. the number of elements in X having g as a power. We compute that

$$
\begin{aligned}
& r_{T}(j)=\frac{1}{3}\left(2^{2 \alpha-2}-1\right)+2^{2 \alpha-2}+2^{\alpha+1}, \\
& r_{T}(x)=r_{T}(x j)=\frac{1}{3}\left(2^{2 \alpha-2}-1\right)+2^{2 \alpha-1}-2^{\alpha} .
\end{aligned}
$$

These two numbers differ by $2^{\alpha}\left(2^{\alpha-2}-3\right) \neq 0$, so that $\langle j\rangle$ is characteristic in T.

By (2B) T is an S_{2}-subgroup of $C(x)$ and thus $x \not+j$. In particular, j is conjugate to no other involution of S. The Z^{*}-theorem of Glauberman [13] implies that $j O(G) \in Z(G / O(G))$, and so $G=C(j) O(G)$.
$(2 \mathrm{~F})$ Suppose $C(j)=L_{1} L_{2}\langle n\rangle, \quad L_{1}^{n}=L_{1}, \quad L_{2}^{n}=L_{2}, \quad$ and $G \neq C(j) O(G)$. Then
(i) n may be chosen as an involution inducing automorphisms of class T_{1} on both L_{1} and L_{2}, and $\alpha_{1}=\alpha_{2}$;
(ii) G has only one class of involutions.

Proof. Since $n^{2} \in L_{1} L_{2}$, the class of the automorphism of L_{i} induced by n is an element of order 1 or $2 \operatorname{in~} \operatorname{Out}\left(L_{i}\right), i=1,2$. Let n induce an automorphism of class T_{a} on L_{1} and one of class T_{b} on L_{2}, where $0 \leq a$, $b \leq 3$. Since n may be changed by an element of $L_{1} L_{2}$, we may assume n induces the automorphisms $\theta_{a, 1}, \theta_{b, 2}$ on L_{1}, L_{2} respectively, where these correspond to the automorphisms θ_{a}, θ_{b} of $S L(2, q)$ defined in $\S 1 . n^{2}$ is an element of $L_{1} L_{2}$ inducing the inner automorphisms $\theta_{a, 1}^{2}$ on L_{1}, $\theta_{b, 2}^{2}$ on L_{2}. There are two such elements, differing by a factor of j, and these are easily found (see (1.13)).

Suppose $x \nmid j$. Since $G \neq C(j) O(G)$, it follows by (2C) and Glauberman's Z^{*}-theorem that there exists an involution $t \in C(j)-L_{1} L_{2}$ such that $t \sim j$. Using (1B), (1C), (1.9), (1.12), we can compute an S_{2}-subgroup U
of $C(t, j)$. Except in the case $a=b=1$, we find that $U^{\prime}=Z_{1} Z_{2} \neq 1$, where Z_{i} is a cyclic subgroup of $L_{i}, \quad i=1,2$. Thus $\langle j\rangle=\left(U^{\prime}\right)^{m}$ for a suitable integer m. U is then an S_{2}-subgroup of $C(t)$ by $(2 \mathrm{~B})$, so U is even an S_{2}-subgroup of G. The proof of $(2 B)$ shows that $\langle j\rangle$ is characteristic in $N(U)$, so that $j \not+t$ in $N(U)$. But then $j \nsim t$ in G by Burnside's Theorem. In the case $a=b=1$, we may assume $n=t$. The involutions of the S_{2} subgroup $S=Q_{1} Q_{2}\langle n\rangle$ of $C(j)$ which are not in $Q_{1} Q_{2}$ are of the form $a_{1}^{r} a_{2}^{s} n$. Since $a_{1}^{r} a_{2}^{s} n=n^{g}$ with $g=\left(n b_{1}\right)^{r}\left(a_{1}^{r} n b_{2}\right)^{s}$, all involutions in $C(j)-L_{1} L_{2}$ are conjugate in $C(j)$. The elementary abelian subgroup $V=\langle n, x, j\rangle$ is an S_{2}-subgroup of $C(n, j)$. Choose $h \in G$ such that $n^{h}=j, V^{h} \leq C(j)$. The three subgroups of index 2 in V containing n are $\langle n, j\rangle,\langle n, x\rangle,\langle n, x j\rangle$; one of these must be transformed by h into a subgroup of $L_{1} L_{2}$. Thus $n j, n x$, or $n x j$ is fused to an element of $L_{1} L_{2}-\langle j\rangle$ and hence to x by (2C). Thus $n \sim x \sim j$, which is a contradiction. Hence $x \sim j$ in G.

Now (1.8), (1.11), (1.14) show that an S_{2}-subgroup T of $C(x, j)$ is given by

$$
T=\left\langle a_{1}, a_{2}, y, n\right\rangle \text { or }\left\langle a_{1}, a_{2}, y, n b_{1}\right\rangle .
$$

If $\{a, b\} \Phi\{1,3\}$, then $T^{\prime}=\left\langle a_{1}, a_{2}\right\rangle,\left\langle a_{1}, a_{2}^{2}\right\rangle,\left\langle a_{1}^{2}, a_{2}\right\rangle$, or $\left\langle a_{1}^{2}, a_{2}^{2}\right\rangle$, and $\langle j\rangle=\left(T^{\prime}\right)^{m}$ for some integer m. But then $\langle j\rangle$ is characteristic in T, so by (2B) T is an S_{2}-subgroup of $C(x)$. This is impossible since $x \sim j$. Hence $\{a, b\} \subseteq$ $\{1,3\}$, and $T^{\prime}=\left\langle a_{1}^{2}, a_{1} a_{2}\right\rangle$. If $\alpha_{1} \neq \alpha_{2}$, then $\langle j\rangle=\left\langle T^{\prime}\right\rangle^{m}$ for some m, and again this is impossible. Hence $\{a, b\} \subseteq\{1,3\}$ and $\alpha_{1}=\alpha_{2}$. A calculation readily shows that if (i) fails, then $r_{T}(j)$ is different from $r_{T}(x), r_{T}(x j)$, so that $\langle j\rangle$ is characteristic in T. This is again impossible, and so (i) holds.
$T=\left\langle a_{1}, a_{2}, y, n\right\rangle$ is an S_{2}-subgroup of $C(x, j)$. Since $x \sim j$, we may choose $g \in G$ such that $x^{g}=j, T^{g} \leq C(j) . \quad X=\left\langle a_{1}, a_{2}, y\right\rangle$ is generated by $a_{1} y, a_{2} y, y$, which are involutions conjugate to x. If $n+j$, then necessarily $X^{g} \leq L_{1} L_{2}$. In particular, $j^{g} \in L_{1} L_{2}-\langle j\rangle$; by (2C) we may assume $j^{g}=x$. Since X is an S_{2}-subgroup of $C_{L_{1} L_{2}}(x)$, we may even assume $X^{g}=X$. But $X^{\prime}=\left\langle a_{1}^{2}, a_{2}^{2}\right\rangle$, and so $\langle j\rangle=\left(X^{\prime}\right)^{m}$ for a suitable integer m. Thus $\langle j\rangle$ is characteristic in X, and $j^{0}=j$. This contradiction shows that $n \sim j$, and (ii) holds.

The results (2D), (2E), (2F) together prove (2A). Summarizing our calculations, we see that if $C(j)$ satisfies the assumptions of $(2 \mathrm{~F})$, then

$$
C(x, j)=\left\langle\rho_{1}, \rho_{2}, y, n\right\rangle, \quad C(n, j)=\left\langle\sigma_{1}, \sigma_{2}, x, n\right\rangle .
$$

Moreover, $\left\langle a_{1}, a_{2}, y, n\right\rangle,\langle j, x, n\rangle$ are S_{2}-subgroups of $C(x, j), C(n, j\rangle$ respectively.

83: From now on we assume that G satisfies condition (*) and case (iii) of (2A). In this section we shall prove that q_{1} and q_{2} are powers of the same prime p.
(3A) Let D be a 4 -subgroup of G. Then D is conjugate to $\langle x, j\rangle$ or $\langle n, j\rangle$. Moreover, $N(D) / C(D)$ is isomorphic to S_{3}, the symmetric group on 3 symbols.

Proof. We may assume $j \in D$ by (2A), so that $D \leq C(j)$. Since all involutions in $C(j)-\langle j\rangle$ are conjugate in $C(j)$ to x or n by $(2 \mathrm{C})$ and the proof of $(2 \mathrm{~F})$, it follows that D is conjugate to $\langle x, j\rangle$ or $\langle n, j\rangle$. Now $x \sim x j$ and $n \sim n j$ in $C(j)$. Since G has one class of involutions, it readily follows that $|N(D): C(D)|=6$ and $N(D) / C(D) \simeq S_{3}$.

It will be convenient to introduce the following notation: let the images of $\left(\begin{array}{ll}1 & \alpha \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ \alpha & 1\end{array}\right),\left(\begin{array}{ll}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right),\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ under the isomorphism ϕ_{i} of $S L\left(2, q_{i}\right)$ onto L_{i} be denoted by $x_{i}(\alpha), x_{-i}(\alpha), h_{i}(\alpha), \omega_{i}$ respectively, $i=1,2$. Moreover, let X_{i}, X_{-i}, H_{i} be the subgroups of L_{i} generated by elements of the form $x_{i}(\alpha), x_{-i}(\alpha), h_{i}(\alpha)$ respectively. We note that $L_{i}=X_{i} H_{i} \cup X_{i} H_{i} \omega_{i} X_{i}$, $i=1,2$. Let δ_{1}, δ_{2} be non-squares of order a power of 2 in $F_{q_{1}}, F_{q_{2}}$ respectively. We may assume n acts on L_{i} as conjugation by $\left(\begin{array}{cc}0 & 1 \\ -\delta_{i} & 0\end{array}\right)$ if $\varepsilon_{i}=1$, and by $\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$ if $\varepsilon_{i}=-1$. Set

$$
h_{0}=n d_{1} d_{2},
$$

where $d_{i}=\varphi_{i}\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ if $\varepsilon_{i}=1, \quad d_{i}=1$ if $\varepsilon_{i}=-1$. Then $C(j)=\left\langle L_{1} L_{2}, h_{0}\right\rangle$, where h_{0} acts on L_{i} as conjugation by ($\left.\begin{array}{ll}1 & \\ \delta_{i}\end{array}\right)$. Moreover,

$$
\begin{equation*}
h_{o}^{2}=h_{1}\left(\delta_{1}^{-1}\right) h_{2}\left(\delta_{2}^{-1}\right) . \tag{3.1}
\end{equation*}
$$

In particular, h_{0} centralizes $H_{1} H_{2}, h_{0}^{2} \in H_{1} H_{2}$. Thus

$$
\begin{equation*}
H=\left\langle H_{1} H_{2}, h_{0}\right\rangle \tag{3.2}
\end{equation*}
$$

is abelian of order $\left(q_{1}-1\right)\left(q_{2}-1\right)$.
(3B) Let $\{a, b\}=\{1,2\}$, and let $K=O\left(C\left(X_{b}\right)\right)$. Then the following hold:
(i) An S_{2}-subgroup of L_{a} is one of $C\left(X_{b}\right)$.
(ii) $C\left(X_{b}\right)=L_{a} K, N\left(X_{b}\right)=H L_{a} K$, and $K \cap L_{a}=1$.
(iii) K / X_{b} is abelian, and j inverts K / X_{b}.

Proof. Since $C\left(X_{b}\right) \cap C(j)=L_{a} X_{b}$, the subgroup Q_{a} of L_{a} is an S_{2-} subgroup of $C\left(X_{b}\right) \cap C(j)$. Since $\langle j\rangle$ is characteristic in the generalized quaternion group Q_{a}, it follows by (2B) that Q_{a} is then an S_{2}-subgroup of $C\left(X_{b}\right)$, which proves (i). Now $K \cap L_{a}$ is a normal subgroup of odd order in L_{a}, so that necessarily $K \cap L_{a}=1$. Now the Brauer-Suzuki Theorem [7] implies that $K\langle j\rangle \triangleleft C\left(X_{b}\right)$, so by the Frattini argument

$$
C\left(X_{b}\right)=K\left(C(j) \cap C\left(X_{b}\right)\right)=K X_{b} L_{a}=K L_{a} .
$$

Since $K\langle j\rangle$ is characteristic in $C\left(X_{b}\right)$, we have $K\langle j\rangle \triangleleft N\left(X_{b}\right)$ so again by the Frattini argument

$$
N\left(X_{b}\right)=K\left(C(j) \cap N\left(X_{b}\right)\right)=K L_{a} H,
$$

which proves (ii). If j centralizes $k X_{b}\left(\bmod X_{b}\right)$ for some $k \in K$, then $k^{-1} j k \in j X_{b}$, and necessarily $k \in C(j)$. Thus $k \in C\left(X_{b}\right) \cap C(j)=L_{a} X_{b}$. Write $k=m u$ with $m \in L_{a}, u \in X_{b}$. Then $m=k u^{-1} \in L_{a} \cap K=1$, and so $k=u \in X_{b}$. Thus j inverts K / X_{b}, which proves (iii).
(3C). Let $u \neq 1$ be in X_{b}, and let $M=O(C(u))$. Then
(i) $X_{b} \leq M$.
(ii) $C(u)=M L_{a}, M \cap L_{a}=1$.
(iii) $C(j) \cap M=X_{b}$.

Proof. Since $C(u) \cap C(j)=L_{a} X_{b}$, it follows as in the proof of (3B) (i) that Q_{a} is an S_{2}-subgroup of $C(u)$. By the Brauer-Suzuki Theorem, $M\langle j\rangle$ $\triangleleft C(u)$, and so $C(u)=M(C(j) \cap C(u))=M X_{b} L_{a}$. But L_{a} normalizes $M X_{b}$. Thus $M X_{b} \triangleleft M X_{b} L_{a}=C(u)$ and so $X_{b} \leq M, C(u)=M L_{a}$. Since $M \cap L_{a} \triangleleft L_{a}$, clearly $M \cap L_{a}=1$, which completes the proof of (i), (ii). Suppose $m \in C(j) \cap M$. Since m has odd order, we may write $m=g_{1} g_{2}$, where g_{i} is an element of odd order in $L_{i}, i=1,2 . \quad m$ and g_{a} centralize u, so that $g_{b} \in C(u) \cap L_{b}=\langle j\rangle X_{b}$. But since g_{b} has odd order, $g_{b} \in X_{b} \leq M$. But now $g_{a}=m g_{b}^{-1} \in M \cap L_{a}=1$, and so $m=g_{b}$, which proves (iii).
(3D) If $q_{1}-\varepsilon_{1}>q_{2}-\varepsilon_{2}$, then $\left(q_{1}-\varepsilon_{1}\right) q_{2}^{3}$ divides $|G|$.
Proof. $C(x, j)=\left\langle\rho_{1}, \rho_{2}, y, n\right\rangle$ has a normal abelian 2 -complement consisting of the 2^{α}-th powers of elements in $\left\langle\rho_{1}, \rho_{2}\right\rangle$, where $\alpha=\alpha_{1}=\alpha_{2}$. The
subgroup $R=\left\langle\rho_{1} q_{2}-\varepsilon_{2}\right\rangle$ is characteristic in $C(x, j)$, since R consists of all $\frac{1}{2^{\alpha}}\left(q_{2}-\varepsilon_{2}\right)$-th powers of elements in the normal 2 -complement. Moreover, $R \neq 1$ since $q_{1}-\varepsilon_{1}>q_{2}-\varepsilon_{2}$.

By (1. 1), (1. 8),

$$
\begin{equation*}
C(R, j)=\left\langle\rho_{1}, n b_{1}\right\rangle L_{2}, \tag{3.3}
\end{equation*}
$$

which has as an S_{2}-subgroup $T=\left\langle n b_{1}, a_{2}, b_{2}\right\rangle . \quad T$ has order $2^{2 \alpha+1}$ with relations

$$
\begin{gathered}
\left(n b_{1}\right)^{2 \alpha}=a_{2}^{2 \alpha-1}=b_{2}^{2}=j, \\
a_{2}^{n b_{1}}=a_{2}^{-1}, \quad b_{2}^{n b_{1}}=b_{2} a_{2}, a_{2}^{b_{2}}=a_{2}^{-1} .
\end{gathered}
$$

If we set

$$
s_{1}=a_{2} n b_{1} b_{2}, \quad s_{2}=n b_{1} b_{2}, \quad t=\left(n b_{1}\right)^{2 \alpha-1} b_{2},
$$

then $T=\left\langle s_{1}, s_{2}, t\right\rangle$, where

$$
s_{1}^{2 \alpha}=s_{2}^{2 \alpha}=t^{2}=\left[s_{1}, s_{2}\right]=1, s_{1}^{t}=s_{2} .
$$

Thus T is the wreath product of $Z_{2^{\alpha}}$ by Z_{2}. Since $T^{\prime}=\left\langle a_{2}\right\rangle,\langle j\rangle$ is characteristic in $T . \quad T$ is then an S_{2}-subgroup of $C(R)$ by $(2 \mathrm{~B})$.

The Frattini argument implies that

$$
N(R)=C(R)(N(R) \cap N(T))=C(R)(N(R) \cap C(j))
$$

Choose $g \in N(\langle x, j\rangle)$ such that $x^{g}=j$; this is possible by (3A). Since R is. characteristic in $C(x, j)$, it follows that $g \in N(R)$, so that $g=c d$, where $c \in C(R)$, and $d \in N(R) \cap C(j)$. Thus $x^{g}=x^{c}=j$, and $x \sim j$ in $C(R)$. Now we can verify that Theorem 2 of [4] applies to $C(R)$ with $\beta=a_{2}, J=j$. Using (3.3) we can compute that

$$
\begin{aligned}
& c(R, j)=\left(q_{1}-\varepsilon_{1}\right) q_{2}\left(q_{2}^{2}-1\right) \\
& c\left(R, a_{2}\right)=\left(q_{1}-\varepsilon_{1}\right)\left(q_{2}-\varepsilon_{2}\right) \\
& c(R, j, t)=\left(q_{1}-\varepsilon_{1}\right)\left(q_{2}-\varepsilon_{2}\right), \\
& c\left(R, a_{2}, t\right)=q_{1}-\varepsilon_{1}
\end{aligned}
$$

The numbers in [4] denoted by a, c, t, ε, f are readily computed to be $1, q_{1}-\varepsilon_{1}, 1, \varepsilon_{2}, \varepsilon_{2} q_{2}$ respectively. It then follows that

$$
|C(R)|=\left(q_{1}-\varepsilon_{1}\right) q_{2}^{3}\left(q_{2}^{2}-1\right)\left(q_{2}^{2}+\varepsilon_{2} q_{2}+1\right),
$$

which proves (3D).
We shall prove another similar result, for which we need the following:
(3E) Let X be a finite group with an involution i such that $C(i)=Z \times$ $L\langle t\rangle$, where $L \simeq S L(2, q), Z$ is a cylcic group of order dividing $\frac{1}{2}(q+\varepsilon)$ with $\varepsilon= \pm 1, q \equiv \varepsilon(\bmod 4)$, and t is an involution inducing an automorphism of class T_{1} on L. Suppose moreover that $t \sim i$ in X. Then $|X|$ is divisible by $|Z| q^{3}$ unless $q=3$ and $X \simeq M_{11}$, the Mathieu group of order 7920. If $q=3$ and $X \neq M_{11}$, then $X \simeq S L(3,3)$. Finally, if $Z=1$, then $q=3,5$, or 7 .

Proof. This is essentially a result of Brauer. The case $\varepsilon=-1$ is treated in Sections 4, 9,10 of [3], II. We indicate in $\S 8$ the modifications needed to treat the case $\varepsilon=1$.
(3F) If $q_{1}+\varepsilon_{1}>q_{2}+\varepsilon_{2}$, then $\left(q_{1}+\varepsilon_{1}\right) q_{2}^{3}$ divides $|G|$. If $q_{1}>q_{2}=3$, then L_{1} has a cyclic subgroup R of order $\frac{1}{2}\left(q_{1}+\varepsilon_{1}\right)$ such that $C(R)=R \times M$, $C(R, j)=R L_{2}\langle n\rangle$, and $M \simeq S L(3,3)$.

Proof. $C(n, j)=\left\langle\sigma_{1}, \sigma_{2}, x, n\right\rangle$ has a normal abelian 2-complement $\left\langle\sigma_{1}^{2}, \sigma_{2}^{2}\right\rangle$. If $R=\left\langle\sigma_{1}^{\left.q_{2}+\varepsilon_{2}\right\rangle}\right.$, then R is characteristic in $C(n, j)$, and since $q_{1}+\varepsilon_{1}>q_{2}+\varepsilon_{2}$, $R \neq 1$. By (1.5), $C(R, j)=\left\langle\sigma_{1}, n\right\rangle L_{2}=\left\langle\sigma_{1}^{2}\right\rangle \times L_{2}\langle n\rangle$. The same arguments as in (3D) show that $\left\langle a_{2}, b_{2}, n\right\rangle$ is an S_{2}-subgroup of $C(R)$ and that $n \sim j$ in $C(R)$. If we set $X=C(R) / R$, the conditions of (3E) are satisfied with $Z=\left\langle\sigma_{1}^{2}\right\rangle / R$. Since $x \in N(R), x$ induces an automorphism of X. If this automorphism were inner, the 2-group $\left\langle a_{2}, b_{2}, n, x\right\rangle$ obtained by adjoining x to the S_{2}-subgroup $\left\langle a_{2}, b_{2}, n\right\rangle$ of $C(R)$ would have a center of order at least 4. But $Z\left(\left\langle a_{2}, b_{2}, n, x\right\rangle\right)=\langle j\rangle$. Thus $X \neq M_{11}$ since all automorphisms of M_{11} are inner [15]. By (3E), $|X|$ is divisible by $|Z| q_{2}^{3}$, so that $|C(R)|$ is divisible by $|R||Z| q_{2}^{3}=\frac{1}{2}\left(q_{1}+\varepsilon_{1}\right) q_{2}^{3}$.

If $q_{1}>q_{2}=3$, then $R=\left\langle\sigma_{1}^{2}\right\rangle$ is cyclic of order $\frac{1}{2}\left(q_{1}+\varepsilon_{1}\right) . \quad$ By $(3 \mathrm{E})$, $C(R) / R \simeq S L(3,3) . \quad$ A modification of the method of [17] shows that $S L(3,3)$ has trivial Schur multiplier. Hence $C(R)=R \times M$, where $M \simeq S L(3,3)$. This proves (3F).
(3G) Let q_{1}, q_{2} be powers of the prime numbers p_{1}, p_{2} respectively. If $q_{1}>q_{2}$ and $p_{1} \neq p_{2}$, then an $S_{p_{2}}$-subgroup of $C(j)$ is not an $S_{p_{2}}$-subgroup of G.

Proof. We note $q_{1}+\varepsilon_{1}>q_{2}+\varepsilon_{2}$ and $q_{1}-\varepsilon_{1}>q_{2}-\varepsilon_{2}$ both hold except in the case $q_{1}=q_{2}+2$. Since the order of an $S_{p_{2}}$-subgroup of $C(j)$ divides $\left(q_{1}-\varepsilon_{1}\right) q_{2}$ or $\left(q_{1}+\varepsilon_{1}\right) q_{2}$, the result follows from (3D) and (3F).
$(3 \mathrm{H})$ If $q_{1}>q_{2}$ and $p_{1} \neq p_{2}$, then $q_{1}=5, q_{2}=3$.
Proof. Let P be an $S_{p_{2}}$-subgroup of L_{1}, X_{2} the $S_{p_{2}}$-subgroup of L_{2} introduced at the beginning of $\S 3$, and $K=O\left(C\left(X_{2}\right)\right)$. By (3B), we have $C\left(X_{2}\right)=K L_{1}$. Now $P X_{2}$ is an $S_{p_{2}}$-subgroup of $C(j)$, and $C\left(P X_{2}\right) \cap C(j)=C_{L_{1}}(P) X_{2}$. An S_{2}-subgroup T of this subgroup is cyclic or generalized quaternion, so by (2B), T is an S_{2}-subgroup of $C\left(P X_{2}\right)$. The Frattini argument then implies

$$
N\left(P X_{2}\right)=C\left(P X_{2}\right)\left(N\left(P X_{2}\right) \cap N(T)\right)=C\left(P X_{2}\right)\left(N\left(P X_{2}\right) \cap C(j)\right),
$$

so that $N\left(P X_{2}\right) / C\left(P X_{2}\right) \simeq\left(N\left(P X_{2}\right) \cap C(j)\right) /\left(C\left(P X_{2}\right) \cap C(j)\right)$. But $P X_{2}$ is an abelian $S_{p_{2}}$-subgroup of $C(j)$, so that p_{2} does not divide $\left|N\left(P X_{2}\right) / C\left(P X_{2}\right)\right|$. Since $P X_{2}$ is not an $S_{p_{2}}$-subgroup of G and so not one of $N\left(P X_{2}\right)$ by (3G), it follows that $P X_{2}$ is not an $S_{p_{2}}$-subgroup of $C\left(P X_{2}\right)$, and hence not one of $C\left(X_{2}\right)$. It follows that p_{2} divides $\left|K / X_{2}\right|$.

Set $t=x$ if $\varepsilon_{2}=1, t=n$ if $\varepsilon_{2}=-1$, and $D=\langle t, j\rangle$. By the definition of x, n, and (1.7), D normalizes X_{2} and hence K. Since j inverts K / X_{2} by (3B), we have

$$
K / X_{2}=C_{K / X_{2}}(t) \times C_{K / X_{2}}(t j),
$$

and indeed, since $\left|X_{2}\right|$ is odd,

$$
\begin{equation*}
K / X_{2}=C_{K}(t) C_{K}(t j) X_{2} / X_{2} \tag{3.4}
\end{equation*}
$$

For any group Y, let $m(Y)$ be the minimum number of generators of an $S_{p_{2}}$-subgroup of Y. If $q_{2}=p_{2}^{n}$, then $m\left(X_{2}\right)=n$. Since P is cyclic and t, $t j$ are conjugate to j, it follows that

$$
m(C(t))=m(C(t j))=m(C(j)) \leq n+1 .
$$

By (3. 4), we have

$$
\begin{equation*}
m\left(K / X_{2}\right) \leq 2 m(C(j)) \leq 2(n+1) \tag{3.5}
\end{equation*}
$$

Let M be a normal subgroup of $C\left(X_{2}\right)$ such that $K>M \geq X_{2}, K / M$ is a p_{2}-group, and M is maximal subject to these conditions. Then K / M is an elementary abelian p_{2}-group admitting L_{1} as an irreducible group of operators. By (1 F),

$$
m(K / M) \geq \frac{1}{2}\left(q_{1}-1\right)
$$

Since $m(K / M) \leq m\left(K / X_{2}\right)$ and $q_{1} \geq q_{2}+2$, we find from
(3. 5) that

$$
\begin{equation*}
\frac{1}{2}\left(q_{2}+1\right) \leq \frac{1}{2}\left(q_{1}-1\right) \leq 2 m(C(j)) \leq 2(n+1) . \tag{3.6}
\end{equation*}
$$

Since $q_{2}=p_{2}^{n}$, we have in particular

$$
p_{2}^{\frac{1}{4}\left(q_{2}-3\right)} \leq q_{2} .
$$

By calculus,

$$
\begin{aligned}
& 11^{\frac{1}{4}(x-3)}>x \text { for } \\
& x \geq 7, \\
& 7^{\frac{1}{4}(x-3)}>x \text { for } \\
& x>7, \\
& 5^{\frac{1}{4}(x-3)}>x \text { for } \\
& x \geq 11, \\
& 3^{\frac{1}{4}(x-3)}>x \text { for } \\
& x \geq 15 .
\end{aligned}
$$

The only possibilities are

$$
\begin{aligned}
& p_{2}=q_{2}=7 \\
& p_{2}=q_{2}=5, \\
& p_{2}=3, \quad q_{2}=3 \text { or } 9 .
\end{aligned}
$$

If $q_{2}=7$, then (3.6) gives $4 \leq \frac{1}{2}\left(q_{1}-1\right) \leq 2 m(C(j)) \leq 4$, so that $q_{1}=9$, $m(C(j))=2$. This is impossible since 7 does not divide $\left|L_{1}\right|$ so that $m(C(j))=1$.

If $q_{2}=5$, then (3.6) gives $3 \leq \frac{1}{2}\left(q_{1}-1\right) \leq 4$, so that $q_{1}=7$ or 9 . This contradicts the assumption (2A) (iii) is the case, since $\alpha_{1}=3, \alpha_{2}=2$ in this. situation.

If $q_{2}=9$, then (3.6) gives $5 \leq \frac{1}{2}\left(q_{1}-1\right) \leq 6$, so that $q_{1}=11$ or 13. Again this contradicts the assumption that (2A) (iii) holds, since then $\alpha_{1}=2, \alpha_{2}=3$.

If $q_{2}=3$, then (3.6) gives $2 \leq \frac{1}{2}\left(q_{1}-1\right) \leq 4$, so that $q_{1}=5,7$, or 9 .
Since $p_{1} \neq 3$, we have $q_{1} \neq 9$. Since $\alpha_{1}=\alpha_{2}=2, q_{1} \neq 7$. Hence $q_{1}=5$ and $(3 \mathrm{H})$ is proved.
(3I) In any faithful representation of $S L(2,5)$ as a subgroup of the symplectic group $S p(4,3)$, the vectors fixed by an element of order 3 in $S L(2,5)$-form a singular subspace of dimension 2.

Proof. $S L(2,5)$ is given by generators α, β, γ satisfying the relations

$$
\begin{equation*}
\alpha^{5}=\beta^{4}=1, \quad \gamma^{2}=\beta^{2}, \quad \alpha^{\beta}=\alpha^{-1}, \quad \beta^{r}=\beta^{-1}, \quad(\alpha \gamma)^{3}=1 . \tag{3.7}
\end{equation*}
$$

(We may take $\alpha=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), \beta=\left(\begin{array}{rr}2 & 0 \\ 0 & -2\end{array}\right), \gamma=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.) Thus we look for elements of $S p(4,3)$ satisfying these relations.

Choose a basis $e_{1}, e_{2}, e_{3}, e_{4}$ of the 4 -dimensional symplectic vector space over F_{3}, satisfying

$$
\begin{aligned}
& \left(e_{1}, e_{2}\right)=\left(e_{3}, e_{4}\right)=1, \\
& \left(e_{1}, e_{3}\right)=\left(e_{1}, e_{4}\right)=\left(e_{2}, e_{3}\right)=\left(e_{2}, e_{4}\right)=0,
\end{aligned}
$$

and identify elements of $S p(4,3)$ with their matrices with respect to this basis.
$S p(4,3)$ has only one conjugacy class of elements of order 5. Hence we can take

$$
\alpha=\left(\begin{array}{rrrr}
-1 & -1 & -1 & 1 \\
1 & -1 & 0 & 1 \\
1 & 1 & -1 & 1 \\
0 & -1 & -1 & -1
\end{array}\right)
$$

Since $\langle\alpha\rangle$ is self-centralizing modulo $\langle-\mathrm{I}\rangle$, the elements of $S p(4,3)$ inverting α are all conjugate modulo $\langle-\mathrm{I}\rangle$. Since the relations (3.7) are unchanged if β is replaced by β^{-1}, we may assume that

$$
\beta=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) .
$$

Now a computation shows there are only two possibilities for the element r satisfying (3.7):

$$
r=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{rrrr}
0 & -1 & 0 & -1 \\
-1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
-1 & 0 & 1 & 0
\end{array}\right) .
$$

The element $\alpha \gamma$ of order 3 is

$$
\left(\begin{array}{rrrr}
-1 & -1 & 1 & -1 \\
-1 & 0 & 1 & 1 \\
-1 & -1 & -1 & 1 \\
1 & -1 & 1 & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{rrrr}
0 & -1 & -1 & 0 \\
0 & -1 & -1 & -1 \\
1 & 0 & 0 & 1 \\
-1 & 1 & 0 & -1
\end{array}\right)
$$

and its space of fixed vectors has basis

$$
\{(1,0,0,1),(0,1,1,0)\} \quad \text { or } \quad\{(1,1,1,0),(-1,1,0,1)\} .
$$

In both cases the subspace is singular. Since $S L(2,5)$ has only one conjugacy class of elements of order 3, we have the result. (The calculation that $S p(4,3)$ has two conjugacy classes of subgroups isomorphic to $S L(2,5)$ is due to Dickson [10]).
(3J) The case $q_{1}=5, q_{2}=3$ cannot occur.
Proof. Suppose $q_{1}=5, q_{2}=3$. As in the proof of $(3 \mathrm{H})$, we consider $C\left(X_{2}\right) . \quad L_{1} \simeq S L(2,5)$ is represented irreducibly and faithfully on the elementary abelian 3-group K / M. Since 5 does not divide $|G L(3,3)|$, it follows that $m(K / M) \geq 4$. By (3.5), $m\left(K / X_{2}\right) \leq 4$ and thus $m(K / M)=m\left(K / X_{2}\right)=4$. The S_{3}-subgroups of $C(j)$ are elementary abelian of order 9 , and since $t \sim t j \sim j$ in G, it follows by (3.4) that the S_{3}-subgroup of K / X_{2} is elementary abelian of order 81. Since L_{1} has no subgroups of order 15 , an S_{3} subgroup of $C(j)$ is contained in no larger subgroup of odd order in $C(j)$. The same is true for $C(t)$ and $C(t j)$. Since K contains S_{3}-subgroups of $C(t)$ and $C(t j)$, it follows that $C_{K}(t), C_{K}(t j)$ are S_{3}-subgroups of $C(t), C(t j)$ respectively. Hence K / X_{2} is a 3 -group of order 3^{4}, and $M=X_{2}$.

By (3F), L_{1} has a subgroup R of order 3 such that

$$
C(R)=R \times N, \quad C(R, j)=R L_{2}\langle n\rangle
$$

where $N \simeq S L(3,3)$. Since $L_{2}\langle n\rangle \simeq G L(2,3)$, a group with no normal subgroup of index $3, L_{2}\langle n\rangle \leq N$. Now N has two conjugacy classes of subgroups of order 3, whose centralizers in N have orders 9 or 54. Since $j \in C_{N}\left(X_{2}\right)$, we must have $\left|C_{N}\left(X_{2}\right)\right|=54$. Let Z be an S_{3}-subgroup of $C_{N}\left(X_{2}\right)$. Z is an S_{3}-subgroup of N and so $Z^{\prime} \neq 1$. Since $R C_{Z}(j) \leq C(j)$ and $C_{Z}(j) \geq X_{2}$, we necessarily have $C_{z}(j)=X_{2}$ Thus j has no fixed-points on Z / X_{2}, and j inverts Z / X_{2}. Since j centralizes $C\left(X_{2}\right) / K, K$ contains all elements of odd
order in $C\left(X_{2}\right)$ which are inverted by j modulo X_{2}. In particular, $Z \leq K$ and K is non-abelian.

It now follows that

$$
Z(K)=K^{\prime}=D(K)=X_{2}
$$

since L_{1} acts irreducibly on K / X_{2}, and so K is extra special of order 3^{5} [14]. Since $\left[L_{1}, X_{2}\right]=1$, we have a faithful representation of $L_{1} \simeq S L(2,5)$ on the 4 -dimensional symplectic space K / X_{2}. The subgroup R fixes the elements of Z / X_{2}, which is a non-singular subspace of dimension 2 in K / X_{2} since Z is non-abelian. But this contradicts (3I).

Together with $(3 \mathrm{H})$, this proves
(3K) If G is a finite group with property (*) and (2A) (iii) holds, then q_{1} and q_{2} are powers of the same prime p.
84. From now on we may assume $q_{1}=p^{n_{1}}, q_{2}=p^{n_{2}}$. Thus $\varepsilon_{1}=\varepsilon_{2}=\varepsilon$, and the group H of (3.2) is the direct product of two cyclic subgroups of orders $q_{1}-1$ and $q_{2}-1$. Let D be the 4 -subgroup contained in H, and denote the involutions in D by

$$
j=j_{0}, \quad j_{1}, \quad j_{2}
$$

By (3A) and the final remark of $\delta 2$, we have $|C(D)|=2\left(q_{1}-1\right)\left(q_{2}-1\right)$. Since $\omega_{1} \omega_{2}$ inverts H and H is abelian, it follows that

$$
\begin{equation*}
C(D)=\left\langle H, \omega_{1} \omega_{2}\right\rangle \tag{4.1}
\end{equation*}
$$

By (3A) there exists an element $\eta \in N(D)$ permuting the involutions of D cyclically. We may assume that η has order a power of 3 and that

$$
\eta: j_{0} \rightarrow j_{1} \rightarrow j_{2} \rightarrow j_{0}
$$

Since $\omega_{1}, \omega_{2}, \eta \in N(D)$, it follows that

$$
\begin{equation*}
N(D)=\left\langle C(D), \omega_{1}, \eta\right\rangle . \tag{4.2}
\end{equation*}
$$

Since D is characteristic in $H, N(H) \leq N(D)$. Suppose $D<H$. Then H is the unique subgroup of its isomorphism type in $C(D)$ by (4.1), so that H is characteristic in $C(D)$ and hence normal in $N(D)$. Thus $N(H)=N(D)$ in all cases. η and $\omega_{1} \omega_{2}$ commute modulo H, so $W=N(H) / H$ is dihedral of order 12. If $D \neq H$, then (4.1) implies that $C(H)=H$. We have thus proved
(4A) Let D be the 4 -subgroup of H. Then $N(D)=N(H)=\left\langle H, \omega_{1}, \omega_{2}, \eta\right\rangle$, and $W=N(H) / H$ is dihedral of order 12. If $D \neq H$, then $C(H)=H$.
(4B) Let π be a p-element of $C(j)$ inverted by j_{1} or j_{2}. Then $\pi \in X_{a} X_{b}$, where $a \in\{1,-1\}, b \in\{2,-2\}$. If P is a p-subgroup of $C(j)$ inverted by j_{1} or j_{2}, then $P \leq X_{a} X_{b}$, where $a \in\{1,-1\}, b \in\{2,-2\}$.

Proof. Since $\pi \in L_{1} L_{2}$, we may express $\pi=\pi_{1} \pi_{2}$ with $\pi_{i} \in L_{i}$. Every conjugate of X_{i} in L_{i} different from X_{i} is of the form $u^{-1} X_{-i} u$ for a suitable u in X_{i}. Thus if $\pi_{i} \notin X_{i}$, then

$$
\begin{equation*}
\pi_{i}=u^{-1} v u \tag{4.3}
\end{equation*}
$$

for some $u \in X_{i}, v \in X_{-i}, v \neq 1$. Now j_{1}, j_{2} invert X_{i} and X_{-i}. Conjugating (4.3) by j_{1} or j_{2} then gives $\pi_{i}^{-1}=u v^{-1} u^{-1}$. Since π_{i}^{-1} is also $\left(u^{-1} v u\right)^{-1}=$ $u^{-1} v^{-1} u$, it follows that u^{2} and v^{-1} commute. But $u^{2} \in X_{i}$ whereas $v \in X_{-i}$, and $v \neq 1$. Thus $u^{2}=1$, and $u=1$, which proves the first part of (4B). The second follows from the fact that if $g \neq 1, h \neq 1$, and $g \in X_{i}, h \in X_{-i}$, then $\langle g, h\rangle$ is not a p-group.
(4C) Let $\pi \neq 1$ be in $X_{a} X_{b}$, with $a \in\{1,-1\}, b \in\{2,-2\}$.
(i) If $\pi \notin X_{a} \cup X_{b}$, then the number of conjugates of π under H is $\frac{1}{2}\left(q_{1}-1\right)\left(q_{2}-1\right)$; these all belong to $X_{a} X_{b}-X_{a}-X_{b}$.
(ii) If $\pi \in X_{a}$ or X_{b}, then the conjugates of π under H consist of all non-identity elements of X_{a} or X_{b} respectively.

Proof. We note from the definition of H that H normalizes X_{i}, X_{-i} for $i=1,2$. The result is an easy consequence of the action of H on X_{i}, X_{-i}.
(4D) Suppose $q_{1}=q_{2}=3$ is not the case. Then one of the following holds:
(i) Some element $\pi \neq 1$ in $X_{1} X_{2}$ is in the center of an S_{p}-subgroup of G.
(ii) For some $\pi \neq 1$ in X_{1} or $X_{2}, c(\pi)=0\left(\bmod q_{1}^{3} q_{2}^{3}\right)$.

Proof. Let $\{a, b\}=\{1,2\}$, and let $K=O\left(C\left(X_{b}\right)\right)$. By (3B), K admits $H L_{a}$ and j inverts K / X_{b}. As an L_{a}-group, K / X_{b} has composition factors which are faithful irreducible L_{a}-modules over prime fields. In particular,
a factor which is a p-group has order m, where $m=q_{a}^{2}, m=q_{a}^{9 / 3}$, or $m \geq q_{a}^{4}$ by (1G). Since D normalizes L_{a} and K, the Brauer-Wielandt Theorem [3], II, (6E) implies that $|K|_{p} \leq q_{a}^{2} q_{b}^{3}$.

Arrange notation so that $q_{1} \geq q_{2}$. Let $b=2$ in the preceding paragraph, and let M / X_{2} be the S_{p}-subgroup of K / X_{2}. If $M=X_{2}$, then $X_{1} X_{2}$ is an S_{p} subgroup of $C\left(X_{2}\right)$. If P is then an S_{p}-subgroup of G containing $X_{1} X_{2}$ then $Z(P) \leq C\left(X_{2}\right)$ so that $Z(P) \leq L_{1} K$. By Sylow's Theorem, $Z(P)^{g} \leq X_{1} X_{2}$ for some $g \in L_{1} K$. Thus (i) holds since $Z(P) \neq 1$.

Suppose then that $M>X_{2}$. Since D normalizes M and X_{1}, we have that $|M| \leq q_{1}^{2} q_{2}^{3}, \quad|M| X_{2} \mid \leq q_{1}^{2} q_{2}^{2}$. If $q_{1}^{4} \leq|M| X_{2} \mid$, then $q_{1}^{4} \leq q_{1}^{2} q_{2}^{2}$ and necessarily $q_{1}=q_{2}$, so that $c\left(X_{2}\right) \equiv 0\left(\bmod q_{1}^{3} q_{2}^{3}\right)$. In this case, (ii) holds for any $\pi \neq 1$ in X_{2}. By (1 G) and the discussion in the first paragraph, we may assume that L_{1} is irreducible, faithful on M / X_{2}, and that $\left|M / X_{2}\right|=q_{1}^{2}$ or $q_{1}^{8 / 3}$.

We define $M_{i}=M \cap C\left(j_{i}\right)$ for $i=0,1,2 . \quad M_{0}$ is then X_{2}. Since $\omega_{1} \in N(M)$ and $\omega_{1}: j_{1} \rightarrow j_{2} \rightarrow j_{1}$, it follows that ω_{1} interchanges M_{1} and M_{2}. In particular, $\left|M_{1}\right|=\left|M_{2}\right|$, and since $M>X_{2}, M_{1}$ and M_{2} are not trivial. Since j inverts M_{1} and $M_{2}, \eta M_{1} \eta^{-1}$ and $\eta^{2} M_{2} \eta^{-2}$ are p-subgroups of $C(j)$ inverted by j_{2} and j_{1}. Thus by (4B)

$$
\begin{equation*}
M_{1} \leq\left(X_{a} X_{b}\right)^{n}, \quad M_{2} \leq\left(X_{c} X_{d}\right)^{n^{2}} \tag{4.4}
\end{equation*}
$$

where $a, c \in\{1,-1\}, b, d \in\{2,-2\}$. We note that H normalizes each M_{i}, $i=0,1,2$, by the definition of M_{i}.

Suppose $\left|M / X_{2}\right|=q_{1}^{8 / 3}$. Since $\left|M_{1}\right|=q_{1}^{4 / 3}>q_{1} \geq q_{2}$, and $M_{1}^{\eta-1} \leq X_{a} X_{b}$, we have that $\left|M_{1}^{\eta^{-1}}\right|\left|X_{a}\right|>\left|X_{a} X_{b}\right| \geq\left|M_{1}^{\eta-1} X_{a}\right|$, and so $M_{1}^{\eta-1} \cap X_{a}>1$. A similar argument shows that $M_{1}^{\eta-1} \cap X_{b}>1$. Conjugating these relations by H then implies that X_{a} and X_{b} are both in $M_{1}^{\eta-1}$. Thus

$$
M_{1}=\left(X_{a} X_{b}\right)^{\eta}, \quad M_{2}=\left(X_{c} X_{d}\right)^{\eta^{2}}
$$

so that $q_{1}^{4 / 3}=q_{1} q_{2}$, and $q_{1}=q_{2}^{3}$. $q_{1}^{3} q_{2}^{3}$ then divides $c\left(X_{2}\right)$, and (ii) holds for any $\pi \neq 1$ in X_{2}.

Suppose $|M| X_{2} \mid=q_{1}^{2}$. Let P be an S_{p}-subgroup of G containing $X_{1} M$. If $z \neq 1$ is in $Z(P)$, then $z \in C\left(X_{2}\right)$ so that $z \in X_{1} M$, and we may write

$$
z=\pi z_{0} z_{1} z_{2}
$$

where $\pi \in X_{1}, \quad z_{i} \in M_{i}$ for $i=0,1,2$. If $z_{1}=z_{2}=1$, then $z=\pi z_{0} \in X_{1} X_{2}$ and (i) holds. Assume then that $z_{1} \neq 1$ or $z_{2} \neq 1$. Since z, z_{0}, and π centralize $X_{1} X_{2}$, it follows that $z_{1} z_{2}=z_{0}^{-1} \pi^{-1} z \in C\left(X_{1} X_{2}\right)$. Conjugating this
inclusion by j_{1} and j_{2} then gives $z_{1} z_{2}^{-1} \in C\left(X_{1} X_{2}\right), z_{1}^{-1} z_{2} \in C\left(X_{1} X_{2}\right)$ respectively. Thus $z_{1}^{2}, z_{2}^{2} \in C\left(X_{1} X_{2}\right)$, so that $z_{1}, z_{2} \in C\left(X_{1} X_{2}\right)$.

Now $M_{1}, X_{a}^{\eta}, X_{b}^{\eta}$ are normalized by H. By (4C) it follows that if $X_{a}^{\eta} \cap M_{1}>1$ or $X_{b}^{\eta} \cap M_{1}>1$, then $X_{a}^{\eta} \leq M_{1}$ or $X_{b}^{\eta} \leq M_{1}$ respectively. A similar remark holds for $M_{2}, X_{c}^{\eta^{2}}$ and $X_{d}^{\eta^{2}}$. If the projection of M_{1} into X_{b}^{η} were 1-1, then $\left|M_{1}\right| \leq q_{2}$. If $q_{1}>q_{2}$, then necessarily $M_{1} \cap X_{a}^{\eta}>1$ and $X_{a}^{\eta} \leq M_{1}$. If the projection of M_{1} into X_{b}^{η} is not $1-1$, then $M_{1} \cap X_{a}^{\eta}>1$ and $X_{a}^{\eta} \leq M_{1}$. A comparison of orders then gives $M_{1}=X_{a}^{\eta}$. If $q_{1}=q_{2}=q$ and if $M_{1} \cap X_{a}^{\eta}=M_{1} \cap X_{b}^{\eta}=1$, then M_{1} contains an element of $\left(X_{a} X_{b}-X_{a}-X_{b}\right)^{n}$ and hence $\frac{1}{2}(q-1)^{2}$ such elements by (4C). Since $\frac{1}{2}(q-1)^{2}>q-1$ for $q>3$, this is impossible if $q>3$. Similar comments apply to M_{2}. Thus

$$
\begin{equation*}
M_{1}=X_{a}^{\eta}, \quad M_{2}=X_{c}^{\eta^{2}} \quad \text { if } \quad q_{1}>q_{2} \tag{4.5}
\end{equation*}
$$

$$
M_{1}=X_{a}^{\eta} \quad \text { or } X_{b}^{\eta}, \quad M_{2}=X_{c}^{\eta^{2}} \quad \text { or } X_{d}^{\eta^{2}} \text { if } q_{1}=q_{2}>3
$$

Suppose $z_{1} \neq 1$, so that $z_{1} \in M_{1} \cap C\left(X_{1} X_{2}\right)$. Since M_{1} and $C\left(X_{1} X_{2}\right)$ admit H, it follows by (4C) and (4.5) that $M_{1} \leq C\left(X_{1} X_{2}\right)$. If $M_{1}=X_{a}^{\eta}$, then $X_{a}^{\eta} X_{1} X_{2}$ is an abelian group. $\left(X_{a}^{\eta} X_{1} X_{2}\right)^{\alpha}=X_{1}\left(X_{1} X_{2}\right)^{\alpha}$ is then abelian as well, where $\alpha=\eta^{-1}$ if $a=1$, and $\alpha=\omega_{1 \eta}$ if $a=-1$. In particular, $\left(X_{1} X_{2}\right)^{\alpha} \leq C\left(X_{1}\right) \cap C\left(j_{1}\right)$. Let $\tilde{K}=O\left(C\left(X_{1}\right)\right)$, and let \tilde{M} be the S_{p}-subgroup of $\tilde{K} . \quad C\left(X_{1}\right)=L_{2} \tilde{K}$ by (3B). If $g \in\left(X_{1} X_{2}\right)^{\alpha}$, then $g=h k$, where h is a p-element in L_{2} and $k \in \tilde{K}$. Since $j_{1}^{-1} g j_{1}=g$, we have

$$
h^{-1} j_{1}^{-1} h j_{1}=k j_{1}^{-1} k^{-1} j_{1} \in \tilde{K} \cap L_{2}=1,
$$

so that $h \in C\left(j, j_{1}\right)=C(D)$. But $|C(D)|$ is not divisible by p, so that $h=1$. Thus $\left(X_{1} X_{2}\right)^{\alpha} \leq \tilde{M}$. Define $\tilde{M}_{i}=\tilde{M} \cap C\left(j_{i}\right)$ for $i=0,1,2$. As in the proof that $\left|M_{1}\right|=\left|M_{2}\right|$, it follows that $\left|\tilde{M}_{1}\right|=\left|\tilde{M}_{2}\right|$. But we have just shown that $\tilde{M}_{1} \geq\left(X_{1} X_{2}\right)^{\alpha}$, so that $\left|X_{2} \tilde{M}\right| \geq q_{1}^{3} q_{2}^{3}$. Thus (ii) holds for any $\pi \neq 1$ in X_{1}. If $M_{1}=X_{b}^{\eta}$, then $X_{2}\left(X_{1} X_{2}\right)^{\beta}$ is an abelian group, where $\beta=\eta^{-1}$ if $b=2$, $\beta=\omega_{2} \eta$ if $b=-2$. Thus $\left(X_{1} X_{2}\right)^{\beta} \leq C\left(X_{2}\right) \cap C\left(j_{1}\right)$. If $g \in\left(X_{1} X_{2}\right)^{\beta}$, then $g=h k$, where h is a p-element in L_{1} and $k \in K$. As before, h must be trivial so that $\left(X_{1} X_{2}\right)^{\beta} \leq K$. Thus $M_{1} \geq\left(X_{1} X_{2}\right)^{\beta}$, contradicting the assumption that $\left|M_{1}\right|=q_{1}$.

A similar argument applies if $z_{2} \neq 1$, which completes the proof of $(4 \mathrm{D})$. As a corollary of the proof, we have
(4E) Let $q_{1} \geq q_{2}$. One of the following holds:
(i) X_{2} is an S_{p}-subgroup of $\left.K=O\left(C\left(X_{2}\right)\right)\right), \quad M=X_{2}$.
(ii) $|M| X_{2} \mid=q_{1}^{4}, q_{1}=q_{2}$, and $c\left(X_{2}\right) \equiv 0\left(\bmod q_{1}^{3} q_{2}^{3}\right)$.
(iii) $|M| X_{2} \mid=q_{1}^{8 / 3}, q_{1}=q_{2}^{3}$, and $c\left(X_{2}\right) \equiv 0\left(\bmod q_{1}^{3} q_{2}^{3}\right)$.
(iv) $\left|M / X_{2}\right|=q_{1}^{2}$. If (ii) of (4D) fails, then there is an S_{p}-subgroup P of G containing $X_{1} M$, such that $Z(P) \cap X_{1} X_{2} \neq 1$.
(4F) If $q_{1}^{3} q_{2}^{3}$ divides $|G|$, then $c(\pi) \equiv 0\left(\bmod q_{1}^{3} q_{2}^{3}\right)$ for some $\pi \neq 1$ in X_{1} or X_{2}

Proof. We choose $q_{1} \geq q_{2}$ and let K, M be defined as in (4D), (4E). If (ii) or (iii) of (4 E) holds, then we are done. If (iv) of (4 E) holds and $(4 \mathrm{~F})$ fails, then there exists an S_{p}-subgroup P of G such that $P \geq X_{1} M$ and $Z(P) \cap X_{1} X_{2} \neq 1$. Choose $\pi \neq 1$ in $Z(P) \cap X_{1} X_{2}$, and write $\pi=\pi_{1} \pi_{2}$ with $\pi_{i} \in X_{i}$. Since $X_{2} \leq Z(M), \pi$ and π_{1} induce the same automorphism on M / X_{2}. Since π centralizes M, π_{1} acts trivially on M / X_{2} so that $\pi_{1}=1$. But then $\pi=\pi_{2} \in X_{2}$ and (4 F) holds.

Suppose (i) of (4E) holds and (4F) fails. By (4D) there exists an element $\pi \neq 1$ in $X_{1} X_{2}$ such that $\pi \in Z(P)$ for some S_{p}-subgroup P of G. Let $\pi=\pi_{1} \pi_{2}$, where $\pi_{i} \in X_{i}$. Since we are assuming (4 F) fails, $\pi_{1} \neq 1, \pi_{2} \neq 1$. Now $\langle j\rangle$ is an S_{2}-subgroup of $C(\pi, j)$ so by (2B), $\langle j\rangle$ is an S_{2}-subgroup of $C(\pi)$. Thus $C(\pi)=\langle j\rangle O(C(\pi))$, moreover D normalizes $O(C(\pi))$ since j_{1} and j_{2} invert π. Let R be an S_{p}-subgroup of $O(C(\pi))$ admitting D; by assumption $|R| \geq q_{1}^{3} q_{2}^{3}$. On the other hand, the Brauer-Wielandt Theorem shows that $|R|=q_{1}^{3} q_{2}^{3}$. If $R_{i}=R \cap C\left(j_{i}\right)$ for $i=0,1,2$, then $\left|R_{0}\right|=\left|R_{1}\right|=\left|R_{2}\right|=q_{1} q_{2}$. By (4B) $R_{0}=X_{a} X_{b}$ where $a \in\{1,-1\}, b \in\{2,-2\}$. Since $\langle\pi\rangle O(C(\pi)), \pi$ belongs to R_{0}. Since the S_{p}-subgroups of L_{1} and L_{2} are T.I. sets, it follows that $R_{0}=X_{1} X_{2}$. An argument already used several times gives

$$
R_{1}=\left(X_{a} X_{b}\right)^{\eta}, \quad R_{2}=\left(X_{c} X_{d}\right)^{\eta^{2}}
$$

where $a, c \in\{1,-1\}, b, d \in\{2,-2\}$. Thus R contains the abelian subgroup $\langle\pi\rangle \times\left(X_{c} X_{d}\right)^{\eta^{2}}$ of order greater than $q_{1} q_{2}$. Since X_{2} and $X_{d}^{\eta^{2}}$ are conjugate in G, we have that $c\left(X_{2}\right) \equiv 0\left(\bmod p q_{1} q_{2}\right)$, contrary to the assumption that (i) of (4E) holds.

In the next two lemmas we shall assume $|G|$ is divisible by $q_{1}^{3} q_{2}^{3}$. By (4F) there exists an element $\pi \neq 1$ in X_{1} or X_{2} such that $c(\pi) \equiv 0\left(\bmod q_{1}^{3} q_{2}^{3}\right)$. Set $\{\alpha, \beta\}=\{1,2\}$, and choose β to be that subscript such that $\pi \in X_{\beta}$.
(4G) If $q_{1}^{3} q_{2}^{3}$ divides $|G|$, then $q_{1}^{3} q_{2}^{3}$ divides $c\left(X_{\beta}\right)$, where β is chosen as above.

Proof. Choose $\pi \neq 1$ in X_{β} so that $c(\pi) \equiv 0\left(\bmod q_{1}^{3} q_{2}^{3}\right)$, and let $M=O(C(\pi))$. Since D normalizes M, we may choose an S_{p}-subgroup R of M which admits D. By $(3 \mathrm{C}), C(\pi)=L_{\alpha} M$ and $L_{\alpha} \cap M=1$, so that $|R| \geq q_{\alpha}^{2} q_{\beta}^{3}$. We define $R_{i}=R \cap C\left(j_{i}\right)$ for $i=0,1,2$, and note that $R_{0} \leq C(j) \cap M \leq X_{\beta}$ by (3C) (iii), so that $\left|R_{0}\right| \leq q_{\beta}$. Since $\left|R_{1}\right|$ and $\left|R_{2}\right|$ are not greater than $q_{\alpha} q_{\beta}$, it must be the case that $R_{0}=X_{\beta}$ and $\left|R_{1}\right|=\left|R_{2}\right|=q_{\alpha} q_{\beta}$. Moreover, by an earlier argument we may conclude that

$$
R_{0}=X_{\beta}, \quad R_{1}=\left(X_{a} X_{b}\right)^{\eta}, \quad R_{2}=\left(X_{c} X_{d}\right)^{\eta^{2}},
$$

where $a, c \in\{1,-1\}, b, d \in\{2,-2\}$. But now H normalizes R_{0}, R_{1}, and R_{2}, and so H normalizes $R=R_{0} R_{1} R_{2}$ as well. Conjugating the inclusion $\pi \in Z(R) \cap X_{\beta}$ by H then gives $X_{\beta} \leq Z(R)$, so that $X_{\beta} \leq Z\left(X_{\alpha} R\right)$. This completes the proof.
$(4 \mathrm{H})$ Suppose the hypothesis of $(4 \mathrm{G})$ holds. Let $K=O\left(C\left(X_{\beta}\right)\right)$, and $P=X_{\alpha} M$, where M is the S_{p}-subgroup of K. Then the following hold:
(i) M / X_{β} is elementary abelian of order $q_{1}^{2} q_{2}^{2}$.
(ii) With a suitable choice of notation

$$
\begin{aligned}
& P=\left(X_{\alpha} X_{\beta}\right)\left(X_{-\alpha} X_{\beta}\right)^{\eta}\left(X_{\alpha} X_{\beta}\right)^{\eta^{2}} \quad \text { or } \\
& P=\left(X_{\alpha} X_{\beta}\right)\left(X_{-\alpha} X_{-\beta}\right)^{\eta}\left(X_{\alpha} X_{-\beta}\right)^{\eta^{2}} .
\end{aligned}
$$

Proof. M / X_{β} is abelian of order $q_{1}^{2} q_{2}^{2}$ by (3B), (4G). Let $M_{i}=M \cap C\left(j_{i}\right)$ for $i=0,1,2$; we have $M_{0}=X_{\beta}$ and $\left[M_{1}, M_{2}\right] \leq X_{\beta}$. Since M_{1} and M_{2} are elementary abelian, it follows that M / X_{β} is as well, which proves (i). Now

$$
M_{1}=\left(X_{\alpha}^{a} X_{\beta}^{b}\right)^{\eta}, \quad M_{2}=\left(X_{\alpha}^{c} X_{\beta}^{d}\right)^{\eta^{2}},
$$

where $a, c \in\left\{1, \omega_{\alpha}\right\}, b, d \in\left\{1, \omega_{\beta}\right\}$. Since $X_{\beta} \leq Z(P)$, we see that $X_{\beta}^{\eta-1} \leq C\left(X_{\alpha}^{a}\right)$, $X_{\beta}^{\gamma^{-2}} \leq C\left(X_{\alpha}^{c}\right)$, so that $\left\langle X_{\beta}^{\eta^{-1} a}, X_{\beta}^{\gamma^{-2} c}\right\rangle \leq C\left(X_{\alpha}\right)$. Suppose $a=c$, so that $\left\langle X_{\beta}^{\eta-1 a}, X_{\beta}^{\rho^{-2} c}\right\rangle=\left\langle X_{\beta}^{\eta}, X_{\beta}^{\eta 2}\right\rangle$. Then $\left\langle X_{\beta}, X_{\beta}^{\eta}, X_{\beta}^{\eta^{2}}\right\rangle \leq C\left(X_{\alpha}\right)$, and so in turn, $\left\langle X_{\alpha}, X_{\alpha}^{\eta}, X_{\alpha}^{\eta^{2}}\right\rangle \leq C\left(X_{\beta}\right)$. Conjugating this last inclusion by ω_{α} then gives $\left\langle X_{-\alpha}, X_{-\alpha}^{\eta}, X_{-\alpha}^{\eta^{2}}\right\rangle \leq C\left(X_{\beta}\right)$. In particular, $\left\langle X_{\alpha}, X_{-\alpha}\right\rangle^{\eta} \leq C\left(X_{\beta}\right)$, which is impossible since $j_{1} \notin C\left(X_{B}\right)$. Thus $a \neq c$. By a suitable choice of notation,
we may assume $a=\omega_{\alpha}, c=1$. Now $\left\langle X_{\beta}^{b \eta}, X_{\beta}^{d \eta^{2}}\right\rangle \leq C\left(X_{\beta}\right)$. Conjugating this inclusion by ω_{α} then gives $\left\langle X_{\beta}^{b \eta^{2}}, X_{\beta}^{d \eta}\right\rangle \leq C\left(X_{\beta}\right)$. If $b \neq d$, then $\left\langle X_{\beta}, X_{-\beta}\right\rangle^{\eta}$ $\leq C\left(X_{\beta}\right)$; which is again impossible since $j_{1} \notin C\left(X_{\beta}\right)$. Thus $b=d$, and the proof of $(4 \mathrm{H})$ is complete.
§5. We shall prove in this section that $q_{3}^{3} q_{2}^{3}$ divides $|G|$ if it is not the case that $q_{1}=q_{2} \leq 11$. Set $E=\langle n, j\rangle$. By the final remark of $\S 2$, $C(E)=\left\langle\sigma_{1}, \sigma_{2}, x, n\right\rangle$, which has the normal abelian 2 -complement $\left\langle\sigma_{1}^{2}, \sigma_{2}^{2}\right\rangle$. Set

$$
V=\left\langle\sigma_{1}^{2}, \sigma_{2}^{2}\right\rangle, \quad V_{1}=\left\langle\sigma_{1}^{2}\right\rangle, \quad V_{2}=\left\langle\sigma_{2}^{2}\right\rangle
$$

Since $N(E) / C(E)$ is isomorphic to S_{3} by (3A), there exists an element ζ of order a power of 3 in $N(E)$ permuting $n, n j, j$ cyclically. By (1.9) the elements $\tau_{1}, \tau_{2} \in N(E)$, and indeed, τ_{1} inverts V_{1} and centralizes V_{2}, τ_{2} inverts V_{2} and centralizes V_{1}. Since $x=\tau_{1} \tau_{2}, x$ inverts V. Thus

$$
\begin{equation*}
N(E)=\left\langle V \times E, \tau_{1}, \tau_{2}, \zeta\right\rangle \tag{5.1}
\end{equation*}
$$

Let \hat{V} be the character group of V. We define the following subsets of \hat{V} :

$$
\begin{aligned}
& \hat{V}_{1}=\left\{\lambda \in \hat{V}: \lambda \mid V_{2}=1\right\}, \\
& \hat{V}_{2}=\left\{\lambda \in \hat{V}: \lambda \mid V_{1}=1\right\}, \\
& \hat{M}=\hat{V}-\hat{V}_{1}-\hat{V}_{2}, \\
& \hat{N}=\hat{V}_{1} \cup \hat{V}_{2}-\{1\},
\end{aligned}
$$

where 1 stands for the trivial character of V. The union $\hat{V}=\hat{M} \cup \hat{N} \cup\{1\}$ is disjoint, and

$$
\begin{align*}
& |\hat{M}|=v_{1} v_{2}-v_{1}-v_{2}+1=\left(v_{1}-1\right)\left(v_{2}-1\right), \tag{5.2}\\
& |\hat{N}|=\left(v_{1}-1\right)+\left(v_{2}-1\right),
\end{align*}
$$

where $q_{i}+\varepsilon=2 v_{i}$. An element h of $N(E)$ induces an action on \hat{V} by the equation $\lambda^{h}\left(g^{h}\right)=\lambda(g), g \in V$.
(5A) Suppose there exists an orbit of length 3 in \hat{V} under the action of ζ contained in \hat{M}. Then $|G|$ is divisible by $q_{1}^{3} q_{2}^{3}$.

Proof. If λ is a character in this orbit, then the hypothesis implies that the orbit of λ under $N(E)$ has 12 distinct characters. As a character of $V E / E, \lambda$ induces a character λ^{*} of $C(E) / E$ of degree 2 with 6 conjugates
in $N(E) / E$, which by [1] corresponds to a block B of G with defect group E. In $N(E) \cap C(j)$ these conjugates form 3 orbits of 2 characters each, which then correspond to blocks B_{1}, B_{2}, B_{3} of $C(j)$ with E as defect group, and by [5], $B_{i}^{G}=B$ for $i=1,2,3$. It is easily seen from the structure of $C(j)$ that each B_{i} has four irreducible characters of degree $\left(q_{1}-\varepsilon\right)\left(q_{2}-\varepsilon\right)$. Since $n \sim n j$ in $C(j)$, there exist blocks $b_{i 1}, b_{i 2}$ of $C(n, j)=C(E)$ such that $b_{i 1}^{c(j)}=b_{i 2}^{c(j)}=B_{i}$. In particular, B_{i} has one column of decomposition numbers from each of the sections of $C(j)$ represented by 1 and j, and two columns from the section of n. The degrees of the corresponding modular characters are $\left(q_{1}-\varepsilon\right)\left(q_{2}-\varepsilon\right),\left(q_{1}-\varepsilon\right)\left(q_{2}-\varepsilon\right), 2,2$ respectively. B itself has one column from the section of 1 , and 3 columns from the section of j. The corresponding degrees are $f,\left(q_{1}-\varepsilon\right)\left(q_{2}-\varepsilon\right),\left(q_{1}-\varepsilon\right)\left(q_{2}-\varepsilon\right),\left(q_{1}-\varepsilon\right)\left(q_{2}-\varepsilon\right)$, where f is an integer. We can assume that the matrices of decomposition numbers for B_{i}, B are

1	j	n	
1	1	1	δ_{i}
1	1	-1	$-\delta_{i}$
1	-1	1	$-\delta_{i}$
1	-1	-1	δ_{i}

1	j		
1	1	1	δ
1	1	-1	$-\delta$
1	-1	1	$-\delta$
1	-1	-1	δ

where $\delta= \pm 1, \quad \delta_{i}= \pm 1, i=1,2,3$.
Apply now the formula of [2] III (2A) to the groups G and $C(j)$ with $\pi=\left\lceil y_{1}=y_{2}=j\right.$ and the column of decomposition numbers of the modular character of $C(j)$ in B_{i}. A computation then gives

$$
|G|=\left(q_{1} q_{2}\right)^{3}\left(q_{1}+\varepsilon\right)\left(q_{2}+\varepsilon\right) f .
$$

Thus $q_{1}^{3} q_{2}^{3}$ divides $|G|$.
(5B) Let $\{\alpha, \beta\}=\{1,2\}$. Suppose $V_{\beta} \neq 1$ and ζ centralizes V_{β}. Then $q_{\alpha} \leq 7$.

Proof. As in the proof of (3F), we can verify that the conditions of (3E) are satisfied in $X=C\left(V_{\beta}\right) / V_{\beta}$. The corresponding Z and L are V_{β} / V_{β} and $L_{\alpha} V_{\beta} / V_{\beta}$ respectively, and so $q_{\alpha} \leq 7$.
(5C) $|G|$ is divisible by $\left(q_{1} q_{2}\right)^{3}$ unless one of the following cases holds:
(i) $q_{1}=q_{2}=11$.
(ii) $q_{1}=q_{2}=9$.
(iii) $\min \left\{q_{1}, q_{2}\right\}=3,5$ or 7 .

Proof. If $V_{1}=V_{2}=1$, then necessarily $q_{1}=q_{2}=3$, a case contained in (iii). If $V \neq 1$, and ζ centralizes V, then necessarily V_{1} or V_{2} is non-trivial, and the result is implied by $(5 \mathrm{~B})$. Thus we may suppose that $V \neq 1$, and moreover, ζ does not centralize V. In particular, ζ does not centralize \hat{V}. If ζ has an orbit of length 3 in \hat{V} contained in \hat{M}, then $\left(q_{1} q_{2}\right)^{3}$ divides $|G|$ by (5A). Thus we may suppose that no orbit of length 3 of ζ in \hat{V} is contained in \hat{M}.

Let r be the number of characters in \hat{M} fixed by ζ. The remaining $\left(v_{1}-1\right)\left(v_{2}-1\right)-r$ characters in \hat{M} then belong to s orbits of ζ which meet \hat{N}. Let t be the number of orbits of length 3 of ζ contained in \hat{N}, and let w be the number of characters in \hat{N} fixed by ζ. The fixed-points of ζ in \hat{V} form a subgroup $\hat{W}<\hat{V}$ of order $1+r+w$. Since there are a total of $s+t$ orbits of ζ of length 3 in \hat{V}, we have

$$
\begin{equation*}
|\hat{W}|=|\hat{V}|-3(s+t) . \tag{5.3}
\end{equation*}
$$

Moreover, each such orbit contains one or more characters in \hat{N}, so by (5. 2)

$$
\begin{equation*}
s+t \leq v_{1}+v_{2}-2 \tag{5.4}
\end{equation*}
$$

$|\hat{W}|$ divides $|\hat{V}|-|\hat{W}|$, and since $|\hat{V}|$ and $|\hat{W}|$ are odd, it follows that $2|\hat{W}|$ divides $|\hat{V}|-|\hat{W}|$. This together with (5.3) then gives

$$
\begin{equation*}
3(s+t) \equiv 0(\bmod 2|\hat{W}|) . \tag{5.5}
\end{equation*}
$$

In particular, $|\hat{W}| \leq \frac{3}{2}(s+t)$, and so $|\hat{V}| \leq \frac{9}{2}(s+t)$ by (5.3). Using (5.4), we then obtain the inequality

$$
\begin{equation*}
2 v_{1} v_{2} \leq 9\left(v_{1}+v_{2}-2\right) \tag{5.6}
\end{equation*}
$$

Suppose $v_{1}>5$ and $v_{2}>5$. (5.6) then implies that $v_{1} \leq 9, v_{2} \leq 9$. If $v_{1}=v_{2}=9$, then $s+t \leq 16$ by (5.4). But (5.3) and (5.5) cannot simultaneously be satisfied. If $v_{1}=v_{2}=7$, then $s+t \leq 12$ by (5.4), and $s+t=12$ must be the case; otherwise $2|\hat{W}|>3(s+t)$. But if $s+t=12$, then $2|\hat{W}|=26$, which does not divide 36 . If $\left\{v_{1}, v_{2}\right\}=\{7,9\}$, then (3 K) would be contradicted. By a relabeling of indices, we may thus assume $v_{2} \leq 5$. If $v_{2}=5$, then $v_{1} \leq 27$ by (5.6), and (2 A), (3 K) then imply that $q_{1}=q_{2}=9$ or $q_{1}=q_{2}=11$. If $v_{2}<5$, then $q_{2} \leq 7$. This completes the proof of $(5 \mathrm{C})$.
(5D) Suppose $\min \left\{q_{1}, q_{2}\right\} \leq 7$. If $q_{1} \neq q_{2}$, then $|G|$ is divisible by $\left(q_{1} q_{2}\right)^{3}$.

Proof. We choose notation so that $q_{1}>q_{2}=p$, where p is 3,5 or 7. If $p=3$, let R be the subgroup of L_{1} given by (3 F); if $p=5$ or 7 , so that $v_{2}=3$, let $R=\left(V_{1}\right)^{3}$. The proof of $(3 \mathrm{~F})$ shows that in every case, $|C(R)|$ is divisible by p^{3}. Let P then be an S_{p}-subgroup of $C(R)$ containing X_{2}, so that $Z(P) \leq C\left(X_{2}\right)$. Since $C\left(X_{2}\right)=L_{1} K$, where $K=0\left(C\left(X_{2}\right)\right)$, any element π in $Z(P)$ may be written in the form $\pi=c d$, where c is a p-element in L_{1} and $d \in K$. Now $P \leq C(R)$ and so $[\pi, R]=1$. On the other hand $[\pi, R] \equiv$ $[c, R](\bmod K)$. Thus $[c, R] \leq L_{1} \cap K=1$, and indeed, $c=1$ since c is a p-element. We have thus shown that $Z(P) \leq M$, where M is the S_{p}-subgroup of K. If $Z(P) \cap X_{2}=1$, then certainly $M>X_{2}$, and R has non-trivial fixedpoints on M / X_{2}. If $Z(P) \cap X_{2}>1$, then $X_{2} \leq Z(P)$ since X_{2} has prime order. In this case, $P \leq C\left(X_{2}\right)$, and the above argument showing that $Z(P) \leq M$ can be applied to yield $P \leq M$. Again $M>X_{2}$, and R has non-trivial fixedpoints on M / X_{2}. Thus (ii), (iii) or (iv) of (4E) must hold. (iv) is impossible by the proof of $(1 \mathrm{E})$ and the fact that R has fixed-points on M / X_{2}, and so $\left(q_{1} q_{2}\right)^{3}$ divides $|G|$.
§6. We assume from now on that $|G|$ is divisible by $\left(q_{1} q_{2}\right)^{3}$. Choosing notation as specified in $(4 G)$, we have the two cases

$$
\begin{equation*}
\text { Case A: } \quad P=\left(X_{\alpha} X_{\beta}\right)\left(X_{-\alpha} X_{\beta}\right)^{\eta}\left(X_{\alpha} X_{\beta}\right)^{\eta^{2}} \text {. } \tag{6.1}
\end{equation*}
$$

Case B: $\quad P=\left(X_{\alpha} X_{\beta}\right)\left(X_{-\alpha} X_{-\beta}\right)^{\eta}\left(X_{\alpha} X_{-\beta}\right)^{\eta^{2}}$.
(6A) $\quad P \cap P^{\omega_{1} \omega_{2}}=1$.
Proof. Let $P^{-}=P^{\omega_{1}{ }^{\omega_{2}}}$. Since H normalizes P and P^{-}, it follows that H, and in particular D, normalize $P \cap P^{-}$. Since $P \cap P^{-} \cap C\left(j_{i}\right)=1$ for $i=0,1,2$, it follows by the Brauer-Wielandt Theorem that $P \cap P^{-}=1$.

For each w in $W=N(H) / H$, let $\omega(w)$ be a coset representative of w in $N(H)$. We define the subgroups

$$
P_{w}^{\prime}=P \cap \omega(w)^{-1} P \omega(w)
$$

$$
\begin{equation*}
P_{w}^{\prime \prime}=P \cap \omega(w)^{-1} P^{-} \omega(w) . \tag{6.2}
\end{equation*}
$$

Clearly P_{w}^{\prime} and $P_{w}^{\prime \prime}$ are well-defined and admit H. If $r \in N(H)$ and $w=H r$, we shall occasionally write $P_{r}^{\prime}, P_{r}^{\prime \prime}$ in place of $P_{w}^{\prime}, P_{w}^{\prime \prime}$. We shall call a
subgroup of the form $X_{r}^{\eta t}, \gamma \in\{ \pm 1, \pm 2\}, i=0,1,2$, appearing in (6. 1) a root subgroup of P.
(6B) Let $w \in W$. Each root subgroup of P is contained in P_{w}^{\prime} or $P_{w}^{\prime \prime}$. $P_{w}^{\prime}, P_{w}^{\prime \prime}$ are the products of the root subgroups of P contained in them, the root subgroups being ordered from left to right in the order they appear in (6. 1). $\quad P=P_{w}^{\prime} P_{w}^{\prime \prime}=P_{w}^{\prime \prime} P_{w}^{\prime}$, and $P_{w}^{\prime} \cap P_{w}^{\prime \prime}=1$.

Proof. It is clear from (6.2) that each root subgroup of P is in P_{w}^{\prime} or $P_{w}^{\prime \prime}$. Moreover, $P_{w}^{\prime} \cap P_{w}^{\prime \prime}=1$ by (6A). Since P_{w}^{\prime} and $P_{w}^{\prime \prime}$ admit D, P_{w}^{\prime} and $P_{w}^{\prime \prime}$ can be factored as required by the Brauer-Wielandt Theorem. Finally, $\left|P_{w}^{\prime}\right| \cdot\left|P_{w}^{\prime \prime}\right|=\left(q_{1} q_{2}\right)^{3}$, so that $P=P_{w}^{\prime} P_{w}^{\prime \prime}=P_{w}^{\prime \prime} P_{w}^{\prime}$.
(6C) With suitable notation, case B of (6.1) holds.
Proof. Suppose case A of (6.1) holds, so that

$$
P=\left(X_{\alpha} X_{\beta}\right)\left(X_{-\alpha} X_{\beta}\right)^{\eta}\left(X_{\alpha} X_{\beta}\right)^{\eta^{2}} .
$$

Since $\left[X_{\alpha}^{\eta^{2}}, X_{\beta}\right]=1$, we have $\left[X_{\alpha}, X_{\beta}^{\eta}\right]=1$ by conjugating by η. Conjugating the last relation by ω_{β}, we have as well $\left[X_{\alpha}, X_{-\beta}^{\eta^{2}}\right]=1$. Now $P_{w}^{\prime \prime}=X_{\alpha} X_{-\alpha}^{\eta} X_{\alpha}^{\eta^{2}}$, where $\omega(w) \equiv \omega_{\alpha} \eta^{2}(\bmod H)$, so in particular

$$
\left[X_{-\alpha}^{\eta}, X_{\alpha}^{\eta^{2}}\right] \leq X_{\alpha} X_{-\alpha}^{\eta} X_{\alpha}^{\eta^{2}} \cap X_{\beta}=1
$$

Thus $\left[X_{-\alpha}^{\eta}, X_{\alpha}^{\eta^{2}}\right]=1$, from which we conclude that $\left[X_{-\alpha}^{\eta^{2}}, X_{\alpha}\right]=1$ by conjugating by η. Conjugating the latter by ω_{β} gives $\left[X_{-\alpha}^{\eta}, X_{\alpha}\right]=1$ as well. We have thus shown that

$$
\left\langle X_{\beta}, X_{\beta}^{\eta}, X_{-\beta}^{\eta^{2}}, X_{-\alpha}^{\eta_{\alpha}^{2}}, X_{-\alpha}^{\eta}\right\rangle \leq C\left(X_{\alpha}\right)
$$

Let g be any element in $X_{\beta}^{\eta}, X_{-\beta}^{\eta}, X_{-\alpha}^{\eta_{\alpha}^{2}}$, or $X_{-\alpha}^{\eta}$. If $\tilde{K}=0\left(C\left(X_{\alpha}\right)\right)$, then $C\left(X_{\alpha}\right)=L_{\beta} \tilde{K}$ by $(3 \mathrm{~B})$, so we may express $g=c d$, where c is a p-element in L_{β} and $d \in \tilde{K}$. Let $j_{i}, i=1$ or 2 , be the involution in D commuting with g. Since D normalizes \tilde{K}, it follows that $\left[j_{i}, c\right] \in \tilde{K}$. On the other hand, D normalizes L_{β}, and so $\left[j_{i}, c\right] \in L_{\beta}$. Thus $\left[j_{i}, c\right]=1$, since $L_{\beta} \cap \tilde{K}=1$. The element c then centralizes $D=\left\langle j, j_{i}\right\rangle$, which implies that $c=1$. We have now shown that

$$
\left\langle X_{\beta}^{\eta}, X_{-\alpha}^{\eta}, X_{-\beta}^{\eta^{2}}, X_{-\alpha}^{\eta^{2}}\right\rangle \leq \tilde{M},
$$

where \tilde{M} is the S_{p}-subgroup of \tilde{K}. If $\tilde{M}_{i}=\tilde{M} \cap C\left(j_{i}\right)$ for $i=0,1,2$, then

$$
\tilde{M}_{0} \geq X_{\alpha}, \quad \tilde{M}_{1} \geq\left\langle X_{\beta}, X_{-\alpha}\right\rangle^{\eta}, \quad \tilde{M}_{2} \geq\left\langle X_{-\beta}, X_{-\alpha}\right\rangle^{\eta^{2}}
$$

and necessarily these inclusions are equalities by the Brauer-Wielandt Theorem. If we define $\tilde{P}=X_{\beta} \tilde{M}$, then $|\tilde{P}|=\left(q_{1} q_{2}\right)^{3}$ and $X_{\alpha} \leq Z(\tilde{P})$. Replacing X_{α} by $X_{-\alpha}$ and \tilde{P} by $\tilde{P}^{\omega}{ }_{\alpha}$ then gives case B for \tilde{P} in $C\left(X_{\alpha}\right)$.

We may henceforth assume that case B in (6.1) holds. The following table gives the factorization of $P_{w}^{\prime \prime}$ for $w \in W$ in this case.
(6. 3)

$\omega(w)$	$P_{w}^{\prime \prime}$
1	1
ω_{α}	X_{α}
$\omega_{\beta} \eta^{2}$	$X_{-\beta}^{\eta}$
$\omega_{\alpha} \omega_{\beta} \eta$	$X_{\alpha} X_{-\beta}^{\eta^{2}}$
$\omega_{\alpha} \omega_{\beta} \eta^{2}$	$X_{-\beta}^{\eta} X_{\alpha}^{\eta^{2}}$
$\omega_{\alpha} \eta$	$X_{\beta} X_{-\beta}^{\eta} X_{\alpha}^{\eta^{2}}$
$\omega_{\beta} \eta$	$X_{\alpha} X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}}$
η	$X_{\beta} X_{-\alpha}^{\eta} X_{-\beta}^{\eta} X_{\alpha}^{\eta^{2}}$
η^{2}	$X_{\alpha} X_{\beta} X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}}$
$\omega_{\alpha} \eta^{2}$	$X_{\alpha} X_{\beta} X_{-\alpha}^{\eta} X_{\alpha}^{\eta^{2}} X_{-\beta}^{\eta^{2}}$
ω_{β}	$X_{\beta} X_{-\alpha}^{\eta} X_{-\beta}^{\eta} X_{\alpha}^{\eta^{2}} X_{-\beta}^{\eta^{2}}$
$\omega_{\alpha} \omega_{\beta}$	P

We define the subgroup $B=H F$. Since $H \leq N(P)$ and $H \cap P=1$, the order of B is $\left(q_{1}-1\right)\left(q_{2}-1\right) q_{1}^{3} q_{2}^{3}$.
(6D) For $w \in W, \quad|B \omega(w) B|=|B| \quad\left|P_{w}^{\prime \prime}\right|$.
Proof. By the definition of B and (6B) we have $B \omega(w) B=B \omega(w) H P_{w}^{\prime} P_{w}^{\prime \prime}$. Since the transform of $H P_{w}^{\prime}$ by $\omega(w)^{-1}$ is contained in B, it follows that $B \omega(w) B=B \omega(w) P_{w}^{\prime \prime}$. Now suppose $b \omega(w) u=b_{1} \omega(w) u_{1}$ for elements $b, b_{1} \in B$ and $u, u_{1} \in P_{w .}^{\prime \prime}$. Then $b_{1}^{-1} b=\omega(w) u_{1} u^{-1} \omega(w)^{-1}$. Since $b_{1}^{-1} b$ is a p-element of B and $P \triangleleft B$, it follows that $b_{1}^{-1} b \in P$. On the other hand, $\omega(w) u_{1} u^{-1} \omega(w)^{-1}$ $\in \omega(w) P_{w}^{\prime \prime} \omega(w)^{-1} \leq P^{-}$. Thus $b_{1}^{-1} b \in P \cap P^{-}=1$, and so $b_{1}=b, u_{1}=u$. This completes the proof.
(6E) Let $r \in\left\{\omega_{\alpha}, \omega_{\beta} \eta^{2}\right\}$, and $w \in W$. Then
(i) $\quad r B \omega(w) \subseteq B \omega(w) B \cup B r \omega(w) B$,
(ii) $\quad \omega(w) B r \subseteq B \omega(w) B \cup B \omega(w) r B$.

Proof. It suffices to prove (i), since (ii) follows from (i) by taking inverses of the subsets in question. Now $r B \omega(w)=r H P \omega(w)=H r P_{r}^{\prime} R_{r}^{\prime \prime} \omega(w) \subseteq$ $B r P_{r}^{\prime \prime} \omega(w)$. If $\left(P_{r}^{\prime \prime}\right)^{\omega(w)} \leq P$, then $B r P_{r}^{\prime \prime} \omega(w) \subseteq B r \omega(w) B$ and (i) holds. Assume then that $\left(P_{r}^{\prime \prime}\right)^{\omega(w)} \leq P^{-}$. Since $P_{r}^{\prime \prime}=X_{\alpha}$ if $r=\omega_{\alpha}$ and $P_{r}^{\prime \prime}=X_{-\beta}^{\eta}$ if $r=\omega_{\beta} \eta^{2}$, it easily follows that $\left(P_{r}^{\prime \prime}\right)^{r \omega(w)} \leq P$. But now $\operatorname{Br} P_{r}^{\prime \prime} \omega(w)=B r P_{r}^{\prime \prime} r^{-1} \cdot r \omega(w)$, and so it will be sufficient to show that $r P_{r}^{\prime \prime} r^{-1} \subseteq B r P_{r}^{\prime \prime}$. This, however, is a consequence of the corresponding double coset decomposition in the groups $S L\left(2, q_{1}\right)$ and $S L\left(2, q_{2}\right)$.
(6F) Let $\tilde{G}=B N(H) B$. Then \tilde{G} is a subgroup of G of order $\left(q_{1} q_{2}\right)^{3}\left(q_{1}^{2}-1\right)\left(q_{2}^{2}-1\right)\left(1+q_{1} q_{2}+q_{1}^{2} q_{2}^{2}\right) . \quad \tilde{G}$ is the disjoint union of double cosets $B \omega(w) B$, where $w \in W$.

Proof. \tilde{G} is closed under group multiplication by $(6 \mathrm{E})$, so \tilde{G} is a subgroup of G. We claim that $B \cap N(H)=H$. Since $H \leq B \cap N(H)$ and $B=H P$, it follows that if $B \cap N(H)>H$, then there exists an element $\pi \neq 1$ in P such that $\pi \in B \cap N(H)$. But then $[\pi, H] \leq P \cap H=1$, so that $\pi \in C(H) \leq C(D)$, which is impossible by (4.1). This together with the preceding facts is enough to show that \widetilde{G} is the disjoint union of the double cosets $B \omega(w) B$ with $w \in W$, (see [8]). The order of \tilde{G} then is immediate from (6 D) and (6. 3).
\$7. We continue with the notation of $\$ 6$.
(7A) Let D normalize the p-subgroup A of G, and define $A_{i}=A \cap C\left(j_{i}\right)$ for $i=0,1,2$. If $A_{i} \leq Z(A)$ for some i in $\{0,1,2\}$, then $\left[A_{i-1}, A_{i+1}\right] \leq A_{i}$, where the indices are reduced modulo 3 .

Proof. This is a restatement of [3] II (7E).
(7B) The root subgroups of P contained in M satisfy the following commutator relations:
(i) $\left[X_{\alpha}^{\eta}, X_{\alpha}^{\eta^{2}}\right]=1$ or $X_{\beta},\left[X_{-\beta}^{\eta}, X_{-\beta}^{\eta^{2}}\right]=X_{\beta}$.
(ii) All other commutator relations between root subgroups in M are trivial.

Proof. We have $\left[X_{-\beta}^{\eta}, X_{\alpha}^{\eta^{2}}\right]=\left[X_{\beta}, X_{\alpha}^{\eta^{2}}\right]^{\omega} \beta^{\eta}=1$, and $\left[X_{-\beta}^{\eta^{2}}, X_{-\alpha}^{\eta}\right]=\left[X_{\beta}, X_{-\alpha}^{\eta}\right]^{\omega} \beta^{\eta^{2}}$ =1. The remaining commutator relations between root subgroups in M not of type (i) are clearly trivial, so (ii) is proved. Since H is transitive on the non-identity elements of X_{β}, it will be sufficient to show $\left[X_{-\beta}^{\eta}, X_{-\beta}^{\eta}\right] \neq 1$ in order to prove (i). But if $\left[X_{-\beta}^{\eta}, X_{-\beta}^{\eta^{2}}\right]=1$, then $\left[X_{\beta}, X_{\beta}^{\eta^{2}}\right]=\left[X_{-\beta}^{\eta}, X_{-\beta}^{\eta^{2}}\right]^{\omega} \beta^{\eta}=1$, so that $\left\langle X_{\beta}, X_{-\beta}\right\rangle^{\eta^{2}} \leq C\left(X_{\beta}\right)$. This is impossible since $j_{2} \notin C\left(X_{\beta}\right)$.
(7C) X_{α} stabilizes the following chain of subgroups:

$$
P \triangleright X_{-\beta}^{\eta} X_{\alpha}^{\eta^{2}} X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta} \triangleright X_{\alpha}^{\eta^{2}} X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta} \triangleright X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta} \triangleright X_{-\beta}^{\eta^{2}} X_{\beta} \triangleright X_{\beta} \triangleright 1 .
$$

Proof. The second term of this chain is M, which is normal in P. Since M / X_{β} is abelian, the remaining terms are clearly normal in their predecessor. The chain is then a normal one. Now $\left[X_{\alpha}^{\eta^{2}}, X_{\beta}\right]=1$; conjugating this by $\omega_{\beta} \eta^{2}$ gives $\left[X_{\alpha}, X_{-\beta}^{\eta^{2}}\right]=1$. Thus X_{α} even centralizes $X_{-\beta}^{\eta^{2}} X_{\beta}$. The complex $X_{\alpha} X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta}$ is a subgroup by (6.3) and the factor group $X_{\alpha} X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta} / X_{\beta}$. admits D. Since $X_{-\beta}^{\eta^{2}} X_{\beta} / X_{\beta}$ is central in this factor group, we have by $(7 \mathrm{~A})$ that $\left[X_{\alpha}, X_{-\alpha}^{\eta}\right] \leq X_{-\beta}^{\eta^{2}} X_{\beta}$, so that $\left[X_{\alpha}, X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta}\right] \leq X_{-\beta}^{\eta^{2}} X_{\beta} . \quad X_{\alpha} X_{\alpha}^{\eta^{2}} X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta}$ is a subgroup by (6.3) and the factor group of this by $X_{-\beta}^{\eta^{2}} X_{\beta}$ admits D. Since $\left[X_{\alpha}^{\eta^{2}}, X_{-\alpha}^{\eta}\right] \leq X_{\beta}$ and $\left[X_{\alpha}, X_{-\alpha}^{\eta}\right] \leq X_{-\beta}^{\eta^{2}} X_{\beta}$, (7A) implies that $\left[X_{\alpha}, X_{\alpha}^{\eta^{2}}\right] \leq X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta}$ so that $\left[X_{\alpha}, X_{\alpha}^{\eta^{2}} X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta}\right] \leq X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta}$. Finally, $P / X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta}$ admits D, and the image of $X_{\alpha}^{\eta^{2}}$ in this factor group is central. A third application of (7A) gives $\left[X_{\alpha}, X_{-\beta}^{\eta}\right] \leq X_{\alpha}^{\eta^{2}} X_{-\alpha}^{\eta} X_{-\beta}^{\eta^{2}} X_{\beta}$, which completes the proof.

We construct one other subgroup \hat{G} of G along lines similar to those for \tilde{G}. Define then

$$
\hat{P}=X_{\beta} X_{-\beta}^{\eta} X_{-\beta}^{\eta^{2}}, \quad \hat{N}=\left\langle H, \omega_{\beta}, \eta\right\rangle, \quad \hat{W}=\hat{N} / H .
$$

We note that H normalizes the subgroup \hat{P} and that $\hat{P} \cap \hat{P}^{\omega_{\beta}}=1$. For each $w \in \hat{W}$, let

$$
\begin{aligned}
& \hat{P}_{w}^{\prime}=\hat{P} \cap \omega(w)^{-1} \hat{P} \omega(w), \\
& \hat{P}_{w}^{\prime \prime}=\hat{P} \cap \omega(w)^{-1} \hat{P}^{\omega}{ }_{\beta \omega}(w) .
\end{aligned}
$$

$\hat{P}_{w}^{\prime}, \hat{P}_{w}^{\prime \prime}$ are well-defined subgroups of \hat{P}, and each root subgroup of P contained in \hat{P} is either in \hat{P}_{w}^{\prime} or $\hat{P}_{w}^{\prime \prime}$. Moreover, $\hat{P}_{w}^{\prime} \hat{P}_{w}^{\prime \prime}=\hat{P}_{w}^{\prime \prime} \hat{P}_{w}^{\prime}$. The following. table gives the factorization of $\hat{P}_{w}^{\prime \prime}$.
(7. 1)

$\omega(w)$	$\hat{P}_{w}^{\prime \prime}$
1	1
$\omega_{\beta} \eta$	$X_{-\beta}^{\eta^{2}}$
$\omega_{\beta} \eta^{2}$	$X_{-\beta}^{\eta}$
η	$X_{\beta} X_{-\beta}^{\eta}$
η^{2}	$X_{\beta} X_{-\beta}^{\eta^{2}}$
ω_{β}	\hat{P}

Finally, define $\hat{B}=H \hat{P} . \quad \hat{B}$ is a subgroup of order $\left(q_{1}-1\right)\left(q_{2}-1\right) q_{\beta}^{3} . \quad$ The next three lemmas are the analogues of $(6 \mathrm{D}),(6 \mathrm{E}),(6 \mathrm{~F})$, and are proved in much the same way.

$$
\begin{equation*}
|\hat{B} \omega(w) \hat{B}|=|\hat{B}| \quad\left|\hat{P}_{w}^{\prime \prime}\right| \quad \text { for } \quad w \in \hat{W} . \tag{7D}
\end{equation*}
$$

$$
\begin{equation*}
\text { Let } \quad r \in\left\{\omega_{\beta} \eta, \omega_{\beta} \eta^{2}\right\}, \text { and let } w \in \hat{W} . \quad \text { Then } \tag{7E}
\end{equation*}
$$

(i) $\quad r \hat{B} \omega(w) \subseteq \hat{B} \omega(w) \hat{B} \cup \hat{B} r \omega(w) \hat{B}$.
(ii) $\quad \omega(w) \hat{B} r \subseteq \hat{B} \omega(w) \hat{B} \cup \hat{B} \omega(w) r \hat{B}$.
(7F) Let $\hat{G}=\hat{B} \hat{N} \hat{B}$. Then \hat{G} is a subgroup of G of order $q_{\beta}^{3}\left(q_{\beta}^{3}-1\right)$ $\left(q_{\beta}+1\right)\left(q_{\alpha}-1\right) . \quad \hat{G}$ is the disjoint union of double cosets $\hat{B} \omega(w) \hat{B}$, where $w \in \hat{W}$.
(7G) Let $\hat{C}(j)=\hat{G} \cap C(j) . \quad$ Then $\hat{C}(j)=L_{\beta} H$.
Proof. The inclusion $\hat{C}(j) \geq L_{\beta} H$ is clear. Suppose there exists an element c in $\hat{C}(j)$ not in $L_{\beta} H$. Since $C(j)=L_{1} L_{2} H$ and $L_{\alpha}=X_{\alpha} H_{\alpha} \cup X_{\alpha} H_{\alpha} \omega_{\alpha} X_{\alpha}$, we may express $c=u v$, where $u \in L_{\beta} H, v \in X_{\alpha}$ or $X_{\alpha} H_{\alpha} \omega_{\alpha} X_{\alpha}$, and $v \neq 1$. If $v \in X_{\alpha}$, then $v=u^{-1} c \in \hat{G} \cap X_{\alpha}$. Since $P \cap \hat{G}=\hat{P}$ is an S_{p}-subgroup of \hat{G} and $P \geq\left\langle\hat{P}, X_{\alpha}\right\rangle$, this is impossible. If $v \in X_{\alpha} H_{\alpha} \omega_{\alpha} X_{\alpha}$, then $v=u^{-1} c \in \hat{G} \cap B \omega_{\alpha} B$. By $(6 \mathbf{F})$ and $(7 \mathrm{~F})$ we see that $\hat{G} \cap B \omega_{\propto} B=\phi . \quad$ Thus $\hat{C}(j)=L_{\beta} H$.

Now $\left[X_{\beta}, X_{-\beta}^{\eta}\right]=1$ and $\left[X_{\beta}, X_{-\beta}^{\eta^{2}}\right]=1$. If we conjugate these relations by η and $\omega_{\beta} \eta$ respectively, we then have $\left[X_{\beta}^{\eta}, X_{-\beta}^{\eta^{2}}\right]=1$ and $\left[X_{-\beta}^{\eta}, X_{\beta}^{\eta^{2}}\right]=1$. The subgroups

$$
\begin{equation*}
U=X_{\beta}^{\eta} X_{-\beta}^{\eta^{2}}, \quad U^{*}=X_{-\beta}^{\eta} X_{\beta}^{\eta^{2}} \tag{7.2}
\end{equation*}
$$

are thus abelian of order q_{β}^{2}.
(7H) Let U, U^{*} be defined as in (7.2). Then the following hold:
(I) $\hat{G} \geq\langle D, \eta\rangle$.
(II) $|U|=\left|U^{*}\right|=q_{\hat{B}}^{2} ; U$ and U^{*} are normalized by $\hat{C}(j)$;

$$
U \cap U^{*}=U \cap \hat{C}(j)=U^{*} \cap \hat{C}(j)=1 .
$$

(III) All involutions in $\hat{C}(j)$ different from j are conjugate in $\hat{C}(j)$.
(IV) $\left[\hat{G}: U \hat{C}(j) \mid \leq q_{\beta}^{2}+q_{\beta}+1\right.$.
(V) Every class of $\hat{C}(j)$-conjugate elements of U meets $\hat{C}\left(j_{1}\right)=C\left(j_{1}\right) \cap \hat{G}$.

Proof. (I) is obvious. By definition $|U|=\left|U^{*}\right|=q_{\beta}^{2}$. Now $\left[X_{-\beta}^{\eta}, X_{-\beta}^{\eta_{2}^{2}}\right]=X_{\beta}$; conjugating this by $\omega_{\beta} \eta^{2}$ then gives $\left[X_{\beta}^{\eta}, X_{\beta}\right]=X_{-\beta}^{\eta^{2}}$, which implies that $X_{\beta} \leq N(U)$. Since $\omega_{\beta} \in N(U)$ as well, it now follows that $L_{\beta} \leq N(U)$, and so $\hat{C}(j)=L_{\beta} H \leq N(U)$ by (7G). Since $\omega_{\alpha} \omega_{\beta}$ normalizes $\hat{C}(j)=L_{\beta} H$ and transforms U onto U^{*}, we have $\hat{C}(j) \leq N\left(U^{*}\right)$ as well. U and U^{*} are inverted by j, so necessarily $\hat{C}(j) \cap U=\hat{C}(j) \cap U^{*}=1$. To complete the proof of (II), we note that $U \cap U^{*}$ admits $D, U \cap U^{*} \cap C\left(j_{i}\right)=1$ for $i=0,1,2$, and apply the Brauer-Wielandt Theorem. (IV) holds since $|\hat{G}: U \hat{C}(j)|=q_{\beta}^{2}+q_{\beta}+1$.

The group $\hat{C}(j)=L_{\beta} H$ can be described in the following manner. Let F_{q} be a Galois field containing both $F_{q_{1}}$ and $F_{q_{2}}$ as subfields. Since $q_{1}-1$, $q_{2}-1$ are divisible by the same powers of 2 , we may choose an element δ in $F_{q_{1}} \cap F_{q_{2}}$ of order a power of 2 such that δ is a non-square in $F_{q_{1}}$ and in $F_{q_{2}}$. If $\delta_{1}=\delta_{2}=\delta$ in the notation of the beginning of $\S 3$, then h_{0} acts on L_{β} as $\left(\begin{array}{ll}1 & \delta\end{array}\right)$, and $h_{0}^{2}=h_{1}\left(\delta^{-1}\right) h_{2}\left(\delta^{-1}\right)$. Let $S L\left(2, q_{\beta}\right)$ be embedded in the natural way in $G L(2, q)$, and let Z be the subgroup of $G L(2, q)$ defined by

$$
Z=\left\{\left(\begin{array}{ll}
\mu & \mu
\end{array}\right) ; \mu \in F_{q_{\alpha}}, \quad \mu \neq 0\right\} .
$$

If ϕ is the inverse of the isomorphism ϕ_{β} of $S L\left(2, q_{\beta}\right)$ onto L_{β}, then ϕ can be extended to an isomorphism ψ from $L_{\beta} H_{\alpha}$ onto $S L\left(2, q_{\beta}\right) Z$ by defining

$$
\psi: h_{a}\left(v^{-1}\right) \rightarrow\left(\begin{array}{cc}
v & \\
& v
\end{array}\right) .
$$

That ψ is an isomorphism follows from the relations $\left[L_{\beta}, H_{\alpha}\right]=1, L_{\beta} \cap H_{\alpha}=\langle j\rangle$. Finally, ψ can be extended to an isomorphism ψ from $L_{\beta} H$ onto $\left\langle S L\left(2, q_{\beta}\right)\right.$, $Z,\left(\begin{array}{ll}1 & \\ & \end{array}\right)>$ by defining

$$
\Psi: h_{0} \rightarrow\left(\begin{array}{ll}
1 & \\
& \delta
\end{array}\right) .
$$

That Ψ is an isomorphism follows from the fact that h_{0} acts on L_{β} as $\left(\begin{array}{ll}1 & \\ & \delta\end{array}\right)$, and that

$$
h_{0}^{2}=h_{1}\left(\delta^{-1}\right) h_{2}\left(\delta^{-1}\right),\left(\begin{array}{ll}
1 & \\
& \delta_{2}
\end{array}\right)=\left(\begin{array}{cc}
\delta^{-1} & \\
& \delta
\end{array}\right)\left(\begin{array}{ll}
\delta & \\
& \delta
\end{array}\right) .
$$

Suppose a, c are matrices in $\left\langle S L\left(2, q_{\beta}\right),\left(\begin{array}{ll}1 & \\ & \delta\end{array}\right)\right\rangle$ and Z respectively such that $(a c)^{2}=\left(\begin{array}{ll}1 & \\ & 1\end{array}\right) . \quad$ Since $(a c)^{2}=a^{2} c^{2}$, it follows that

$$
c^{2}=a^{-2} \in Z \cap\left\langle S L\left(2, q_{\beta}\right),\left(\begin{array}{ll}
1 & \\
& \delta
\end{array}\right)\right\rangle .
$$

But the intersection $Z \cap\left\langle S L\left(2, q_{\beta}\right),\left(\begin{array}{ll}1 & \\ & \delta\end{array}\right)\right\rangle$ is easily seen to be

$$
\left\{\left(\begin{array}{ll}
\gamma & \gamma
\end{array}\right): \gamma \text { in }\langle\delta\rangle\right\}
$$

Thus c must be of the form $\left(\begin{array}{ll}\mu & \\ & \mu\end{array}\right)$, where $\mu \in\langle\delta\rangle$. Since $\left(\begin{array}{ll}\mu & \\ & \mu\end{array}\right)=$ $\left(\begin{array}{ll}{ }^{\mu} & \mu^{-1}\end{array}\right)\left(\begin{array}{ll}1 & \\ & \mu^{2}\end{array}\right)$, we see that $a c \in\left\langle S L\left(2, q_{\beta}\right),\left(\begin{array}{ll}1 & \\ & \delta\end{array}\right)\right\rangle$. The normal subgroup $L_{\beta}\left\langle h_{0}\right\rangle$ of $L_{\beta} H$ then contains all involutions of $L_{\beta} H$.

To prove (III) it will be sufficient to show that all involutions in $\left\langle S L\left(2, q_{\beta}\right),\left(\begin{array}{ll}1 & \delta\end{array}\right)\right\rangle$ other than $\left(\begin{array}{ll}-1 & \\ & -1\end{array}\right)$ are conjugate in $\left\langle S L\left(2, q_{\beta}\right),\left(\begin{array}{ll}1 & \\ & \delta\end{array}\right)\right.$, Z> to $\binom{1}{-1}$. If i is such an involution, then $i^{g}=\left(\begin{array}{ll}1 & \\ -1\end{array}\right)$ for some $g \in G L\left(2, q_{\beta}\right)$. Now we can express $g=c d$, where $c \in S L\left(2, q_{\beta}\right)$ and d is a diagonal matrix, so that $i^{c}=\binom{1}{-1}^{d-1}=\binom{1}{-1}$. Finally, U admits $L_{\beta} H$ and j inverts U. It is a easy consequence of the proof of (1 E) that L_{β} is even transitive on $U-\{1\}$ so that (V) holds. This completes the proof of (7H).

By $(7 \mathrm{H})$ and [3], I, there exists a Desarguesian plane π whose points and lines are in 1-1 correspondence with subsets of \hat{G} of the form $g^{-1} j U g$ and $g^{-1} j U^{*} g, g \in \hat{G}$. Moreover, there exists a homomorphism f of \hat{G} into $\operatorname{coll}(\pi)$, the group of collineations of π, such thst $f(\hat{G})$ contains the projective group $\operatorname{PSL}\left(3, q_{\beta}\right)$. Thus we have a normal series

$$
\begin{equation*}
\hat{G} \unrhd \hat{G}_{0} \triangleright K \unrhd 1, \tag{7.3}
\end{equation*}
$$

where K is the kernel of $f,|K|$ is odd, \hat{G} / \hat{G}_{0} is cyclic, and $\hat{G}_{0} / K \simeq P G L$ $\left(3, q_{\beta}\right)$ or $\operatorname{PSL}\left(3, q_{\beta}\right)$. In particular, $\left|\hat{G}_{0} / K\right|=\frac{1}{d} q_{\beta}^{3}\left(q_{\beta}^{3}-1\right)\left(q_{\beta}^{2}-1\right)$, where $d=1$ or 3 , the latter case occurring only if $q_{\beta} \equiv 1(\bmod 3)$. But by $(7 \mathrm{~F})$,
$|\hat{G}|=q_{\beta}^{3}\left(q_{\beta}^{3}-1\right)\left(q_{\beta}+1\right)\left(q_{\alpha}-1\right)$. Thus $d\left(q_{\alpha}-1\right) /\left(q_{\beta}-1\right)$ is an integer. If $q_{\alpha}<q_{\beta}$ and $q_{\alpha}=p^{n_{\alpha}}, q_{\beta}=p^{n} \beta$, we may write $n_{\beta}=n_{\alpha}+t$, where $t \geq 1$. But then

$$
p^{n_{\beta}}-1=p^{n_{\alpha}} p^{t}-1>p^{t}\left(p^{n_{\alpha}}-1\right) \geq 3\left(p^{n_{\alpha}}-1\right),
$$

and $d\left(q_{\alpha}-1\right) /\left(q_{\beta}-1\right)$ cannot be integral. Thus $q_{\alpha} \geq q_{\beta}$, so that by (4 E), $q_{\alpha}=q_{\beta}$ or $q_{\alpha}=q_{\beta}^{3}$. This together with (5C) and (5D) gives
(7I) If G is a finite group with property (*) and (2A) (iii) holds, then q_{1} and q_{2} are equal, or one is the cube of the other.

This completes the proof of the theorem stated in the introduction.
We conclude with an identification of the group \hat{G}. Now the preceding proof shows that $q_{\alpha}=q_{\beta}$ or $q_{\alpha}=q_{\beta}^{3}$. Let $q_{\beta}=q$, and define $K_{0}=(H)^{q-1}$. Clearly $K_{0}=1$ if $q_{\alpha}=q_{\beta}$, and $K_{0}=\left(H_{\alpha}\right)^{q-1}$ is cyclic of order $q^{2}+q+1$ if $q_{\alpha}=q_{\beta}^{3}$. In either case, K_{0} is a cyclic characteristic subgroup of H, so that $\left\langle\omega_{1}, \omega_{2}, \eta\right\rangle$ induces an abelian group of automorphisms on K_{0}. In particular, η must centralize $K_{0} . \quad K_{0}$ then centralizes $\left\langle L_{\beta}, H, \eta\right\rangle=\hat{G}$, and so $K_{0} \leq Z(\hat{G})$. Thus $K_{0} \leq K$, where K is the normal subgroup of (7.3). Moreover, $\left|\hat{G} / K_{0}\right|=q^{3}\left(q^{3}-1\right)\left(q^{2}-1\right)$ by $(7 \mathrm{~F})$.

If $q \neq 1(\bmod 3)$, then $\operatorname{PGL}(3, q), P S L(3, q)$, and $S L(3, q)$ are isomorphic groups of order $q^{3}\left(q^{3}-1\right)\left(q^{2}-1\right)$. Since $\left|\hat{G}_{0}: K\right| \geq q^{3}\left(q^{3}-1\right)\left(q^{2}-1\right)$ in this case, it follows that $\hat{G}=\hat{G}_{0}, K=K_{0}$, and $\hat{G} / K_{0} \simeq S L(3, q)$.

Assume then that $q \equiv 1(\bmod 3)$. If $\hat{G}_{0} / K \simeq P G L(3, q)$ the above argument will show that $\hat{G}=\hat{G}_{0}, K=K_{0}$, so that $\hat{G} / K_{0} \simeq P G L(3, q)$. We assume then that $\hat{G}_{0} \mid K \simeq \operatorname{PSL}(3, q)$, so that either $\left|\hat{G}: \hat{G}_{0}\right|=3,\left|K: K_{0}\right|=1$, or $\left|\hat{G}: \hat{G}_{0}\right|=1,\left|K: K_{0}\right|=3$. In the latter case, $\hat{G} / K_{0} \simeq S L(3, q)$ or $\operatorname{PSL}(3, q) \times Z_{3}$ by a result of Steinberg, [17]. The remaining case $\left|\hat{G}: \hat{G}_{0}\right|=3, K=K_{0}$, leads to a contradiction if $\hat{G} / K \not \approx P G L(3, q)$. Indeed, since $q \equiv 1(\bmod 3)$, we have

$$
q^{2}+q+1 \equiv 0(\bmod 3), q^{2}+q+1 \not \equiv 0(\bmod 9)
$$

so that $|\hat{N}|$ contains the full power of 3 dividing $|\hat{G}|$, and thus $\hat{N} \cap \hat{G}_{0}<\hat{N}$. On the other hand, L_{β} has no normal subgroups of index 3 , so that L_{β}, and in particular, H_{β}, are contained in \hat{G}_{0}. The definition of incidence in π given in [3], I, shows that the point $j U$ is not on the line $j U^{*}$. The $q+1$ involutions $j_{2}, j_{1} t$ with t in X_{β} belong to $q+1$ points of π, namely the $q+1$ subsets of the form $\eta^{-2} j U \eta^{2}, s^{-1} \eta^{-1} j U \eta s$ with $s^{2}=t$, s in X_{β} res-
pectively, and these points all lie on the line $j U^{*}$ by [3], I, (2D). Moreover, these $q+1$ points are distinct. Indeed, if $\eta^{-2} j U \eta^{2}=s^{-1} \eta^{-1} j U \eta s$, then $\eta^{-2} U \eta^{2}=j t \cdot s^{-1} \eta^{-1} U \eta s$, where $t=s^{2}$. This is impossible since $j t$ has even order. If $s_{1}^{-1} \eta^{-1} j U \eta s_{1}=s^{-1} \eta^{-1} j U \eta s$, then $s_{1} s^{-1} \in C(j) \cap N\left(U^{\eta}\right) \leq N\left(C(j) \cap U^{\eta}\right)=N\left(X_{-\beta}\right)$. Since $s_{1} s^{-1} \in X_{\beta}$, this implies that $s_{1}=s$. But the collineations on π induced by H_{α} leave the point $j U$ fixed and the line $j U^{*}$ pointwise fixed, so that $H_{\alpha} \leq \hat{G}_{0}$. Thus $H_{1} H_{2} \leq \hat{G}_{0}$. Since $\left|H: H_{1} H_{2}\right|=2$ and \hat{N} / H is generated by involutions, it now follows that $\hat{N} \leq G_{0}$, which is a contradiction. We have thus proven
(7J) Let $q=\min \left\{q_{1}, q_{2}\right\}$, and let $K_{0}=(H)^{q-1}$. Then K_{0} is central in \hat{G}, and $\hat{G} / K_{0} \simeq S L(3, q), P G L(3, q)$, or $\operatorname{PSL}(3, q) \times Z_{3}$.
§8. We now indicate how the arguments of [3], II, may be modified in order to prove (3E). Accordingly we shall adopt notation conforming in an obvious way with that of [3], II, so that a number of symbols already used will have different meanings in this section. Thus we shall assume that G is a finite group satisfying the following conditions.
(I) G has an involution j such that $C(j)=U \times L\left\langle j_{1}\right\rangle$, where $L \simeq S L(2, q)$, U is a cyclic group of order dividing $\frac{1}{2}(q+\varepsilon)$ with $\varepsilon= \pm 1, q \equiv \varepsilon(\bmod 4)$, and j_{1} is an involution inducing an automorphism of class T_{1} on L.
(II) $j \sim j_{1}$ in G.

We wish to show that $|G|$ is divisible by q^{3} if $q>3, G \simeq M_{11}$ or $S L(3,3)$ if $q=3$, and $q \leq 7$ if $U=1$.

From (1.8), we see that an S_{2}-subgroup S of $C(j)$ is of quasi-dihedral type, with center $\langle j\rangle$. As in (2B), we see that S is an S_{2}-subgroup of G. Now (I), (II) imply that G has no normal subgroup of index 2.

If $\varepsilon=-1$, then $C(j)$ is isomorphic with the quotient group of $G L(2, q)$ by the subgroup of order $\frac{1}{2}(q-1) /|U|$ in its center. Then the desired results follow immediately from Theorem (1A) of [3], II.

We henceforth assume that $\varepsilon=1$. Setting $D=\left\langle j, j_{1}\right\rangle$ and using (1.9), we see that $C(D)=D \times U \times W$, where W is cyclic of order $\frac{1}{2}(q+1)$. Also, from (1.8), L contains an element f of order 4 which is inverted by j_{1}, and $C(f)$ has order $2(q-1)|U|$. The element $t=f j_{1}$ is an involution such that $t: j_{1} \rightarrow j_{2}=j j_{1}$.

As in [3], II, we can apply the results of [2], III, §8. The principal 2-block of G consists of four irreducible characters $\chi_{0}=1, \chi_{1}, \chi_{2}, \chi_{3}$ of odd degrees $x_{i}=\chi_{i}(1)$, and 2^{n-2} irreducible characters $\chi_{4}, \chi^{(\mu)}$ with $1 \leq \mu \leq 2^{n-2}-1$, of even degrees, where 2^{n} is the order of the S_{2}-subgroup S of G. The relations (3.1), (3.2) of [3], II hold, and there exists a function φ on $C(j)$ such that $\pm \varphi$ is an irreducible character of $C(j)$ whose kernel contains j, and such that

$$
\left\{\begin{array}{l}
\chi_{1}(j g)=-\delta_{1}+\delta_{1} \varphi(g), \quad \chi_{2}(j g)=\delta_{2}-\delta_{2} \varphi(g), \tag{8.1}\\
\chi_{3}(j g)=-\delta_{3}, \quad \chi_{4}(j g)=-2 \delta_{2}+\delta_{2} \varphi(g), \quad \chi^{(\mu)}(j g)= \pm \varphi(g),
\end{array}\right.
$$

for 2-regular g in $C(j)$. Moreover, we have

$$
\varphi(1) \equiv 2+2^{n-2}\left(\bmod 2^{n-1}\right)
$$

Since $C(j) /\langle j\rangle$ is isomorphic with the direct product of $\operatorname{PGL}(2, q)$ with a cyclic group, its irreducible characters have degrees $1, q, q-1, q+1$. It follows that φ is an irreducible character of $C(j)$ and that

$$
\begin{equation*}
\dot{\varphi}(1)=q+1 . \tag{8.2}
\end{equation*}
$$

Further, the relation (3.6) of [3], II holds, while the relations (3.7) are replaced by

$$
\begin{equation*}
\delta_{1} x_{1} \equiv 2-q, \quad \delta_{2} x_{2} \equiv-q, \quad \delta_{3} x_{3} \equiv-1+2^{n-1}\left(\bmod 2^{n}\right) \tag{8.3}
\end{equation*}
$$

In particular, the degrees $1, x_{1}, x_{2}, x_{3}$ are all distinct. The order formula $(4 \mathrm{~F})$ of [3], II is replaced by

$$
\begin{equation*}
|G|=2|U| q^{3}(q+1)(q-1)^{3} \mu \tag{8.4}
\end{equation*}
$$

$$
\begin{equation*}
\mu=\left(1+\frac{1}{q}\right) x_{1}\left(x_{1}+\delta_{1}\right) /\left(x_{1}-\delta_{1} q\right)^{2}=\left(1-\frac{1}{q}\right) x_{2}\left(x_{2}+\delta_{2}\right) /\left(x_{2}+\delta_{2} q\right)^{2} \tag{8.5}
\end{equation*}
$$

The lemmas $(4 \mathrm{D}),(4 \mathrm{E}),(4 \mathrm{H})$ of [3], II may now be shown to hold in the present situation, without any significant change in their proofs. We then have
(8A) It suffices to consider the case that $Z(G)=1$. If this is satisfied, then $C(z)=C(j)$ whenever $1 \neq z \in Z(C(j))$.

Proof. Since $Z(G) \leq Z(C(j))=U\langle j\rangle$ and $j \notin Z(G)$, it follows that $Z(G) \leq U$. If $Z(G) \neq 1$, then we can use induction on the group order to show that $|G| Z(G) \mid$ and hence $|G|$ are divisible by q^{3}.

The second statement is proved as in [3], II, (4G), except for the possibility that

$$
q=5, \quad|U|=3, \quad|G: C(U)|=3 .
$$

In this case $C(U)$ must be normal in G, for otherwise G would have a quotient group isomorphic with the symmetric group of degree 3 and so would have a normal subgroup of index 2. Since $C(j) / U$ has no normal subgroup of index $3, C(j) \leq C(U)$. Then $Z(C(U)) \leq Z(C(j))$, so that $Z(C(U))$ $=U$. Hence U is normal in G, and $G / C(U)$ is isomorphic with a subgroup of the automorphism group of U, a contradiction. Precisely as in [3], II, §9, we may prove
(8B) If $U \neq 1$ and $Z(G)=1$, then $|G|$ is divisible by q^{3}.
From now on we assume that $U=1$. The arguments of [3], II, §10 apply, with rather obvious changes because the relations (8.1) to (8.5) hold rather than the corresponding relations of [3], II. Thus the contradiction at the end of the proof of [3], II, (10E), which now applies for prime divisors p of $l=\frac{1}{2}(q+1)$, stems from the relation

$$
\gamma\left(x_{1}-\delta_{1}\right)(q+1)=\left(x_{1}+\delta_{1}\right)(q-1),
$$

where $\gamma=3$ or $5 / 3$, which leads to the relation $3 \delta_{1}=t(q+2)$ or $15 \delta_{1}=t(q+4)$, where t is an integer, an impossibility for $q \equiv 1(\bmod 4)$. The final contradiction on p. 150 of [3], II becomes the contradiction $x_{1}=q^{2}(q-2) /(2 q-1)$. We thus obtain
(8C) If $U=1$, then $l=\frac{1}{2}(q+1)$ is $1,3,5$ or 15.
The possible values for q are then 5,9 or 29 . In each case we can compute the possible values for x_{1}, x_{2}, x_{3}. We have the eleven cases

$$
\begin{align*}
& q=5 ; x_{1}=125, x_{2}=21, x_{3}=105 ;|G|=2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 . \tag{1}\\
& q=5 ; x_{1}=19, x_{2}=75, x_{3}=57 ;|G|=2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 . \\
& q=5 ; x_{1}=35, x_{2}=85, x_{3}=119 ;|G|=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 . \\
& q=9 ; x_{1}=729, x_{2}=73, x_{3}=657 ;|G|=2^{5} \cdot 3^{6} \cdot 5 \cdot 73 . \\
& q=9 ; x_{1}=135, \quad x_{2}=201, x_{3}=335 ;|G|=2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 67 . \\
& q=9 ; x_{1}=71, x_{2}=567, \quad x_{3}=497 ;|G|=2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 71 . \\
& q=29 ; x_{1}=29 \cdot 41, \quad x_{2}=17 \cdot 29, x_{3}=17 \cdot 41 ;|G|=2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{4} \cdot 17 \cdot 29 \cdot 41 .
\end{align*}
$$

$$
\begin{align*}
& q=29 ; x_{1}=29^{3}, \quad x_{2}=3 \cdot 271, \quad x_{3}=3 \cdot 29 \cdot 271 ;|G|=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 29^{3} \cdot 271 . \tag{8}\\
& q=29 ; x_{1}=23 \cdot 29, x_{2}=3 \cdot 29 \cdot 37, \quad x_{3}=3 \cdot 23 \cdot 37 ;|G|=2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{3} \cdot 23 \cdot 29 \cdot 37 . \\
& q=29 ; x_{1}=3 \cdot 13 \cdot 29, x_{2}=29 \cdot 113, \quad x_{3}=3 \cdot 13 \cdot 113 ;|G|=2^{4} \cdot 3^{3} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 29 \cdot 113 . \\
& q=29 ; x_{1}=811, \quad x_{2}=3^{3} \cdot 29^{2}, \quad x_{3}=3^{3} \cdot 811 ;|G|=2^{4} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 22^{2} \cdot 811 .
\end{align*}
$$

All these cases except (1) can be ruled out by a combination of Sylow's Theorem and the theory of blocks of defect 1 . This completes the proof of (3E).

References

[1] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung I, Math. Z. 63 (1956), 406-444.
[2] R. Brauer, Some applications of the theory of blocks of characters of finite groups II, III, J. Alg. 1 (1964), 307-334, 3 (1966), 225-255.
[3] R. Brauer, On finite Desarguesian planes I, II, Math. Z. 90 (1965), 117-123, 91 (1966), 124-151.
[4] R. Brauer, Investigations on groups of even order, Proc. Nat. Acad. Sci. 55 (1966), 254-259.
[5] R. Brauer, On blocks and sections in finite groups II, Amer. J. Math., 90 (1968), 895-925.
[6] R. Brauer and C. Nesbitt, On the modular characters of groups, Annals of Math. 42 (1941), 556-590.
[7] R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. 45 (1959), 1757-1759.
[8] R.W. Carter, Simple groups and simple Lie algebras, J. London Math. Soc. 40 (1965), 193-240.
[9] E.C. Dade, Blocks with cyclic defect groups, Annals of Math. 84 (1966), 20-48.
[10] L.E. Dickson, Determination of all the subgroups of the known simple group of order 25920, Trans. Amer. Math. Soc. 5 (1904), 126-166.
[11] J. Dieudonné, La géométrie des groupes classiques, Springer, 1955.
[12] P. Fong, A characterization of the finite simple groups $\operatorname{PSp}(4, q), G_{2}(q), D_{4}^{2}(q)$, II, to appear, Nagoya Math. J.
[13] G. Glauberman, Central elements in core-free groups, J. Alg. 4 (1966), 403-420.
[14] P. Hall and G. Higman, The p-length of a p-soluble group and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3), 7 (1956), 1-42.
[15] G.A. Miller, The groups of isomorphisms of the simple groups whose degrees are less than fifteen, Arch. Math. u. Phys. 12 (1907), 249-251.
[16] I. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. fur reine u. angew. Math. 132 (1907), 85-137.
[17] R. Steinberg, Générateurs, relations, et revêtements de groupes algébriques, Colloque sur la Théorie des groupes algébriques, Brussels, 1962.
[18] W.J. Wong, A characterization of the finite projective symplectic groups $P S p_{4}(q)$, Trans. Amer. Math. Soc., 139 (1969), 1-35.

University of Illinois, Chicago, Illinois
University of Notre Dame, Notre Dame, Indiana

[^0]: Received January 14, 1969.

 1) Research partially supported by National Science Foundation grants GP-6539 and GP-8366.
