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A CHARACTERIZATION OF THE FINITE SIMPLE

GROUPS PSp(4,q), G2(q), DJ(q), I

PAUL FONG and W.J. WONG1)

Suppose that G is the projective symplectic group PSp(49 q)9 the Dickson

group G2(q)9 or the Steinberg "triality-twisted" group Dl(q), where q is an

odd prime power. Then G is a finite simple group, and G contains an

involution j such that the centralizer C(j) in G has a subgroup of index 2

which contains j and which is the central product of two groups isomorphic

with SL(2,qύ and SL{2,q2) for suitable q19 q2. We wish to show that con-

versely the only finite simple groups containing an involution with this

property are the groups PSφ(49q)9 G2(q)9 D\(q). In this first paper we shall

prove the following result.

THEOREM. Let G be a finite group with subgroups Ll9 L2 such that Lx —

SL{2, qx)9 L2 a SL{2, q2), [Ll9 L2] = 1, Lx n L2 = O'>, where j is an involution, and

\C(j): LXL2\ = 2. Suppose that GψC{j)O(G). Then one of the following holds:

(a) qx = q29 and L19 L2 are not normal in C{j).

(b) #i = q29 and Lί9 L2 are both normal in C(j).

(c) One of the numbers q19 q2 is the cube of the other.

Furthermore, in each case, C(j) is uniquely determined to within isomorphism.

Here O(G) denotes the largest normal subgroup of odd order in G9 and the

condition Gψ C{j)O(G) is obviously satisfied if G is simple. The groups PSp(4:9q)9

G2(q)9 Dl(q) satisfy the hypotheses of the theorem, and belong to the cases (a), (b),

(c) respectively. By the uniqueness statement of the theorem, C{j) is isomorphic with

the centralizer of an involution in PSp(49q)9 G2(q) or Dl(q)9 where q=m.in{qί,q2\.

Incase (a) it follows that G must be isomorphic with•- PSp(49q) [18]. In the

sequel to this paper it will be shown that, in cases (b), (c), G must be isomorphic

with G2\q)9 D\{q) respectively [12].
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The proof of the theorem is begun by a study of the possible fusions

of involutions of C(j) in G, which shows that either (a) holds and the

structure of C{j) is uniquely determined, or else Lx and L2 are both normal

in C{j) and the structure of C(j) is again uniquely determined. In the latter

case we use the Brauer-Wielandt theorem, a knowledge of the irreducible

representations of SL(2,q) over finite fields, and results and methods

of Brauer concerning groups with prescribed S2-groups, first to show that

qx and q2 are powers of the same prime p, and then to show that (b) or

(c) holds provided {qxq2)
z divides the order of C(Xb), where Xb is a S^-group

of Lb, b = 1 or 2, qb = min {q1,q2} By using the theory of blocks of group

characters we show that if (b) does not hold then (qχq2)
z divides the order

of G, and hence (q^)3 divides the order of C(Xβ), where Xβ is a 5^-group

of Lβ, | 3=1 or 2. Finally, by forming a (B,iV)-pair, we construct a sub-

group ό of G of known order and show by means of a result of Brauer

that 0 induces a group of collineations of a Desarguesian projective plane

of order q&, containing the little projective group PSL(39q$). This gives

an inequality between orders which implies that β= b, completing the proof

of the theorem.

§1. In this section we fix notation for L = SL{29 q), where q = pn for

an odd prime φ, and set down some facts about its automorphisms and

representations. Let

q — ε = 2*u, q + ε = 2v,

where e = ± 1, a ;> 2, and u, v are odd. L contains elements p, σ of order

q — ε, q + ε respectively. Indeed, we may take

if β = l ,
\-δμ λ

and

Here ΐ is a primitive root of Fq9 δ is a non-square in Fq, and λ + μ J—δ

or λ + μi/—l is a generator for the group of elements in F<f of Fα-norm L

respectively in the cases ε = 1, e = —1. Set

a = pu
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so that a and τ have orders 2* and 4 respectively. The involution

- 1

generates the center of L. We have

(1.1) CL(pi) = <P> if /*'$<;>.

For ^ ε l denote by C*{g) the projective centralizer of g in L, i.e.

Cί(flf) = {heL: gh = g or 0/}.

C*(#) is a subgroup of L with CL(g) as a subgroup of index 1 or 2. Then

(1.2) Ct(τ) = <P,b>,

where b is an element satisfying the relations

b2 = j , Ph = P-K

Indeed, we may take

^ 0 1 \
if e =

y-i 0/
(1.3) b=<

λ μ\
if e = -l,.

μ -λl

where in the case ε = —1, i 2 + μ2 = — 1. We have

(1.4) NL«Pi» = <P,b> if *>*$</>.

The subgroup Q = (a,b> is a generalized quaternion group of order 2α+1,

and is an 52-subgroup of L. We also have

(1.5) C^σή^Kσ} if σ* φ O>

and

σ = σ % σ = J,

so that

(1.6) JVLKo>»~=<*,r> if ^ ^ < ; > .

The automorphism group Aut(i) is isomorphic to the projective semili-
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near group PΓL(2,q) by [11]. Thus the outer automorphism group Out(L)

is given by

Out(L) ~ PΓL{2, q)IPSL{2, q),

which is the direct product of the group PGL{2, q)IPSL{2, q) of order 2 and

a cyclic group of order n, where q = φn and p is the characteristic of the

Galois field Fq. The latter group arises from the automorphisms of L

induced by field automorphisms of Fq. Referring to elements of Out(L)

as automorphism classes, we have

(lA) If q is not a square, then L has exactly one automorphism class

Tj of order 2. If q is a square, then L has exactly three automorphism

classes Tί9 T2, T3 of order 2.

We denote the class of inner automorphisms of L by TO; the identity

automorphism Θo is a representative of this class. The class 7Ί of outer

automorphisms corresponding to elements of PGL{2,q) not in PSL(2,q) may

be represented by the automorphism θx of order 2 defined by

(1. 7) θ,: g—>k'1gk9

where

(I 1 \

if ε = 1,

and δ is a non-square in Fq. If we choose δ = 7U, then in the case e = 1

(1. 8) θ1: p -> P"1, α -> a"1, £ -» fo*.

In the case ε = —1, we find that θx: p-+ p~ι

9 b-ϊbp1 for some integer /.

Then θx\ bρm-+(bρm)ρί-2m, so that by replacing b by bρm for suitable m,

\Ve may assume that either θ^. b-^ba or θ1: b-¥ b. The latter is impossible,

since the element μ of (1. 3) would be 0 so that λ2 = —1, which is impos-

sible. Hence we may assume that (1. 8) holds in the case e = — 1 as well.

For any θ e Aut(L), define

or gj}.
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C*(0) is a subgroup of L containing CL{Θ) as a subgroup of index 1 or 2.

We have

(1.9) CL(θi) = <*>, Ci{θx) = <<x,τ>.

If q is a square, say # = r2

9 then ε = 1. For β^ Fq we write β = βr,

so that β -> β is the automorphism of F β of order 2. If g = (j9iy) e L, let

g = (fo). Then

(1.10) θ2:

defines an automorphism of L of order 2 belonging to an automorphism

class T2 distinct from To and 7V We have

(1. 11) θ2: a-±a\ 6->6,

where we note that βr = ja or 'β"1 according as to whether r == 1 (mod 4)

or r Ξ - 1 (mod 4). Also

(1. 12) CL(02) - SL(2, r), Cΐ(θ2) = <CL(Θ2), g>,

where g is an element whose spuare may be taken to be j.

Finally we represent the class T3 by the automorphism θ3 of L which

is θ2 followed by θx. (θz)
2 is then the inner automorphism

-Lθ1)

(1.13) {θzf: g^a2 ga
2

and

(1. 14) 08

(IB) All automorphisms of order 2 in Tx are conjugate in Aut(L).

Proof, This is the well-known fact that all involutions in PGL{2,q),

but not in PSL{2,q)9 are conjugate.

(lC) Let q be a square. Then all automorphisms of order 2 in T2

are conjugate in Aut(L).

Proof. For Z E I denote by θz the automorphism of Z, given by

Let Ω = {2 e L: (0J2 = 1}. If 2/ e GL{2,q) induces the automorphism 9 on

L, then
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η~lθzη = θw,

where w — (det y)2 y~ιzy e L. Thus

-ί-Cr-D
2 y = (det 2/)2 2/"x22/

determines an action of GL(2, q) on £, and it is sufficient to show this action

is transitive. Now Q=Q1UQ29 where Ωλ~{z&L\ zz = l], Ω2=
z{z^L: zz=j}.

If y e GL(2, g) and det y is a non-square, then zy zy = (det y)2 zz=* —zz

=jzz, so that y interchanges Ω1 and Ωz. Ωx is invariant under the sub-

group L, and thus it suffices to show L acts transitively on Ωχm

The stabilizer in L of the element 1 in Ωx is {y e. L: y = y}9 a group

isomorphic to SL{2,r). Since |L | = q(q2-ϊ)=r2{q2-ϊ) and |SL(2,r)| =r(r 2 - l )

= r(ζ? — 1), the orbit of 1 under L contains r(q + 1) elements. Now z e Ωx

if and only if

I λ μ\ _
^ — ^ = l , μ = — /*, v = — v.

Since ί? = — v if and only if vΐ 2 e jpr, there are r possibilities for v.

Similarly there are r possibilities for μ. For r — 1 choices of μ, v9 we have

//y = —1, χ — o. In the remaining r2 — r + 1 cases, 2 Ϊ = 1 + ^ G Fr, and

there are r + 1 choices for Λ. Hence

1) = r3 + r = r(q + 1).

Hence L acts transitively on ^ as asserted.

(ID) There are no automorphisms of order 2 in T3.

Proof: For 2 e L, denote by ^2 the automorphism of L given by

Then φ\ is the inner automorphism of L corresponding to the element
1 1

a"τίr~1\zeήz. If j>ϊ = l, 'then «' = ± β r ( r ~ X V ι . If z = Q ζ), this is

equivalent to the equations

- JLcrl) -

= ηδ 2 λ, μ = -ηδ
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μ9 π = ηδ 2 π9

-. -4-c r-1)

where η = + 1 . Now

1 1 1

Since (δδ) 2 = {δδ'1)2 = δ 2 = —1, we have λ — μ — 0, which is

impossible.

(IE) Let V be a vector space over Fp of dimension m on which L

acts irreducibly and nontrivially. Then m ̂  2n. If moreover L is faithfully

represented on V9 then m = 2n, m = -̂ -w, or m I> 4n. The second case

occurs only if 3 divides n.

Proof. Let Γ be the natural representation of L as 2 x 2 matrices over

jFg. For any integer k9 where Q^Lk^p — 1, let Γ(A° be the representation

of Z, induced from Γ on forms of degree k; the degree of the representation

Γ(fc) is k + 1. Let θ be the field automorphism oϊ Fq defined by θ: x->xp

for x G Fq. It is known [6] that every irreducible representation of L over

an algebraic closure of Fq is equivalent to one and only one of the form

(1. 15) Γ(V x Γ^)d x . . . X f*-̂ ""1,

where O^ki^p — 1, O ^ i ^ w — 1 , and Γ(fcΐ)δ< is the representation of L

obtained by applying θι to the matrix coefficients of Γiki\

Suppose Ϊ8 is a non-trivial absolutely irreducible representation of L of

form (1. 15): the corresponding n-tuple (k09k19 , kn-ύ ψ (0,0, ,0). Let

5 be the smallest positive integer such that 23 and %$θ' are equivalent. Since

s divides n9 we have n = st for some integer t. k09k19 ,fcs_i can be

arbitrary subject to the requirement not all of them are zero; the remaining

ki are then uniquely determined. The degree of ί8 is then Π (^ + 1)*.

An irreducible representation of L over F p containing ίS as an absolutely
s-l

irreducible constituent thus has degree s H (kί + l)t'^s2t'^:2st = 2n. %$ is
» = 0

faithful if and only if t is odd and the number of odd kt for 0 ^ / ^ 5 — 1
s-l

is odd. Since 5 Π (kt + ΪY<4st holds only if t = 1,2, Or 3, this completes
i = 0

the proof of (IE).
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(IF) Let V be a vector space over Ft of dimension m, where / is an

odd prime different from φ. If L acts irreducibly and non-trivially on V,

then m^i^-(q — 1). If lb is the full power of / in \L\9 then
Δ

Proof. By [16] the irreducible characters of L have degrees 1, q, q±l9

~-{q + 1). The four characters of degree -=-(q + 1) are irrational, their ir-
Δ Δ

Y

rationalities being of the form -ττ(s+/ε#). Since the Srsubgroups of L

are cyclic, we can apply the results of Dade [9]. If D is any non-trivial

/-subgroup of L, then \NL{D): CL{D)\ = 2 by (1.4), (1.6). Thus the tree

associated with an /-block of positive defect has at most two edges. Every

irreducible Brauer character of L with respect to the prime / is then the

restriction of an ordinary irreducible character to /-regular elements of L.

Thus m^-^-(q-l).

Let %$ be an absolutely irreducible constituent of the representation of

L on V. If s is the number of non-equivalent algebraic conjugates of %$

over Fι, then m — s degVβ. Now 2/δ divides q — l or q + 1. Hence if

degSS^tf-1, then m ^ 2 / δ -2^4b. Suppose then that degSS = -\- (q±ΐ).

If 5^2, the preceding argument applies. If s = 1, the argument fails in

the case lb = 3 and q = 5 or 7. Since s = 1, εq must be a quadratic-residue

modulo /. Since 5 and —7 are non-residues modulo 3, these last cases do

not occur.

§2. Throughout this section we shall assume G is a finite group

satisfying

(*) G has subgroups Lv L2 such that L1^.SL{29q1), L2~SL{29q2), [L19L2]

= 1, Lx Π L2 = <i>, where j is an involution, and \C(j): LXL2\ = 2.

Clearly j e Z{LX) Π Z{L2), so that q19 q2 are odd, and Z(LX) = Z(L2) = <;>.

The considerations of §1 apply to Lx and L2. In particular, we can speak

of automorphisms of Lx and L2 of class To, 7^, T2, or T3. We fix isomor-

phisms φi from SL(2,qi) onto Z,*, and attach a subscript i to the symbols

used in §1 for various objects defined for SL{2,q) to denote the correspond-

ing objects for SL(29qt). Thus we have

ft — e{ = 2β«κ<, ft + βi = 2tf4, i = 1,2,

where e< = ±1, «< ̂ > 2, and ̂ ί y fi are odd. Suppressing the symbol φt for
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the moment, we have that Qt = iai9 b^ is an S2-subgroup of Ẑ  of order

2αί+i. j is the central involution of Qx and of Q2.

We shall prove the following result:

(2A) Let G be a finite group with property (*). Then one of the

following holds:

( i ) G = C(j)O(G).

(ii) C{j) = L^ziny, where n2 = 1, L? = L2, ft = ft.

(iii) C(j) = LiLziny, where n2 = 1, L\ = Lx, L2 = A> ^ induces auto-

morphisms of class T1 on L1 and L2, α̂  = α2, and G has only one

class of involutions.

We remark that in cases (ii) and (iii) the structure of C(j) is uniquely

determined. In case (ii) either (i) holds or G — PSp{49 q) with q = qx = q2,

[18]. In case (iii) the structure of C(j) is uniquely determined by (IB), (i)

cannot hold, and G — G2(q) or D\{q)9 [12].

Condition (*) allows a number of possibilities for the structure of C(j).

The proof of (2A) involves examination of the fusion of involutions of an

52-subgroup of G. We write g ~ h if g and h are fused in G, g 4- h if

not. We begin with a simple remark.

(2B) If H^ G, T is an S2-subgroup of H Π C(j), and O'> is character-

istic in T9 then T is an S2-subgroup of H. In particular, an S2-subgroup

S of C(j) is one of G.

Proof Since <;> is characteristic in T, N{T)<N{φ) = C{j). If ί/ is

an 52-subgroup of # containing 7, then NuiT)^C(j) n U = T, so that J7=7\

If S is an S2-subgroup of C(j) containing QXQ2, then \S: QiO2| = 2, so that

Sr^Q1Q2. Since Z{QXQ2) = <;>, it follows that <;> = S' Π Z(S) is character-

istic in S. Taking H = G in the first part of the lemma, we see that S is

an S2-subgroup of G.

We define

(2. 1) x = τxτZ9 y = bxbz.

Since τ\ = τ | = 6? = δ| = , α; and i/ are involutions of LλLz distinct from .

(2C) LjLg has exactly two classes of involutions, represented by j and

x.
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Proof. If g e Lx, h e L2, (flfA)2. = 1, then g2 = /r2 e Lx Π L2 = <;>. If

then gh~ x in LiL2, since Lα, L2 each have only one conjugacy class of

elements of order 4.

(2D) C{j) — LιLz(ri>, where one of the following holds:

(i) LI = Lx and L\ = L2.

(ii) Li = L2, n
2 = 1 or y, and ^ = g2.

Proof: Choose n e C(i) — //iL2>
 s o that C(i) = L1L2<«>. Since LJζjy —

PSL(2,qi) is an indecomposable group with a trivial center, it follows by the

Krull-Schmidt Theorem that L\ = /,„ L2 = ̂ 2> or L\ = L2, L5 = Lx. In

the first case, (i) holds. In the second case, Lt ~ L2 so that qx — q2. Since

nz e L j^ , we have n2 = ̂ A with g & L19 h e L2. Since ^ " ^ ^ e L^ ng~ιn~ι

e L2, we also have

(n^f"1)2 = ng~xn~ιn2g~x — {nQ"ιn""v)h e L 2 ,

and so (ng~ψ e Lx Π L2

 == O> Replacing n by n^"1, we have n2 e O>,

which completes the proof of (ii).

(2E) If CO') = LiL2<n>, L? = L2, and n2 = i, then G = C(j)O{G).

Proof We may assume the isomorphisms φt of SL(2,^) onto L̂  are

chosen so that α? = #2, 6J = 62, etc. Suppose {ghn)2 - 1 for some g e Lj,

A G L2. Then

1 = ghn2gnhn = jghnhgn.

Since jghn e L1? hgn & L2, and Z,α Π L2 = </>, it follows that 5^w = 1, hgn==j,

or #AW = j , hgn = 1. But(ghn)on = Λ^n, so both cases are impossible. Thus

CO') — L2L2 contains no involutions, and every involution in C(;) — O> is

conjugate to x by (2C).

Now (1. 1), (1. 2), (2. 1) imply that

•C{χ,j) = <p19p2,y,n>,

which has the S2-subgroup

T = <a19a2,y>ή>.
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\T\ = 22ot+1, where a = ax = a2; T is defined by the relations

j 2 = 1, βf""*1 = βl*"1 = y, [ΛJ, β2] = 1, β? = «7S

2 — w 2 9 y — i> ί*i — u29 y — y9 ft' — j

In particular Z(T) = {x, j}.

For any element g of a group X, let rx(#) be the number of roots of

g in X, i.e. the number of elements in X having g as a power. We com-

pute that

rτU) = - | - (220"2 - 1) + 22*-2 + 2*+1,

rΓ(α;) = rΓ(ί»y) = - | - (2201"2 - 1) + 22α"1 - 2*.

These two numbers differ by 2<x(2α"2 — 3) f= 0, so that </> is characteristic

in T.

By (2B) T is an 52-subgroup of C(x) and thus x + y. In particular, y

is conjugate to no other involution of S. The Z*-theorem of Glauberman

[13] implies that jO{G) e Z{G/O(G)), and so G = C{j)O(G).

(2F) Suppose C(;) = LiL2 <n>, LJ = L^ L? = L2, and G ψ C(j) O(G).

Then

(i) n may be chosen as an involution inducing automorphisms of class

Tj on both Lj and L2, and Ĝ  = a2;

(ii) G has only one class of involutions.

Proof. Since n2 e LjL2, the class of the automorphism of Lt induced

by n is an element of order 1 or 2 in Out(Li), / = 1,2. Let n induce an

automorphism of class Ta on Lx and one of class Tb on L2, where O^a,

b^3. Since n may be changed by an element of LλL29 we may assume

n induces the automorphisms ΘaΛ, θbi2 on L19 L2 respectively, where these

correspond to the automorphisms θa, θb of SL{29q) defined in §1. n2 is an

element of LXL2 inducing the inner automorphisms Θ\Λ on L19 θ\%2 on L2.

There are two such elements, differing by a factor of j , and these are

easily found (see (1. 13)).

Suppose x 4- y. Since G ψ C(j)O{G), it follows by (2C) and Glauber-

man's Z*-theorem that there exists an involution t e C(j) — LXL2 such that

t — j . Using (IB), (lC), (1. 9), (1. 12), we can compute an S2-subgroup U
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of C(t,j). Except in the case a = b - 1, we find that U' = ZXZ2 ψ 1, where

Zt is a cyclic subgroup of Li9 i = 1,2. Thus O> = (U')m for a suitable

integer m. U is then an S2-subgroup of C{t) by (2B), so U is even an

S2-subgroup of G. The proof of (2B) shows that <j> is characteristic in

N(U), so that j + t in N(U). But then + £ in G by Burnside's Theorem,

In the case a = b = 1, we may assume n = t. The involutions of the S2-

subgroup 5 = Qiζ?2O> of CO) which are not in QγQ2 are of the form alaln.

Since β ^ n = n9 with # = (nbtfίalnb^*, all involutions in C(;) — LXL2 are

conjugate in C(j). The elementary abelian subgroup V = (n9 x,j> is an

S2-subgroup of C{n,j). Choose h (= G such that nh = j , Vh^C(j). The

three subgroups of index 2 in V containing n are (n,jy, <n,x}, <n,xj};

one of these must be transformed by h into a subgroup of LXL2. Thus

nj, nx, or nxj is fused to an element of LXL2 — O> and hence to as by

(2C). Thus n^ x ^ j , which is a contradiction. Hence # ~ in G.

Now (1. 8), (1. 11), (1. 14) show that an S2-subgroup T of C{x,j) is

given by

T = <α19α2,y,ny or iα^α^y.nb^.

If {*,&} £ {1,3}, then T = <α19α2>, <αί9αl>, <α2

19α2y9 or <α2

19α
2

2>9 and φ = (T')m

for some integer w. But then <y> is characteristic in T, so by (2B) T is

an 52-subgroup of C{x). This is impossible since x^j. Hence {α9 b] c

{1,3}, and T = ζα^α^y. If αιψ α29 then <;> = <T'>m for some m, and

again this is impossible. Hence [α, b] c {l, 3} and αx = α2. A calculation

readily shows that if (i) fails, then rτ[j) is different from rτ(x), rτ(xj)9 so

that <;> is characteristic in T. This is again impossible, and so (i) holds

T = ζα19α29y9n} is an S2-subgroup of C(x9j). Since x~j9 we may

choose g e G such that xg = , T9^C(j). X=<α19α29y} is generated by

#i2/> «22/> 2/> which are involutions conjugate to x. If n + , then necessarily

Xg^LxL2. In particular, / e LXL2 — <;>; by (2C) we may assume f = x.

Since X is an S2-subgroup of Cz,lZ,2(#)> we may even assume Xg = X But

X' = <tf?,βj;>, and so <;> = (X')m for a suitable integer w. Thus <;> is

characteristic in X, and j° = . This contradiction shows that n ~ , and

(ii) holds.

The results (2D), (2E), (2F) together prove (2A). Summarizing our

calculations, we see that if CO") satisfies the assumptions of (2F), then

C{x9 j) = iPl9 P29 y9 n>9 C{n9 j) = (σ19 σ29 x9 n}.
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Moreover, <βlf a29 y, n>, <;', x, n) are 52-subgroups of C{x, j), C(n, j) respect-

ively.

§3: From now on we assume that G satisfies condition (*) and case

(iii) of (2A). In this section we shall prove that qx and q2 are powers of

the same prime p.

(3A) Let D be a 4-subgroup of G. Then D is conjugate to <#,i> or

<n,y>. Moreover, N(D)IC{D) is isomorphic to S8, the symmetric group on

3 symbols.

Proof. We may assume j^D by (2A), so that D^LC(j). Since all

involutions in C{j) — <i> are conjugate in C(j) to x or n by (2C) and the

proof of (2F), it follows that D is conjugate to <#,/> or <ft,i>. Now x ~ cey

and ft — n./ in C(i). Since G has one class of involutions, it readily follows

that \N(D): C(D)\ =6 and N(D)IC(D)~S3.

It will be convenient to introduce the following notation: let the images

o f (o l ) ' Qt ΐ)' (o a"1)' (-1 o) U n d e r t h β i s o m o r P h i s m Φi ofSL(2,qi)
onto Li be denoted by α^(α), X-i(a), h^a), ωt respectively, i =1,2. More-

over, let Xi9 X-i9 Hi be the subgroups of Li generated by elements of the

form Xi(ά), X-i(a), h^cc) respectively. We note that Li = XiHi U XiHiWiXi,

i = 1,2. Let δί9 δ2 be non-squares of order a power of 2 in Fql9 Fq2 res-

pectively. We may assume n acts on Lt as conjugation by (_ί 1 j if ε̂  = 1,

and by (~J J) if β< = - 1 . Set

where ^ = ^ ( j ~ Q ) if et = 1, dt = 1 if ε* = —1. Then C(;) = <LλL2, hoy,

where h0 acts on Li as conjugation by ( * \ Moreover,

(3. 1) hi = / Ϊ 1 ( ^ 1 ) Λ 2 ( ^ 1 ) .

In particular, h0 centralizes H^H^ h\ e HXH2. Thus

(3.2) H=<H1H2,h0>

is abelian of order (^ — 1) (q2 — 1).

(3B) Let {a,b} = {1,2}, and let K=O(C(Xb)). Then the following hold:

(i) An 52-subgroup of La is one of C(Xb).
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(ii) C(Xb) = LaK, N(Xb) = HLaK9 and K n La = 1.

(iii) K\Xb is abelian, and j inverts K/Xb.

Proof. Since C(Xb) Π C(j) = LαXδ, the subgroup Qa oΐ La is an S2-

subgroup of C(Xδ) Π C{j). Since O'> is characteristic in the generalized

quaternion group Qa9 it follows by (2B) that Qa is then an S2-subgroup of

C{Xb)9 which proves (i). Now K Γ) La is a normal subgroup of odd order

in La9 so that necessarily K Π La = 1. Now the Brauer-Suzuki Theorem

[7] implies that K<j> <\ C(Xb), so by the Frattini argument

C(xb) = κ(C(j) n c(xb)) = #x&z,α = /ΓLα.

Since 7Γ<i> is characteristic in C(Xb), we have K(j> <] M^δ) so again by the

Frattini argument

N(Xb) = K(C(j) n iV(Xδ)) = KLaH,

which proves (ii). If j centralizes kXb (mod Xb) for some k^K9 then

AT1/* e ;Xb, and necessarily Z; e C(i). Thus A? e C(-5Γ5) Π C(;) = LαZδ. Write

k-mu with m^La9 u<EXb. Then wί = k ' 1 e L f l Π i ί = l , and so k=u&Xb.

Thus y inverts iC/JΓδ, which proves (iii).

(3C). Let uψl be in j?6, and let M = O(C(«)). Then

( i ) X δ ^ M .

(ii) C(«) = MLα, Λf n Lβ = 1.

(iii) c(j) r\M=xb.

Proof. Since C(w) Π C{j) = ̂ α^&, it follows as in the proof of (3B) (i)

that Qa is an S2-subgroup of C(w). By the Brauer-Suzuki Theorem, M</>

< C(M), and so C(M) = M(C(i) Π C(M)) = MXbLa. But Lα normalizes MX"δ.

Thus MXb <\ MXbLa = C(«) and so Xδ < M9 C(u) = MLa. Since MnLa<\ La9

clearly M ί l i α = l, which completes the proof of (i), (ii). Suppose

m e C(i) Π M. Since m has odd order, we may write m = #!&>> where ^ is

an element of odd order in Li9 i = 1,2. m and ga centralize u9 so that

gb G C(M ) Π Lb = <y>X6. But since #δ has odd order, ^ G I 5 < M . But now

fl'α = MQd1 e M Π Lα = 1, and so m = srδ, which proves (iii).

(3D) If qx — ej > ^2 — e2, then (^ — e^g^ divides \G\.

Proof C{x9j) = (P19 P2,y9ny has a normal abelian 2-complement con-

sisting of the 2α-th powers of elements in (p19 ρ2}9 where a — aι — a2. The
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subgroup R = ip^-^y is characteristic in C(x9j)9 since R consists of alt

-ksr- (Qz — e2)-th powers of elements in the normal 2-complement. Moreover,,

Rψl since ft — ελ > q2 — ε2.

By (1. 1), (1. 8),

(3.3) C(R,j) = <P1,nb1>L29

which has as an S2-subgroup T = (nb19 a2, bz}. T has order 22α+1 with rela-

tions

(nbtf* = at'x = b\ = u

afi = cq\ bfi = b2a29 a\* = cΓ2\

I f we set

Sj = a2nbxb29 s2 = nbxb2, t = (w^1)
2<x"1^2,

t h e n T = <s l f 52, O> w h e r e

S?* = Si* = t2 = [5j, S2] = 1, Sί = 52.

Thus T is the wreath product of Z2« by Z2. Since V - <02>, <;> is cha-

racteristic in T. T is then an S2-subgroup of C(R) by (2B).

The Frattini argument implies that

N(R) = C(R) (N(R) n MT)) = C(R) (N(R) n

Choose g&N{<x,j» such that a?g = ; ; this is possible by (3A). Since R is-

characteristic in C(x,j), it follows that # e N(R), so that g = cd, where

c e C(Λ), and J e M^) Π C(;). Thus χg = χc = j , and a? — i in C(R). Now

we can verify that Theorem 2 of [4] applies to C(R) with β = a29 J = V

Using (3. 3) we can compute that

c(R9j) = (>

c(R9 a2) = «

c(R,j,t) =

c{R9a29t) =

Qi — £ i ) Q2 <

tei " «i) to:
: (^1 - *i) (

= ft — Si.

;« -1),

2 — s2)>

The numbers in [4] denoted by β, c, /, s, / are readily computed to be

1> <7i — «i> 1> ε2> ε2̂ 2 respectively. It then follows that

= (ft - βl) ft3 (ft2 - 1) (ft2 + ε2q2 + 1),
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which proves (3D).

We shall prove another similar result, for which we need the following:

(3E) Let X be a finite group with an involution i such that C{i)=Zx

L(t}9 where L — SL{2,q), Z is a cylcic group of order dividing ~ - (q + e)
Δ

with e = ± 1, q = ε (mod 4), and t is an involution inducing an automorp-

hism of class 7\ on L. Suppose moreover that t^i in X. Then \X\ is

divisible by \Z\q% unless q = 3 and X~M119 the Mathieu group of order

7920. If q = 3 and X * Λfn, then J¥ ~ SX(3,3). Finally, if Z = 1, then

q = 3,5, or 7.

This is essentially a result of Brauer. The case ε = — 1 is

treated in Sections 4,9,10 of [3], II. We indicate in §8 the modifications

needed to treat the case ε = 1.

(3F) If ft + β! > q2 + ε2, then (ft + ej #f divides \G\. If ft > ft = 3,

then Z,! has a cyclic subgroup i? of order -^-(ft+sj such that C{R) — RxM,
Δ

C(R, j) = RL2(n>, and M~SL(3,3).

C(n,j)'= ζσ19σ2,x,ny has a normal abelian 2-complement <o i,σl>.

If i? = <tff*+e2>, then i? is characteristic in C(n,j), and since ft + βj >f t+ε 2 ,

i?«^l. By (1. 5), C{R,j) = ζσ19n>L2 = <<r?> X L2<n>. The same arguments

as in (3D) show that <«2, b29 riy is an S2-subgroup of C(R) and that n — j in

•C(-ff). If we set X = C{R)jR9 the conditions of (3E) are satisfied with

Z = (σΐ>lR. Since a; e iV(i?), cc induces an automorphism of X. If this

automorphism were inner, the 2-group <α2, b29 n9 x> obtained by adjoining x

to the 52-subgroup (a29b29ri) of C(R) would have a center of order at least

4. But Z((a29 b29 n9 x}) = O'>. Thus X Φ M a since all automorphisms of Mn

are inner [15]. By (3E), \X\ is divisible by \Z\q\9 so that |C(2f)| is divi-

sible by \R\ |

If ft > ft = 3, then i? = (σ\) is cyclic of order ~ - (ft + βj. By (3E),
Δ

C{R)IR 21 SL{39 3). A modification of the method of [17] shows that SL{39 3)

has trivial Schur multiplier. Hence C(R) = R x Λf, where M2i SL(3,3).

This proves (3F).

(3G) Let ft, q2 be powers of the prime numbers pί9 p2 respectively.

If ft > q2 and p1 ψ p29 then an Sp2-subgroup of C[j) is not an Sp2-subgroup

of G.
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Proof. We note qx + ε1 > q2 + ε2 and qx — εx > #2 — ε2 both hold except

in the case ^ = q2 + 2. Since the order of an S^-subgroup of C(j) divides

(q1 — ει)q2 or (qx + εx)q29 the result follows from (3D) and (3F).

(3H) If qx > q2 and jpx ψ p2, then qλ = 5, #2 = 3.

Proof. Let P be an Sp2-subgroup of L19 X2 the Sp2-subgroup of L2

introduced at the beginning of §3, and K = O(C(X>)). By (3B), we have

C(X2) = KL1. Now PX2 is an Sp2-subgroup of C{j), and C{PX2)f)C{j) = CLl(P)X2.

An S2-subgroup T of this subgroup is cyclic or generalized quaternion, so

by (2B), T is an S2-subgroup of C(PX2). The Frattini argument then implies

N(PX2) - C(PX2) (N(PX2) ΓΊ N(T)) = C(PX2) (N(PX2) Π

so that N(PX2)/C(PX2) - (N(PX2) n C(j))l(C(PX2) n C(Λ). But PZ2 is an abelian

Sp2-subgroup of C(;), so that p2 does not divide \N{PX2)IC{PX2)\. Since

PZ2 is not an Sp2-subgroup of G and so not one of N{PX2) by (3G), it

follows that PX2 is not an Sp2-subgroup of C{PX2), and hence not one of

C{X2). It follows that p2 divides \KjX2\.

Set t = cc if ε2 = 1, ί = n if ε2 = —1, and D = <£,./>. By the definition

of x9 n, and (1. 7), Z> normalizes X2 and hence ϋC. Since j inverts KjX2

by (3B), we have

K\X2 = Cκ/X2(t) x

and indeed, since \X2\ is odd,

(3. 4) K\X2 = Cz(ί)

For any group Γ, let m(F) be the minimum number of generators of

an Sί>2-subgroup of Y. If q2 = <p%, then m{X2) = n. Since P is cyclic and

/, tj are conjugate to y, it follows that

m(C(t)) = m(C{tj)) =

By (3. 4), we have

(3. 5) m{KIX2) ̂  2m(C(;)) ̂  2(w + 1).

Let M be a normal subgroup of C{X2) such that i i C>M^X 2 , A/M is

a p2-group, and M is maximal subject to these conditions. Then K/M is

an elementary abelian p2-group admitting Lx as an irreducible group of

operators. By (IF),
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( q i l ) .

Since m(K\M) ̂  m{KIX2) and q1^q2 + 2, we find from

(3. 5) that

(3. 6) . |_ (02 + i) *- JL (Ql - i) ^ 2w(C(Λ) ^ 2(n + 1).

Since q2 = p"9 we have in particular

By calculus,

114°* 3 )

7 τ ( x ~ 3 )

JL(z-3)

5 4

3 χ ( "~ 3 )

> X

> X

> X

> x

for

for

for

for

X

X

X

X

The only possibilities are

Ί>2 = #2 = 7 ,

Ί>2 — #2 = 5 ,

p2 = 3, 02 = 3 or 9.

If 02 = 7, then (3.6) gives 4 ̂  —- {qx — 1) < 2m{C{j)) ^ 4, so that ^ = 9,

m(C(j)) = 2. This is impossible since 7 does not divide |LJ so that m{C{j)) = l.

If 02 = 5, then (3. 6) gives 3 ̂  ~- {qx — 1) ̂  4, so that qx = 7 or 9. This

contradicts the assumption (2A) (iii) is the case, since aλ = 3, α2 = 2 in this

situation.

If 02 = 9, then (3. 6) gives 5 :< ~- {qι — 1) < 6, so that 0! = 11 or 13.

Again this contradicts the assumption that (2A) (iii) holds, since then

ax = 2, a2 — 3.

If 02 = 3, then (3. 6) gives 2 ̂  -i- [qx — 1) ̂  4, so that 0λ = 5, 7, "or 9.
Δ

Since pj ^ 3, we have qλ ψ 9. Since αj = a2 = 2, 0j ψ 7. Hence 0i = 5 and

(3H) is proved.
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(31) In any faithful representation of SL{295) as a subgroup of the

symplectic group Sp(4,3), the vectors fixed by an element of order 3 in

SL(2,5)-form a singular subspace of dimension 2.

Proof. SL(2,5) is given by generators a9 β9 ϊ satisfying the relations

(3. 7) α 5 - β* = 1, r 2 = β2

9 aβ = cT1, βr = β~\ (ccT)3 = 1.

(We may take a = Q J), 0 = (§ _°), r = (° ~J). ) Thus we look for

elements of Sp(4,3) satisfying these relations.

Choose a basis £j, e2, e3, eA of the 4-dimensional symplectic vector space

over F39 satisfying

{e19 e2) = {e3, e4) = 1,

(e19 ez) = (e19 eA) = (β2, β3) = (e2, eA) = 0,

and identify elements of Sp(4,3) with their matrices with respect to this basis.

Sp(4,3) has only one conjugacy class of elements of order 5. Hence

we can take

- 1 - 1 - 1 1

1

1

- 1 - 1 - 1 / .

1 - 1 0

1 1 - 1

0

Since <α> is self-centralizing modulo <—1>, the elements of Sp(4,3) inverting

a are all conjugate modulo <—1>. Since the relations (3. 7) are unchanged

if β is replaced by β~ι

9 we may assume that

/ 0 0 1 0

0 0 0 1

- 1 0 0 0

\ 0 - 1 0 0

Now a computation shows there are only two possibilities for the element

7 satisfying (3. 7):

/ 0 0 0 1\ / 0 - 1 0 - l \

0 0 - 1
ϊ =

0

0

!

0

1

0

- 1

0

0

0

0

0 /

or

\

0

- 1

0

- 1

0

- 1

0

1

0

1

0 1
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or

0 - 1 - 1 0 \

0 - 1 - 1 - 1

1 0 0 1

\ - 1 1 0 - 1 /

The element aϊ of order 3 is

/ - 1 - 1 1 - 1 \

- 1 0 1 1

- 1 - 1 - 1 1

V 1 - 1 1 0 /

and its space of fixed vectors has basis

{(1,0,0,1), (0,1,1,0)} or {(1,1,1,0), (-1,1,0,1)}.

In both cases the subspace is singular. Since SZ,(2,5) has only one conju-

gacy class of elements of order 3, we have the result. (The calculation

that Sφ{4,3) has two conjugacy classes of subgroups isomorphic to SL(2,5)

is due to Dickson [10]).

(3j) The case q1 = 5, q2 = 3 cannot occur.

Proof. Suppose qλ = 5, q2 — 3. As in the proof of (3H), we consider

C{X2). L1 — SL(2,5) is represented irreducibly and faithfully on the ele-

mentary abelian 3-group K/M. Since 5 does not divide [GL(3,3)I, it follows

that m{K/M)^4. By (3.5), m[K\X2)^4 and thus m{K/M) = m{K/X2) = 4.

The S3-subgroups of C(j) are elementary abelian of order 9, and since

t ~ tj -^ j in G, it follows by (3. 4) that the S3-subgroup of K\X2 is elemen-

tary abelian of order 81. Since Lγ has no subgroups of order 15, an S3-

subgroup of C(j) is contained in no larger subgroup of odd order in C{j).

The same is true for C{t) and C(tj). Since K contains S3-subgroups of C(t)

and C(tj), it follows that Cκ(t), Cκ(tj) are S3-subgroups of C(t), C(tj) res-

pectively. Hence K\X2 is a 3-group of order 34, and M = X2.

By (3F), Lj has a subgroup R of order 3 such that

C{R) = Rx N, C{R,j) = RL2<n>

where N2^SL(3,3). Since L2<n>2r GL(2,3), a group with no normal sub-

group of index 3, L2<n> < N. Now N has two conjugacy classes of subgroups

of order 3, whose centralizers in TV have orders 9 or 54. Since j^CN{X2),

we must have |C^(X2)I =54. Let Z be an S3-subgroup of CN{X2). Z is

an S3-subgroup of N and so Zr ψ 1. Since RCz(j)^C{j) and Cz{j)^X29

we necessarily have Cz(j) = X2 Thus j has no fixed-points on Z\X29 and

j inverts Z\X2. Since j centralizes C{X2)/K, K contains all elements of odd
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order in C{X2) which are inverted by j modulo X2. In particular, Z^K

and K is non-abelian.

It now follows that

Z(K) = K' = D(K) = X29

since Lx acts irreducibly on K\X29 and so K is extra special of order 35 [14].

Since [L19 X2] = 1, we have a faithful representation of Lx — SL{2,5) on the

4-dimensional symplectic space K/X2. The subgroup R fixes the elements

of Z/X2, which is a non-singular subspace of dimension 2 in K\X2 since Z

is non-abelian. But this contradicts (3l).

Together with (3H), this proves

(3K) If G is a finite group with property (*) and (2A) (iii) holds, then

qx and q2 are powers of the same prime φ.

§4. From now on we may assume qx = pni, q2 = pn*. Thus ε1 = ε2

 = s,

and the group H of (3. 2) is the direct product of two cyclic subgroups of

orders qx — 1 and q2 — 1. Let D be the 4-subgroup contained in H9 and

denote the involutions in D by

J = Jo* Ji> Jz

By (3A) and the final remark of §2, we have \C(D)\ = 2{qx - 1) (q2 - 1).

Since ωxω2 inverts H and H is abelian, it follows that

(4. 1) C{D) = <H,ω1ω2>.

By (3A) there exists an element η e N{D) permuting the involutions of

D cyclically. We may assume that η has order a power of 3 and that

Since ω19 ω2, η e N{D), it follows that

(4. 2) N(D) = <C(D), ωί9 η>.

Since Z) is characteristic in H, N(H)^N(D). Suppose D<H. Then H is

the unique subgroup of its isomorphism type in C{D) by (4. 1), so that H

is characteristic in C{D) and hence normal in N(D). Thus N{H)=N{D) in

all cases, η and ωxω2 commute modulo H, so W = N{H)IH is dihedral of

order 12. If D ψ H, then (4. 1) implies that C{H) = #. We have thus

proved
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(4A) Let D be the 4-subgroup of H. Then N(D) = N{H) = <H9ωί9ω29η>9

and W = N{H)IH is dihedral of order 12. If ΌψE9 then C(#) = if.

(4B) Let π be a p-element of C(j) inverted by jx or j 2 . Then

where # e {1,-1}, &e {2, —2}. If P is a p-subgroup of C(/) inverted by

j γ or ; 2, then P^XaXb9 where β e {1,-1}, & <Ξ {2,-2}.

Since π e ZαZ,2, we may express π = JΓ^ with ^ e Li# Every

•conjugate of Xi in Ẑ  different from Xi is of the form u~ιX^u for a suitable

.M in Xim Thus if TΓ* Φ X ,̂ then

'(4. 3) TΓi = u~ιvu

for some ^ e Xί? i; e X.^, z; f= 1. Now Ί, y2 invert Xi and X_ί# Conjugat-

ing (4. 3) by ij or j2 then gives πl1 = uυ~ιu~ι. Since 7Γ71 is also {u~ιυu)~ι —

.u~ιυ~ιu, it follows that u2 and z;"1 commute. But u2 e ^ whereas v e Z-ί,

and υ ψ\. Thus ^2 = 1, and u = 1, which proves the first part of (4B).

The second follows from the fact that if g ψ 1, h ψ 1, and gr e Xί? /̂  e X-̂ ,

then <fir, /Ϊ> is not a p-group.

(4C) Let π¥=l be in ZαX6, with α e {1,-1}, δ ε {2,-2}.

(i) If π $ Xα U Xb9 then the number of conjugates of π under H is

-~- {Qi ~ 1) (& - 1) *ese all belong to XaXb -Xa- Xb.

(ii) If π e Xα or JY6, then the conjugates of π under H consist of all

non-identity elements of Xa or Xb respectively.

Proof. We note from the definition of H that H normalizes Xi9 X-t

for i = 1,2. The result is an easy consequence of the action of H on Xi9

X-i.

(4D) Suppose q1 = q2 = 3 is not the case. Then one of the following

holds:

(i) Some element % ψ 1 in X ^ is in the center of an Sp-subgroup of

G.

(ii) For some πψ\ in Xx or Z2, c(π) = 0 (mod q\ql).

Proof. Let {«,&} = {1,2}, and let K=0{C{Xb)). By (3B), E: admits

HLa and inverts K/Xb. As an Lα-group, iί/X6 has composition factors

which are faithful irreducible Lα-modules over prime fields. In particular,
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a factor which is a p-group has order m, where m — q\> m — qln

9 or m~^.q%

by (lG). Since D normalizes La and K, the Brauer-Wielandt Theorem [3],

II, (6E) implies that \K\p^qlql.

Arrange notation so that qx^q2. Let b = 2 in the preceding paragraph,

and let M/X2 be the Sysubgroup of K/X2. If M = X2, then XjX2 is an Sp-

subgroup of C(X2). If P is then an Sp-subgroup of G containing XXX2 then

Z{P)^C{X2) so that Z{P)^LXK. By Sylow's Theorem, Z(P)°*zX1X2 for

some # e LjK Thus (i) holds since Z{P) ψ 1.

Suppose then that M>X2. Since D normalizes M and X19 we have

that \M\^qlql9 \M\X2\^q\q\. If ^ ^ |M/Z2 |, then q\^q\q\ and neces-

sarily #! = q29 so that C(X2)Ξ=0 (mod q\q\). In this case, (ii) holds for any

π Ψ 1 in X2. By (lG) and the discussion in the first paragraph, we may

assume that Lλ is irreducible, faithful on M/X2, and that \M/X2\ = q\ or q\n.

We define Mt = M Π C(Λ) for ί = 0, 1, 2. Mo is then X2. Since

ctf! e iV(M) and ô i: j1 -> y2 -> yiy it follows that ĉ ! interchanges Mx and M2.

In particular, \MX\ — |M 2 | , and since M>X2, Mx and M2 are not trivial.

Since j inverts M2 and M2, ηMxη~ι and η2M2η'2 are p-subgroups of C(i)

inverted by j2 and Ί. Thus by (4B)

(4. 4) Mx < ( I Λ ) ' , M2

where a, c e {1,-1}, b, d ^ {2,-2}. We note that if normalizes each Mi?

i = 0, 1, 2, by the definition of Mt.

Suppose \MjX2\=q\n. Since \MX\ = q\" > qx^q2, and M\'x^XaXh9

we have that |MfM \Xa\ > \XaXb\ ̂  |Mf ιXa\, and so M f 1 ί l l α > l . A

similar argument shows that M\~ι ί l l j > l . Conjugating these relations by

H then implies that Xa and Xb are both in Mγ\ Thus

Mx = ( I A ) ' , M2 = (ZCXJ^2

so that q\n — qxq2, and ^ = q\% q\q\ then divides c(X2)9 and (ii) holds for

any π ψ 1 in X2.

Suppose |M/Z2| = gf. Let P be an Sp-subgroup of G containing XXM.

If z ψ 1 is in Z(P), then z e C(Z2) so that z G XIM, and we may write

z = πzozxz2

where π e Xί9 zt e M< for f = 0, 1, 2. If zx = z2 = 1, then 2 = τr£0 e XiXa

and (i) holds. Assume then that zxψ\ or z2ψ 1. Since 2, z0, and π

centralize XXX29 it follows that zxz2 = z^π~ιz e C(XiX2). Conjugating this
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inclusion by j \ and j 2 then gives zxz1x e C(XιX2), z~1z2 e C{XXX2) respectively.

Thus zΐ, z\ <= C{XyXι), so that * l f *2 e C{XXX2).

Now M, XJ, X? are normalized by H. By (4C) it follows that if

X%Π Mt>l or XI Π Mj > 1, then X\ ^ Mx or X? <ς Λfx respectively. A simi-

lar remark holds for M2, Xv* and Xf. If the projection of M1 into XJ

were 1-1, then | Mx | :< #2. If Q\ > Qv ύien necessarily Mx Π I J > 1 and

Xl^Mi. If the projection of Mj into XJ is not 1-1, then M1f]Xl>l

and X* ^ M A comparison of orders then gives M1 = X\. If ^ = ^2 = Q

and if MiΠX^ = M,Γ\X\ = 1, then Mi contains an element of (XaXb-Xa-Xb)*

and hence —-(<?—I)2 such elements by (4C). Since -^-{q — I)2 > g-- 1 for

q>3, this is impossible if q > 3. Similar comments apply to M2. Thus

(4.5) M, = Xl, M2 = Xf if qi>q2,

M, = Xl or X?, M2 = Xf or X* if ^ = q2 > 3.

Suppose 22 ψ 1, so that ^ G Mj Π C{XXX2). Since Λίi and C ^ ^ ) admit

H9 it follows by (4C) and (4. 5) that M^CiX^,). If Mx = X2» then X ^ A

is an abelian group. (XlX1X2)
tt = X ^ X Ί ^ ) * is then abelian as well, where

a=-rfι if a = 1, and α = ω^ if β = —1. In particular, (X^^^dX^nCUi).

Let ^ = O(C(Xχ)), and let M be the S^-subgroup of K. C(XX) = L2/Γ by

(3B). If ^ e {XχX2Y9 then ^ = AA:, where h is a p-element in L2 and

Since iΓ1^*! = g, we have

so that A G C(ΛΛ) = c ( ^ ) But |C(D)| is not divisible by p, so that A = l.

Thus {XiXtf ^ i0. Define % = M Π C(Λ) for f = 0, 1, 2. As in the proof

that I Mil = \M2\9 it follows that |i0i| = \M2\. But we have just shown

that Mί^:(X1X2)
(ί, so that \X2M\^q\ql. Thus (ii) holds for any πψ\ in

Xt. If M1 = j?J, then X2{XXX2Ϋ is an abelian group, where 0 = J?"1 if b = 2,

j9 = ω2η if 6 = - 2 . Thus (^X,)^ ^ C(Z2) n C(Λ). If 9 e (X!^)^, then flr= Ajfc,

where A is a p-element in Lx and k& K. As before, A must be trivial so

that {XXX2Ϋ^K. Thus M i ^ l X ^ ) 1 3 , contradicting the assumption that

A similar argument applies if z2 ψ 1, which completes the proof of (4D).

As a corollary of the proof, we have
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(4E) Let qί ;> q2. One of the following holds:

(i ) X2 is an Sp-subgroup of K = 0{C{X2))), M = X2.

(ii) |M/χ2 | = gί, q1 = q2, and C ( I 2 ) Ξ 0 (mod grfof).

(iii) \M/X2\ = q¥\ Qί = ql, and c(X2) = 0 (mod <?^2

3).

(iv) |M/X2] =5?. If (ii) of (4D) fails, then there is an S^-subgroup

P of G containing XλM, such that Z(P) Π XXX2 ψ 1.

(4F) If q\q\ divides |G | , then c(ττ)=O (mod q\q\) for some π ^ l in Xx

or Z 2

P/ΌP/*. We choose qx^q2 and let X, M be defined as in (4D), (4E).

If (ii) or (iii) of (4E) holds, then we are done. If (iv) of (4E) holds and

(4F) fails, then there exists an S^-subgroup P of G such that P^XXM and

Z{P) Π XXX2 Ψ 1. Choose π ψ 1 in Z{P) Π XλXZ9 and write π = πλπ2 with

πi e Xί# Since X2 ^ Z(M), π and ^ induce the same automorphism on

M\X2. Since π centralizes M, î acts trivially on M\X2 so that π: = 1. But

then 7r = 7r2 e X2 and (4F) holds.

Suppose (i) of (4E) holds and (4F) fails. By (4D) there exists an ele-

ment π ψ 1 in XχX2 such that π e Z(P) for some S^-subgroup P of G. Let

π = πxπ2, where πt e Xi9 Since we are assuming (4F) fails, πx ψl, π2ψ 1.

Now O'> is an S2-subgroup of C(π9j) so by (2B), <;> is an S2-subgroup of

C{π). Thus C(7r) = <y>O(C(τr)), moreover Z) normalizes O(C(π)) since Λ and

y2 invert π. Let J? be an 5p-subgroup of O(C(π)) admitting D; by assump-

tion \R\^.q\ql. On the other hand, the Brauer-Wielandt Theorem shows

that \R\=q\q\. If R^RnCUi) for i = 0, 1, 2, then lΛol = |/?il = I-R2I = M 2

By (4B) R0 = XaXb where « G {1,-1}, ^ e {2,-2}. Since <π> O(C(τr)), π be-

longs to i?0. Since the S^-subgroups of Lx and L2 are T.I. sets, it follows

that Ro = XχX2. An argument already used several times gives

i?i = {XaXb)
v, R2 = {XcXd) ,

where a, c e {1,-1}, b, d ^ {2,-2}. Thus i? contains the abelian subgroup

<τr> x (XcXd)1*2 of order greater than qxq2. Since J 2̂ and X^2 are conjugate

in G, we have that c(X2) == 0 (mod φqtfj, contrary to the assumption that

(i) of (4E) holds.

In the next two lemmas we shall assume \G\ is divisible by q\q\. By

(4F) there exists an element πψ\ in Xx or X2 such that c(π)=0 (mod

Set {α,^} = {1,2}, and choose β to be that subscript such that π <= Xβ.
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(4G) If q\q\ divides |G | , then q\q\ divides c(Xβ)9 where β is chosen

as above.

Proof. Choose π ψ 1 in Xβ so that c(π) = 0 (mod q\q\)9 and let M=O(C(π)).

Since D normalizes M, we may choose an Sp-subgroup R of M which

admits Zλ By (3C), C{π) = LαM and Lα Π M = 1, so that |J?| ̂ qlq\. We

define ^ = R Π C(/<) for i = 0, 1, 2, and note that RQ ̂  C(j) Π M ^ Z# by

(3C) (iii), so that \R0\^qβ. Since \RX\ and ]j?2| are not greater than

qaqβ9 it must be the case that Ro = Xβ and 1^1 = \R2\ = qaq^. Moreover,

by an earlier argument we may conclude that

Ro = Xβ, Rλ = {XaXb)
v, R2 = {XcXd) 9

where a, c e {1, —1}, b, d e {2,-2}. But now /ί normalizes R09 Rί9 and

i?2, and so H normalizes R — RQRXR2 as well. Conjugating the inclusion

π^Z(R) Π Xβ by H then gives Xβ^Z(R), so that Xβ^Z(XaR). This com-

pletes the proof.

(4H) Suppose the hypothesis of (4G) holds. Let K = 0{C(Xβ))9 and

P = XαM, where M is the Sp-subgroup of K. Then the following hold:

(i) M/Xβ is elementary abelian of order q\q\.

(ii) With a suitable choice of notation

P = CXJty (X-aXβ)
1*(XaXβ)it or

P - (Xα^) (X-ΛX-βnXaX-β)*\

Proof. MjXβ is abelian of order q\q\ by (3B), (4G). Let M^

for ί = 0, 1, 2; we have Mo = Xβ and [ A ζ , ^ ] ^ ^ . Since Mx and M2 are

elementary abelian, it follows that M/Xβ is as well, which proves (i). Now

Mx = (Xa

aX
bβ)\ M2 = [XIX$*\

where α, c e {l,ωβ}, 6, d e {l,ω^}. Since Xβ^Z{P), we see that X "̂1 ^ C(XJ),

XΫ^C(Xl), so that <Xv

β'
la, Xfcy^C(Xa). Suppose a = c, so that

<Xfa, Xΰ

β

2c) = <Xl Xfy. Then (Xβ, X}, Xf><C(XJ, and so in turn,

<Xα, XJ, X^y^C{Xβ). Conjugating this last inclusion by ωΛ then- gives

<Z_α, XlΛf Xlly^C(Xβ). In particular, <Xα, X-ay*£C(Xβ), which is im-

possible since jx φ C(X3). Thus <2 ^ c. By a suitable choice of notation,
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we may assume a = ωα, c = 1. Now <X^, X^2} ^ C(X^). Conjugating

this inclusion by ωΛ then gives {Xh^\ Xp>^C(Xβ). \ϊ bψd9 then <Xβ,X-βy

^C(Xβ)', which is again impossible since j1 <ί C(Xβ). Thus b = d, and the

proof of (4H) is complete.

§5. We shall prove in this section that q]q\ divides \G\ if it is not

the case that q1 = q2^ 11. Set E = (n,j). By the final remark of §2,

C{E) = (σ19 σ2, x, n>, which has the normal abelian 2-complement (σ\9 of).

Set

V = <σ\,σ2

2>, V1 = <σ\>, V2 = <σ2

2>.

Since N(E)/C(E) is isomorphic to 53 by (3A), there exists an element ζ of

order a power of 3 in N(E) permuting n, nj, j cyclically. By (1. 9) the

elements τ19 r2 e N{E), and indeed, τx inverts V1 and centralizes V29 τ2 in-

verts V2 and centralizes Vx. Since x — τxr2, x inverts V. Thus

(5. 1) N(E) = <V x E, τί9 τ29 ζ>.

Let Ϋ be the character group of V. We define the following subsets

off:

Ϋ2={λeΫ:

where 1 stands for the trivial character of V. The union Ϋ = M U iV U {1}

is disjoint, and

(5. 2) |M| = !/lt;2 -v1-v2 + l = (vί-l) (v2 - 1),

|iV| = (Vl - 1) + (υ2 - 1),

where ^ + ε = 2^. An element h of iV(£) induces an action on V by the

equation λh{gh) = λ{g)9 g^V.

(5A) Suppose there exists an orbit of length 3 in Ϋ under the action

of ζ contained in M. Then \G\ is divisible by q\q\.

Proof. If λ is a character in this orbit, then the hypothesis implies

that the orbit of λ under N(E) has 12 distinct characters. As a character

of VEjE, λ induces a character λ* of C(E)jE of degree 2 with 6 conjugates
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in N(E)/E, which by [1] corresponds to a block B of G with defect group

E. In N{E) Π C{j) these conjugates form 3 orbits of 2 characters each,

which then correspond to blocks Bί9 B2, Bz of C(j) with E as defect group,

and by [5], B? = B for / = 1, 2, 3. It is easily seen from the structure of

C(j) that each J5{ has four irreducible characters of degree (q1 — ε) (q2 — e)

Since n — nj in. C(;), there exist blocks bn, bi2 of C{n,j) = C{E) such that

bCiψ = b^ψ = Bi In particular, Bi has one column of decomposition num-

bers from each of the sections of C(j) represented by 1 and j , and two

columns from the section of n. The degrees of the corresponding modular

characters are (qx — ε) (q2 — ε), {qx — ε) {q2 — e), 2, 2 respectively. B itself has

one column from the section of 1, and 3 columns from the section of j .

The corresponding degrees are /, {qί— ε){q2 — ε), {qx — ε){q2— e), (qx — ε)(q2 — ε),

where / is an integer. We can assume that the matrices of decomposition

numbers for Bί9 B are

1

1

1

1

1

1

1
-J

1

J

1

- 1

1

- 1

δ

-δ

-δ

δ

where δ = +1, δ€ = ±1, / = 1, 2, 3.

Apply now the formula of [2] III (2A) to the groups G and C(j) with

π =[2/1 = V2 = j and the column of decomposition numbers of the modular

character of C{j) in Bit A computation then gives

Thus q\q\ divides \G\.

(5B) Let {a,β} = {1,2}. Suppose Vβ¥=l and ζ centralizes Vβ. Then

Proof. As in the proof of (3F), we can verify that the conditions of

(3E) are satisfied in X = C(Vβ)IVβ. The corresponding Z and L are VβlVβ

and LaVβlVβ respectively, and so qa^7.

(5C) \G\ is divisible by (qxq2)
z unless one of the following cases-holds:

(i) qx = q2 = 11.

(ii) & = & = 9.
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(iii) min {q19q2} = 3, 5 or 7.

Proof. If Vι = V2 = 1, then necessarily qx = #2 = 3, a case contained in

(iii). If V ψ 1, and ξ* centralizes V, then necessarily VΊ or V2 is non-trivial,

and the result is implied by (5B). Thus we may suppose that V ¥= 1> and

moreover, ζ does not centralize V. In particular, ζ does not centralize V.

If ξ* has an orbit of length 3 in Ϋ contained in M, then (qxq2)
z divides \G\

by (5A). Thus we may suppose that no orbit of length 3 of ζ in Ϋ is

contained in ifiΓ.

Let r be the number of characters in M fixed by ζ. The remaining

{v1 — 1) {v2 — ΐ) — r characters in M then belong to 5 orbits of ζ which meet

N. Let t be the number of orbits of length 3 of ζ contained in N, and

let w be the number of characters in N fixed by ζ. The fixed-points of

ζ in Ϋ form a subgroup T^ < Ϋ of order 1 + r + w. Since there are a

total of s+t orbits of ζ of length 3 in V, we have

(5.3) \W\ = \Ϋ\-3{s + t).

Moreover, each such orbit contains one or more characters in Nf so by

(5.2)

(5. 4) 5 + t ^ vx + v2 - 2

\W\ divides \Ϋ\ — \W\, and since \Ϋ\ and \W\ are odd, it follows that

2\W\ divides \Ϋ\ - |T^I. This together with (5. 3) then gives

(5. 5) 3(5 + 0 = 0 (mod 2\W\).

In particular, \W\ < - | - {s + /), and so \Ϋ\<-^-(s•+ t) by (5.3). Using

(5. 4), we then obtain the inequality

(5. 6) 2v1v2 ̂  9(vi + ^2 — 2).

Suppose f! > 5 and z;2 > 5. (5. 6) then implies that υx ̂ 9 , υ2 ̂  9. If

^ = 02 = 9, then s + / ̂  16 by (5. 4). But (5. 3) and (5. 5) cannot simul-

taneously be satisfied. If υx = v2 = 7, then s + t ^ 1 2 by (5. 4), and s + t = 12

must be the case; otherwise 2|ΐίΊ > 3(5 + t). But if s + t = 12, then

2|I$Π =26, which does not divide 36. If {υ19v2} = {7,9}, then (3K) would

be contradicted. By a relabeling of indices, we may thus assume υ2 ̂  5. If

v2 = 5, then v^27 by (5.6), and (2A), (3K) then imply that q1 = q2 = 9

or q1 = q2 = l l . If v2<5, then q2^7. This completes the proof of (5C).
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(5D) Suppose m i n [q19q2] ^ 7 . If qί¥=q29 t h e n \G\ is divisible by

(q&Y

Proof. We choose notation so that qx > g2 = p, where p is 3, 5 or 7.

If p = 3, let R be the subgroup of L1 given by (3F) if p = 5 or 7, so that

t;2 = 3, let 7? = (Fj)3. The proof of (3F) shows that in every case, 1C(J?)1 is

divisible by pK Let P then be an Sp-subgrouρ of C(R) containing X29 so

that Z(P) ̂  C{X2). Since C(X2) = LXK, where K = 0(C(X2)), any element π

in Z(P) may be written in the form π = cd, where c is a ^-element in Lj

and d^K. Now P^C(R) and so [π,R] = 1. On the other hand [π,Λ] =

[c, R] (mod ϋC). Thus [c,/?] ̂  Lx Π ϋΓ = 1, and indeed, c = l since c is a

^-element. We have thus shown that Z{P) ̂  M, where M is the S^-subgroup

of K. If Z(P) Π X2 = 1, then certainly M > Z 2 , and i? has non-trivial fixed-

points on M/X2. If Z{P) f) X2>1, then X2 ̂  Z(P) since X2 has prime order.

In this case, P^C{X2), and the above argument showing that Z(P)^M can

be applied to yield P-^M. Again M>X2, and R has non-trivial fixed-

points on M/X2. Thus (ii), (iii) or (iv) of (4E) must hold, (iv) is impos-

sible by the proof of (IE) and the fact that R has fixed-points on M/X2, and

so (#i#2)
3 divides \G\.

§6. We assume from now on that \G\ is divisible by (q&Y Choosing

notation as specified in (4G), we have the two cases

Case A: P = (X«Xβ) (X-aXβ)\XaXβ)*\
(6. 1)

Case B: P = (XaXβ) {X^X^)v(XaX^\

(6A) P Π Pωiω* = 1.

Proof. Let P" = Pωi°\ Since H normalizes P and P", it follows that

H, and in particular D, normalize P Π P~. Since P Π P ' Π C(iϊ) = 1 for

i = 0, 1, 2, it follows by the Brauer-Wielandt Theorem that P Π P" = 1.

For each w in T7 = N{H)jH^ let α>(w) be a coset representative of w in

N{H). We define the subgroups

Pi = P Π fiKίc;)-1/^),
(6.2)

P££ = P Π αKu ^P-ωίw).

Clearly P'w and P2 are well-defined and admit H. If r e M^) and w=Hr,

we shall occasionally write P£, P? in place of P'w9 PZ. We shall call a
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subgroup of the form Xv

r\ r e {±1, ±2}, i = 0, 1, 2, appearing in (6. 1) a

root subgroup of P.

(6B) Let w &W. Each root subgroup of P is contained in Pi, or P'J,.

PL PZ are the products of the root subgroups of P contained in them, the

root subgroups being ordered from left to right in the order they appear

in (6. 1). P = Pr

wPl = PZPί, and P(υf)PZ = 1.

Proof. It is clear from (6. 2) that each root subgroup of P is in P'w or

P'ί. Moreover, P'w n PS = 1 by (6A). Since P'w and P£ admit A P'w and

PS can be factored as required by the Brauer-Wielandt Theorem. Finally,,

I P i I \P'i\ = (Q1Q2)3, so that P= P'wp» = PZPί.

(6C) With suitable notation, case B of (6. 1) holds.

Proof Suppose case A of (6. 1) holds, so that

P = (XaXβ) (X-aXβ)
v (X«Xβf.

Since [Xf, Xβ] = 1, we have [Xa9 XVβ] = 1 by conjugating by η. Conjugating

the last relation by ωβ, we have as well [Xa, Xl*β] = 1. Now Piί=XΛXlΛXl\

where ω{w) Ξ ω^ (mod H)9 so in particular

Thus [XIα, Xf] = 1, from which we conclude that [Xll, Xa] = 1 by conju-

gating by η. Conjugating the latter by ωβ gives [X!α, Xa] = 1 as well. We

have thus shown that

<Xβ, X\, Xl2

β, Xll Xl«>

Let g be any element in Xv

β, X?β, Xll, or X\. If K = 0{C{Xa)), then

C{X9) = LβK by (3B), so we may express g = cd, where c is a ^-element in

Lβ and d e K. Let yt, ί = 1 or 2, be the involution in D commuting

with g. Since D normalizes K9 it follows that [ji9 c] e K. On the other

hand, D normalizes Lβ9 and so [ji9c\& Lβ. Thus L/ί, c] = l, since LβΓ\K=l.

The element c then centralizes D = </, ./*>, which implies that c = 1. We

have now shown that

where M is the Sp-subgroup of K. If Mi = M Π C(;έ) for t = 0, 1, 2, then.
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and necessarily these inclusions are equalities by the Brauer-Wielandt Theo-

rem. If we define P=XβM, then \P\ = {qxq2f and XΛ^Z{P). Replacing

XΛ by X-t and P by Pω* then gives case B for P in C(Xα).

We may henceforth assume that case B in (6. 1) holds. The following

table gives the factorization of PZ for w ^W in this case.

ω(w) PI

1 1

Xl0

(6. 3) ω.η

η2

Cύβ

We define the subgroup B = HF. Since H^N(P) and HΓ\P=1, the

order of B is {qx — 1) (#2 — l)q\q\.

(6D)

By the definition of B and (6B) we have Bω(w)B = Bω(w)HPίPZ.

Since the transform of ϋΓP£, by ω(w )""1 is contained in B, it follows that

B ω { w ) B — Bω{w)PZ. N o w s u p p o s e bω{w)u — b1ω{w)u1 f o r e l e m e n t s b, bx^ B

and &, &! G PS. Then b1xb — ω(w)uίw
1ω{w)'1. Since b1xb is a p-element

of B and P<] P, it follows that b^b e P. On the other hand, ωWu&^ωiw)-1

e (yHPίήiW" 1 ^?" , Thus δ^δ e P Π P" = 1, and so bx = ft, ^x = «. This

completes the proof.

(6E) Let r e {ωα,ό>^2}, and «; e W. Then
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(i) rBω{w) c Bω{w)B U Brω{w)B,

(ii) ω(w)Br £ Bω{w)B U Bω(w)rB.

Proof. It suffices to prove (i), since (ii) follows from (i) by taking

inverses of the subsets in question. Now rBω(w) = rHPω{w) = HrPfrR"ω{w) Q

BrP'lω{w). If {P'ϊ)ω{w)^P, then BrPflω(w) <= Brω{w)B and (i) holds. Assume

then that (P;T ( W ) :<P", Since P? = Xα if r = ωα and P? = A ^ if r = ω^2,

it easily follows that ( P ; ' ) r ω ( w ) ^ P . But now BrP?ω{w) = BrFίr'K rω{w),

and so it will be sufficient to show that rP'ίr'1 s .BrP?. This, however, is

a consequence of the corresponding double coset decomposition in the groups

SL(2,ft) and SL(2,q2).

(6F) Let G = BN{H)B. Then G is a subgroup of G of order

(tfi&j)3 (QI — 1) (tff — 1) (1 + tfi#2 + tfid). G is the disjoint union of double co-

sets Bω(w)B, where w &W.

Proof. G is closed under group multiplication by (6E), so G is a sub-

group of G. We claim that B Π N(H) = H. Since H^B Π N(H) and

B = HP, it follows that if £ Π N{H)>H, then there exists an element πψ\

in P such that π^BΠN(H). But then [TΓ,H]^ PΠF= 1, so that π^C{H)^ C{D),

which is impossible by (4. 1). This together with the preceding facts is

enough to show that G is the disjoint union of the double cosets Bω{w)B

with w e W, (see [8]). The order of G then is immediate from (6D) and

(6. 3).

§7. We continue with the notation of §6.

(7A) Let D normalize the p-subgroup A of G, and define Λi = ΛnC{ji)

for i =0, 1, 2. If Λi^Z(Λ) for some / in {0, 1, 2}, then [At-19 Λi+ί]^Λi9

where the indices are reduced modulo 3.

Proof This is a restatement of [3] II (7E).

(7B) The root subgroups of P contained in M satisfy the following

commutator relations:

(i) [Xl, XT] = 1 or Xβ, [Xlβ9 X%] = Xβ.

(ii) All other commutator relations between root subgroups in M are

trivial.
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Proof. We have lXlβ9xT]=[Xβ, xΐΐ^ = 1, and [*!*,*! J=[X),, X\f^

= 1. The remaining commutator relations between root subgroups in M

not of type (i) are clearly trivial, so (ii) is proved. Since H is transitive

on the non-identity elements of Xβ, it will be sufficient to show lX?β, Xlβ] ψ 1

in order to prove (i). But if \X\ x ζ ] = 1, then [Xβ9xf] = [X%,Xllftv=l>

so that (Xβ,X-β>v2^C{Xβ). This is impossible since jz$C(Xβ).

(7C) X* stabilizes the following chain of subgroups:

lβXTxl*x%Xβ t> xTxlXJβXβ > xl«x%Xβ t> x!2μ^ > ^ t> 1.

Proof. The second term of this chain is M, which is normal in P.

Since M\Xβ is abelian, the remaining terms are clearly normal in their

predecessor. The chain is then a normal one. Now [Xη*,Xβ~\ = 1; conjugat-

ing this by cύβη2 gives [Xa, X%~\ = 1. Thus Z t t even centralizes X%Xβ. The

complex X^Xl^Xl^Xβ is a subgroup by (6. 3) and the factor group XaXlΛXl2βXβlXp

admits D. Since XlβXβjXβ is central in this factor group, we have by (7A)

that lXa9Xla}^XllXβ, so that [Xa,X\XΪβXβ1 <X%Xβ. Xaxtx\X%Xβ is.

a subgroup by (6. 3) and the factor group of this by X%Xβ admits D. Since

[Xl\xl.l^Xβ and [Xa,XlA«£XΪβXβ9 (7A) implies that [Xa,xf]^XlaxTβXβ

so that [Xa,Xl*XlaXΪβXβ]^XlaXΪβXβ. Finally, PIXlaX%Xβ admits A and

the image of x Γ in this factor group is central. A third application oΓ

(7A) gives [X^Xlβl^xVxlzXllXβ, which completes the proof.

We construct one other subgroup 0 of G along lines similar to those-

for G. Define then

P = XβXlβXTβ, N = <#, coβ, η\ W = NIH.

We note that H normalizes the subgroup P and that P Π Pω0 = 1. For

each ίOGlf, let

Pi, = P Π ω(w)-ψω{w)9

Pi = P n βM

P4> -Pίί are well-defined subgroups of P, and each root subgroup of P con-

tained in P is either in P£ or Pi. Moreover, P4P£ = PzP'w. The following:

table gives the factorization of Pi.
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ω(w) Pi

1 1

(7. 1) ωtf X%

η

v2

ωβ P

Finally, define B = HP. B is a subgroup of order {qx — 1) {q2 — ΐ)qs

β. The

next three lemmas are the analogues of (βD), (6E), (6F), and are proved

in much the same way.

(7D) \Bω(w)B\ = \B\ \P'ί\ for WEΞW.

(7E) Let r <= {ωβη,ύ)βη2}, and let w e W. Then

(i) rBω(w) S Bω(w)B U Brω(w)B.

(ii) ω{w)Br Q Bω{w)B U Bω{w)rB.

(7F) Let 6 = J5iVJ5. Then (5 is a subgroup of G of order g|(g|—1)

(^ + 1) (^ — 1). ό is the disjoint union of double cosets Bω{w)B, where

(7G) Let C(Λ = 6 Π C(Λ. Then C(i) = L ί̂Γ.

/̂  The inclusion C(j) ̂  LβH is clear. Suppose there exists an ele-

ment c in C(;) not in LβH. Since C(;) = LXLJH and L* = XaH* U X^H^^X^

we may express c = ẑ;, where M e L̂ /f, t; e XΛ or XJi^ωJί^, and v =̂ 1.

If t; e Zα, then υ = ^"Jc e (5 Π X9. Since Pί l 6 = P is an S^-subgroup of

0 and P~^(P,Xa>, this is impossible. If v^X^ω^X^ then !; = ^"1cG(5n5ίw(χJB.

By (6F) and (7F) we see that 0 n 5ωαJ5 = φ. Thus C(;) = L ^ .

Now [Xβ9Xlβ] = 1 and [X/3,z!^] = l. If we conjugate these relations

by η and ωβη respectively, we then have [Xβ, Xlβ] = 1 and [Xl$9 X
Vβ2] = 1.

The subgroups

(7.2) U = X}XΪβ, U* = XlβXVβ

are thus abelian of order q%.

(7H) Let ί/, U* be defined as in (7.2). Then the following hold:
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( I ) 07><D,η>.

( I I ) \U\ = \U*\ = q\\ U and U* are normalized by C{j);

unu* = U(] cu) = u* n c(j) = 1.
(III) All involutions in CC/) different from j are conjugate in C(j).

(IV) [<?: ί/<*(;)| <^g + ^ + l.

( V) Every class of CC/)-conjugate elements of U meets C(Λ) = C{j\) Π ό.

Proof. (I) is obvious. By definition \U\ = \U*\=ql. Now [X\XΪβ\=Xβ\

conjugating this by ωpf- then gives [XVβ,Xβ']= XvJβ, which implies that

Xβ^N(U). Since ωβ(ΞN(U) as well, it now follows that Lβ^N(U), and so

C{j) = LβH^N{U) by (7G). Since ά)αω^ normalizes C{j) = LβH and trans-

forms t/ onto t/*, we have CU)^N(U*) as well, ί/ and U* are inverted

by i, so necessarily C(i) Π ί/= C(j) ίl ί/* = 1, To complete the proof of

(II), we note that U Π U* admits D, ί/ ί l ί/*n C(Λ) = 1 for t = 0, 1, 2, and

apply the Brauer-Wielandt Theorem. (IV) holds since \ό: UC{j)\=q2β+qβ+l.

The group C{j) = L^iί can be described in the following manner. Let

Fq be a Galois field containing both F S l and Fq2 as subfields. Since ̂ x —1,

#2 — 1 are divisible by the same powers of 2, we may choose an element

d in Fqx Π Fq2 of order a power of 2 such that 3 is a non-square in i 7 ^

and in Fq2. If ^ = <52 = δ in the notation of the beginning of §3, then hQ

acts on L^ as ί 1

 δ \ and hi = h^δ'^h^δ'1). Let SL(2,qβ) be embedded

in the natural way in GL{2, q), and let Z be the subgroup of GL{2, q) defined

by

If φ is the inverse of the isomorphism φβ of SL(2,qβ) onto L ,̂ then 0 can

be extended to an isomorphism ψ from LβH* onto SL[2,qβ)Z by defining

That ψ is an isomorphism follows from the relations [Lβ,£ΓJ=1, LβV[H0. = {

Finally, 0 can be extended to an isomorphism Ψ from L^iί onto <SZ,(2,

Z, ( X

 3 ) > by defining

Ψ'
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That Ψ is an isomorphism follows from the fact that h0 acts on Lβ as

ί1

 δ \ and that

Suppose a, c are matrices in <SL(2, qβ), ( - J> and Z respectively such

that (ac)2 = ζ1

 ±y Since (ac)2 = a2c\ it follows that

But the intersection Z Π <SZ,(2, q$)9 ( ~j > is easily seen to be

r in

Thus c must be of the form ί ^ j , where /z e <5>. Since f ^

-i) ( 2J) we see that αc G <SL(2, g )̂, Γ ^ J >. The normal subgroup

oy of L̂ ϋΓ then contains all involutions of L0H.

To prove (III) it will be sufficient to show that all involutions in

, ^ ) , ( δ p other than ( _^ are conjugate in (SL(29qβ)9( δj,

Z} to ( _ i ) If i is such an involution, then ig = ( _ - , ) for some

g e GL(2, ^ ) . Now we can express g = cd, where c e SZ,(2, ̂ ) and rf is a

diagonal matrix, so that ic = ( _ i ) = ( _ i ) Finally, ί/ admits L^/ί

and i inverts U. It is a easy consequence of the proof of (IE) that Lβ is

even transitive on U — {1} so that (V) holds. This completes the proof of

(7H).

By (7H) and [3], I, there exists a Desarguesian plane π whose points

and lines are in 1-1 correspondence with subsets of 6 of the form g~ιjUg

and g^jU^g, g e 0. Moreover, there exists a homomorphism / of ό into

coll(τr), the group of collineations of π9 such thst f(0) contains the pro-

jective group PSL{3,qβ). Thus we have a normal series

(7. 3) (?]>(?0[>.ίΠ>l,

where K is the kernel of /, \K\ is odd, ό/00 is cyclic, and ό0IK~PGL

(3, qβ) or PSL(3, qβ). In particular, | OJK\ = ~γ Qβ (Qβ - 1) (Qβ ~ D» w h e r e

d = 1 or 3, the latter case occurring only if qβ = 1 (mod 3). But by (7F)>



180 PAUL FONG AND W.J. WONG

\0\ = q\farj - 1) (qβ + 1) (qΛ - 1). Thus d(qΛ - 1)1 (qβ - 1) is an integer. If

qa < qβ and q* = pw , qβ = pnβ, we may write nβ = wα + /, where ί ̂ 1 .

But then

P»β - 1 = p1**^ - 1 > p'(pn - 1) ̂  3(?A - 1),

and d{qa —l)l{qβ — 1) cannot be integral. Thus qa ^ qβ9 so that by (4E),

#<* — qβ or qa = q^. This together with (5C) and (5D) gives

(71) If G is a finite group with property (*) and (2A) (iii) holds, then

qx and qz are equal, or one is the cube of the other.

This completes the proof of the theorem stated in the introduction.

We conclude with an identification of the group 0. Now the preced-

ing proof shows that qa = qβ or qa = q^. Let qβ = q9 and define Ko — {H)*'1*

Clearly Ko = 1 if qΛ = qβ, and Ko = {H^-1 is cyclic of order q2 + q + 1 if

q^ = q^. In either case, Ko is a cyclic characteristic subgroup of H, so that

<α>i>α>2,7> induces an abelian group of automorphisms on Ko. In particular,

η must centralize Ko. Ko then centralizes (Lβ,H,η) = 6, and so K0^LZ(ό).

Thus K0^K, where if is the normal subgroup of (7. 3). Moreover,

\0/K0\ =q*(q*-l)(q2-l) by (7F).

If q ^ 1 (mod 3), then PGL(3, q), PSL(3, q), and SL(3, q) are isomor-

phic groups of order q3(q* - 1) (q2 - 1). Since \ό0: K\ ^qs{qz - 1) {q2 - 1) in

this case, it follows that 6 = 609 K= K09 and OIK0^SL(39q).

Assume then that # = 1 (mod 3). If 00IK~PGL(39q) the above argu-

ment will show that G = Go, K= K09 so that OjK0 — PGL{39q). We assume

t h e n t h a t 00IK~PSL{39q)9 so t h a t e i ther \ό: όo\ = 3, \K:KO\=1, or

J6: 6 0 | = 1, I if: Ko\ = 3. In the latter case, 0/K0~SL{39q) or PSL{39q)xZz

by a result of Steinberg, [17]. The remaining case ]6: όo\ = 3 , K = K09

leads to a contradiction if 0/K & PGL{39q). Indeed, since # Ξ = I (mod 3),

we have

q2 + q + 1 Ξ= 0 (mod 3), ^2 + 0 + 1 =£ 0 (mod 9),

so that \N\ contains the full power of 3 dividing \ό\, and thus NnOo<N.

On the other hand, Lβ has no normal subgroups of index 3, so that Lβ9

and in particular, Hβ9 are contained in ό0. The definition of incidence

in π given in [3], I, shows that the point jU is not on the line jU*. The

q + 1 involutions j29 j\t with t in Xβ belong to q + 1 points of π9 namely

the q + 1 subsets of the form η~2jU-η2

9 s'^jU-ηs with s2 = t9 s in Xβ res-
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pectively, and these points all lie on the line jU* by [3], I, (2D). More-

over, these q + 1 points are distinct. Indeed, if η"2jUη2 = s~ιη~ιjUηs, then

η~2Uη2 =; jt s~ιη~ιUηs9 where t = s2. This is impossible since jt has even

order. If s^η^jUηs, = s-ιη~ιjUηs, then s.s'1 e C(j) Π N(UV) ̂  N(C(j) Π Uv)=N{X-β).

Since s^^eJϊjg, this implies that Si = s. But the collineations on π induced

by HΛ leave the point jU fixed and the line jU* pointwise fixed, so that

H*^00. Thus HxH2^Oo. Since \H: HXH2\ = 2 and N/H is generated by

involutions, it now follows that N^ Go, which is a contradiction. We have

thus proven

(7j) Let q = min {q19q2}, and let K0 = {H)q~1. Then Ko is central in

6, and OIK0~SL(3,q), PGL{3,q), or PSL{3,q)xZs.

§8. We now indicate how the arguments of [3], II, may be modified

in order to prove (3E). Accordingly we shall adopt notation conforming

in an obvious way with that of [3], II, so that a number of symbols al-

ready used will have different meanings in this section. Thus we shall

assume that G is a finite group satisfying the following conditions.

(I) G has an involution j such that C(j) = ί/xLθΊ>, where L~SL{2,q),

U is a cyclic group of order dividing -ί- (q + e) with ε = ± 1, q == s (mod 4),

and j ί is an involution inducing an automorphism of class Tx on L.

(II) y ~ Λ in G.

We wish to show that \G\ is divisible by g3 if g > 3 , G — M n or SL(3,3) if

# = 3, and # ̂  7 if U = 1.

From (1. 8), we see that an S2-subgroup S of C(j) is of quasi-dihedral

type, with center <;>. As in (2B), we see that S is an S2-subgroup of G.

Now (I), (II) imply that G has no normal subgroup of index 2.

If ε = — 1, then C(j) is isomorphic with the quotient group of GL(2, q)

by the subgroup of order -^-(q — ϊ)l\U\ in its center. Then the desired

results follow immediately from Theorem (lA) of [3], II .

We henceforth assume that ε = 1. Setting D = <;,;*!> and using (1. 9),

we see that C{D) = DxU xW, where W is cyclic of order -\- {q +1). Also,

from (1. 8), L contains an element / of order 4 which is inverted by j19

and C(f) has order 2{q — 1)|J7|. The element t = fjx is an involution such

that /: h -> y2 = jjl9
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As in [3], II, we can apply the results of [2], III, §8. The principal

2-block of G consists of four irreducible characters χ0 = 1, χ19 χ29 χz of odd

degrees xi = χt(l), and 2n~2 irreducible characters XA9 X(μ) with l<μ^2n~2—1,

of even degrees, where 2n is the order of the 52-subgroup 5 of G. The

relations (3. 1), (3. 2) of [3], II hold, and there exists a function φ on C{j)

such that ± 9 is an irreducible character of C(j) whose kernel contains j9

and such that

ί XiUΰ) = ~Λ + δ1φ{δ)f UJ9) = 2̂ ~ δ2φ{g),
(8. 1)

I UJQ) = -*a, UJΰ) = -2δ2 + δ2φ(g)9 X(μ)(jg) =

for 2-regular # in CO'). Moreover, we have

φ(l) = 2 + 2n"2 (mod 2n~ι).

Since C{j)KJ> is isomorphic with the direct product of PGL{2, q) with a cyclic

group, its irreducible characters have degrees 1, q, q — l, q + 1. It follows

that φ is an irreducible character of C[j) and that

(8. 2) φ(l) = q + l.

Further, the relation (3. 6) of [3], II holds, while the relations (3. 7) are

replaced by

(8. 3) δ1x1 ΈΞ=2 — q, δ2x2 Ξ= — q, δ3x3 = — 1 + 271"1 ( m o d 2n).

In particular, the degrees 1, x19 x29 x$ are all distinct. The order formula

(4F) of [3], II is replaced by

(8.4) \G\ =

(8. 5) μ = (l + -1-) xι(xί + δί)l(xί - ^^) 2 = ( l - -γ)x2(xz + δ2)l(x2 + δ2q)\

The lemmas (4D), (4E), (4H) of [3], II may now be shown to hold in

the present situation, without any significant change in their proofs. We

then have

(8A) It suffices to consider the case that Z(G) = 1. If this is satisfied,

then C(z) = C(j) whenever 1 ψ z e Z(C{j)).

Proof. Since Z{G) < Z(C{j)) = Uφ and j φ Z(G), it follows that Z(G) ̂  U.

If Z{G) ψ 1, then we can use induction on the group order to show that

\GIZ(G)\ and hence \G\ are divisible by q\
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The second statement is proved as in [3], II, (4G), except for the

possibility that

4 = 5, \U\ = 3 , \G: C(U)\ = 3 .

In this case C{U) must be normal in G, for otherwise G would have a

quotient group isomorphic with the symmetric group of degree 3 and so

would have a normal subgroup of index 2. Since C(j)/U has no normal

subgroup of index 3, C(j)^C(U). Then Z(C(U))^Z(C{j)), so that Z{C{U))

= U. Hence U is normal in G, and GjC{U) is isomorphic with a subgroup

of the automorphism group of U, a contradiction. Precisely as in [3], II,

§9, we may prove

(8B) lϊUψl and Z(G) = 1, then \G\ is divisible by q\

From now on we assume that U = 1. The arguments of [3], II, §10

apply, with rather obvious changes because the relations (8. 1) to (8. 5) hold

rather than the corresponding relations of [3], II. Thus the contradiction

at the end of the proof of [3], II, (lOE), which now applies for prime

divisors p of / = -=- {q + 1), stems from the relation

where T = 3 or 5/3, which leads to the relation 3^ = t(q + 2) or 15^ = /(4+ 4),

where t is an integer, an impossibility for 4 Ξ= l (mod 4). The final contra-

diction on p. 150 of [3], II becomes the contradiction xx = q\q — 2)l{2q — 1).

We thus obtain

(8C) If U = 1, then I = ±-(q + 1) is 1, 3, 5 or 15.
Δ

The possible values for q are then 5, 9 or 29. I n each case we can

compute the possible values for x19 x2, xz. We have the eleven cases

(1) tf = 5; α?i = 125, x2 = 21, xz = 105; \G\ = 24 32 53 7.

(2) q = 5; x1 = 19, £ 2 = 75, x3 = 57; \G\ = 24 3 2 5 2 19.

( 3 ) q = 5; x1 = 359 x2 = 85, x3 = 119; | G | = 24 3 2 5 7 17.

( 4 ) 4 = 9; 0^ = 729, α;2 = 73, xz = 657; 1G | = 25 36 5 73.

( 5 ) 4 = 9; 0^ = 135, α?2 = 201, a;3 = 335; \G\ = 25 3 3 53 -67.

( 6 ) 4 = 9; tf! = 71, x 2 = 567, α 3 = 497; | GI = 25 34 5 7 71.

( 7 ) 4 = 29; a?! = 29-41, tf2 = 17-29, a?3 = 17-41; | G | = 24 3 2 5 74 -17-29-41.
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(8) q = 29; α1 = 293, x2 = 3-271, α3 = 3 29-271; \G\ = 24 32 5 7 293 271.

(9) 2 = 29; &! = 23-29, tf2 = 3 29 37, αj3 = 3 23 37; | G | =2 4 32 52 73 23 29 37.

(10) (? = 29;α?1 = 3 13' 29, »2=29 113, α?3 = 3 13-113; 1G| =2 4 33 5 73.13.29-113.

(11) ^ = 29; ^ = 811, ct?2 = 33 292, »8 = 38 811; \G\ = 24 3 4 .5 .7 292 811.

All these cases except (1) can be ruled out by a combination of Sylow's

Theorem and the theory of blocks of defect 1. This completes the proof

of (3E).
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