Hiroshi Sato Nagoya Math. J. Vol. 36 (1969), 65-81

GAUSSIAN MEASURE ON A BANACH SPACE AND ABSTRACT WINER MEASURE

HIROSHI SATO

In this paper, we shall show that any Gaussian measure on a separable or reflexive Banach space is an abstract Wiener measure in the sense of L. Gross [1] and, for the proof of that, establish the Radon extensibility of a Gaussian measure on such a Banach space. In addition, we shall give some remarks on the support of an abstract Wiener measure.

An abstract Wiener measure is a σ -extension in a Banach space X of the canonical Gaussian cylinder measure $\mu_{\mathfrak{X}}$ of a real separable Hilbert space \mathfrak{X} which is contained in X densely. The idea of the abstract Wiener measure coincides with that of *the White Noise* (T. Hida [13]) and plays an important role not only in the theory of probability but in the theory of functional analysis (T. Hida [13], Y. Umemura [12], I.E. Segal [4,5], L. Gross [3] and Yu. L. Daletskii [16]).

We shall show first that any Gaussian measure on a separable or reflexive Banach space can be extended to a Radon measure on the strong topological σ -algebra (Theorem 1). With the same idea of the proof of Theorem 1, we can prove that this result is true for any probability measure on a Banach space, the finite dimensional distribution of which is Radon.

Utilizing the above result, we shall restrict the support of a Gaussian measure to a separable subspace which is explicitly constructed. Furthermore, constructing a suitable Hilbert subspace of the support, we shall show that any Gaussian measure on such a Banach space is an abstract Wiener measure (Theorem 2). L. Gross [1] showed that there exists and abstract Wiener measure on any separable Banach space. Our result shows that any given Gaussian measure on a separable or reflexive Banach space is an abstract Wiener measure. This means that the study of a Gaussian measure

Received Oct. 9, 1968.

on such a Banach space can be reduced to that of an abstract Wiener measure on a separable Banach space, and clears a new way for the investigation of a Gaussian measure on a Banach space, and makes the study of an abstract Wiener measure more meaningful.

As a corollary of Theorem 2, we shall show that the canonical Gaussian cylinder measure of a *nonseparable* Hilbert space can not be extended to a σ -additive measure in any Banach space.

Before stating the remaining results in this paper, we establish terminology and notation.

Let X be a real Banach space, X^* be its topological dual space and $\xi(x)$, $(\xi \in X^*, x \in X)$, be the natural linear form. A cylinder set in X is a set of the form

$$C = \{x \in X: (\xi_1(x), \cdots, \xi_n(x)) \in D\}$$

where $\xi_1, \xi_2, \dots, \xi_n$ are in X^* and D is a Borel set in the *n*-dimensional Euclidean space R_n . \mathfrak{A}_X is the family of all cylinder sets in X and $\overline{\mathfrak{A}}_X$ is the minimal σ -algebra including \mathfrak{A}_X . τ_X is the weak topological σ -algebra in X and $\hat{\tau}_X$ is the strong topological σ -algebra in it. Evidently we have

$$\mathfrak{A}_X \subset \overline{\mathfrak{A}}_X \subset au_X \subset au_X \subset \hat{ au}_X$$

and if X is separable, then $\overline{\mathfrak{U}}_{x} = \hat{\tau}_{x}$ (E. Mourier [8]).

Let \mathfrak{X} be a real Hilbert space. The canonical Gaussian cylinder measure $\mu_{\mathfrak{X}}$ of \mathfrak{X} is a finitely additive nonnegative set function on $(\mathfrak{X}, \mathfrak{A}_{\mathfrak{X}})$ such that

$$\mu_{\mathfrak{X}}[x \in \mathfrak{X}: \xi(x) \leq \alpha] = \frac{1}{\sqrt{2\pi} |\xi|} \int_{-\infty}^{x} \exp\left[-\frac{u^2}{2|\xi|^2}\right] du, \qquad (1.1)$$

for any $\xi \in \mathfrak{X}^*$ and real number α , where $|\xi|$ is the norm in \mathfrak{X}^* . It is well-known that $\mu_{\mathfrak{X}}$ does not have σ -additive extension to $(\mathfrak{X}, \overline{\mathfrak{A}}_{\mathfrak{X}})$, (see Corollary of Lemma 6).

Let ||x|| be a continuous norm on \mathfrak{X} , and X be the Banach space obtained by the completion of \mathfrak{X} in the norm ||x||. Since we may consider X^* as a subspace of \mathfrak{X}^* through the natural imbedding, $\mu_{\mathfrak{X}}$ induces a Gaussian cylinder measure μ on (X, \mathfrak{A}_X) as follows. If $\xi_1, \xi_2, \dots, \xi_n$ are in X^* and D is a Borel set in R_n , define

$$\mu[x \in X; (\xi_1(x), \cdots, \xi_n(x)) \in D]$$

= $\mu_{\mathfrak{X}}[x \in \mathfrak{X}; (\xi_1(x), \cdots, \xi_n(x)) \in D].$ (1. 2)

 μ is well-defined. Furthermore, if μ has a σ -additive extension on $(X, \overline{\mathfrak{A}}_X)$, then we call it the σ -extension of $\mu_{\mathfrak{X}}$ on the Banach space X and the norm $||\mathfrak{X}||$ admissible on \mathfrak{X} . If a norm on \mathfrak{X} is induced by an inner product, namely, a continuous symmetric bilinear form on \mathfrak{X} , then we call it Hilbertian. A measurable norm is defined by L. Gross [1,2] as follows. A norm $||\mathfrak{X}||_1$ on \mathfrak{X} is a measurable norm if for every positive real number ε there exists a finite dimensional projection P_0 of \mathfrak{X} such that for every finite dimensional projection P orthogonal to P_0 we have

$$\mu_{\mathfrak{X}}[x \in \mathfrak{X} \colon \|Px\|_1 > \varepsilon] < \varepsilon.$$

L. Gross [1] showed that the measurable norm is admissible.

In the last section, we shall give some remarks on the admissible norm. We shall give a necessary and sufficient condition for a Hilbertian norm to be admissible (Theorem 3) and show that there exists a measurable norm such that there is no Hilbertian admissible norm stronger than it (Example 2). This means that as a support of an abstract Wiener measure we can choose a Banach subspace which includes no Hilbert subspace of full measure. We shall also show that there exists an admissible norm which is not a measurable norm. This means that for a norm to be an admissible norm it is not necessary to be a measurable norm.

2. Gaussian measure and Radon measure.

Let X be a Banach space with norm ||x|| and X^* be the topological dual for X with norm $||\xi||$. A probability measure μ on $(X, \overline{\mathfrak{A}}_X)$ is Gaussian if for every $\xi \in X^*$, $\xi(x)$ is a Gaussian random variable with mean zero on the probability space $(X, \overline{\mathfrak{A}}_X, \mu)$. In other words, for every $\xi \in X^*$ and real number α ,

$$\mu[x \in X: \xi(x) \leq \alpha] = \frac{1}{\sqrt{2\pi v(\xi)}} \int_{-\infty}^{\alpha} \exp\left[-\frac{u^2}{2v(\xi)}\right] du, \qquad (2.1)$$

where $v(\xi)$ is the variance of $\xi(x)$.

Theorem 1. Every Gaussian measure μ on a separable or seflexive Banach space $(X, \overline{\mathfrak{A}_x})$ can be extended to a Radon measure on $(X, \hat{\tau}_x)$.

Proof. If X is separable, $\overline{\mathfrak{A}}_{x} = \hat{\tau}_{x}$ and the proof is trivial. Let X be a reflexive Banach space and let X^{**} be the topological dual space of X^{*} . Let $\overline{\mathfrak{A}}^{*}$ be the minimal σ -algebra of subsets of X^{**} with respect to which

all the functions $\xi(x)$, $\xi \in X^*$, are measurable, where $\xi(x)$ ($\xi \in X^*$, $x \in X^{**}$) denotes the continuous linear form and τ^* is the topological σ -algebra with respect to X*-topology in X** (W. Dunford and J.T. Schwartz [15], p. 419). Define a measure μ^* on (X**, $\overline{\mathfrak{A}^*}$) as follows:

$$\mu^{*}[x \in X^{**}: (\xi_{1}(x), \cdots, \xi_{n}(x)) \in D]$$

= $\mu[x \in X: (\xi_{1}(x), \cdots, \xi_{n}(x)) \in D].$ (2. 2)

where $\xi_1, \xi_2, \dots, \xi_n$ are in X^* and D is a Borel set in R_n . The measure μ^* is well defined and is Gaussian. Since all the open sets in $\overline{\mathfrak{A}}^*$ form an open basis which determines X^* -topology and since X^{**} is the topological dual for the Banach space X^* , μ^* can be extended to a Radon measure $\tilde{\mu}^*$ on (X^{**}, τ^*) uniquely (Yu. V. Prohorov [10], Theorem 1, Lemma 3 and Example 1). Since X is reflexive, we have $X = X^{**}$ and $\tau^* = \tau_X$. Therefore $\tilde{\mu}^*$ is a Gaussian Radon measure on $(X, \hat{\tau}_X)$. Since X is a Banach space, the weak Radon measure $\tilde{\mu}^*$ can be extended to a strong Radon measure $\tilde{\mu}$ on $(X, \hat{\tau}_X)$ and, it is easy to see from (2. 2), that $\tilde{\mu}$ is an extension of μ . Thus we have proved the theorem.

Remark. Without any change in the proof, we can prove Theorem 1 not only for a Gaussian measure but for any probability measure on a Banach space, the finite dimensional distribution of which is Radon.

We can therefore consider a Gaussian measure on a Banach space X as a Radon measure on $(X, \hat{\tau}_X)$.

3. Gaussian measure and abstract Wiener measure.

Let μ be a Gaussian measure on a separable or reflexive Banach space X. We use the same notations used in Section 2. Choose the maximal subset $\{\xi_{\alpha}; \alpha \in A\}$ of X^{*} such that

$$\begin{aligned} &\xi_{\alpha} \in X^{*} \text{ and } \|\|\xi_{\alpha}\|\| = 1, \quad \alpha \in \Lambda \\ &\int_{X} \xi_{\alpha}(x)\xi_{\beta}(x)d\mu(x) = 0 \quad \text{if} \quad \alpha \neq \beta, \ \alpha, \ \beta \in \Lambda. \end{aligned}$$
(3.1)

LEMMA 1. Let $\Lambda_0 = \{ \alpha \in \Lambda; v(\xi_\alpha) \} \neq 0 \}$, then Λ_0 is an at most countable subset of Λ .

$$\sup_{n} |\xi_{\alpha_{n}}(x)| \leq \sup_{\substack{\|\xi\|=1\\\xi\in X^{*}}} |\xi(x)| = \|x\| < +\infty, \text{ for every } x \in X,$$
(3. 2)

we can choose a positive number M such that

$$\mu[x \in X: \sup_{n} |\xi_{\alpha_n}(x)| \leq M] > \frac{1}{2}.$$
(3.3)

On the other hand, we have

$$\mu[x \in X; \sup_{n} |\xi_{\alpha_{n}}(x)| \leq M]$$

=
$$\lim_{N \to +\infty} \mu[x \in X; \sup_{1 \leq n \leq N} |\xi_{\alpha_{n}}(x)| \leq M]$$

=
$$\lim_{N \to +\infty} \mu[\bigcap_{1 \leq n \leq N} \{x \in X; |\xi_{\alpha_{n}}(x)| \leq M\}].$$

Since the collection $\{\xi_{\alpha_n}(x)\}\$ is Gaussian, from (3. 1), $\xi_{\alpha_n}(x)$ and $\xi_{\alpha_m}(x)$ are mutually independent if $n \neq m$. Therefore,

$$\mu[x \in X: \sup_{n} |\xi_{\alpha_{n}}(x)| \leq M]$$

$$= \lim_{N \to +\infty} \prod_{1 \leq n \leq N} \mu[x \in X; |\xi_{\alpha_{n}}(x)| \leq M]$$

$$= \lim_{N \to +\infty} \prod_{1 \leq n \leq N} \frac{1}{\sqrt{2\pi}v(\xi_{\alpha_{n}})} \int_{-M}^{M} \exp\left[-\frac{u^{2}}{2v(\xi_{\alpha_{n}})}\right] du$$

$$= \lim_{N \to +\infty} \prod_{1 \leq n \leq N} \frac{1}{\sqrt{2\pi}} \int_{-\frac{M}{\sqrt{\nu(\xi_{\alpha_{n}})}}}^{M} \exp\left[-\frac{u^{2}}{2}\right] du.$$

Together with (3.3), we have

$$\lim_{N \to +\infty} v(\xi_{a_n}) = 0. \tag{3.4}$$

Since the choice of the countable subset $\{\alpha_n\}$ is arbitrary, the set

$$\Lambda_N = \left\{ \alpha \in \Lambda; \ v(\xi_{\alpha_n}) \ge \frac{1}{N} \right\}$$

must be a finite subset of Λ for every positive integer N. Otherwise we have a contradiction to (3.4). Therefore,

$$\Lambda_0 = \bigcup_{N=1}^{+\infty} \Lambda_N$$

must be a countable subset of Λ .

LEMMA 2. Define X_{α} , $\alpha \in \Lambda$, by

$$X_{\alpha} = \{x \in X; \ \xi_{\alpha}(x) = 0\}, \quad \alpha \in \Lambda,$$

and set $\tilde{X} = \bigcap_{\alpha \in A - A_0} X_{\alpha}$. Then we have

$$\mu[\tilde{X}] = 1. \tag{3.5}$$

Proof. Let Γ be the family of all finite subsets of $\Lambda - \Lambda_0$ and define $X_J = \bigcap_{\alpha \in J} X_{\alpha}$; $J \in \Gamma$. Obviously X_J is a strongly closed linear subspace of X and the family $\{X_J: J \in \Gamma\}$ is directed. Since $v(\xi_{\alpha}) = 0$, $\xi_{\alpha}(x)$ is a Dirac measure for every $\alpha \in \Lambda - \Lambda_0$, we have

$$\mu[X_J] = 1$$
 for every $J \in \Gamma$.

Therefore,

$$\mu[\tilde{X}] = \mu[\bigcap_{J \in \Gamma} X_J]$$
$$= \inf_{I \in \Gamma} \mu[X_J] = 1,$$

(L. Schwartz [11]). Thus we have proved the lemma.

This lemma means that the measure μ is concentrated in some closed linear subspace \tilde{X} . \tilde{X} is also a Banach space with the norm ||x||. Let \mathfrak{C} be the closed linear manifold spanned by $\{\xi_{\alpha}; \alpha \in \Lambda - \Lambda_0\}$. Then the topological dual \tilde{X}^* for \tilde{X} is isomorphic to X^*/\mathfrak{C} . It is easy to see that in \tilde{X}^*

$$v(\xi) = 0$$
 implies $\xi = 0.$ (3. 6)

Let $\|\|\xi\|\|$ be the norm in \tilde{X}^* again.

Hereafter, we restrict the measure μ to \tilde{X} . For every $\xi, \eta \in X^*$ define

$$(\xi,\eta) = \int_{\tilde{X}} \xi(x)\eta(x)d\mu(x), \qquad (3.7)$$

$$|\xi| = \sqrt{\langle \xi, \xi \rangle} = \sqrt{v(\xi)}$$
(3.8)

Then, according to (3.6),

$$|\xi| = 0$$
 if and only if $||\xi|| = 0$, (3.9)

in \tilde{X}^* . Therefore the bilinear form (ξ, η) is an inner product and $|\xi|$ is a norm on \tilde{X}^* . Next we shall show that the norm $|\xi|$ is continuous.

LEMMA 3. There exists a positive constant C such that

$$|\xi| \leq C |||\xi||| \quad for \ every \ \xi \in \tilde{X}^*. \tag{3.10}$$

Proof. It is sufficient to show

$$C = \sup_{\substack{\|\|\xi\|\|=1\\\xi\in\tilde{X}^*}} |\xi| < +\infty.$$

Suppose not, then there exists a sequence $\{\xi_n\}$ in \tilde{X}^* such that

$$\|\|\boldsymbol{\xi}_n\|\| = 1, \quad n = 1, 2, 3, \cdots$$
$$\lim_{n \to +\infty} |\boldsymbol{\xi}_n| = +\infty.$$

By choosing a sufficiently large number M, we have

$$\mu[x \in \tilde{X}: \sup_{n} |\xi_{n}(x)| \leq M] > \frac{1}{2}, \qquad (3. 11)$$

(see the proof of Lemma 1). On the other hand,

$$\mu[x \in \tilde{X}: \sup_{n} |\xi_{n}(x)| \leq M]$$

$$= \lim_{n \to +\infty} \mu[x \in \tilde{X}: \sup_{1 \leq \nu \leq n} |\xi_{\nu}(x)| \leq M]$$

$$\leq \lim_{n \to +\infty} \mu[x \in \tilde{X}: |\xi_{n}(x)| \leq M]$$

$$= \lim_{n \to +\infty} \frac{1}{\sqrt{2\pi}} \int_{-M}^{M} \exp\left[-\frac{u^{2}}{2|\xi_{n}|^{2}}\right] du$$

$$= \lim_{n \to +\infty} \frac{1}{\sqrt{2\pi}} \int_{-\frac{M}{|\xi_{n}|}}^{\frac{M}{|\xi_{n}|}} \exp\left[-\frac{u^{2}}{2}\right] du = 0.$$

This contradicts (3. 11) and concludes the proof.

Let \mathfrak{X}^* be the Hilbert space obtained by the completion of \tilde{X}^* with respect to the inner product (ξ, η) , and let \mathfrak{X} be its topological dual space. By the definition (3.8) of the norm $|\xi|$, the relation (1.2) is valid for μ and the canonical Gaussian cylinder measure $\mu_{\mathfrak{X}}$ of the Hilbert space \mathfrak{X} .

This means that μ is a σ -extension of $\mu_{\mathfrak{X}}$ in \mathfrak{X} . On the other hand, it is easy to see that the system $\{\xi_{\alpha}/|\xi_{\alpha}|: \alpha \in \Lambda_0\}$ is a C.O.N.S. (complete orthonormal system) in \mathfrak{X}^* . Since Λ_0 is at most countable, \mathfrak{X} is a separable Hilbert space.

LEMMA 4. \mathfrak{X} is a subspace of \widetilde{X} .

Proof. The measure μ extends to a Gaussian measure μ^* on \tilde{X}^{**} by (2. 2), where \tilde{X}^{**} is the topological dual for \tilde{X}^* . Then \tilde{X} is a measurable subset of \tilde{X}^{**} and $\mu^*(\tilde{X}^{**}) = \mu^*(\tilde{X}) = 1$ is true (see the proof of Theorem 1). Since \tilde{X}^* is included in \mathfrak{X}^* its dual \mathfrak{X} is included in $(\tilde{X}^*)^* = \tilde{X}^{**}$. The relation (1. 2) is also valid for μ^* and $\mu_{\mathfrak{X}}$. Therefore, by identifying \mathfrak{X}^* and \mathfrak{X} , for every $x_0 \in \mathfrak{X} (= \mathfrak{X}^*)$

$$\mu^*[\tilde{X} + x_0] = \mu^*[\tilde{X}] = 1, \qquad (3. 12)$$

due to the fact that μ^* is quasi-invariant. (Y. Umemura [12]). On the other hand, if \mathfrak{X} is not a subspace of \tilde{X} , namely, if there exists x_0 in \mathfrak{X} which is not in \tilde{X} , then we have

$$[\tilde{X} + x_0] \cap \tilde{X} = \phi. \tag{3. 13}$$

For, if there exists y in $[\tilde{X} + x_0] \cap \tilde{X}$, then there exists y' in \tilde{X} such that $y = y' + x_0$. Since \tilde{X} is a linear space, $x_0 = y - y'$ is in \tilde{X} . This is a contradiction to the assumption on x_0 and (3.13) is true. Thus we have

$$1 = \mu^*[\tilde{X}^{**}] \ge \mu^*[[\tilde{X} + x_0] \cup \tilde{X}] = 2.$$

This contradicts (3. 12), which proves the lemma.

LEMMA 5. \mathfrak{X} is dense in \tilde{X} .

Proof. Let $\overline{\mathfrak{X}}$ be the closure of \mathfrak{X} in $\overline{\mathfrak{X}}$. If there exists x_0 in $\overline{\mathfrak{X}} - \overline{\mathfrak{X}}$, then, by the Hahn-Banach theorem, there exists $\xi \neq 0$ in $\overline{\mathfrak{X}}^*$ such that $\xi(x) = 0$ on \mathfrak{X} . On the other hand, let $|x|_0$ be the norm on \mathfrak{X} . Then we have

$$|\xi| = \sup_{\substack{|x|_0=1\\x\in\mathcal{X}}} |\xi(x)| = 0.$$

According to (3.9), this means $\xi = 0$ in \tilde{X}^* and contradicts the choice of ξ . Therefore $\tilde{X} = \bar{x}$, that is, \mathfrak{X} is dense in \tilde{X} .

COROLLARY. \tilde{X} is separable.

Proof. The space \mathfrak{X} is a separable Hilbert space and, by Lemma 5, is dense in \tilde{X} . Furthermore, the norm $|\mathfrak{X}|_0$ on \mathfrak{X} is stronger than that on \tilde{X} . Therefore \tilde{X} is separable.

Summing up these results, we can derive the following theorem.

THEOREM 2. (A). Let μ be a Gaussian measure on a separable or reflexive Banach space. Then there exists a separable closed linear subspace \tilde{X} such that $\mu[\tilde{X}] = 1$ and (3.6) is valid in \tilde{X}^* .

(B). Let μ be a Gaussian measure on a separable Banach space \tilde{X} , and assume that (3.6) is valid in \tilde{X}^* . Then there exists a dense Hilbert subspace \mathfrak{X} of \tilde{X} such that μ is an abstract Wiener measure, that is, μ is a σ -extension in \tilde{X} of the canonical Gaussian cylinder measure $\mu_{\mathfrak{X}}$ of \mathfrak{X} . The norm $||\mathfrak{X}||$ is admissible on \mathfrak{X} .

COROLLARY. There is no admissible norm on a nonseparable Hilbert space \mathfrak{X} .

Proof. Suppose that a norm ||x|| on \mathfrak{X} is admissible, X be the completion of \mathfrak{X} in the norm ||x||, and let μ be the σ -extension in X of the canonical Gaussian cylinder measure $\mu_{\mathfrak{X}}$ of \mathfrak{X} . Since \mathfrak{X} is dense in X and ||x|| = 0 implies x = 0 in \mathfrak{X} , we can show that X^* is a dense subspace of \mathfrak{X}^* and (3.6) is valid in X^* in the manner similar to that used in the proof of Lemma 5. Therefore, we can choose a C.O.N.S. $\{\xi_{\alpha}^{\circ}: \alpha \in \Lambda\}$ of \mathfrak{X}^* from X^* . Λ is an uncountable set since \mathfrak{X}^* is nonseparable. Let $\xi_{\alpha} = \xi_{\alpha}^{\circ}/||\xi_{\alpha}^{\circ}||$; $\alpha \in \Lambda$. Then (3.1) is valid for $\{\xi_{\alpha}: \alpha \in \Lambda\}$. On the other hand, considering (3.6), $v(\xi_{\alpha}) = \frac{1}{||\xi_{\alpha}^{\circ}|||} \neq 0$ for every $\alpha \in \Lambda$. This contradicts Lemma 1.

4. Admissible norm.

Let \mathfrak{X} be a separable Hilbert space with norm |x| and inner product (x, y). We study the condition under which a Hilbertian norm on \mathfrak{X} is admissible.

LEMMA 6^(*). Let H be a separable Hilbert space and let μ be a Gaussian cylinder measure on (H, \mathfrak{A}_H) , that is, for every $\xi \in H^*$, $\xi(x)$ is a Gaussian random variable on (H, \mathfrak{A}_H, μ) with mean $m(\xi)$ and variance $v(\xi)$. (In this lemma, we do not assume zero mean.)

^(*) This lemma was suggested by Prof. K. Ito.

Then μ has a σ -additive extension to $(H, \overline{\mathfrak{A}}_H)$ if and only if the characteristic functional of μ is of the form

$$\int_{H} e^{i\xi(x)} d\mu(x) = \exp\left[i\langle\xi,m\rangle - \frac{1}{2} \|S\xi\|^2\right], \ \xi \in H^*,$$
(4.1)

where m is an element of H, S is a nonnegative self-adjoint Hilbert-Schmidt operator and $||\xi||$ is the norm on H^{*}.

Proof. The sufficiency is derived from V.V. Sazonav [6].

We have only to prove the necessity. Assume that there exists a σ -additive extension to $(H, \overline{\mathfrak{A}}_H)$ and denote it by μ again. Identify H^* and H and let $\langle \cdot, \cdot \rangle$ be its inner product and $\|\cdot\|$ be its norm. Then $\langle \xi, x \rangle$; $\xi \in H^*(=H), x \in H$ denotes the natural linear form.

Let $\{\xi_n\}$ be a sequence in *H* convergent to zero. Then $\langle \xi_n, x \rangle$ converges to zero for all x in *H*. Since $\{\langle \xi_n, x \rangle\}$ is a Gaussian random sequence on $(H, \overline{\mathfrak{A}}_H, \mu)$,

$$m(\xi_n) = \int_H \langle \xi_n, x \rangle \, d\mu(x) \tag{4. 2}$$

converges to zero (§33, Lemma 1 of K. Ito [14]). Therefore $m(\xi)$ is a continuous linear functional on H^* and there exists $m \in H$ such that

$$m(\xi) = \langle \xi, m \rangle$$
 for any $\xi \in H$. (4.3)

Next, let $\{\varphi_j\}$ be a C.O.N.S. in *H*, and, for *m* and for every ξ, x in *H*, set

$$m_{j} = \langle \varphi_{j}, m \rangle,$$

$$x_{j} = x_{j}(x) = \langle \varphi_{j}, x \rangle, \quad j = 1, 2, 3, \cdots,$$

$$\xi_{j} = \xi_{j}(\xi) = \langle \varphi_{j}, \xi \rangle.$$

$$(4.4)$$

Then obviously

$$\mu[x \in H: \sum_{j=1}^{+\infty} x_j(x)^2 < +\infty] = \mu[H] = 1.$$
(4.5)

On the other hand, let

$$\xi^{N} = \sum_{j=1}^{N} \xi_{j} \varphi_{j}, \quad N = 1, 2, 3, \cdots$$

$$v_{ij} = \int_{H} (x_{j}(x) - m_{j}) (x_{i}(x) - m_{i}) d\mu(x),$$

$$i, j = 1, 2, 3, \cdots$$

$$(4.6)$$

Then

$$\int_{H} \exp\left[i\langle\xi^{N}, x\rangle\right] d\mu(x)$$

$$= \int_{H} \exp\left[i\sum_{j=1}^{N} \xi_{j}x_{j}(x)\right] d\mu(x)$$

$$= \exp\left[i\sum_{j=1}^{N} m_{j}\xi_{j} - \frac{1}{2}\sum_{k,j=1}^{N} v_{kj}\xi_{k}\xi_{j}\right].$$
(4. 7)

Averaging both sides of (4.7) with respect to the measure

$$(2\pi)^{-\frac{N}{2}}\exp\left[-\frac{1}{2}\sum_{j=1}^{N}\xi_{j}^{2}\right]d\xi_{1}d\xi_{2}\cdots d\xi_{N},$$

we have

$$\int_{H} \exp\left[-\frac{1}{2} \sum_{j=1}^{N} x_{j}(x)^{2}\right] d\mu(x) \leqslant \frac{1}{\sqrt{1 + \sum_{j=1}^{N} v_{jj}}} .$$
(4.8)

If $\sum_{j=1}^{+\infty} v_{jj}$ is divergent, then from (4.8) we have

$$\int_{H} \exp\left[-\frac{1}{2}\sum_{j=1}^{+\infty} x_j(x)^2\right] d\mu(x) = 0,$$

and

$$\exp\left[-\frac{1}{2}\sum_{j=1}^{+\infty}x_{j}(x)^{2}\right]=0,$$
 a.e..

Therefore

$$\mu\left[\sum_{j=1}^{+\infty} x_j(x)^2 = +\infty\right] = 1.$$

This contradicts (4.5) and we have,

$$\sum_{j=1}^{+\infty} v_{jj} < +\infty. \tag{4.9}$$

Define a linear operator V on H by

$$\langle V\varphi_i,\varphi_j\rangle = v_{ij}, \quad i,j = 1, 2, 3, \cdots$$
 (4. 10)

Then V is a nonnegative self-adjoint operator on H and further, it is nuclear, since

$$\sum_{j=1}^{+\infty} \langle V\varphi_j, \varphi_j \rangle = \sum_{j=1}^{+\infty} v_{jj} < +\infty.$$

Let S be \sqrt{V} . Then it is easy to see that S is the required Hilbert-Schmidt operator. Thus we have proved the lemma.

COROLLARY 1. The canonical Gaussian cylinder measure $\mu_{\mathfrak{X}}$ on a Hilbert space \mathfrak{X} does not have a σ -additive extension to $(\mathfrak{X}, \overline{\mathfrak{A}}_{\mathfrak{X}})$.

Proof. The characteristic functional of $\mu_{\mathcal{X}}$ is

$$\begin{split} &\int_{\mathfrak{X}} \exp\left[i\xi(x)\right] d\mu_{\mathfrak{X}}(x) = \exp\left[-\frac{1}{2}|\xi|^{2}\right] \\ &= \exp\left[-\frac{1}{2}|I\xi|^{2}\right], \end{split} \tag{4. 11}$$

where $|\xi|$ is the norm on \mathfrak{X}^* and *I* is the identity. But *I* is not of Hilbert-Schmidt type. Therefore, by Lemma 6, $\mu_{\mathfrak{X}}$ does not have a σ -additive extension to $(\mathfrak{X}, \overline{\mathfrak{A}}_{\mathfrak{X}})$.

COROLLARY 2. In Lemma 6, if μ has a σ -additive extension to $(H, \overline{\mathfrak{A}}_H)$ and mean zero, then for every $\xi, \eta \in H^*(=H)$

$$\int_{H} \xi(x)\eta(x)d\mu(x) = \langle S\xi, S\eta \rangle, \qquad (4.12)$$

where S is the Hilbert-Schmidt operator determined by (4.1).

Utilizing Lemma 6, we have the following theorem.

THEOREM 3. A Hilbertian norm ||x|| on a separable Hilbert space \mathfrak{X} is admissible if and only if there exists a one to one Hilbert-Schmidt operator S_0 such that

$$\|x\| = |S_0 x|, \qquad x \in \mathfrak{X}, \tag{4.13}$$

where |x| is the initial norm on \mathfrak{X} .

Proof. The sufficiency is well-known (for example, see Y. Umemura [12]).

We prove the necessity. Let ||x|| be a Hilbertian admissible norm induced by an inner product $\langle x, y \rangle$ on \mathfrak{X} and let H be the completion of \mathfrak{X} in the norm ||x||. Then H is also a Hilbert space with the inner product $\langle x, y \rangle$. Let μ be the σ -extension in H of the canocial Gaussian cylinder measure $\mu_{\mathfrak{X}}$ of \mathfrak{X} . Then μ is a Gaussian measure on the Hilbert space H. Therefore, by Lemma 6, there exists a nonnegative Hilbert-Schmidt opera-

tor S on H^* determined by (4.1). Since we are assuming mean zero, (4.12) is also valid (Corollary 2 of Lemma 6).

Identifying \mathfrak{X} and \mathfrak{X}^* , and remembering H^* is a subspace of $\mathfrak{X}^*(=\mathfrak{X})$, we have

$$|||S\xi|||^{2} = \int_{H} \xi(x)^{2} d\mu(x)$$

= $\int_{\mathfrak{X}} (\xi, x)^{2} d\mu_{\mathfrak{X}}(x) = |\xi|^{2},$ (4. 14)

for every ξ in H^* where $\|\|\xi\|\|$ is the norm on H^* . Consequently,

$$||S\xi|| = |\xi|, \quad \text{for every } \xi \in H^*. \tag{4.15}$$

Since ||x|| = 0 implies x = 0 in \mathfrak{X} and so $|\xi| = 0$ implies $\xi = 0$ in H^* . Therefore, by (4.15), $S\xi = 0$ implies $\xi = 0$ in H^* and S is a one to one operator.

Let $\{\lambda_j\}$ and $\{\varphi_j\}$ be eigenvalues and eigenvectors of S, respectively. Then $\lambda_j > 0$, $j = 1, 2, \dots$, and $\sum_{j=1}^{+\infty} \lambda_j^2 < +\infty$ because S is a one to one Hilbert-Schmidt operator.

Further, since μ is the σ -extension of the canonical Gaussian cylinder measure $\mu_{\mathfrak{X}}$, we have

$$(\varphi_i, \varphi_j) = \int_{\mathcal{X}} \varphi_j(x) \varphi_i(x) d\mu_{\mathcal{X}}(x)$$
$$= \int_H \langle \varphi_i, x \rangle \langle \varphi_j, x \rangle d\mu(x)$$
$$= \langle S\varphi_i, S\varphi_j \rangle = \lambda_i \lambda_j \delta_{ij},$$
$$i, j = 1, 2, 3, \cdots$$

Let $\phi_j = \lambda_j^{-1} \varphi_j$, $j = 1, 2, 3, \cdots$. Then $\{\phi_j\}$ is a C.O.N.S. in \mathfrak{X} and

$$\sum_{j=1}^{+\infty} |S\phi_j|^2 = \sum_{j=1}^{+\infty} ||S^2\phi_j||^2 = \sum_{j=1}^{+\infty} ||\lambda_j\varphi_j||^2$$
$$= \sum_{j=1}^{+\infty} \lambda_j^2 < +\infty.$$

Therefore S can be extended to a Hilbert-Schmidt operator on $\mathfrak{X}^*(=\mathfrak{X})$ and we denote it by S again. Let S_0 be the dual operator of S in \mathfrak{X} . Then S_0 is the required operator. In fact, since SH^* is dense in H^* and H^* is dense in $\mathfrak{X}^*(=\mathfrak{X})$, for every x in $\mathfrak{X}(\subset H)$,

$$\|x\| = \sup_{\substack{\|\xi\| = 1\\ \xi \in H^*}} |\xi(x)| = \sup_{\substack{\|S\xi\| = 1\\ \xi \in H^*}} |(S\xi)(x)|$$

=
$$\sup_{\substack{|\xi| = 1\\ \xi \in H^*}} |(S\xi, x)| = \sup_{\substack{|\xi| = 1\\ \xi \in H^*}} |(\xi, S^*x)|$$

=
$$\sup_{\substack{|\xi| = 1\\ \xi \in X^*}} |(\xi, S_0 x)| = |S_0 x|.$$

The proof is now complete.

COROLLARY. Let ||x|| be an admissible norm on \mathfrak{X} . If there exists a Hilbertian admissible norm stronger than ||x|| then for any C.O.N.S. $\{\varphi_j\}$ in \mathfrak{X} we have

$$\sum_{j=1}^{+\infty} \|\varphi_j\|^2 < +\infty.$$
 (4. 16)

Proof. Suppose that ||x||' is a Hilbertian admissible norm stronger than ||x||, say, $||x|| \le ||x||'$. By Theorem 3, there exists a Hilbert-Schmidt operator S such that ||x||' = |Sx|, $x \in \mathfrak{X}$. Then for any C.O.N.S. $\{\varphi_j\}$ in \mathfrak{X} ,

$$\sum_{j=1}^{+\infty} \|\varphi_j\|^2 \leqslant \sum_j \|\varphi_j\|'^2$$
$$= \sum_j |S\varphi_j|^2 < +\infty.$$

This was to be proved.

Next we give some examples of admissible norms on a separable Hilbert space \mathfrak{X} .

EXAMPLE 1. Define

$$||x||_1 = |Sx|, \qquad x \in \mathfrak{X},$$

where S is a one to one Hilbert-Schmidt operator on \mathfrak{X} . Then $||x||_1$ is a measurable norm (Section 1). Therefore, by Theorem 3, every Hilbertian admissible norm is a measurable norm.

EXAMPLE 2. Define

$$\|x\|_2 = \sup_n \frac{1}{\sqrt{n}} |(\varphi_n, x)|, \qquad x \in \mathfrak{X}$$

where $\{\varphi_n\}$ is a C.O.N.S. in \mathfrak{X} . Then $||x||_2$ is a measurable norm but there is no Hilbertian admissible norm stronger than $||x||_2$.

In fact it is evident that $||x||_2$ is a norm on \mathfrak{X} . To prove that $||x||_2$ is a measurable norm, we imbed \mathfrak{X} in a measurable space $(\Omega, \overline{\mathfrak{A}})$ in which \mathfrak{X} is an $\overline{\mathfrak{A}}$ -measurable subspace and all functions (φ_n, x) , $n = 1, 2, 3, \cdots$ are extended to $\overline{\mathfrak{A}}$ -measurable functions on Ω , further, there exists a σ -additive extension μ of $\mu_{\mathfrak{X}}$. As an example of such a space, we can choose the space of all sequences.

Then since μ is a σ -extension of $\mu_{\mathfrak{X}}$, we have

$$\begin{split} &\mu[x \in \Omega: \|x\|_{2} < +\infty] \\ &= \mu\Big[x \in \Omega: \sup_{n} \frac{1}{\sqrt{n}} |(\varphi_{n}, x)| < +\infty\Big] \\ &= \lim_{N \to +\infty} \lim_{M \to +\infty} \mu\Big[x \in \Omega: \sup_{1 \le n \le N} \frac{1}{\sqrt{n}} |(\varphi_{n}, x)| \le M\Big] \\ &= \lim_{N \to +\infty} \lim_{M \to +\infty} \mu_{\mathfrak{X}} \Big[x \in \mathfrak{X}: \sup_{1 \le n \le N} \frac{1}{\sqrt{n}} |(\varphi_{n}, x)| \le M\Big] \\ &= \lim_{N \to +\infty} \lim_{M \to +\infty} \prod_{n=1}^{N} \Big\{ x \in \mathfrak{X}: \sup_{1 \le n \le N} \frac{1}{\sqrt{n}} \exp\Big[-\frac{u^{2}}{2}\Big] du \Big\} \\ &= \lim_{N \to M} \lim_{n = 1} \prod_{n=1}^{N} \Big\{ 1 - \sqrt{\frac{2}{\pi}} \int_{-M\sqrt{n}}^{+\infty} \exp\Big[-\frac{u^{2}}{2}\Big] du \Big\} \\ &\geq \lim_{N \to M} \lim_{n = 1} \prod_{n=1}^{N} \Big\{ 1 - \sqrt{\frac{2}{\pi}} \frac{1}{M\sqrt{n}} \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &\geqslant \lim_{N \to M} \lim_{M \to -1} \prod_{n=1}^{N} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &\geqslant \lim_{N \to M} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= \lim_{N \to M} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= \lim_{N \to M} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= \lim_{N \to M} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= \lim_{N \to -1} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= \lim_{N \to -1} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= \lim_{N \to -1} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= \lim_{N \to -1} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= \lim_{N \to -1} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= \lim_{N \to -1} \lim_{M \to -1} \Big\{ 1 - \exp\Big[-\frac{M^{2}}{2}n\Big] \Big\} \\ &= 1, \end{split}$$

and for any positive number ε

$$\begin{split} &\mu[x \in \Omega: \|x\|_{2} < \varepsilon] \\ &= \lim_{N \to +\infty} \mu_{\mathfrak{X}} \Big[x \in \mathfrak{X}: \sup_{1 < n < N} \frac{1}{\sqrt{n}} |(\varphi_{n}, x)| < \varepsilon \Big] \\ &\geqslant \prod_{n=1}^{+\infty} \Big\{ 1 - \frac{1}{\varepsilon \sqrt{n}} \exp\left[- \frac{\varepsilon^{2}}{2} n \right] \Big\} > 0, \end{split}$$

because

$$\sum_{n=1}^{+\infty} \frac{1}{\varepsilon/n} \exp\left[-\frac{\varepsilon^2}{2}n\right] \leqslant \frac{1}{\varepsilon} \frac{\exp\left[-\frac{\varepsilon^2}{2}\right]}{1 - \exp\left[-\frac{\varepsilon^2}{2}\right]} < +\infty.$$

Therefore, by Corollary 4.5 of L. Gross [2], $||x||_2$ is a measurable norm. While for the C.O.N.S. $\{\varphi_n\}$ in \mathfrak{X}

$$\sum_{n=1}^{+\infty} \|\varphi_n\|_2^2 = \sum_{n=1}^{+\infty} \left\{ \sup_{\nu} \frac{1}{\sqrt{\nu}} |(\varphi_{\nu}, \varphi_n)| \right\}^2$$
$$= \sum_{n=1}^{+\infty} \frac{1}{n} = +\infty.$$

By Corollary of Theorem 3, there is no Hilbertian admissible norm stronger than $||x||_2$. This means that there is no Hilbert space of full measure which is included in the Banach space obtained by the completion of \mathfrak{X} in the norm $||x||_2$.

EXAMPLE 3. Define

$$||x||_{3} = \left[\sup_{n} \frac{1}{n} \sum_{\nu=1}^{n} |(\varphi_{\nu}, x)|^{2}\right]^{\frac{1}{2}}, \quad x \in \mathfrak{X}$$

where $\{\varphi_n\}$ is a C.O.N.S. in \mathfrak{X} . Then $||x||_{\mathfrak{z}}$ is an admissible norm on \mathfrak{X} but not a measurable norm.

Proof. Imbed \mathfrak{X} in the measurable space $(\Omega, \overline{\mathfrak{A}}, \mu)$ as in Example 2. Then by the law of large number, we have

$$\mu[x \in \Omega: ||x||_{3} < +\infty]$$

$$\geq \mu \left[x \in \Omega: \limsup_{n} \frac{1}{n} \sum_{\nu=1}^{n} |(\varphi_{\nu}, x)|^{2} = 1 \right] = 1.$$

Therefore $||x||_3$ is an admissible norm; but, according to Corollary 4.5 of L. Gross [2], it is not a measurable norm. This means that for a norm on a separable Hilbert space to be admissible, it is not necessary to be a measurable norm in the sense of L. Gross [1].

Bibliography

- Gross, L., Abstract Wiener spaces. Proceedings of the Fifth Berkley Symposium, Vol. 2, Part 1, pp. 31-42, (1965).
- [2] Gross, L., Measurable functions on Hilbert space. Trans. A.M.S., Vol. 105, pp. 372– 390, (1962).
- [3] Gross, L., Potential theory on Hilbert space. J. of Functional Analysis, Vol. 1, pp. 123-181, (1967).
- [4] Segal, I.E., Tensor algebras over Hilbert spaces, I. Trans. A.M.S., Vol. 81, pp. 106–134, (1956).
- [5] Segal, I.E., Distributions in Hilbert space and canonical systems of operators. Trans. A.M.S., Vol. 88, pp. 12–41, (1958).
- [6] Sazonov, V.V., A remark on characteristic functionals. Theory of Prob. and its Appl., Vol. 3, pp. 188–192, (1958). (English translation).
- [7] Getoor, P.K., On characteristic functions of Banach space-valued random variables. Pacific J. Math., Vol. 7, pp. 885–897, (1957).
- [8] Mourier, E., Élément aleatoires dans un espaces de Banach. Ann. d'Inst. H. Poincare, Vol. 13, pp. 161–244, (1953).
- [9] Mourier, E., Random elements in linear spaces. Proceedings of the Fifth Berkley Symposium, Vol. 2, Part 1, pp. 43-53, (1965).
- [10] Prohorov, Yu.V. The method of characteristic functionals. Proceedings of the Fourth Berkley Symposium, Vol. 2, pp. 403–419, (1960).
- [11] Schawrtz, L., Measures de Radon sur des espaces topologiques arbitraires. 3rd cycle 1964–1965, Inst. H. Poincare, Paris.
- [12] Umemura, Y., Measures on infinite dimensional vector spaces. Publ. Research Inst. for Math. Sci. Kyoto Univ., Vol. 1, pp. 1–47, (1965).
- [13] Hida, T., Stationary stochastic processes. White noise. Lecture note in Princeton University, (1968). (to appear).
- [14] Ito, K., Probability theory. Iwanami, Tokyo, (1953). (in Japanese).
- [15] Dunford, N. and Schwartz, J.T., Linear operators, Part 1. Interscience, N.Y., (1958).
- [16] Далецукий, Ю.Л., Бесконечномерные эллиптические операторы и связаные с ними параболические уравнения. Успехи Матем. Наук, Том. 22, стр. 3–54, (1967).

Tokyo Metropolitan University