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GAUSSIAN MEASURE ON A BANACH SPACE

AND ABSTRACT WINER MEASURE

HIROSHI SATO

In this paper, we shall show that any Gaussian measure on a separable

or reflexive Banach space is an abstract Wiener measure in the sense of L.

Gross [1] and, for the proof of that, establish the Radon extensibility of a

Gaussian measure on such a Banach space. In addition, we shall give

some remarks on the support of an abstract Wiener measure.

An abstract Wiener measure is a ^-extension in a Banach space X of

the canonical Gaussian cylinder measure μ% of a real separable Hubert

space ϋ which is contained in X densely. The idea of the abstract Wiener

measure coincides with that of the White Noise (T. Hida [13]) and plays an

important role not only in the theory of probability but in the theory of

functional analysis (T. Hida [13], Y. Umemura [12], I.E. Segal [4,5], L.

Gross [3] and Yu. L. Daletskii [16]).

We shall show first that any Gaussian measure on a separable or

reflexive Banach space can be extended to a Radon measure on the strong

topological o -algebra (Theorem 1). With the same idea of the proof of

Theorem 1, we can prove that this result is true for any probability mea-

sure on a Banach space, the finite dimensional distribution of which is

Radon.

Utilizing the above result, we shall restrict the support of a Gaussian

measure to a separable subspace which is explicitly constructed. Further-

more, constructing a suitable Hubert subspace of the support, we shall show

that any Gaussian measure on such a Banach space is an abstract Wiener

measure (Theorem 2). L. Gross [1] showed that there exists and abstract

Wiener measure on any separable Banach space. Our result shows that

any given Gaussian measure on a separable or reflexive Banach space is an

abstract Wiener measure. This means that the study of a Gaussian measure

Received Oct. 9, 1968.

65



6 6 HIROSHI SATO

on such a Banach space can be reduced to that of an abstract Wiener

measure on a separable Banach space, and clears a new way for the in-

vestigation of a Gaussian measure on a Banach space, and makes the study

of an abstract Wiener measure more meaningful.

As a corollary of Theorem 2, we shall show that the canonical Gaussian

cylinder measure of a nonseparable Hubert space can not be extended to a

<7-additive measure in any Banach space.

Before stating the remaining results in this paper, we establish termi-

nology and notation.

Let I b e a real Banach space, X* be its topological dual space and

ζ{x), {ξ e X*, x e X), be the natural linear form. A cylinder set in X is

a set of the form

C={x<=X: (ξάx), , ξn(x)) e D]

where ξ19 ξ29 , ξn are in X* and D is a Borel set in the n-dimensional

Euclidean space Rn. %x is the family of all cylinder sets in X and %z is

the minimal σ-algebra including SHX. τx is the weak topological o -algebra

in X and tx is the strong topological o -algebra in it. Evidently we have

and if X is separable, then Ίϋx = τx (E. Mourier [8]).

Let 36 be a real Hubert space. The canonical Gaussian cylinder measure

μ% of 36 is a finitely additive nonnegative set function on (36, 3tχ) such that

α] = - ^ ^ \\ exp[- ^ r > « , (l D

for any ? ε ϊ * and real number a, where |? | is the norm in ϊ* . It is

well-known that μ% does not have σ-additive extension to (36, Wg), (see Co-

rollary of Lemma 6).

Let ||$|| be a continuous norm on $, and X be the Banach space ob-

tained by the completion of X in the norm | |#| | . Since we may consider

X* as a subspace of 36* through the natural imbedding, μ% induces a Gaus-

sian cylinder measure μ on (X, %x) as follows. If ξ19 ξ2, , fΛ are in X*

and D is a Borel set in Rn, define

36; &(*), , f.(»)) e Z)]. (1. 2)
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μ is well-defined. Furthermore, if μ has a o -additive extension on (X, %%),

then we call it the σ-extension of μ% on the Banach space X and the norm ||as||

admissible on 36. If a norm on H is induced by an inner product, namely,

a continuous symmetric bilinear form on X, then we call it Hilbertian. A

measurable norm is defined by L. Gross [1,2] as follows. A norm \\x\\x on

X is a measurable norm if for every positive real number ε there exists a finite

dimensional projection Po of 3£ such that for every finite dimensional pro-

jection P orthogonal to Po we have

jKgDceX: \\Px\U> ε]<ε.

L. Gross [1] showed that the measurable norm is admissible.

In the last section, we shall give some remarks on the admissible norm.

We shall give a necessary and sufficient condition for a Hilbertian norm to

be admissible (Theorem 3) and show that there exists a measurable norm

such that there is no Hilbertian admissible norm stronger than it (Example

2). This means that as a support of an abstract Wiener measure we can

choose a Banach subspace which includes no Hubert subspace of full mea-

sure. We shall also show that there exists an admissible norm which is not

a measurable norm. This means that for a norm to be an admissible norm

it is not necessary to be a measurable norm.

2. Gaussian measure and Radon measure.

Let X be a Banach space with norm ||α&|[ and X* be the topological

dual for X with norm |||f|||. A probability measure μ on (X, %z) is Gaussian

if for every ξ e X*, ξ{x) is a Gaussian random variable with mean zero on

the probability space (X, Wx, μ). In other words, for every ξ e X* and

real number α,

Ax e X: ξ(x) < «] = - ^ ^ 51 exp[- -^\du , (2. 1)

where v{ξ) is the variance of ξ{x).

Theorem 1. Every Gaussian measure μ on a separable or seflexive Banach

space {X, Wz) can be extended to a Radon measure on {X, τx).

Proof. If X is separable, %x = τx and the proof is trivial. Let X be a

reflexive Banach space and let X** be the topological dual space of X*.

Let M* be the minimal σ-algebra of subsets of JP* with respect to which
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all the functions ζ(x), ξ e X*, are measurable, where ξ(x) (ζ e X*, x e X**)

denotes the continuous linear form and τ* is the topological σ-algebra with

respect to X*-topology in X** (W. Dunford and J.T. Schwartz [15], p. 419).

Define a measure μ* on (X**, 91*) as follows:

= ̂  e X: &(»), , £»(»)) e £]. (2. 2)

where f 2, f 2, •••,£» are in X* and Z> is a Borel set in i?n. The measure

μ* is well defined and is Gaussian. Since all the open sets in 9ί* form an

open basis which determines X*-topology and since X** is the topological

dual for the Banach space X*, μ* can be extended to a Radon measure

β* on (X**, τ*) uniquely (Yu. V. Prohorov [10], Theorem 1, Lemma 3 and

Example 1). Since X is reflexive, we have X — X** and τ* = τx. There-

fore β* is a Gaussian Radon measure on (X, tx). Since X is a Banach

space, the weak Radon measure β* can be extended to a strong Radon

measure β on {X,τx) and, it is easy to see from (2, 2), that β is an exten-

sion of μ. Thus we have proved the theorem.

Remark. Without any change in the proof, we can prove Theorem 1

not only for a Gaussian measure but for any probability measure on a

Banach space, the finite dimensional distribution of which is Radon.

We can therefore consider a Gaussian measure on a Banach space X

as a Radon measure on (X, τx).

3. Gaussian measure and abstract Wiener measure.

Let μ be a Gaussian measure on a separable or reflexive Banach space

X. We use the same notations used in Section 2. Choose the maximal

subset {fα; a e Λ] of X* such that

ξΛ €Ξ X* and niejll = 1, a e A
(3.1)

= 0 if α ̂  β, a, β e 4.

LEMMA 1. Z^ί Λo = {αeΛ; z (fj) ^ 0}, then ΛQ is an at most countable subset

of A.
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Proof. Let {αΛ}n=i,2,..., be an arbitrary countable subset of A. Since

it holds that

sup !?«,(&) I < sup|f(a) I = IM| < + oo, for every x e X, (3. 2)
| I C T 1
ξ<=X*

we can choose a positive number M such that

μ[x<=X: suplf«n(αθl < M ] > 4 ~ . (3. 3)

On the other hand, we have

μ[x i

= lim

= lim

n

μ[x &X
)O

μl n {

: sup |ί
l<n<ΛΓ

ί M]

?.(»)!

lf..(*)l <M}].

Since the collection {?<**(#)} is Gaussian, from (3. 1), ξ«n(x) and ζ*m(x) are

mutually independent if n ψ m. Therefore,

μ[x e Z: suplf<xn(α;)| < M]
n

= lim Π jα[aj e Z ; lίocn(α;)| < M]

Π - = 4 = r Γ expΓ -ij

M

i XT 1 f M^ ) Γ &2 Ί J

= hm Π —μ=- \ exp ^ - \du._ M

Together with (3. 3), we have

lim t;(fαj = 0. (3. 4)

Since the choice of the countable subset {an} is arbitrary, the set

ΛN=\a



70 HΪROSHI SATO

must be a finite subset of A for every positive integer N. Otherwise we

have a contradiction to (3. 4). Therefore,

Λo= U Λ N

must be a countable subset of A.

LEMMA 2. Define Xa9 a e A, by

X« = {x<= X; ξa(x) = 0}, a e Λ,

set X— Π Z α .

μ[X] = 1. (3. 5)

/V00/. Let JΓ be the family of all finite subsets of A — Λo and define

Xj = f) Xa; / e f . Obviously Zj- is a strongly closed linear subspace of X

and the family {Xj\ / ε f } is directed. Since v{ξ9) = 0, ξ*(x) is a Dirac

measure for every a e Λ — Λo, we have

i«[^j] = 1 for every / e Γ

Therefore,

= inf/.[ZJ = 1,

(L. Schwartz [11]). Thus we have proved the lemma.

This lemma means that the measure μ is concentrated in some closed

linear subspace X X is also a Banach space with the norm ||g||. Let ©

be the closed linear manifold spanned by {£α; α G i - i 0 ) , Then the

topological dual J?* for X is isomorphic to X*/(£.

It is easy to see that in Z*

v{ξ) = 0 implies ξ = 0. (3. 6)

Let Ulflll be the norm in X* again.

Hereafter, we restrict the measure μ to X. For every { ,^eϊ* define

(3.7)

(3.8)
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Then, according to (3. 6),

]5I=0 if and only if |||£||| = 0, (3. 9)

in X*. Therefore the bilinear form (ξ,η) is an inner product and |f| is

a norm on J?*. Next we shall show that the norm |£ | is continuous.

LEMMA 3. There exists a positive constant C such that

\ξ\ <C|||?||! for every ? ε ί * . (3. 10)

Proof, It is sufficient to show

C = SUp \ξ\ < + co.
ιra=i

Suppose not, then there exists a sequence {ζn} in X* such that

Iliejl = 1, n = 1, 2, 3, • • •

lim \ζn\ = +oo.

By choosing a sufficiently large number M, we have

μlx e X: sup | ξn(χ) | < M] > -\- , (3. 11)

(see the proof of Lemma 1). On the other hand,

μlxeX: sup\ξn(x)\ <M]
n

= lim /4> e X: sup |fv(sc)| < M]

< l i m /
n->+cx»

1 Γ ^ Γ ^ 2

im / ~- | , \ expl -

l im — i = - [ι$nl e x p Γ - -

This contradicts (3. 11) and concludes the proof.

Let X* be the Hubert space obtained by the completion of Z* with

respect to the inner product (ξ,η), and let £ be its topological dual space.

By the definition (3. 8) of the norm |ξ | , the relation (1. 2) is valid for μ

and the canonical Gaussian cylinder measure μ% of the Hubert space 96.
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This means that μ is a σ-extension of μ^ in X. On the other hand, it

is easy to see that the system {ξj\ξa\: a (Ξ Λo} is a C.O.N.S. (complete

orthonormal system) in X*. Since Λo is at most countable, X is a separable

Hubert space.

LEMMA 4. X is a sub space of X.

Proof. The measure μ extends to a Gaussian measure μ* on X** by

(2. 2), where X** is the topological dual for X*. Then X is a measurable

subset of X** and μ*(X**) = μ*(X) = 1 is true (see the proof of Theorem 1).

Since X* is included in 26* its dual X is included in (X*)* = X**. The

relation (1. 2) is also valid for μ* and /^. Therefore, by identifying 36* and

X, for every a;oe £(=£*)

^ X + a J = /<*[£] = 1, (3.12)

due to the fact that μ* is quasi-invariant. (Y. Umemura [12]). On the

other hand, if 36 is not a subspace of X, namely, if there exists x0 in 36

which is not in X> then we have

ol Π X= φ. (3. 13)

For, if there exists y in [X+ x0] Π X, then there exists yf in X such that

y — yr Λ ffo Since X is a linear space, xo = y — yf is in X This is a

contradiction to the assumption on cc0 and (3. 13) is true. Thus we have

1 = μ*[X**] > μ*[[X+ OJ0] U ί ] = 2,

This contradicts (3. 12), which proves the lemma.

LEMMA 5. Έ is dense in X.

Proof Let ϊ be the closure of I in X. If there exists x0 in X—Έ,

then, by the Hahn-Banach theorem, there exists ζ ψ 0 in X* such that

?(«) = 0 on X. On the other hand, let \x\Q be the norm on X. Then we

have

If I = sup \ξ(x)\ = 0 .

According to (3. 9), this means ζ = 0 in X* and contradicts the choice of

ξ. Therefore X = 36, that is, X is dense in X.
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COROLLARY. X is separable.

Proof. The space £ is a separable Hilbert space and, by Lemma 5, is

dense in X. Furthermore, the norm \x\0 on X is stronger than that on

X. Therefore X is separable.

Summing up these results, we can derive the following theorem.

THEOREM 2. (A). Let μ be a Gaussian measure on a separable or reflexive

Banach space. Then there exists a separable closed linear subspace X such that

μ[X] = 1 and (3. 6) is valid in j£*.

(B). Let μ be a Gaussian measure on a separable Banach space X, and assume

that (3. 6) is valid in X*. Then there exists a dense Hilbert subspace H of X

such that μ is an abstract Wiener measure, that is, μ is a σ-extension in X of the

canonical Gaussian cylinder measure μ% of £. The norm \\x\\ is admissible on 3£.

COROLLARY. There is no admissible norm on a nonseparable Hilbert space X.

Proof Suppose that a norm ||$|| on 3£ is admissible, X be the com-

pletion of X in the norm ||aj||, and let μ be the o -extension in X of the

canonical Gaussian cylinder measure μ% of £. Since $ is dense in X and

\\x\\ = 0 implies x = 0 in 36, we can show that X* is a dense subspace of

X* and (3. 6) is valid in X* in the manner similar to that used in the proof

of Lemma 5. Therefore, we can choose a C.O.N.S. {£°: a e A] of 3£* from

X*. A is an uncountable set since 36* is nonseparable. Let £α = ?2/|||£2lll;

α G A Then (3. 1) is valid for {?α: α £ i } , On the other hand, consider-

ing (3. 6), υ{ξΛ) = n,λ,n ψ 0 for every a ^ Λ. This contradicts Lemma 1.

lilvolll

4. Admissible norm.

Let 1 be a separable Hilbert space with norm \x\ and inner product

{%,y). We study the condition under which a Hilbertian norm on 1 is

admissible.

LEMMA 6(*\ Let H be a separable Hilbert space and let μ be a Gaussian

cylinder measure on {H, $ί#), that is, for every ξ e H*, ζ{x) is a Gaussian random

variable on (H, %H, μ) with mean m{ζ) and variance v(ξ). (In this lemma, we do

not assume zero mean.)

This lemma was suggested by Prof. K. Ito.
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Then μ has a σ-additive extension to (H, SHH) if and only if the characteristic

functional of μ is of the form

= exp [i<ξ,m> - ±- \\SξII2], ξ e H*f (4. 1)

where m is an element of H, S is a nonnegative self adjoint Hilbert-Schmidt operator

and \\ξ\\ is the norm on H*.

Proof The sufficiency is derived from V.V. Sazonav [6].

We have only to prove the necessity. Assume that there exists a σ-

additive extension to (H, Wjy) and denote it by μ again. Identify H* and

H and let < , •> be its inner product and || || be its norm. Then <£, a;>;

ξ e H*{= H), x e H denotes the natural linear form.

Let {ξn} be a sequence in H convergent to zero. Then <fΛ, x} conver-

ges to zero for all x in H. Since {ζξn, x}} is a Gaussian random sequence

on (H, %H, μ),

m{ζn)= \ <ζn,x>dμ(x) (4.2)

converges to zero (§33, Lemma 1 of K. Ito [14]). Therefore m[ξ) is a

continuous linear functional on H* and there exists m^H such that

m{ξ) = <ζ,nΐ> for any ξ e H. (4. 3)

Next, let {<Pj} be a C.O.N.S. in H, and, for M and for every ξ, x in

H, set

Xj = χj(χ) = ζφj9 χ>9 j = 1, 2, 3, , (4. 4)

Then obviously

On the other

+00

μ[x e H: Σ x.

hand, let

vu = \ (Xj(x

j{x)2 <

N =

+ ~ ] β / t f l ]

1, 2, 3,

(xt(x) — tnjc

i, j = 1> 2, 3, .

(4. 5)

(4. 6)
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Then

= \ expΓt Σ ζjXj(x)\dμ(x)
J H L jz= 1 _J

= exp[ι Έmiξj - \ ll=υkSξkξi\ (4. 7)

Averaging both sides of (4. 7) with respect to the measure

we have

exp [—|- Σ

x) < , \ . (4. 8)

t- IlVjj

+ OO

If Σ Vjj is divergent, then from (4. 8) we have
yi

= + oo]

and

e x P [— -y Σ #/(#)2Ί = 0, a.e. .

Therefore

This contradicts (4. 5) and we have,

Σ Vjj < + °°. (4. 9)

Define a linear operator V on i/ by

<V>ι, ?>i> = t;*/, ί,y = 1, 2, 3, (4. 10)

Then V is a nonnegative self-adjoint operator on H and further, it is nuc-

lear, since
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Let S be JV~ . Then it is easy to see that S is the required Hilbert-

Schmidt operator. Thus we have proved the lemma.

COROLLARY 1. The canonical Gaussian cylinder measure μ% on a Hίlbert

space X does not have a σ-additive extension to (36, ̂ C^).

Proof. The characteristic functional of μ% is

Ĵ  eκp[iξ(xyidμ^x) = exp[—\ \ξ|2]

= exp[—L|/e|«], (4.11)

where \ξ\ is the norm on 36* and / is the identity. But / is not of Hilbert-

Schmidt type. Therefore, by Lemma 6, μ% does not have a o -additive ex-

tension to (36, 2tg).

COROLLARY 2. In Lemma 6, if μ has a σ-additive extension to (H, %H) and

mean zero, then for every ξ, η e H*( = H)

\ ξ(x)v(x)dμ(x) = <Sξ, SV>, (4. 12)

where S is the Hilbert-Schmidt operator determined by (4. 1).

Utilizing Lemma 6, we have the following theorem.

THEOREM 3. A Hilbertian norm \\x\\ on a separable Hilbert space 3£ is ad-

missible if and only if there exists a one to one Hilbert-Schmidt operator SQ such that

||a?|| = | S o s | , * e £ , (4.13)

where \x\ is the initial norm on 36.

Proof The sufficiency is well-known (for example, see Y. Umemura

[12]).

We prove the necessity. Let ||α?|| be a Hilbertian admissible norm in-

duced by an inner product <#, y} on X and let H be the completion of 3£

in the norm ||sc||. Then H is also a Hilbert space with the inner product

<cc,2/>. Let μ be the <τ-extension in H of the canocial Gaussian cylinder

measure μ% of X. Then μ is a Gaussian measure on the Hilbert space H.

Therefore, by Lemma 6, there exists a nonnegative Hilbert-Schmidt opera-
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tor S on H* determined by (4. 1). Since we are assuming mean zero,,

(4. 12) is also valid (Corollary 2 of Lemma 6).

Identifying X and X*, and remembering H* is a subspace of £*(=£),.

we have

= ( ξ{x)*dμ(x)
H

x)=\ζ\\ (4.14)

for every ξ in H* where ffl£||[ is the norm on H*. Consequently,

for every ξ e H*. (4. 15>

Since | |#| | = 0 implies x = 0 in £ and so \ξ\ = 0 implies £ = 0 in H*.

Therefore, by (4. 15), Sξ = 0 implies ξ = 0 in H* and 5 is a one to one

operator.

Let [λj] and [φj] be eigenvalues and eigenvectors of S, respectively.
+OO

Then Xj->0, j = 1, 2, •••, and 2 ^ 2 < + co because S is a one to one

Hilbert-Schmidt operator.

Further, since μ is the <τ-exteίision of the canonical Gaussian cylinder

measure μg, we have

dμ(x)

i,j = 1, 2, 3,

Let ^ = ^J 1^, j = 1, 2, 3, . Then {^} is a C.O.N.S. in X and

Σ I I Σ I I | J Σ r f

+ CXD

= ΣJ

Therefore S can be extended to a Hilbert-Schmidt operator on 3£*(= 3E) and

we denote it by S again. Let So be the dual operator of S in X. Then

So is the required operator. In fact, since SH* is dense in if* and i/* is

dense in 3E*(= 3E), for every x in X(c H),
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| | * | | = sup \ξ(x)\ = sup \{Sξ)(x)\
ίlί£ίίί=i [\\Sξ\n=i

= sup \(Sξ,x)\ = sup |(f,S**)I

= sup |(?,Sotf)I = 1SO«|.

The proof is now complete.

COROLLARY. Let \\x\\ be an admissible norm on 3£. If there exists a Hil-

bertian admissible norm stronger than \\x\\ then for any C.O.N.S. {<Pj} in 3£ we have

j p P i l l 2 < + ~. (4.16)

Proof Suppose that \\x\\f is a Hilbertian admissible norm stronger than

say, ||*|| < | |# | | ' . By Theorem 3, there exists a Hilbert-Schmidt ope-

rator S such that Hall' = \Sx\, l ε ϊ . Then for any C.O.N.S. \<pj] in 3E,

+ 0 0

This was to be proved.

Next we give some examples of admissible norms on a separable Hu-

bert space X.

EXAMPLE 1. Define

11*11!= \Sx\, X<Ξ%

where S is a one to one Hilbert-Schmidt operator on 3£. Then H*^ is a

measurable norm (Section l) . Therefore, by Theorem 3, every Hilbertian

admissible norm is a measurable norm.

EXAMPLE 2. Define

where {φn} is a C.O.N.S, in 1. Then ||*||2 is a measurable norm but

there is no Hilbertian admissible norm stronger than ||*||2.
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In fact it is evident that ||ίc|l2 is a norm on 3£. To prove that | |#| | 2 is

a measurable norm, we imbed ϊ in a measurable space (i?,̂ C) in which X

is an ^-measurable subspace and all functions (φn, x), n = 1, 2, 3, are

extended to 2ί-measurable functions on Ω, further, there exists a <τ-additive

extension μ of μ%. As an example of such a space, we can choose the

space of all sequences.

Then since μ is a ^-extension of μ^9 we have

μ[x

Ω:

= lim lim μ\X e Ω: SUp ηk=\(φn, χ)\ < M~]

= lim lim μ~\ X S X: sup - i=| (ί>», α) | < Λfl

exp - -\- \du\

•̂  ί /~9 ί»+°° Γ M2 Ί , 1

= limlimΠ 1 - Λ / — f e x P Γ" " l ~ ^

= lim lim Π τ =

> lim lim Π ( l - JΛ. _ 1 e x p Γ -

> lim lim Π ( l - exp Γ~ -^- n\)

= lim lim'
N M

= 1,

1 - e x p L - -]
2 J

and for any positive number ε

μlx<=Ω: | |*| |, < β ]

= lim μJxeX: sup ΎL^\(φn,x)\<ε\
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because

Therefore, by Corollary 4. 5 of L. Gross [2], ||a;||2 is a measurable norm.

While for the C.O.N.S. { P J in £

By Corollary of Theorem 3, there is no Hilbertian admissible norm stronger

than ||aj||2. This means that there is no Hubert space of full measure

which is included in the Banach space obtained by the completion of £ in

the norm | |#| | 2.

EXAMPLE 3. Define

||g||, = [sup 4 - 2 !(?>„ a012TK ^ 3 E

where {φn} is a C.O.N.S. in X. Then ||#1|3 is an admissible norm on Έ

but not a measurable norm.

Proof. Imbed X in the measurable space [Ω9 "S, μ) as in Example 2.

Then by the law of large number, we have

μ[ x e Ω: l i m s u p - ^ ^ K ^ , x)\2 = l ] =

Therefore ||ίc||3 is an admissible norm; but, according to Corollary 4. 5 of

L. Gross [2], it is not a measurable norm. This means that for a norm on

a separable Hubert space to be admissible, it is not necessary to be a

measurable norm in the sense of L. Gross [1],
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