CORRECTIONS TO 'CHARACTER THEORY OF FINITE GROUPS WITH TRIVIAL INTERSECTION

SUBSETS (Vol 27, 515—524)

JOHN H. WALTER

- 1. The conditions (TI 1) and (TI 2) are stated for $\mathbf{H} = \mathfrak{N}G(\mathbf{D})$ and henceforth in the paper \mathbf{H} is understood to be $\mathfrak{N}_G(\mathbf{D})$ when \mathbf{D} is taken to be a T.I. subset of \mathbf{G} . Also in the definition of T.I. subset the condition is that $\mathbf{D} \cap \mathbf{D}^G \neq \phi$ where ϕ is the empty set.
 - 2. Just before formula (11), the symbol should read

$$\{\varepsilon(\tau_i)\xi_i \mid \varepsilon(\tau_i)\xi_i^{\tau_i} = E\}.$$

3. In the statement of Proposition 8, the penultimate sentence should read: 'If \mathbf{D} contains a section $\mathfrak{S}_{\mathbf{H}}(P)$ of a p-element P belonging to a defect group \mathbf{V} of $\mathfrak{B}^{\mathbf{G}}$, then $\mathfrak{F}_{\mathbf{G}}(\mathfrak{C}_{\mathbf{G}}, (\mathbf{D}^{\mathbf{G}}, \mathfrak{B}^{\mathbf{G}}))$ contains all characters of zero height in $\mathfrak{B}^{\mathbf{G}}$.' It is required to know that $\mathcal{E}(R) \not\equiv 0$ in the proof for a character \mathcal{E} of $\mathfrak{B}^{\mathbf{G}}$ for an appropriate p-regular element R in order to have $\mathcal{E}(PR) \not\equiv 0$ where $PR \in \mathbf{D}$. The assumption of zero height is need to justify this step.

The author is grateful to Professor J.G. Thompson and Warren Wong for their comments. There is a substantial overlap with the article and Wong's 'Exceptional Character Theory and the Theory of Blocks', Math. Zeit., 91, 363–379 (1966).